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A. Proofs for Sections 4.2–4.4

Lemma 1. For any r ∈ RK and θ ≥ 0:

(i) `(r, θ) is a finite-valued, decreasing, piecewise linear, convex function of θ.

(ii)
`(r, θ) ≤ 1 + α

1− α‖J
∗ − Φr‖∞.

(iii) The right partial derivative of `(r, θ) with respect to θ satisfies

∂+

∂θ+ `(r, 0) = −

(1− α)
∑

x∈Ω(r)
πµ∗,ν(x)

−1

,

where
Ω(r) , argmax

{x∈X : πµ∗,ν(x)>0}
Φr(x)− TΦr(x).

Proof. (i) Given any r, clearly γ , ‖Φr − TΦr‖∞, s , 0 is a feasible point for (9), so `(r, θ) is
feasible. To see that the LP is bounded, suppose (s, γ) is feasible. Then, for any x ∈ X with
πµ∗,ν(x) > 0,

γ ≥ Φr(x)− TΦr(x)− s(x) ≥ Φr(x)− TΦr(x)− θ/πµ∗,ν(x) > −∞.
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Letting (γ1, s1) and (γ2, s2) represent optimal solutions for the LP (9) with parameters (r, θ1) and
(r, θ2) respectively, it is easy to see that ((γ1 + γ2)/2, (s1 + s2)/2) is feasible for the LP with
parameters (r, (θ1 + θ2)/2). It follows that `(r, (θ1 + θ2)/2) ≤ (`(r, θ1) + `(r, θ2))/2. The remaining
properties are simple to check.

(ii) Let ε , ‖J∗ − Φr‖∞. Then, since T is an α-contraction under the ‖ · ‖∞ norm,

‖TΦr − Φr‖∞ ≤ ‖J∗ − TΦr‖∞ + ‖J∗ − Φr‖∞ ≤ α‖J∗ − Φr‖∞ + ε = (1 + α)ε.

Since γ , ‖TΦr − Φr‖∞, s , 0 is feasible for (9), the result follows.
(iii) Fix r ∈ RK , and define

∆ , max
{x∈X : πµ∗,ν(x)>0}

(
Φr(x)− TΦr(x)

)
− max
{x∈X\Ω(r) : πµ∗,ν(x)>0}

(
Φr(x)− TΦr(x)

)
> 0.

Consider the program for `(r, δ). It is easy to verify that for δ ≥ 0 and sufficiently small, viz.
δ ≤ ∆

∑
x∈Ω(r) πµ∗,ν(x), (s̄δ, γ̄δ) is an optimal solution to the program, where

s̄δ(x) ,


δ∑

x∈Ω(r) πµ∗,ν(x) if x ∈ Ω(r),

0 otherwise,

and
γ̄δ , γ0 −

δ∑
x∈Ω(r) πµ∗,ν(x) ,

so that
`(r, δ) = `(r, 0)− δ

(1− α)
∑
x∈Ω(r) πµ∗,ν(x) .

Thus,
`(r, δ)− `(r, 0)

δ
= −

(1− α)
∑

x∈Ω(r)
πµ∗,ν(x)

−1

.

Taking a limit as δ ↘ 0 yields the result. �

Lemma 2. Suppose that the vectors J ∈ RX and s ∈ RX satisfy

J ≤ Tµ∗J + s.

Then,
J ≤ J∗ + ∆∗s,

where
∆∗ ,

∞∑
k=0

(αPµ∗)k = (I − αPµ∗)−1,
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and Pµ∗ is the transition probability matrix corresponding to an optimal policy.

Proof. Note that the Tµ∗ , the Bellman operator corresponding to the optimal policy µ∗, is mono-
tonic and is a contraction. Then, repeatedly applying Tµ∗ to the inequality J ≤ Tµ∗J + s and using
the fact that T kµ∗J → J∗, we obtain

J ≤ J∗ +
∞∑
k=0

(αPµ∗)ks = J∗ + ∆∗s.

�

Lemma 3. For the autonomous queue with basis functions φ1(x) , 1 and φ2(x) , x, if N is
sufficiently large, then

inf
r,ψ∈Ψ̄

2ν>ψ
1− αβ(ψ)‖J

∗ − Φr‖∞,1/ψ ≥
3ρ2q

32(1− q)(N − 1).

Proof. We have:

inf
r,ψ∈Ψ̄

2ν>ψ
1− αβ(ψ)‖J

∗ − Φr‖∞,1/ψ ≥ inf
ψ∈Ψ̄

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞.

We will produce lower bounds on the two infima on the right-hand side above. Observe that

inf
r
‖J∗ − Φr‖∞ = inf

r
max
x
|ρ2x

2 + ρ1x+ ρ0 − r1x− r0|

≥ inf
r

max
(
max
x
|ρ2x

2 + (ρ1 − r1)x| − |ρ0 − r0|, |ρ0 − r0|
)

= inf
r0

max
(

inf
r1

max
x
|ρ2x

2 + (ρ1 − r1)x| − |ρ0 − r0|, |ρ0 − r0|
)
,

which follows from the triangle inequality and the fact that

max
x
|ρ2x

2 + ρ1x+ ρ0 − r1x− r0| ≥ |ρ0 − r0|.

Routine algebra verifies that

inf
r1

max
x
|ρ2x

2 + (ρ1 − r1)x| ≥ 3
16ρ2(N − 1)2.

It thus follows that

inf
r
‖J∗ − Φr‖∞ ≥ inf

r0
max

(
3
16ρ2(N − 1)2 − |ρ0 − r0|, |ρ0 − r0|

)
≥ 3

32ρ2(N − 1)2.

We next note that any ψ ∈ Ψ̃ must satisfy ψ ∈ span(Φ) and ψ ≥ 1. Thus, ψ ∈ Ψ̃ must take the
form ψ(x) = α1x+ α0 with α0 ≥ 1 and α1 ≥ (1− α0)/(N − 1). Thus, ‖ψ‖∞ = max(α1(N − 1) +
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α0, α0). Define κ(N) to be the expected queue length under the distribution ν, i.e.,

κ(N) ,
N−1∑
x=0

ν(x)x = 1− q
1− qN

N−1∑
x=0

xqx = q

1− q

[
1−NqN−1(1− q)− qN

1− qN

]
,

so that ν>ψ = α1κ(N) + α0, Thus,

inf
ψ∈Ψ̃

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞ ≥ 3

16ρ2 inf
α0≥1

α1≥
1−α0
N−1

α1κ(N) + α0
max(α1(N − 1) + α0, α0)(N − 1)2

When (1− α0)/(N − 1) ≤ α1 ≤ 0, we have

α1κ(N) + α0
max(α1(N − 1) + α0, α0)(N − 1)2 = α1κ(N) + α0

α0
(N − 1)2

≥ (1− α0)κ(N)/(N − 1) + α0
α0

(N − 1)2

≥
(

1− κ(N)
N − 1

)
(N − 1)2.

When α1 > 0, we have

α1κ(N) + α0
max(α1(N − 1) + α0, α0)(N − 1)2 = α1κ(N) + α0

α1(N − 1) + α0
(N − 1)2 ≥ (N − 1)κ(N),

where the inequality follows from the fact that κ(N) ≤ N − 1 and α0 > 0. It then follows that

inf
ψ∈Ψ̃

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞ ≥ 3

16ρ2 min
(
κ(N)(N − 1),

(
1− κ(N)

N − 1

)
(N − 1)2

)
.

Now, observe that κ(N) is increasing in N . Also, by assumption, p < 1/2, so q < 1 and thus
κ(N) → q/(1 − q) as N → ∞. Then, for N sufficiently large, 1

2q/(1 − q) ≤ κ(N) ≤ q/(1 − q).
Therefore, for N sufficiently large,

inf
ψ∈Ψ̃

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞ ≥

3ρ2q

32(1− q)(N − 1),

as desired. �

Lemma 4. For every λ ≥ 0, there exists a θ̂ ≥ 0 such that an optimal solution (r∗, s∗) to

(A.1)
maximize

r,s
ν>Φr − λπ>µ∗,νs

subject to Φr ≤ TΦr + s, s ≥ 0.

is also an optimal solution the SALP (8) with θ = θ̂.
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Proof. Let θ̂ , π>µ∗,νs
∗. It is then clear that (r∗, s∗) is a feasible solution to (8) with θ = θ̂. We

claim that it is also an optimal solution. To see this, assume to the contrary that it is not an optimal
solution, and let (r̃, s̃) be an optimal solution to (8). It must then be that π>µ∗,ν s̃ ≤ θ̂ = π>µ∗,νs

∗ and
moreover, ν>Φr̃ > ν>Φr∗ so that

ν>Φr∗ − λπ>µ∗,νs∗ < ν>Φr̃ − λπ>µ∗,ν s̃.

This, in turn, contradicts the optimality of (r∗, s∗) for (A.1) and yields the result. �

B. Proof of Theorem 4

Our proof of Theorem 4 is based on uniformly bounding the rate of convergence of sample averages
of a certain class of functions. We begin with some definitions: consider a family F of functions from
a set S to {0, 1}. Define the Vapnik-Chervonenkis (VC) dimension dimVC(F) to be the cardinality
d of the largest set {x1, x2, . . . , xd} ⊂ S satisfying:

∀ e ∈ {0, 1}d, ∃f ∈ F such that ∀ i, f(xi) = 1 iff ei = 1.

Now, let F be some set of real-valued functions mapping S to [0, B]. The pseudo-dimension
dimP (F) is the following generalization of VC dimension: for each function f ∈ F and scalar c ∈ R,
define a function g : S × R→ {0, 1} according to:

g(x, c) , I{f(x)−c≥0}.

Let G denote the set of all such functions. Then, we define dimP (F) , dimVC(G).
In order to prove Theorem 4, define the F to be the set of functions f : RK×R→ [0, B], where,

for all x ∈ RK and y ∈ R,
f(y, z) , ζ

(
r>y + z

)
.

Here, ζ(t) , max (min(t, B), 0), and r ∈ RK is a vector that parameterizes f . We will show that
dimP (F) ≤ K + 2. We will use the following standard result from convex geometry:

Lemma 5 (Radon’s Lemma). A set A ⊂ Rm of m+ 2 points can be partitioned into two disjoint sets
A1 and A2, such that the convex hulls of A1 and A2 intersect.

Lemma 6. dimP (F) ≤ K + 2

Proof. Assume, for the sake of contradiction, that dimP (F) > K + 2. It must be that there exists
a ‘shattered’ set{(

y(1), z(1), c(1)), (y(2), z(2), c(2)), . . . , (y(K+3), z(K+3), c(K+3))} ⊂ RK × R× R,
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such that, for all e ∈ {0, 1}K+3, there exists a vector re ∈ RK with

ζ
(
r>e y

(i) + z(i)
)
≥ c(i) iff ei = 1, ∀ 1 ≤ i ≤ K + 3.

Observe that we must have c(i) ∈ (0, B] for all i, since if c(i) ≤ 0 or c(i) > B, then no such
shattered set can be demonstrated. But if c(i) ∈ (0, B], for all r ∈ RK ,

ζ
(
r>y(i) + z(i)

)
≥ c(i) =⇒ r>e y

(i) ≥ c(i) − z(i),

and
ζ
(
r>y(i) + z(i)

)
< c(i) =⇒ r>e y

(i) < c(i) − z(i).

For each 1 ≤ i ≤ K + 3, define x(i) ∈ RK+1 component-wise according to

x
(i)
j ,

y
(i)
j if j < K + 1,

c(i) − z(i) if j = K + 1.

Let A = {x(1), x(2), . . . , x(K+3)} ⊂ RK+1, and let A1 and A2 be subsets of A satisfying the conditions
of Radon’s lemma. Define a vector ẽ ∈ {0, 1}K+3 component-wise according to

ẽi , I{x(i)∈A1}.

Define the vector r̃ , rẽ. Then, we have

K∑
j=1

r̃jxj ≥ xK+1, ∀ x ∈ A1,

K∑
j=1

r̃jxj < xK+1, ∀ x ∈ A2.

Now, let x̄ ∈ RK+1 be a point contained in both the convex hull of A1 and the convex hull of
A2. Such a point must exist by Radon’s lemma. By virtue of being contained in the convex hull of
A1, we must have

K∑
j=1

r̃j x̄j ≥ x̄K+1.

Yet, by virtue of being contained in the convex hull of A2, we must have

K∑
j=1

r̃j x̄j < x̄K+1,

which is impossible. �
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With the above pseudo-dimension estimate, we can establish the following lemma, which pro-
vides a Chernoff bound for the uniform convergence of a certain class of functions:

Lemma 7. Given a constant B > 0, define the function ζ : R→ [0, B] by

ζ(t) , max (min(t, B), 0) .

Consider a pair of random variables (Y, Z) ∈ RK×R. For each i = 1, . . . , n, let the pair
(
Y (i), Z(i))

be an i.i.d. sample drawn according to the distribution of (Y, Z). Then, for all ε ∈ (0, B],

P
(

sup
r∈RK

∣∣∣∣∣ 1n
n∑
i=1

ζ
(
r>Y (i) + Z(i)

)
− E

[
ζ
(
r>Y + Z

)]∣∣∣∣∣ > ε

)

≤ 8
(32eB

ε
log 32eB

ε

)K+2
exp

(
− ε2n

64B2

)
.

Moreover, given δ ∈ (0, 1), if

n ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
,

then this probability is at most δ.

Proof. Given Lemma 6, this follows immediately from Corollary 2 of of Haussler (1992, Section 4).
�

We are now ready to prove Theorem 4.

Theorem 4. Under the conditions of Theorem 2, let rSALP be an optimal solution to the SALP
(14), and let r̂SALP be an optimal solution to the sampled SALP (28). Assume that rSALP ∈ N .
Further, given ε ∈ (0, B] and δ ∈ (0, 1/2], suppose that the number of sampled states S satisfies

S ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
.

Then, with probability at least 1− δ − 2−383δ128,

‖J∗ − Φr̂SALP‖1,ν ≤ inf
r∈N
ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ

(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
+ 4ε

1− α.

Proof. Define the vectors

ŝµ∗ , (Φr̂SALP − Tµ∗Φr̂SALP)+ , and ŝ , (Φr̂SALP − TΦr̂SALP)+ .
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Note that ŝµ∗ ≤ ŝ. One has, via Lemma 2, that

Φr̂SALP − J∗ ≤ ∆∗ŝµ∗

Thus, as in the last set of inequalities in the proof of Theorem 1, we have

(B.1) ‖J∗ − Φr̂SALP‖1,ν ≤ ν>(J∗ − Φr̂SALP) +
2π>µ∗,ν ŝµ∗

1− α .

Now, let π̂µ∗,ν be the empirical measure induced by the collection of sampled states X̂ . Given
a state x ∈ X , define a vector Y (x) ∈ RK and a scalar Z(x) ∈ R according to

Y (x) , Φ(x)> − αPµ∗Φ(x)>, Z(x) , −g(x, µ∗(x)),

so that, for any vector of weights r ∈ N ,

(Φr(x)− Tµ∗Φr(x))+ = ζ
(
r>Y (x) + Z(x)

)
.

Then,

∣∣∣π̂>µ∗,ν ŝµ∗ − π>µ∗,ν ŝµ∗∣∣∣ ≤ sup
r∈N

∣∣∣∣∣∣ 1S
∑
x∈X̂

ζ
(
r>Y (x) + Z(x)

)
−
∑
x∈X

πµ∗,ν(x)ζ
(
r>Y (x) + Z(x)

)∣∣∣∣∣∣ .
Applying Lemma 7, we have that

(B.2) P
(∣∣∣π̂>µ∗,ν ŝµ∗ − π>µ∗,ν ŝµ∗∣∣∣ > ε

)
≤ δ.

Next, suppose (rSALP, s̄) is an optimal solution to the SALP (14). Then, with probability at
least 1− δ,

ν>(J∗ − Φr̂SALP) +
2π>µ∗,ν ŝµ∗

1− α ≤ ν>(J∗ − Φr̂SALP) +
2π̂>µ∗,ν ŝµ∗

1− α + 2ε
1− α

≤ ν>(J∗ − Φr̂SALP) +
2π̂>µ∗,ν ŝ
1− α + 2ε

1− α

≤ ν>(J∗ − ΦrSALP) +
2π̂>µ∗,ν s̄
1− α + 2ε

1− α,

(B.3)

where the first inequality follows from (B.2), and the final inequality follows from the optimality
of (r̂SALP, ŝ) for the sampled SALP (28).

Notice that, without loss of generality, we can assume that s̄(x) = (ΦrSALP(x)−TΦrSALP(x))+,
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for each x ∈ X . Thus, 0 ≤ s̄(x) ≤ B. Further,

π̂>µ∗,ν s̄− π>µ∗,ν s̄ = 1
S

∑
x∈X̂

(
s̄(x)− π>µ∗,ν s̄

)
,

where the right-hand-side is of a sum of zero-mean bounded i.i.d. random variables. Applying
Hoeffding’s inequality,

P
(∣∣∣π̂>µ∗,ν s̄− π>µ∗,ν s̄∣∣∣ ≥ ε) ≤ 2 exp

(
−2Sε2

B2

)
< 2−383δ128,

where final inequality follows from our choice of S. Combining this with (B.1) and (B.3), with
probability at least 1− δ − 2−383δ128, we have

‖J∗ − Φr̂SALP‖1,ν ≤ ν>(J∗ − ΦrSALP) +
2π̂>µ∗,ν s̄
1− α + 2ε

1− α

≤ ν>(J∗ − ΦrSALP) +
2π>µ∗,ν s̄
1− α + 4ε

1− α.

The result then follows from (17)–(19) in the proof of Theorem 2. �
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