ONLY AVALLABLE IN ELECTRONIC FORM

Electronic Companion-"Approximate Dynamic Programming via a Smoothed Linear Program" by Vijay V. Desai, Vivek F. Farias, and Ciamac C. Moallemi, Operations Research, http://dx.doi.org/10.1287/opre.1120.1044.

Approximate Dynamic Programming via a Smoothed Linear Program (Electronic Companion)

Vijay V. Desai
Industrial Engineering and Operations Research
Columbia University
email: vvd2101@columbia.edu
Vivek F. Farias
Sloan School of Management
Massachusetts Institute of Technology
email:
vivekf@mit. edu
Ciamac C. Moallemi
Graduate School of Business
Columbia University
email: ciamac@gsb.columbia.edu

November 22, 2011

A. Proofs for Sections 4.2-4.4

Lemma 1. For any $r \in \mathbb{R}^{K}$ and $\theta \geq 0$:
(i) $\ell(r, \theta)$ is a finite-valued, decreasing, piecewise linear, convex function of θ.
(ii)

$$
\ell(r, \theta) \leq \frac{1+\alpha}{1-\alpha}\left\|J^{*}-\Phi r\right\|_{\infty} .
$$

(iii) The right partial derivative of $\ell(r, \theta)$ with respect to θ satisfies

$$
\frac{\partial^{+}}{\partial \theta^{+}} \ell(r, 0)=-\left((1-\alpha) \sum_{x \in \Omega(r)} \pi_{\mu^{*}, \nu}(x)\right)^{-1}
$$

where

$$
\Omega(r) \triangleq \underset{\left\{x \in \mathcal{X}: \pi_{\mu^{*}, \nu}(x)>0\right\}}{\operatorname{argmax}} \operatorname{Ir}(x)-T \Phi r(x) .
$$

Proof. (i) Given any r, clearly $\gamma \triangleq\|\Phi r-T \Phi r\|_{\infty}, s \triangleq \mathbf{0}$ is a feasible point for (9), so $\ell(r, \theta)$ is feasible. To see that the LP is bounded, suppose (s, γ) is feasible. Then, for any $x \in \mathcal{X}$ with $\pi_{\mu^{*}, \nu}(x)>0$,

$$
\gamma \geq \Phi r(x)-T \Phi r(x)-s(x) \geq \Phi r(x)-T \Phi r(x)-\theta / \pi_{\mu^{*}, \nu}(x)>-\infty .
$$

Letting $\left(\gamma_{1}, s_{1}\right)$ and $\left(\gamma_{2}, s_{2}\right)$ represent optimal solutions for the LP (9) with parameters $\left(r, \theta_{1}\right)$ and $\left(r, \theta_{2}\right)$ respectively, it is easy to see that $\left(\left(\gamma_{1}+\gamma_{2}\right) / 2,\left(s_{1}+s_{2}\right) / 2\right)$ is feasible for the LP with parameters $\left(r,\left(\theta_{1}+\theta_{2}\right) / 2\right)$. It follows that $\ell\left(r,\left(\theta_{1}+\theta_{2}\right) / 2\right) \leq\left(\ell\left(r, \theta_{1}\right)+\ell\left(r, \theta_{2}\right)\right) / 2$. The remaining properties are simple to check.
(ii) Let $\epsilon \triangleq\left\|J^{*}-\Phi r\right\|_{\infty}$. Then, since T is an α-contraction under the $\|\cdot\|_{\infty}$ norm,

$$
\|T \Phi r-\Phi r\|_{\infty} \leq\left\|J^{*}-T \Phi r\right\|_{\infty}+\left\|J^{*}-\Phi r\right\|_{\infty} \leq \alpha\left\|J^{*}-\Phi r\right\|_{\infty}+\epsilon=(1+\alpha) \epsilon
$$

Since $\gamma \triangleq\|T \Phi r-\Phi r\|_{\infty}, s \triangleq \mathbf{0}$ is feasible for (9), the result follows.
(iii) Fix $r \in \mathbb{R}^{K}$, and define

$$
\Delta \triangleq \max _{\left\{x \in \mathcal{X}: \pi_{\mu^{*}, \nu}(x)>0\right\}}(\Phi r(x)-T \Phi r(x))-\max _{\left\{x \in \mathcal{X} \backslash \Omega(r): \pi_{\mu^{*}, \nu}(x)>0\right\}}(\Phi r(x)-T \Phi r(x))>0 .
$$

Consider the program for $\ell(r, \delta)$. It is easy to verify that for $\delta \geq 0$ and sufficiently small, viz. $\delta \leq \Delta \sum_{x \in \Omega(r)} \pi_{\mu^{*}, \nu}(x),\left(\bar{s}_{\delta}, \bar{\gamma}_{\delta}\right)$ is an optimal solution to the program, where

$$
\bar{s}_{\delta}(x) \triangleq \begin{cases}\frac{\delta}{\sum_{x \in \Omega(r)} \pi_{\mu^{*}, \nu}(x)} & \text { if } x \in \Omega(r) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\bar{\gamma}_{\delta} \triangleq \gamma_{0}-\frac{\delta}{\sum_{x \in \Omega(r)} \pi_{\mu^{*}, \nu}(x)},
$$

so that

$$
\ell(r, \delta)=\ell(r, 0)-\frac{\delta}{(1-\alpha) \sum_{x \in \Omega(r)} \pi_{\mu^{*}, \nu}(x)} .
$$

Thus,

$$
\frac{\ell(r, \delta)-\ell(r, 0)}{\delta}=-\left((1-\alpha) \sum_{x \in \Omega(r)} \pi_{\mu^{*}, \nu}(x)\right)^{-1}
$$

Taking a limit as $\delta \searrow 0$ yields the result.
Lemma 2. Suppose that the vectors $J \in \mathbb{R}^{\mathcal{X}}$ and $s \in \mathbb{R}^{\mathcal{X}}$ satisfy

$$
J \leq T_{\mu^{*}} J+s
$$

Then,

$$
J \leq J^{*}+\Delta^{*} s
$$

where

$$
\Delta^{*} \triangleq \sum_{k=0}^{\infty}\left(\alpha P_{\mu^{*}}\right)^{k}=\left(I-\alpha P_{\mu^{*}}\right)^{-1}
$$

and $P_{\mu^{*}}$ is the transition probability matrix corresponding to an optimal policy.
Proof. Note that the $T_{\mu^{*}}$, the Bellman operator corresponding to the optimal policy μ^{*}, is monotonic and is a contraction. Then, repeatedly applying $T_{\mu^{*}}$ to the inequality $J \leq T_{\mu^{*}} J+s$ and using the fact that $T_{\mu^{*}}^{k} J \rightarrow J^{*}$, we obtain

$$
J \leq J^{*}+\sum_{k=0}^{\infty}\left(\alpha P_{\mu^{*}}\right)^{k} s=J^{*}+\Delta^{*} s
$$

Lemma 3. For the autonomous queue with basis functions $\phi_{1}(x) \triangleq 1$ and $\phi_{2}(x) \triangleq x$, if N is sufficiently large, then

$$
\inf _{r, \psi \in \bar{\Psi}} \frac{2 \nu^{\top} \psi}{1-\alpha \beta(\psi)}\left\|J^{*}-\Phi r\right\|_{\infty, 1 / \psi} \geq \frac{3 \rho_{2} q}{32(1-q)}(N-1)
$$

Proof. We have:

$$
\inf _{r, \psi \in \bar{\Psi}} \frac{2 \nu^{\top} \psi}{1-\alpha \beta(\psi)}\left\|J^{*}-\Phi r\right\|_{\infty, 1 / \psi} \geq \inf _{\psi \in \bar{\Psi}} \frac{2 \nu^{\top} \psi}{\|\psi\|_{\infty}} \inf _{r}\left\|J^{*}-\Phi r\right\|_{\infty} .
$$

We will produce lower bounds on the two infima on the right-hand side above. Observe that

$$
\begin{aligned}
\inf _{r}\left\|J^{*}-\Phi r\right\|_{\infty} & =\inf _{r} \max _{x}\left|\rho_{2} x^{2}+\rho_{1} x+\rho_{0}-r_{1} x-r_{0}\right| \\
& \geq \inf _{r} \max \left(\max _{x}\left|\rho_{2} x^{2}+\left(\rho_{1}-r_{1}\right) x\right|-\left|\rho_{0}-r_{0}\right|,\left|\rho_{0}-r_{0}\right|\right) \\
& =\inf _{r_{0}} \max \left(\inf _{r_{1}} \max _{x}\left|\rho_{2} x^{2}+\left(\rho_{1}-r_{1}\right) x\right|-\left|\rho_{0}-r_{0}\right|,\left|\rho_{0}-r_{0}\right|\right),
\end{aligned}
$$

which follows from the triangle inequality and the fact that

$$
\max _{x}\left|\rho_{2} x^{2}+\rho_{1} x+\rho_{0}-r_{1} x-r_{0}\right| \geq\left|\rho_{0}-r_{0}\right|
$$

Routine algebra verifies that

$$
\inf _{r_{1}} \max _{x}\left|\rho_{2} x^{2}+\left(\rho_{1}-r_{1}\right) x\right| \geq \frac{3}{16} \rho_{2}(N-1)^{2} .
$$

It thus follows that

$$
\inf _{r}\left\|J^{*}-\Phi r\right\|_{\infty} \geq \inf _{r_{0}} \max \left(\frac{3}{16} \rho_{2}(N-1)^{2}-\left|\rho_{0}-r_{0}\right|,\left|\rho_{0}-r_{0}\right|\right) \geq \frac{3}{32} \rho_{2}(N-1)^{2} .
$$

We next note that any $\psi \in \tilde{\Psi}$ must satisfy $\psi \in \operatorname{span}(\Phi)$ and $\psi \geq \mathbf{1}$. Thus, $\psi \in \tilde{\Psi}$ must take the form $\psi(x)=\alpha_{1} x+\alpha_{0}$ with $\alpha_{0} \geq 1$ and $\alpha_{1} \geq\left(1-\alpha_{0}\right) /(N-1)$. Thus, $\|\psi\|_{\infty}=\max \left(\alpha_{1}(N-1)+\right.$
$\left.\alpha_{0}, \alpha_{0}\right)$. Define $\kappa(N)$ to be the expected queue length under the distribution ν, i.e.,

$$
\kappa(N) \triangleq \sum_{x=0}^{N-1} \nu(x) x=\frac{1-q}{1-q^{N}} \sum_{x=0}^{N-1} x q^{x}=\frac{q}{1-q}\left[\frac{1-N q^{N-1}(1-q)-q^{N}}{1-q^{N}}\right],
$$

so that $\nu^{\top} \psi=\alpha_{1} \kappa(N)+\alpha_{0}$, Thus,

$$
\inf _{\psi \in \tilde{\Psi}} \frac{2 \nu^{\top} \psi}{\|\psi\|_{\infty}} \inf _{r}\left\|J^{*}-\Phi r\right\|_{\infty} \geq \frac{3}{16} \rho_{2} \inf _{\substack{\alpha_{0} \geq 1 \\ \alpha_{1} \geq \frac{1-\alpha_{0}}{N-1}}} \frac{\alpha_{1} \kappa(N)+\alpha_{0}}{\max \left(\alpha_{1}(N-1)+\alpha_{0}, \alpha_{0}\right)}(N-1)^{2}
$$

When $\left(1-\alpha_{0}\right) /(N-1) \leq \alpha_{1} \leq 0$, we have

$$
\begin{aligned}
\frac{\alpha_{1} \kappa(N)+\alpha_{0}}{\max \left(\alpha_{1}(N-1)+\alpha_{0}, \alpha_{0}\right)}(N-1)^{2} & =\frac{\alpha_{1} \kappa(N)+\alpha_{0}}{\alpha_{0}}(N-1)^{2} \\
& \geq \frac{\left(1-\alpha_{0}\right) \kappa(N) /(N-1)+\alpha_{0}}{\alpha_{0}}(N-1)^{2} \\
& \geq\left(1-\frac{\kappa(N)}{N-1}\right)(N-1)^{2} .
\end{aligned}
$$

When $\alpha_{1}>0$, we have

$$
\frac{\alpha_{1} \kappa(N)+\alpha_{0}}{\max \left(\alpha_{1}(N-1)+\alpha_{0}, \alpha_{0}\right)}(N-1)^{2}=\frac{\alpha_{1} \kappa(N)+\alpha_{0}}{\alpha_{1}(N-1)+\alpha_{0}}(N-1)^{2} \geq(N-1) \kappa(N),
$$

where the inequality follows from the fact that $\kappa(N) \leq N-1$ and $\alpha_{0}>0$. It then follows that

$$
\inf _{\psi \in \tilde{\Psi}} \frac{2 \nu^{\top} \psi}{\|\psi\|_{\infty}} \inf _{r}\left\|J^{*}-\Phi r\right\|_{\infty} \geq \frac{3}{16} \rho_{2} \min \left(\kappa(N)(N-1),\left(1-\frac{\kappa(N)}{N-1}\right)(N-1)^{2}\right) .
$$

Now, observe that $\kappa(N)$ is increasing in N. Also, by assumption, $p<1 / 2$, so $q<1$ and thus $\kappa(N) \rightarrow q /(1-q)$ as $N \rightarrow \infty$. Then, for N sufficiently large, $\frac{1}{2} q /(1-q) \leq \kappa(N) \leq q /(1-q)$. Therefore, for N sufficiently large,

$$
\inf _{\psi \in \tilde{\Psi}} \frac{2 \nu^{\top} \psi}{\|\psi\|_{\infty}} \inf _{r}\left\|J^{*}-\Phi r\right\|_{\infty} \geq \frac{3 \rho_{2} q}{32(1-q)}(N-1)
$$

as desired.
Lemma 4. For every $\lambda \geq 0$, there exists a $\hat{\theta} \geq 0$ such that an optimal solution $\left(r^{*}, s^{*}\right)$ to

$$
\begin{array}{ll}
\underset{r, s}{\operatorname{maximize}} & \nu^{\top} \Phi r-\lambda \pi_{\mu^{*}, \nu}^{\top} s \tag{A.1}\\
\text { subject to } & \Phi r \leq T \Phi r+s, \quad s \geq \mathbf{0} .
\end{array}
$$

is also an optimal solution the SALP (8) with $\theta=\hat{\theta}$.

Proof. Let $\hat{\theta} \triangleq \pi_{\mu^{*}, \nu}^{\top} s^{*}$. It is then clear that $\left(r^{*}, s^{*}\right)$ is a feasible solution to (8) with $\theta=\hat{\theta}$. We claim that it is also an optimal solution. To see this, assume to the contrary that it is not an optimal solution, and let (\tilde{r}, \tilde{s}) be an optimal solution to (8). It must then be that $\pi_{\mu^{*}, \nu}^{\top} \tilde{s} \leq \hat{\theta}=\pi_{\mu^{*}, \nu}^{\top} s^{*}$ and moreover, $\nu^{\top} \Phi \tilde{r}>\nu^{\top} \Phi r^{*}$ so that

$$
\nu^{\top} \Phi r^{*}-\lambda \pi_{\mu^{*}, \nu}^{\top} s^{*}<\nu^{\top} \Phi \tilde{r}-\lambda \pi_{\mu^{*}, \nu}^{\top} \tilde{s} .
$$

This, in turn, contradicts the optimality of $\left(r^{*}, s^{*}\right)$ for A.1 and yields the result.

B. Proof of Theorem 4

Our proof of Theorem 4 is based on uniformly bounding the rate of convergence of sample averages of a certain class of functions. We begin with some definitions: consider a family \mathcal{F} of functions from a set \mathcal{S} to $\{0,1\}$. Define the Vapnik-Chervonenkis (VC) dimension $\operatorname{dim}_{\mathrm{VC}}(\mathcal{F})$ to be the cardinality d of the largest set $\left\{x_{1}, x_{2}, \ldots, x_{d}\right\} \subset \mathcal{S}$ satisfying:

$$
\forall e \in\{0,1\}^{d}, \exists f \in \mathcal{F} \text { such that } \forall i, f\left(x_{i}\right)=1 \text { iff } e_{i}=1 .
$$

Now, let \mathcal{F} be some set of real-valued functions mapping \mathcal{S} to $[0, B]$. The pseudo-dimension $\operatorname{dim}_{P}(\mathcal{F})$ is the following generalization of VC dimension: for each function $f \in \mathcal{F}$ and scalar $c \in \mathbb{R}$, define a function $g: \mathcal{S} \times \mathbb{R} \rightarrow\{0,1\}$ according to:

$$
g(x, c) \triangleq \mathbb{I}_{\{f(x)-c \geq 0\}} .
$$

Let \mathcal{G} denote the set of all such functions. Then, we define $\operatorname{dim}_{P}(\mathcal{F}) \triangleq \operatorname{dim}_{\mathrm{VC}}(\mathcal{G})$.
In order to prove Theorem 4 , define the \mathcal{F} to be the set of functions $f: \mathbb{R}^{K} \times \mathbb{R} \rightarrow[0, B]$, where, for all $x \in \mathbb{R}^{K}$ and $y \in \mathbb{R}$,

$$
f(y, z) \triangleq \zeta\left(r^{\top} y+z\right) .
$$

Here, $\zeta(t) \triangleq \max (\min (t, B), 0)$, and $r \in \mathbb{R}^{K}$ is a vector that parameterizes f. We will show that $\operatorname{dim}_{P}(\mathcal{F}) \leq K+2$. We will use the following standard result from convex geometry:

Lemma 5 (Radon's Lemma). A set $A \subset \mathbb{R}^{m}$ of $m+2$ points can be partitioned into two disjoint sets A_{1} and A_{2}, such that the convex hulls of A_{1} and A_{2} intersect.

Lemma 6. $\operatorname{dim}_{P}(\mathcal{F}) \leq K+2$
Proof. Assume, for the sake of contradiction, that $\operatorname{dim}_{P}(\mathcal{F})>K+2$. It must be that there exists a 'shattered' set

$$
\left\{\left(y^{(1)}, z^{(1)}, c^{(1)}\right),\left(y^{(2)}, z^{(2)}, c^{(2)}\right), \ldots,\left(y^{(K+3)}, z^{(K+3)}, c^{(K+3)}\right)\right\} \subset \mathbb{R}^{K} \times \mathbb{R} \times \mathbb{R}
$$

such that, for all $e \in\{0,1\}^{K+3}$, there exists a vector $r_{e} \in \mathbb{R}^{K}$ with

$$
\zeta\left(r_{e}^{\top} y^{(i)}+z^{(i)}\right) \geq c^{(i)} \text { iff } e_{i}=1, \quad \forall 1 \leq i \leq K+3 .
$$

Observe that we must have $c^{(i)} \in(0, B]$ for all i, since if $c^{(i)} \leq 0$ or $c^{(i)}>B$, then no such shattered set can be demonstrated. But if $c^{(i)} \in(0, B]$, for all $r \in \mathbb{R}^{K}$,

$$
\zeta\left(r^{\top} y^{(i)}+z^{(i)}\right) \geq c^{(i)} \Longrightarrow r_{e}^{\top} y^{(i)} \geq c^{(i)}-z^{(i)},
$$

and

$$
\zeta\left(r^{\top} y^{(i)}+z^{(i)}\right)<c^{(i)} \Longrightarrow r_{e}^{\top} y^{(i)}<c^{(i)}-z^{(i)} .
$$

For each $1 \leq i \leq K+3$, define $x^{(i)} \in \mathbb{R}^{K+1}$ component-wise according to

$$
x_{j}^{(i)} \triangleq \begin{cases}y_{j}^{(i)} & \text { if } j<K+1 \\ c^{(i)}-z^{(i)} & \text { if } j=K+1 .\end{cases}
$$

Let $A=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(K+3)}\right\} \subset \mathbb{R}^{K+1}$, and let A_{1} and A_{2} be subsets of A satisfying the conditions of Radon's lemma. Define a vector $\tilde{e} \in\{0,1\}^{K+3}$ component-wise according to

$$
\tilde{e}_{i} \triangleq \mathbb{I}_{\left\{x^{(i)} \in A_{1}\right\}}
$$

Define the vector $\tilde{r} \triangleq r_{\tilde{e}}$. Then, we have

$$
\begin{aligned}
& \sum_{j=1}^{K} \tilde{r}_{j} x_{j} \geq x_{K+1}, \quad \forall x \in A_{1}, \\
& \sum_{j=1}^{K} \tilde{r}_{j} x_{j}<x_{K+1}, \quad \forall x \in A_{2} .
\end{aligned}
$$

Now, let $\bar{x} \in \mathbb{R}^{K+1}$ be a point contained in both the convex hull of A_{1} and the convex hull of A_{2}. Such a point must exist by Radon's lemma. By virtue of being contained in the convex hull of A_{1}, we must have

$$
\sum_{j=1}^{K} \tilde{r}_{j} \bar{x}_{j} \geq \bar{x}_{K+1}
$$

Yet, by virtue of being contained in the convex hull of A_{2}, we must have

$$
\sum_{j=1}^{K} \tilde{r}_{j} \bar{x}_{j}<\bar{x}_{K+1},
$$

which is impossible.

With the above pseudo-dimension estimate, we can establish the following lemma, which provides a Chernoff bound for the uniform convergence of a certain class of functions:

Lemma 7. Given a constant $B>0$, define the function $\zeta: \mathbb{R} \rightarrow[0, B]$ by

$$
\zeta(t) \triangleq \max (\min (t, B), 0)
$$

Consider a pair of random variables $(Y, Z) \in \mathbb{R}^{K} \times \mathbb{R}$. For each $i=1, \ldots, n$, let the pair $\left(Y^{(i)}, Z^{(i)}\right)$ be an i.i.d. sample drawn according to the distribution of (Y, Z). Then, for all $\epsilon \in(0, B]$,

$$
\begin{aligned}
& \mathrm{P}\left(\sup _{r \in \mathbb{R}^{K}}\left|\frac{1}{n} \sum_{i=1}^{n} \zeta\left(r^{\top} Y^{(i)}+Z^{(i)}\right)-\mathrm{E}\left[\zeta\left(r^{\top} Y+Z\right)\right]\right|>\epsilon\right) \\
& \leq 8\left(\frac{32 e B}{\epsilon} \log \frac{32 e B}{\epsilon}\right)^{K+2} \exp \left(-\frac{\epsilon^{2} n}{64 B^{2}}\right)
\end{aligned}
$$

Moreover, given $\delta \in(0,1)$, if

$$
n \geq \frac{64 B^{2}}{\epsilon^{2}}\left(2(K+2) \log \frac{16 e B}{\epsilon}+\log \frac{8}{\delta}\right)
$$

then this probability is at most δ.
Proof. Given Lemma 6, this follows immediately from Corollary 2 of of Haussler (1992, Section 4).

We are now ready to prove Theorem 4
Theorem 4. Under the conditions of Theorem 2, let $r_{S A L P}$ be an optimal solution to the SALP (14), and let $\hat{r}_{S A L P}$ be an optimal solution to the sampled SALP (28). Assume that $r_{S A L P} \in \mathcal{N}$. Further, given $\epsilon \in(0, B]$ and $\delta \in(0,1 / 2]$, suppose that the number of sampled states S satisfies

$$
S \geq \frac{64 B^{2}}{\epsilon^{2}}\left(2(K+2) \log \frac{16 e B}{\epsilon}+\log \frac{8}{\delta}\right)
$$

Then, with probability at least $1-\delta-2^{-383} \delta^{128}$,

$$
\left\|J^{*}-\Phi \hat{r}_{S A L P}\right\|_{1, \nu} \leq \inf _{\substack{r \in \mathcal{N} \\ \psi \in \Psi}}\left\|J^{*}-\Phi r\right\|_{\infty, \mathbf{1} / \psi}\left(\nu^{\top} \psi+\frac{2\left(\pi_{\mu^{*}, \nu}^{\top} \psi\right)(\alpha \beta(\psi)+1)}{1-\alpha}\right)+\frac{4 \epsilon}{1-\alpha}
$$

Proof. Define the vectors

$$
\hat{s}_{\mu^{*}} \triangleq\left(\Phi \hat{r}_{\mathrm{SALP}}-T_{\mu^{*}} \Phi \hat{r}_{\mathrm{SALP}}\right)^{+}, \quad \text { and } \quad \hat{s} \triangleq\left(\Phi \hat{r}_{\mathrm{SALP}}-T \Phi \hat{r}_{\mathrm{SALP}}\right)^{+}
$$

Note that $\hat{s}_{\mu^{*}} \leq \hat{s}$. One has, via Lemma 2, that

$$
\Phi \hat{r}_{\mathrm{SALP}}-J^{*} \leq \Delta^{*} \hat{s}_{\mu^{*}}
$$

Thus, as in the last set of inequalities in the proof of Theorem 1, we have

$$
\begin{equation*}
\left\|J^{*}-\Phi \hat{r}_{\mathrm{SALP}}\right\|_{1, \nu} \leq \nu^{\top}\left(J^{*}-\Phi \hat{r}_{\mathrm{SALP}}\right)+\frac{2 \pi_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}}{1-\alpha} \tag{B.1}
\end{equation*}
$$

Now, let $\hat{\pi}_{\mu^{*}, \nu}$ be the empirical measure induced by the collection of sampled states $\hat{\mathcal{X}}$. Given a state $x \in \mathcal{X}$, define a vector $Y(x) \in \mathbb{R}^{K}$ and a scalar $Z(x) \in \mathbb{R}$ according to

$$
Y(x) \triangleq \Phi(x)^{\top}-\alpha P_{\mu^{*}} \Phi(x)^{\top}, \quad Z(x) \triangleq-g\left(x, \mu^{*}(x)\right),
$$

so that, for any vector of weights $r \in \mathcal{N}$,

$$
\left(\Phi r(x)-T_{\mu^{*}} \Phi r(x)\right)^{+}=\zeta\left(r^{\top} Y(x)+Z(x)\right) .
$$

Then,

$$
\left|\hat{\pi}_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}-\pi_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}\right| \leq \sup _{r \in \mathcal{N}}\left|\frac{1}{S} \sum_{x \in \hat{\mathcal{X}}} \zeta\left(r^{\top} Y(x)+Z(x)\right)-\sum_{x \in \mathcal{X}} \pi_{\mu^{*}, \nu}(x) \zeta\left(r^{\top} Y(x)+Z(x)\right)\right| .
$$

Applying Lemma 7, we have that

$$
\begin{equation*}
\mathrm{P}\left(\left|\hat{\pi}_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}-\pi_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}\right|>\epsilon\right) \leq \delta \tag{B.2}
\end{equation*}
$$

Next, suppose $\left(r_{\mathrm{SALP}}, \bar{s}\right)$ is an optimal solution to the SALP (14). Then, with probability at least $1-\delta$,

$$
\begin{align*}
\nu^{\top}\left(J^{*}-\Phi \hat{r}_{\mathrm{SALP}}\right)+\frac{2 \pi_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}}{1-\alpha} & \leq \nu^{\top}\left(J^{*}-\Phi \hat{r}_{\mathrm{SALP}}\right)+\frac{2 \hat{\pi}_{\mu^{*}, \nu}^{\top} \hat{s}_{\mu^{*}}}{1-\alpha}+\frac{2 \epsilon}{1-\alpha} \\
& \leq \nu^{\top}\left(J^{*}-\Phi \hat{r}_{\mathrm{SALP}}\right)+\frac{2 \hat{\pi}_{\mu^{*}, \nu}^{\top} \hat{s}}{1-\alpha}+\frac{2 \epsilon}{1-\alpha} \tag{B.3}\\
& \leq \nu^{\top}\left(J^{*}-\Phi r_{\mathrm{SALP}}\right)+\frac{2 \hat{\pi}_{\mu^{*}, \nu}^{\top} \bar{s}}{1-\alpha}+\frac{2 \epsilon}{1-\alpha}
\end{align*}
$$

where the first inequality follows from ($\bar{B} \cdot 2$, and the final inequality follows from the optimality of ($\left.\hat{r}_{\mathrm{SALP}}, \hat{s}\right)$ for the sampled SALP (28).

Notice that, without loss of generality, we can assume that $\bar{s}(x)=\left(\Phi r_{\text {SALP }}(x)-T \Phi r_{\text {SALP }}(x)\right)^{+}$,
for each $x \in \mathcal{X}$. Thus, $0 \leq \bar{s}(x) \leq B$. Further,

$$
\hat{\pi}_{\mu^{*}, \nu}^{\top} \bar{s}-\pi_{\mu^{*}, \nu}^{\top} \bar{s}=\frac{1}{S} \sum_{x \in \hat{\mathcal{X}}}\left(\bar{s}(x)-\pi_{\mu^{*}, \nu}^{\top} \bar{s}\right),
$$

where the right-hand-side is of a sum of zero-mean bounded i.i.d. random variables. Applying Hoeffding's inequality,

$$
\mathrm{P}\left(\left|\hat{\pi}_{\mu^{*}, \nu}^{\top} \bar{s}-\pi_{\mu^{*}, \nu}^{\top} \bar{s}\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{2 S \epsilon^{2}}{B^{2}}\right)<2^{-383} \delta^{128}
$$

where final inequality follows from our choice of S. Combining this with (B.1) and (B.3), with probability at least $1-\delta-2^{-383} \delta^{128}$, we have

$$
\begin{aligned}
\left\|J^{*}-\Phi \hat{r}_{\mathrm{SALP}}\right\|_{1, \nu} & \leq \nu^{\top}\left(J^{*}-\Phi r_{\mathrm{SALP}}\right)+\frac{2 \hat{\pi}_{\mu^{*}, \nu}^{\top} \bar{s}}{1-\alpha}+\frac{2 \epsilon}{1-\alpha} \\
& \leq \nu^{\top}\left(J^{*}-\Phi r_{\mathrm{SALP}}\right)+\frac{2 \pi_{\mu^{*}, \nu}^{\top} \bar{s}}{1-\alpha}+\frac{4 \epsilon}{1-\alpha} .
\end{aligned}
$$

The result then follows from (17)-19) in the proof of Theorem 2

References

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78-150, 1992.

