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Proof of Proposition 1.

With a slight abuse of notation, let us denote by Dd the set of multivariate stochastic

processes such that the aggregate demand equals d. Accordingly, Problem (5) can be de-

composed as follows:

ρ(y) = max
d∈P

max
D∈Dd

{
max
z∈F

R(z,D)−R(y,D)

}

= max
d∈P

{
max
z∈F

max
D∈Dd

R(z,D) + max
D∈Dd

−R(y,D)

}
.

Let ξj be the realized sales under a booking policy z when the demand is equal to

d. Because the perfect hindsight booking limits z are chosen after observing the demand

realization, one can assume without loss of generality that they are partitioned, i.e., ξj ≤ zj

for j = 1, ..., N . Hence, F = {z ≥ 0}. Similar to (9), ξj must satisfy:

ξj = min

{
dj, min

k=1,...,K

1

akj

{
ck −

N∑

i=1,i 6=j

akiξi

}
, zj

}
j = 1, ..., N. (A-1)

For any d ∈ P , different demand arrival processes D ∈ Dd are associated with different

sales ξ, but the sales will always satisfy (A-1). Let us denote by ξ(D) the realized sales

under the demand process D. Hence, for any d ∈ P ,

max
D∈Dd

R(z,D) = R(z,D∗) = r′ξ(D∗) ≤ max
ξ:(A−1)holds

r′ξ.

On the other hand, for any sales vector ξ, there always exists a demand arrival process

that gives rise to those sales. Let us denote by Dd(ξ) the set of demand processes that lead

to the sales ξ. Hence, for any d ∈ P ,

max
ξ:(A−1)holds

r′ξ = r′ξ∗ = R(z,D) ∀D ∈ Dd(ξ∗)

≤ max
D∈Dd

R(z,D).
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Combining these two results, we find that, for any d ∈ P ,

max
ξ:(A−1)holds

r′ξ = max
D∈Dd

R(z,D).

Similarly, one can show that, for any d ∈ P ,

max
x:(9)holds

−r′x = max
D∈Dd

−R(y,D).

As a result,

ρ(y) = max
d∈P

{
max
z≥0

max
ξ:(A−1)holds

r′ξ + max
x:(9)holds

−r′x
}

.

On the one hand,

max
z≥0

max
ξ:(A−1)holds

r′ξ = maxξ,z r′ξ

s.t. Aξ ≤ c

0 ≤ ξ ≤ d

ξ ≤ z

= maxz r′z

s.t. Az ≤ c

0 ≤ z ≤ d,

in which the first equality follows because rj > 0 for all j = 1, ..., N , and the second equality

is obtained by observing that, if (ξ∗, z∗) is an optimal solution, then (ξ∗, ξ∗) is also optimal.

On the other hand,

max
x:(9)holds

−r′x = maxx,α,β,γ −r′x

s.t. Ax ≤ c
∑

j∈S xj ≤ yS S ∈ S
0 ≤ x ≤ d

d ≤ x + M(1−α) (A-2)
∑

j∈S xj ≥ βSyS S ∈ S
a′kx ≥ ckγk k = 1, ..., K

∑K
k=1:akj>0 γk + αj +

∑
S:j∈S βS ≥ 1 j = 1, ..., N

α ∈ {0, 1}N , β ∈ {0, 1}|S|, γ ∈ {0, 1}K .
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where M ≥ {maxj dj : d ∈ P}. The constraints involving the binary variables α, β and γ

ensure that (9) is satisfied. Because of the forcing constraint dj ≤ xj + M(1 − αj), αj = 1

only if xj = dj. Similarly, βS = 1 only if
∑

j∈S xj = yS, and γk = 1 only if a′kx = ck. The

joint constraint
∑K

k=1:akj>0 γk + αj +
∑

S:j∈S βS ≥ 1 guarantees that at least one of these

three scenarios occurs, for every j, so as to satisfy (9). Combining these results gives rise to

the desired result.

Similarly, Problem (3) can be decomposed as follows:

ϕ(y) = −max
d∈P

max
D∈Dd

−R(y,D)

= −max
d∈P

max
x:(9)holds

−r′x.

Using (A-2) completes the proof.

Proof of Proposition 2.

(a) According to Proposition 1, evaluating the maximum regret on a single-resource RM

problem with capacity c, with partitioned booking limits, i.e., xj ≤ yj for all j =

1, ..., N , under interval uncertainty P = {d ∈ [0,u]} can be formulated as follows:

max
z,x,d

r′z− r′x

s.t. 0 ≤ d ≤ u

1′z ≤ c (A-3)

0 ≤ z ≤ d

xj = min{dj, yj, c−
∑N

i=1,i6=j xi} j = 1, ..., N.

Because capacity is partitioned into N buckets,
∑N

j=1 yj = c. Accordingly, the last

constraint can be replaced with xj = min{dj, yj}, simplifying Problem (A-3) to:

max
z,d

∑N
j=1 rj (zj −min{yj, dj})

s.t. 0 ≤ d ≤ u

1′z ≤ c

0 ≤ z ≤ d.

Because the objective function is decreasing with d, (z∗, z∗) is optimal whenever (z∗,d∗)

is optimal. Therefore, Problem (A-3) can be further simplified to:

max
z

∑N
j=1 rj (zj − yj)

+
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s.t. 0 ≤ z ≤ u

1′z ≤ c.

Without loss of optimality, one can assume that the optimal solution z∗ is such that

either z∗j > yj or z∗j = 0 for all j. If there exists some j for which 0 < z∗j ≤ yj, then

taking z∗j = 0 maintains feasibility of the solution without decreasing the value of the

objective function. Accordingly, we can assume that, whenever zj > 0, a fixed charge

rjyj must be incurred, for any j. For any j, let δj be a binary variable equal to one

when zj > 0 and to zero otherwise. Accordingly, Problem (A-3) is equivalent to:

max
z,δ

∑N
j=1 rj (zj − yjδj)

s.t. 1′z ≤ c

0 ≤ zj ≤ ujδj j = 1, ..., N (A-4)

δ ∈ {0,1}N .

Therefore, for any problem instance (c,u,y) and any b ∈ R, ρ(y) ≥ b if and only if the

optimal value of (A-4) is greater than or equal to b. Moreover, if (z∗, δ∗) solves (A-4),

then one can construct a solution (z,x,d) = (z∗, min{z∗,y}, z∗) that solves (A-3) and

conversely, if (z∗,x∗,d∗) solves (A-3), then one can construct a solution (z, δ) that

solves (A-4) with zj = z∗j and δj = 1 if z∗j > yj, and zj = 0 and δj = 0 otherwise.

Hence, Problems (A-3) and (A-4) are equivalent.

We next show that the following KNAPSACK problem, which is known to be NP-

complete (Garey and Johnson 1979, [MP9]), is reducible to (A-4):

– INSTANCE: Finite set U , for each j ∈ U , a weight wj ∈ Z+ and a value vj ∈ Z+,

and positive integers κ and b.

– QUESTION: Is there a subset U ′ ⊆ U such that
∑

j∈U ′ wj ≤ κ and
∑

j∈U ′ vj ≥ b?

Given any instance of KNAPSACK, we define the following instance of the maximum

regret RM problem (A-4): {1, ..., N} = U , K = 1, c = κ and, for any j ∈ U , uj = wj,

yj = wj−1, rj = vj. Hence, the maximum regret problem can be formulated as follows:

max
z,δ

∑
j∈U vj (zj − (wj − 1)δj)

s.t. 1′z ≤ κ
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0 ≤ zj ≤ wjδj j ∈ U (A-5)

δ ∈ {0,1}|U |.

Because (A-5) is a convex maximization problem, there exists an optimal solution that

is an extreme point of the feasible set. That is, there is at most one product, say

product i, for which 0 < zi < wi. Because all data is integer, zi can only take on

integer values in an optimal solution, i.e., 1 ≤ zi ≤ wi − 1. However, the objective can

be increased or remains unchanged by setting zi = 0 because the fixed charge equals

vi(wi− 1). Therefore, there exists an optimal solution with zj = 0 or zj = wj for every

j ∈ U .

Let (z∗, δ∗) be an optimal solution to (A-5), with optimal value greater than or

equal to b. Define U ′ = {j : δ∗j = 1}. Then, κ ≥ ∑
j∈U z∗j =

∑
j∈U ′ wj and

b ≤ ∑
j∈U vj

(
z∗j − (wj − 1)δ∗j

)
=

∑
j∈U ′ vj (wj − (wj − 1)) =

∑
j∈U ′ vj; therefore, the

answer to KNAPSACK is positive. Conversely, suppose the answer to KNAPSACK is

positive. Setting δj = 1 and zj = wj if j ∈ U ′, and δj = 0 and zj = 0 if j ∈ U \ U ′

gives rise to a feasible solution, with an objective value greater than or equal to b. As

a result, Problem (A-3) is NP-Hard.

(b) According to Proposition 1, evaluating the minimum revenue on a single-resource RM

problem with capacity c, with partitioned booking limits, i.e., xj ≤ yj for all j =

1, ..., N , under interval uncertainty P = {d ∈ [0,u]} and with a lower bound on the

total demand
∑N

j=1 dj ≥ L can be formulated as follows:

min
x,d

r′x

s.t. 0 ≤ d ≤ u

1′d ≥ L (A-6)

xj = min{dj, yj, c−
∑N

i=1,i6=j xi} j = 1, ..., N.

Because capacity is partitioned into N buckets, i.e.,
∑N

j=1 yj = c, xj = min{dj, yj} for

all j = 1, ..., N , and Problem (A-6) can be simplified to:

min
d

r′ min{d,y}
s.t. 0 ≤ d ≤ u

1′d ≥ L.
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Consider the KNAPSACK problem (see (a)) with the following QUESTION: Is there

a subset U ′ ⊆ U such that
∑

j∈U ′ wj ≥ κ and
∑

j∈U ′ vj ≤ b?

Given any instance of KNAPSACK, we define the following instance of the minimum

revenue RM problem (A-6): {1, ..., N} = U , K = 1, L = κ and, for any j ∈ U , uj = wj,

yj = 1, rj = vj. Hence, the minimum revenue problem can be formulated as follows:

min
d

∑
j∈U vj min{dj, 1}

s.t. 0 ≤ d ≤ w (A-7)

1′d ≥ κ.

Problem (A-7) is a concave minimization problem. Hence, there exists an optimal

solution that is an extreme point. With a similar argument to (a), one can show

that d∗j = 0 or d∗j = wj for all j = 1, ..., N . Let d∗ be an optimal solution to (A-7),

with optimal value greater than or equal to b. Define U ′ = {j : d∗j = wj}. Then,

κ ≥ ∑
j∈U d∗j =

∑
j∈U ′ wj and b ≤ ∑

j∈U vj min{d∗j , 1} =
∑

j∈U ′ vj; therefore, the

answer to KNAPSACK is positive. Conversely, suppose the answer to KNAPSACK

is positive. Setting dj = wj for all j ∈ U ′, and dj = 0 for all j ∈ U \ U ′ gives rise

to a feasible solution, with an objective value greater than or equal to b. As a result,

Problem (A-6) is NP-Hard.

(c) Consider the following three-product single-resource problem with partitioned booking

limits (i.e., S = {{1}, {2}, {3}}), with r = [3, 2, 1], c = 6, and P = {d|d1 = 6, d2 =

5, d3 = 2}, that is, demand is deterministic. With y1 = [6, 5, 1], ρ(y1) = (6× 3)− (5×
2 + 1 × 1) = 7 and with y2 = [6, 3, 3], ρ(y2) = (6 × 3) − (1 × 3 + 3 × 2 + 2 × 1) = 7.

In contrast, with y = (y1 + y2)/2 = [6, 4, 2], ρ(y) = (6 × 3) − (4 × 2 + 2 × 1) =

8 > max{ρ(y1), ρ(y2)}. Therefore, ρ(y) is not quasiconvex. For the same problem

instance, ϕ(y1) = ϕ(y2) = 11 > ϕ(y) = 10. Therefore, ϕ(y) is not quasiconcave.

Proof of Lemma 1.

When low-fare customers arrive first, the realized sales associated with any demand vector

d can be recursively defined as follows:

xN = dN ,
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xj = min

{
dj, c−

∑

k>j

xk

}
, j = 1, ..., N − 1. (A-8)

Consider a different booking sequence for which (A-8) is not satisfied. That is, there

exist some products i and j with 1 ≤ i < j ≤ N , such that xj < min
{

dj, c−
∑

k>j xk

}

if j < N or xj < dj if j = N and xi > 0. Swapping the arrival times of the earliest

request for product i with the latest request for product j decreases the realized revenue by

rj − ri < 0 without altering the perfect hindsight solution. Hence, (A-8) must be satisfied

in every worst-case scenario. One can therefore assume that low-fare customers book first

without loss of generality.

For any j, 1 ≤ j ≤ N , the derivative of the minimum revenue function with respect to

dj equals

rj11

{∑

k≥j

dk ≤ c

}
−

j−1∑
i=1

ri11

{∑

k>i

dk ≤ c <
∑

k≥i

dk

}
.

For any demand vector d, suppose that
∑

k≥1 dk ≤ c. Then, the derivative of the revenue

function with respect to dj equals rj > 0 for all j = 1, ..., N , and the revenue is therefore

minimized when dj = lj for all j = 1, ..., N . Suppose now that there exists some product

i, 1 ≤ i ≤ N − 1, for which 11{∑k>i dk ≤ c <
∑

k≥i dk} = 1. The derivative of the revenue

function with respect to dj equals 0 for all j ≤ i, and rj − ri < 0 for all j > i. Hence, the

revenue is minimized when dj = uj for all j = 1, ..., N .

Proof of Lemma 2.

When low-fare customers arrive first, the realized sales associated with any demand vector

d can be recursively defined as (A-8). By contrast, the sales under perfect hindsight are

independent of the sequence of arrivals and are equal to

z1 = d1,

zj = min

{
dj, c−

∑

k<j

zk

}
, j = 2, ..., N. (A-9)

Using a similar interchange argument as in Lemma 2, one can show that the worst-case

arrival sequence is when low-fare customers book first.
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For any j, 1 ≤ j ≤ N , the derivative of the regret function with respect to dj equals:

rj11

{∑

k≤j

dk ≤ c

}
−

N∑
i=j+1

ri11

{∑

k<i

dk ≤ c <
∑

k≤i

dk

}

−rj11

{∑

k≥j

dk ≤ c

}
+

j−1∑
i=1

ri11

{∑

k>i

dk ≤ c <
∑

k≥i

dk

}

≥ rj

(
11

{∑

k≤j

dk ≤ c

}
−

(
1− 11

{
c <

∑

k≤j

dk

}
− 11

{∑

k≤N

dk ≤ c

}))

−rj

(
11

{∑

k≥j

dk ≤ c

}
−

(
1− 11

{
c <

∑

k>j−1

dk

}
− 11

{∑

k≥1

dk ≤ c

}))

= 0.

As a result, the maximum regret is nondecreasing with dj for any j, 1 ≤ j ≤ N , and one

can therefore assume that dj = uj for all j = 1, ..., N without loss of generality.

Proof of Proposition 4.

From Lemma 2, the regret can only be reduced when xj is smaller than (A-8) for any j,

1 ≤ j ≤ N , so as to protect capacity for higher-fare products. For any set S̄ ∈ S̄, let us

denote by ȳS̄ the protection level for products j ∈ S̄, that is,
∑

j∈S̄ xj ≥ ȳS̄. Suppose that

the sets S̄ ∈ S̄ are not nested. In particular, suppose that there exists a set S̄ ∈ S̄ and

two products j and k with 1 ≤ j < k, such that j 6∈ S̄ and k ∈ S̄. For simplicity assume

that S̄ = {S̄} and S̄ = {k}, but the argument can easily be generalized. For any demand

vector d, the perfect hindsight revenue equals rj min{dj, c} + rk min{dk, c − dj} by (A-9).

Under the protection level policy, the worst-case realized revenue is attained when either the

total demand for product k comes first or when the total demand for product j comes first.

Specifically, when S̄ = {k}, the realized revenue equals rk min{dk, c} + rj min{dj, c − dk} if

product k is requested first and rj min{dj, c− ȳS̄} + rk min{dk, max{ȳS̄, c− dj}} if product

j is requested first. By contrast, when S̄ = {j, k}, the worst-case realized revenue equals

rk min{dk, c} + rj min{dj, c − dk} and is always achieved when product k is requested first

because rj ≥ rk. Hence, nesting is optimal, i.e., S̄ = {{1}, {1, 2}, ..., {1, ..., N − 1}}.
Finally, for any S̄ ∈ S̄, the nested protection level policy can be expressed as a nested

booking limit policy as follows:
∑

j∈S xj ≤ yS with yS = c − ȳS̄ where S = {1, ..., N} \ S̄

(Talluri and van Ryzin 2004).

8



Proof of Lemma 3.

For convenience, let us denote yj = y{j,...,N} for any j, 2 ≤ j ≤ N . Without loss of generality,

we assume that yj ≤ c for all j = 2, ..., N . Under a nested booking limit policy, the realized

sales when low-fare customers book first equal

xN = min{dN , yN}

xj = min

{
dj, yj −

∑

k>j

xk

}
, j = 1, ..., N − 1, (A-10)

while the perfect hindsight sales equal (A-9). Similar to Lemma 1, one can show that the

maximum regret is always attained when low-fare customers book first, .

Let {t1, ..., tT} with 1 ≤ t1 ≤ ... ≤ tT ≤ N denote the product nest indices for which the

booking limits are attained under the demand vector d, that is, xti = yti −
∑

k>ti
xk for all

i = 1, ..., T . Accordingly, for any demand vector d, the regret equals

N∑
j=1

rj min

{
dj,

(
c−

∑

k<j

dk

)+}
−

t1−1∑
j=1

rjdj

−
T−1∑
i=1

(
ti+1−1∑
j=ti+1

rjdj + rti

(
yti − yti+1

−
ti+1−1∑
j=ti+1

dj

))
−

(
N∑

j=tT +1

rjdj + rtT

(
ytT −

N∑
j=tT +1

dj

))
.

The derivative of the regret function with respect to dj for any j, 1 ≤ j ≤ t1 − 1, equals

rj11

{∑

k≤j

dk ≤ c

}
−

N∑
i=j+1

ri11

{∑

k<i

dk ≤ c <
∑

k≤i

dk

}
− rj ≤ 0,

while the derivative of the regret function with respect to dj for any j, ti + 1 ≤ j ≤ ti+1− 1,

for any i, 1 ≤ i ≤ T − 1, and for any j, tT + 1 ≤ j ≤ N , when i = T equals

rj11

{∑

k≤j

dk ≤ c

}
−

N∑
i=j+1

ri11

{∑

k<i

dk ≤ c <
∑

k≤i

dk

}
− rj + rti

≥ rj

(
11

{∑

k≤j

dk ≤ c

}
−

(
1− 11

{
c <

∑

k≤j

dk

}
− 11

{∑

k≤N

dk ≤ c

}))
− rj + rti

≥ rj11

{∑

k≤N

dk ≤ c

}
≥ 0.

Finally, the derivative of the regret function with respect to dj for any j = ti and for any i,

1 ≤ i ≤ T , equals zero. Consequently, if t1 is the largest product nest {t1, ..., N} for which
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xt1 = yt1 −
∑

k>t1
xk in a worst-case demand scenario, then the regret is maximized when

dj = lj for all j ≤ t1 − 1 and dj = uj for all j ≥ t1.

We next show that if t1 is the largest product nest {t1, ..., N} for which xt1 = yt1−
∑

k>t1
xk

for any demand vector d, then t1 is also the largest product nest {t1, ..., N} for which

xt1 = yt1 −
∑

k>t1
xk when dj = lj for all j ≤ t1 − 1 and dj = uj for all j ≥ t1. For

convenience, we denote by x′j the realized sales of product j when dj = lj for all j ≤ t1 − 1

and dj = uj for all j ≥ t1. First, observe that for any j ≥ t1,

uj ≥ dj

≥ yj −
∑

k>j

xk = yj −
∑

k>j

min{dk, (c−
∑

i>k

di)
+}

≥ yj −
∑

k>j

min{uk, (c−
∑

i>k

ui)
+} = yj −

∑

k>j

x′k;

therefore x′j = yj−
∑

k>j x′k = yj−yj+1 for all j ≥ t1. Second, consider the nest {t1−1, ..., N}.
By definition of t1,

yt1−1 −
∑

k≥t1

x′k = yt1−1 − yt1 = yt1−1 −
∑

k≥t1

xk ≥ dt1−1 ≥ lt1−1;

hence, x′t1−1 = lt1 if xt1−1 = dt1 . As an induction hypothesis, suppose that x′j = lj if xj = dj

for all j = k + 1, ..., t1 − 1. By the induction hypothesis, we have the following:

yk −
∑

i>k

x′i = yk −
t1−1∑

i=k+1

li − yt1 ≥ yk −
t1−1∑

i=k+1

di − yt1 = yk −
∑

i>k

xi ≥ dk ≥ lk.

As a result, x′k = lk if xk = dk, completing the induction step.

Finally, the conditions for guaranteeing the existence of such a nest t1 are (i) ut1 ≥
yt1 −

∑
k>t1

min{uk, (c−
∑

j>k uj)
+} and (ii) yj − yj+1 ≥ lj for all j = 1, ..., t1 − 1. Observe

that (i) always holds provided yj ≤
∑

k≥j uk and yj ≤ c for all j, which can be assumed

without loss of generality.

Proof of Proposition 5.

For convenience, let us denote yj = y{j,...,N} for any j, 2 ≤ j ≤ N . Moreover, we define y1 = c

and yN+1 = 0. According to Lemma 3, the regret is maximized when dj = lj for all j < t and

dj = uj for j ≥ t, for any t = 1, ..., min{N, min{k : yk − yk+1 < lk}} and the resulting sales
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equal xj = lj for all j < t and xj = yj − yj+1 for all j ≥ t. Accordingly, the maximum regret

under the tth demand scenario, if t ≤ min{k : yk − yk+1 < lk} can be written as follows:

ρt(y)
.
= gt −

N∑
j=t

rj(yj − yj+1). (A-11)

Moreover, for any s > min{k : yk − yk+1 < lk}, the regret when dj = lj for all j < s and

dj = uj for all j ≥ s equals

s−1∑
j=1

rj min

{
lj,

(
c−

∑
i<j

li

)+}
+ gs −

s−1∑
j=1

rjxj −
N∑

j=s

rj(yj − yj+1) ≥ gs −
N∑

j=s

rj(yj − yj+1)

= ρs(y)

because the right-hand side assumes that xj = zj for all j < s, which is not necessarily true

when yj − yj+1 < lj for some products j < s.

On the other hand, because s > min{k : yk − yk+1 < lk}, the regret when dj = lj for all

j < s and dj = uj for all j ≥ s is dominated by the regret when dj = lj for all j < t and

dj = uj for all j ≥ t where t = min{k : yk − yk+1 < lk} by Lemma 3. That is,

s−1∑
j=1

rj min

{
lj,

(
c−

∑
i<j

li

)+}
+ gs −

s−1∑
j=1

rjxj −
N∑

j=s

rj(yj − yj+1) ≤ ρt(y).

Hence, even though ρs(y) underestimates the actual regret, for any s > min{k : yk − yk+1 <

lk}, the maximum regret will never be achieved at ρs(y). Hence, the maximum regret is

equal to the maximum of ρt(y), for t = 1, ..., N .

Because ρ(y) = maxt=1,...,N ρt(y) is piecewise linear convex, Problem (4), specialized to

a single-resource problem with interval uncertainty, can thus be expressed as the following

LP:

min
y2,...,yN

ρ

s.t. ρ ≥ gt −
∑N

j=t rj(yj − yj+1) t = 1, ..., N

yj ≥ 0 j = 2, ..., N

y1 = c, yN+1 = 0,

in which the first constraint ensures that ρ(y) ≥ maxt=1,...,N ρt(y). Besides the nonnegativity

constraints, this problem has N inequality constraints for N variables and can therefore be

solved in closed form. Its optimal solution is given in (12).

11



Proof of Corollary 1.

For convenience, let us denote yj = y{j,...,N} for any j, 2 ≤ j ≤ N . For any t = 1, ..., N − 1,

expanding gt yields

gt = rt min



ut,

(
c−

t−1∑
i=1

li

)+


 +

N∑
j=t+1

rj min



uj,

(
c−

t−1∑
i=1

li − ut −
j−1∑

i=t+1

ui

)+




≤ rt min



ut,

(
c−

t−1∑
i=1

li

)+


 +

N∑
j=t+1

rj min



uj,

(
c−

t−1∑
i=1

li − lt −
j−1∑

i=t+1

ui

)+




= rt min



ut,

(
c−

t−1∑
i=1

li

)+


 + gt+1.

Because, yt − yt+1 ≤ (gt − gt+1)/rt, we conclude that yt − yt+1 ≤ min{ut, (c−
∑t−1

i=1 li)
+}.

On the other hand,

gt ≥ rt min



lt,

(
c−

t−1∑
i=1

li

)+


 +

N∑
j=t+1

rj min



uj,

(
c−

t−1∑
i=1

li − lt −
j−1∑

i=t+1

ui

)+




= rt min



lt,

(
c−

t−1∑
i=1

li

)+


 + gt+1.

If yt+1 > 0, yt − yt+1 = (gt − gt+1)/rt ≥ min{lt, (c−
∑t−1

i=1 li)
+}.

Proof of Lemma 4.

For a particular demand vector d, the perfect hindsight solution solves

max
z

∑K
j=0 rjzj

s.t. zj + z0 ≤ cj j = 1, ..., K (A-12)

0 ≤ zj ≤ dj j = 0, ..., K.

Let T = {1 ≤ j ≤ K : dj + d0 ≥ cj} denote the set of products which are capacity-

constrained. Without loss of generality, we order the products such that T = {1, ..., T}. We

distinguish two cases, depending on whether
∑

j∈T rj ≥ r0 or not.

Case 1:
∑

j∈T rj ≥ r0. If
∑

j∈T rj ≥ r0, it is more profitable to allocate capacity to

products in T rather than to the bundle. Accordingly, the realized revenue is minimized

12



when the entire demand for the bundle comes first because the decision-maker, in the absence

of control, will sell its capacity in priority to the bundle instead of protecting it to the more

valuable products from T . Accordingly, the realized sales when
∑

j∈T rj ≥ r0 are equal to:

x0 = d0 (A-13)

xj = min{dj, cj − x0} = min{dj, cj − d0} j = 1, ..., K.

Let us order products j ∈ T in increasing order of cj − dj, i.e., c1 − d1 ≤ c2 − d2 ≤ ... ≤
cT − dT . Let

h = arg min{1 ≤ j ≤ T :

j∑
i=1

ri ≥ r0}. (A-14)

Clearly, h > 1 because r0 > rj for any j = 1, ..., K. Moreover, h ≤ T because
∑T

i=1 ri ≥ r0.

Then, it is optimal to accept up to ch − dh requests for the bundle. Because h ∈ T ,

ch ≤ dh + d0, i.e., the demand for the bundle will always be larger than what is optimal to

sell. Accordingly, the perfect hindsight solution is equal to

z0 = ch − dh

zj = min{dj, cj − z0} = cj − ch + dh j = 1, ..., h− 1, (A-15)

zj = dj j = h, ..., K.

Because ch − dh ≤ d0, z0 ≤ x0 and therefore zj ≥ xj for all j = 1, ..., K.

Using (A-13) and (A-15), the derivative of the regret function with respect to d0 can be

expressed as

−
(

r0 −
K∑

j=1

rj11 {dj ≥ cj − d0}
)

= −
(

r0 −
∑
j∈T

rj

)
≥ 0

Therefore, the regret is maximized when d0 = u0.

Similarly, the derivative of the regret function with respect to dj when j < h can be

expressed as

−rj11 {dj ≤ cj − x0} = 0,

because j ∈ T when j < h. The derivative of the regret function with respect to dj when

j > h can be expressed as

rj (1− 11 {dj ≤ cj − x0}) ≥ 0.

13



Finally, the derivative of the regret function with respect to dh can be expressed as

rh (1− 11 {dh ≤ ch − d0})−
(

r0 −
h−1∑
j=1

rj

)
=

h∑
j=1

rj − r0 ≥ 0,

in which the equality follows from the fact that h ∈ T and the inequality follows from (A-14).

As a result, the regret is maximized when dj = uj for all j = 1, ..., K.

Let z′ be the perfect hindsight solution (A-15) when d = u and let T ′ = {1 ≤ j ≤ K :

uj + u0 ≥ cj}. First, observe that T ′ ⊇ T . Therefore,
∑

j∈T ′ rj ≥
∑

j∈T rj ≥ r0, and the

regret remains maximized when the total demand for the bundle arrives first.

On the other hand, the derivative of the revenue function with respect to d0 equals

r0 −
K∑

j=1

rj11 {dj ≥ cj − d0} = r0 −
∑
j∈T

rj ≤ 0;

hence, the revenue is minimized when d0 = u0. Moreover, the derivative of the revenue

function with respect to dj, for any j, 1 ≤ j ≤ K, equals

rj11 {dj ≤ cj − d0} ≥ 0,

and the revenue function is minimized when dj = lj for all j = 1, ..., K. This demand

scenario is a worst-case demand scenario as long as
∑K

j=1 rj11{lj + u0 ≥ cj} ≥ r0; otherwise,

the revenue could be further reduced by letting the bundle arrive last, as we analyze next.

Case 2:
∑

j∈T rj < r0. If
∑

j∈T rj < r0, it is more profitable to serve the demand for

the bundle before the demand for products from T . Accordingly, the realized revenue is

maximized when the entire demand for the bundle comes last because the decision-maker,

in the absence of control, sells its capacity to products 1, ..., K instead of protecting some for

the more valuable product 0. Accordingly, the realized sales when
∑

j∈T rj < r0 are equal

to:

xj = dj j = 1, ..., K, (A-16)

x0 = min{d0, mink=1,...,K{ck − dk}}.

By contrast, the perfect hindsight solution equals

z0 = d0

zj = min{dj, cj − z0} = min{dj, cj − d0} j = 1, ..., K. (A-17)
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Clearly, z0 ≥ x0 and zj ≤ xj for all j = 1, ..., K.

Using (A-16) and (A-17), the derivative of the regret function with respect to d0 can be

expressed as follows

r0

(
1− 11

{
d0 ≤ min

k=1,...,K
{ck − dk}

})
−

∑
j∈T

rj

and is nonnegative. Indeed, when d0 > mink=1,...,K {ck − dk}, the derivative equals r0 −∑
j∈T rj ≥ 0 and when d0 ≤ mink=1,...,K {ck − dk}, then d0 + dk ≤ ck for all k = 1, ..., K,

and T = ∅. As a result, the regret is maximized when d0 is the largest, as long as the set T
satisfies

∑
j∈T rj < r0. Hence,

d0 = min

{
u0, arg sup

d

{
K∑

j=1

rj11{dj + d ≥ cj} < r0

}}
.

In particular, if d0 < u0, then the regret can be further increased by modifying the sequence

of arrivals, and making the demand for the bundle come first, as in Case 1.

Similarly, the derivative of the regret function with respect to dj can be expressed as

follows:

rj (11 {dj ≤ cj − d0} − 1) + r011

{
cj − dj ≤ min

{
d0, min

k=1,...,K
{ck − dk}

}}
.

The derivative is nonpositive whenever x0 < cj − dj and nonnegative otherwise. As a result,

the maximum regret is maximized when dj = lj, for any j such that cj − dj > x0, and is

maximized when di = ui for i = arg mink=1,...,K{ck − dk}, if ci − di ≤ d0. Observe that the

structure of the solution is preserved after the change in demand because mink=1,...,K;k 6=i{ck−
lk} ≥ mink=1,...,K;k 6=i{ck − dk} ≥ ci − di ≥ ci − ui and u0 ≥ d0 ≥ ci − di ≥ ci − li.

On the other hand, the derivative of the revenue function with respect to d0 equals

r011

{
d0 ≤ min

k=1,...,K
{ck − dk}

}
≥ 0

and the realized revenue is minimized when d0 = l0. Similarly, the derivative of the revenue

function with respect to dj is equal to:

rj − r011

{
cj − dj ≤ min

{
d0, min

k=1,...,K,k 6=j
{ck − dk}

}}

and is positive whenever x0 < cj − dj and nonpositive otherwise. As a result, the realized

revenue is minimized when dj = lj, for all j = 1, ..., K such that cj − dj > x0, and di = ui

for i = arg mink=1,...,K{ck − dk}, if ci − di ≤ d0.
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On the DAVN Booking Limits for Bundle RM

For a particular demand vector d, the perfect hindsight solution solves (A-12). For simplicity,

we assume that the optimal solution is unique and nondegenerate. Let T = {1 ≤ j ≤ K :

dj + d0 ≥ cj} denote the set of products which are capacity-constrained. Without loss

of generality, we order the products such that T = {1, ..., T}. We distinguish two cases,

depending on whether
∑

j∈T rj ≥ r0 or not.

If
∑

j∈T rj ≥ r0, the perfect hindsight solution is given by (A-15) when products j ∈ T
are ordered in increasing order of cj − dj and product h is defined by (A-14). Accordingly,

the dual variables equal rj for all all resources j < h, r0 −
∑h−1

j=1 rj for resource h, and

zero for all resources j > h. For every resource k = 1, ..., K we define a modified fare for

product 0, denoted by r0k, by subtracting from r0 the dual values associated with resources

other than resource k (Talluri and van Ryzin 2004). Accordingly, r0k = rk for all k < h,

r0h = r0−
∑h−1

j=1 rj ≤ rh and r0k = 0 < rk for all k > h. For every resource k ≥ h, the DAVN

policy will therefore impose a booking limit on the number of accepted requests for product

0, i.e., x0 ≤ y0k, unless product 0 and product k are placed in the same fare bucket.

If
∑

j∈T rj < r0, the perfect hindsight solution is given by (A-17). Accordingly, the dual

variables are equal to rj for all j ∈ T and zero otherwise. Therefore, r0k = r0−
∑

j∈T :j 6=k rj >

rk for all resources k ∈ T and r0k = r0 −
∑

j∈T rj > 0 otherwise. Hence, the DAVN policy

will protect some capacity for product 0 on resource k, 1 ≤ k ≤ K, unless it groups product

0 and product k in the same fare buckets.

Proof of Lemma 5.

From Lemma 4, there are two worst-case demand scenarios when no control is applied.

Bundle is requested first. If the bundle is requested first, then
∑

j∈T rj ≥ r0 with

T = {1 ≤ j ≤ K : dj +d0 ≥ cj}. As in Lemma 4, we order products in T in increasing order

of cj − dj and define product h such that (A-14) holds. By (A-13), the maximum regret

(resp. minimum revenue) can be reduced (resp. increased) only if the number of accepted

requests for the bundle is limited by some amount, i.e., x0 ≤ y0, where y0 ≤ u0.

With this additional booking limit, the realized sales (A-13) are modified as follows:

x0 = min{d0, y0} (A-18)

xj = min{dj, cj − x0} j = 1, ..., K.
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Similar to Lemma 4, one can show that the realized revenue is minimized when d0 = u0 and

dj = lj for all j = 1, ..., N .

From Lemma 4, we know that if x0 ≥ z0, the regret is maximized when dj = uj for

j = 0, 1, ..., K. Hence, we assume that x0 ≤ z0 in the following. Similar to Lemma 4, one

can show using (A-15) and (A-18) that the derivative of the regret function with respect to

d0 equals

−
(

r0 −
∑
j∈T

rj

)
11 {d0 ≤ y0} ≥ 0.

Hence, the regret is maximized when d0 = u0.

Similarly, the derivative of the regret function with respect to dj when j < h equals

−rj11 {dj ≤ cj − x0} ≤ 0.

Hence, for any j < h, the regret is maximized when dj = max{lj, cj−ch+dh}. The derivative

of the regret function with respect to dj when j > h is on the other hand equal to

rj (1− 11 {dj ≤ cj − x0}) ≤ rj (1− 11 {dj ≤ cj − z0}) = 0.

because x0 ≤ z0 = ch − dh ≤ cj − dj. Finally, similar to Lemma 4, one can express the

derivative of the regret function with respect to dh as follows:

rh (1− 11 {dh ≤ ch − x0})−
(

r0 −
h−1∑
j=1

rj

)
= −

(
r0 −

h−1∑
j=1

rj

)
≤ 0,

in which the equality follows because z0 = ch − dh by (A-15) and x0 ≤ z0 and the inequality

follows from (A-14). As a result, the maximum regret is nonincreasing with dj for any j,

1 ≤ j ≤ K, and is therefore maximized when dj = lj for all j = 1, ..., K. If
∑K

j=1 rj11{lj +u0 ≥
cj} < r0, the regret can be further increased by modifying the sequence of arrivals, so as to

make the bundle requested last, as we analyze next.

Bundle is requested last. If the bundle is requested last, then
∑

j∈T rj < r0 with T =

{1 ≤ j ≤ K : dj + d0 ≥ cj}. By (A-16), the maximum regret (resp. minimum revenue) can

be lowered (resp. increased) by protecting some capacity for the bundle, i.e., x0 ≥ ȳ0, with

ȳ0 ≤ mink ck. With this additional control, the realized sales equal:

xj = min{dj, cj − ȳ0} j = 1, ..., K, (A-19)

x0 = min{d0, mink=1,...,K{ck − xk}}.
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Similar to Lemma 4, the revenue function is minimized when d0 = l0 and dj = lj for all

j = 1, ..., K such that x0 > cj−xj and di = ui for i = arg mink=1,...,K{ck−xk}, if ci−xi ≤ d0.

The derivative of the regret function with respect to d0 equals

(
r0 −

∑
j∈T

rj

)
− r011

{
d0 ≤ min

k=1,...,K
ck − xk

}
.

If d0 > mink=1,...,K ck − xk, the derivative equals (r0 −
∑

j∈T rj) > 0. On the other hand,

when d0 ≤ mink=1,...,K ck − xk, the derivative is equal to −∑
j∈T rj < 0. Hence, the regret is

maximized at d0 = u0 when d0 > mink=1,...,K ck−xk and at d0 = l0 when d0 ≤ mink=1,...,K ck−
xk.

On the other hand, the derivative of the regret function with respect to dj, for any j,

1 ≤ j ≤ K, equals

rj (11 {dj ≤ cj − d0} − 11 {dj ≤ cj − ȳ0})
+r011

{
cj − xj ≤ min

{
d0, min

k=1,...,K
{ck − xk}

}}
11 {dj ≤ cj − ȳ0} .

Suppose that d0 ≤ mink=1,...,K ck − xk, i.e., x0 = d0. If dj + ȳ0 > cj, the derivative of

the regret with respect to dj equals rj11{dj + d0 ≤ cj} ≥ 0. If dj + ȳ0 ≤ cj, i.e., xj = dj,

then d0 ≤ cj − dj because d0 = x0 ≤ mink=1,...,K ck − xk ≤ cj − dj, and the derivative of the

regret with respect to dj equals zero. As a result, when d0 ≤ mink=1,...,K ck − xk, the regret

is maximized when d0 = l0 and dj = uj for j = 1, ..., K.

Suppose that d0 > mink=1,...,K ck−xk, i.e., x0 = mink=1,...,K{ck−xk} = max{ȳ0, mink=1,...,K ck−
dk}. Suppose that x0 = cj − dj ≥ ȳ0 where cj − dj = mink=1,...,K ck − dk. Because

xj = dj ≤ cj − ȳ0 and d0 > cj − dj, the derivative of the regret function with respect

to dj equals r0− rj > 0. Hence, when d0 > mink=1,...,K ck−xk, the regret is maximized when

x0 = ȳ0 with mink=1,...,K ck−dk < ȳ0. If dj + ȳ0 > cj, the derivative of the regret with respect

to dj equals zero because dj + d0 > dj + mink=1,...,K ck − xk = dj + ȳ0 > cj. If dj + ȳ0 < cj,

then xj = dj and because x0 = ȳ0 < cj − dj = cj − xj, the derivative of the regret function

with respect to dj equals rj(11{dj + d0 ≤ cj} − 1) ≤ 0. Finally, when dj + ȳ0 = cj, then

x0 = cj − dj = cj − xj, and the derivative of the regret with respect to dj equals r0− rj > 0.

As a result, when d0 > mink=1,...,K ck − xk, the regret is maximized when d0 = u0, dj = uj

for all j = 1, ..., K such that dj + ȳ0 ≥ cj with at least one i such that di + ȳ0 > ci, and

dj = lj for all j = 1, ..., K such that dj + ȳ0 < cj. In fact, the regret is maximized when

there is only one product i such that di + ȳ0 > ci and dj + ȳ0 < cj for all j = 1, ..., K, j 6= i
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because the derivative of the regret with respect to dj, for any j = 1, ..., K, is nonpositive

almost everywhere, as long as di + ȳ0 > ci for some product i 6= j.

Proof of Proposition 6.

For brevity, we focus on the minimax regret. According to Lemma 5, at most K +3 demand

scenarios must be considered to determine the optimal booking limit and protection level.

Under all demand scenarios, the perfect hindsight solution solves (A-12). Let scenario t = 0

be the first scenario in Lemma 5, scenarios t = 1, ..., K be the set of second scenarios in

Lemma 5, and t = K + 1 and t = K + 2 be the third and fourth worst-case scenarios in

Lemma 5.

Denoting by xt
k the sales of product k under scenario t, the maximum regret equals

ρ = maxt=0,...,K+2{gt −∑K
j=1 rjx

t
j + r0x

t
0}, in which gt is the optimal value of (A-12) under

the tth demand scenario.

In scenarios t = 0 and t = K + 1, the bundle is requested first and the realized sales are

given by (A-18). Under the parameter restrictions, x1
0 = y0 and x1

j = min{lj, cj − y0} for all

j = 1, ..., K and xK+1
0 = y0 and xK+1

j = min{uj, cj − y0} for all j = 1, ..., K.

In scenarios t = 1, ..., K and t = K + 2, the bundle is requested last and the realized

sales are given by (A-19). Under the parameter restrictions, xt
t = ct − ȳ0 and xt

j = lj for

all j = 1, ..., K, j 6= t, and xt
0 = ȳ0, for all t = 1, ..., K. Note that scenarios t = 1, ..., K

are valid only if ut ≥ ct − ȳ0 and lj ≤ cj − ȳ0 for all j = 1, ..., K, j 6= t. Moreover,

xK+2
j = min{uj, cj − ȳ0} and xK+2

0 = l0. This last scenario is only valid when ȳ0 ≥ l0.

On the real line, the quantities cj − lj and cj − uj for all j = 1, ..., K, l0, y0, and zero

define 2K + 2 intervals. For each of these intervals, the maximum regret can be computed

with an LP because the xt
j are defined as linear functions of y0 and ȳ0. Given that ȳ0 ≤ y0,

there are (2K + 3)(2K + 2)/2 possible interval ranges for y0 and ȳ0.

Proof of Proposition 7.

Let δ0
j , δ

l
j, and δu

j the probabilities that the optimal booking limit zj equals 0, lj, and uj

respectively. Since any feasible value for zj can be expressed as a convex combination of

these three points, δ0
j + δl

j + δu
j = 1, and these probabilities are between 0 and 1.

If dj ≤ zj, the regret associated with product j equals rj(dj − yj)
+. Maximizing this

function over lj ≤ dj ≤ zj yields a maximum regret of rj(zj − yj)
+ If zj ≤ dj, the regret
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associated with product j equals rj(zj − min{dj, yj}). Maximizing this function over dj ≥
max{zj, lj} yields a maximum regret of rj(zj − min{lj, yj}) if zj ≤ lj and of rj(zj − yj)

+

otherwise. Hence, the maximum regret is piecewise linear increasing with zj. The maximum

randomized regret therefore corresponds to the concave envelope of this function, which is

also piecewise increasing with at most three breakpoints at zero, lj, and uj. (The regret

when zj = yj can always be replicated, or dominated, by randomizing zj.) In particular, the

regret equals rj(uj − yj) when zj = uj, rj max{0, lj − yj} when zj = lj, and −rj min{yj, lj}
when zj = 0. Therefore, the maximum randomized regret problem can be formulated as

follows:

max r′(U−Y)δu + r′ max{0,L−Y}δl − r′ min{L,Y}δ0,

s.t. δu + δl + δ0 = 1,

A(Uδu + Lδl) ≤ c,

δu, δl, δ0 ≥ 0.

Let p and q be the dual variables respectively associated with the capacity constraints

and the probability normalization constraints. By strong duality, the above problem is

equivalent to its dual, which is a minimization problem:

min p′c + q′1

s.t. p′AU + q′ ≥ r′(U−Y),

p′AL + q′ ≥ r′ max{0,L−Y},
q′ ≥ −r′ max{Y,L},

p ≥ 0.

Plugging this inner problem into the general minimax regret problem completes the

proof.
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