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A Model justification

In recent years, there has been a lot of research in an attempt to provide a deeper understanding of

optimal control models from a theoretical as well as an application point of view. In particular, an

attractive feature of these models is that they provide good scheduling, production and inventory

policies in a variety of settings. Furthermore, they approximate well the underlying stochasticity

of problems in a deterministic way. Fluid models arise in applications as diverse as routing and

communication systems as well as queueing, supply chain and transportation systems. A continuous

time approach has the advantage of not introducing any approximation to the real setting: it

provides the exact solution of the system. When taking a discrete time approach, one has to decide

what a reasonable time step should be, and to allow price and production changes only at those

times. In reality, in some settings a supplier may need more flexibility. In order to avoid being

too restrictive, the time step needs be very small, and if the time horizon is large the size of the

problem may become exceedingly large, in terms of number of variables and number of constraints.

Therefore, the problem size usually implies significant delays in obtaining good solutions. Examples

of supply chain industries where continuous-time optimal control models of the type we discuss in

this paper are relevant, include industries with a high volume of throughput and data on costs

and demand that change a lot. The hardware as well as the semiconductor industries are such

examples. Moreover, we believe that a similar approach can be applied to problems in areas other

than dynamic pricing and inventory control, where the evolution of the system evolves dynamically

and justify a continuous time approach. We believe that the techniques presented in this paper

may be helpful to those areas as well.

We assume that multiple products share a single common production capacity. This assump-

tion is a standard one in the literature that considers multiclass systems. For example, Bertsimas

and Paschalidis [5] consider a multiclass make-to-stock system and assume that a single facility

produces several products, with the production process over time taken as an arbitrary stationary

stochastic process. Also in a make-to-stock manufacturing setting with multiple products, Kachani

and Perakis [17] study this problem assuming that the total production capacity rate across all

products is bounded. Gilbert [13] addresses the problem of jointly determining prices and produc-

tion schedules for a set of items that are produced on the same production equipment and with a
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limited capacity. Maglaras and Meissner [20] consider a single firm that owns a fixed capacity of a

resource that is consumed in the production of multiple products. Finally, Biller et al. [6] extend

the single product model of dynamic pricing to cover supply chains with multiple products, each

of which is assembled from a set of parts and shares common production capacity. In order to

keep the model simple in this paper, we make a similar assumption of a single production capacity

constraint. We leave as a direction of future research the case of multiple capacity constraints.

In this paper we assume that the demand for a product depends only on the price for this

product and not on the prices of other products. This assumption is standard in multi-product

pricing problems when the products are considered distinct so that they target distinct classes of

customers. The automotive industry is one example of an industry where such an assumption is

valid (see [6]). Bertsimas and de Boer [4] study a joint pricing and resource allocation problem in

which a finite supply of a resource can be used to produce multiple products and the demand for each

product depends on its price. They apply this problem to airline revenue management. Paschalidis

and Liu [24] consider a communication network with fixed routing that can accommodate multiple

service classes and in which the arrival rate of a given class (or demand for that class) depends on

the price per call of that class only. In their multi-product case, Biller et al. [6] assume that there

are no diversions among products, i.e. that a change in the price for one product does not affect

the demand for another product. They motivate this assumption by focusing on items that appeal

to various consumer market segments, such as for example, luxury cars, SUVs, small pickups, etc.

in the automotive industry. For similar reasons, in this paper, we make a similar assumption on

the demand being independent on the prices of other products. A more general model would allow

the demand to depend on prices of all products with various price sensitivities. However, such a

model would significantly increase the complexity of the problem. As a result, at this stage, we

feel that this problem would go beyond the scope of this paper but could be an interesting topic

for follow-up research.

A stream of the literature on inventory systems assumes that demand can be satisfied even

when no inventory is available, i.e. that demand can be backlogged. In other words, in that

setting, inventory levels may be negative. In this paper, we assume that no backorders are allowed.

This might occur for example, when there is a contract between a supplier and a retailer that does

not allow delays in the delivery of the products, or when there is very high fixed backlog cost.
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Pekelman [25] studies a problem of optimal pricing and production for a single product with no

backorders. Axsäter and Juntti [2] study echelon stock reorder policies with no backorders. While a

stream of research considers that demand that cannot be met is lost and incurs a penalty for loss of

goodwill, in practice it is difficult to estimate the penalty in terms of numerical loss. Moreover, not

satisfying the demand may have long term negative effect on the firm, and it might be preferable

to increase the price so that demand lowers and no demand is unmet.

We assume in this paper that production and inventory costs are quadratic. This type of cost

have been used often in the literature on inventory control. Goh [15] assumes that the holding

cost is a nonlinear function of the amount of the on-hand inventory. He motivates the model by

discussing its application to products whose inventory value is very high and many precautionary

steps are to be taken to ensure its safety and quality. He cites in particular luxury items like

expensive jewelry and designer watches, for which as the on-hand stock inventory grows, some

firms employ higher dimensions of security such as hidden cameras and infrared sensors. Similarly,

Giri and Chaudhuri [14] consider a model with nonlinear holding cost depending on the stock level

with the form hIn, n > 1, where I is the inventory level. They justify this assumption by taking

the example of electronic components, radioactive substances, or volatile liquids which are costly

and require more sophisticated arrangements for their security and safety. Furthermore, we point

out that the use of quadratic inventory costs partially addresses the fact that when inventory levels

grow too high, it may be necessary for the firm to purchase additional storage space which would

justify the convexity of the cost. Holt et al. [16] introduce a linear-quadratic inventory model in

which the production and the holding cost are respectively the sum of a linear and a quadratic term

in the production rate or the inventory rate. Our model is a particular case where the coefficient of

the linear term is zero. They justify this approximation for production costs from a connection with

workforce costs. They observe that the cost of hiring and training people rises with the number

hired, and the cost of laying off workers, including terminal pay, reorganization, etc., rises with the

number laid off. Moreover, for fixed workforce, increasing production may incur overtime costs.

Pindyck [26] models production costs for commodities such as copper, lumber and heating oil as

quadratic costs. Finally, Sethi et al. [28] assume general convex production and inventory costs.

Our model is also a particular case of this model.

We focus on an open-loop Nash equilibrium: the competitors decide at time t = 0 their strategy
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for the entire time horizon. In an open-loop equilibrium, a firm makes an irreversible commitment

to a future course of action. This situation may arise in practice if a contract with another firm

or with a labor union forces the firm to commit to prices or workforce at the beginning of the

time horizon. In such an equilibrium, the policy depends on time and the initial state vector only,

the players do not use any other information, on the state variable in particular. In contrast, a

feedback/ Markovian Nash equilibrium induces strategies that are based on time and on the current

state vector. Then the competitors can observe at all times their current inventory level to choose

an optimal policy over the rest of the time horizon. In a closed-loop strategy, the firms may review

their course of action as time evolves. A closed-loop Nash equilibrium yields optimal policies that

depend on time and all state vectors from time zero up to the current time. See [12] for more details

on the difference between closed-loop and open-loop equilibria. Note that a closed-loop solution

may be approximated by deriving an open-loop solution and using rolling-horizon techniques.

The assumption of a linear demand function of prices is common in the revenue management

and pricing literature. For example, Zabel [30], Pekelman [25], Whitin [29], Mills [21], Lai [19],

Chen and Min [8], Cohen [9], Kunreuther and Schrage [18], Palaka, Erlebacher, and Kropp [23],

Farahat and Perakis [11], and Carr et al. [7] consider a similar demand model.

The motivation behind our model of uncertainty is, on the one hand, to not require a particular

probability distribution on the data, which in practice is very difficult to determine, and on the

other hand, to find an alternative to worst case reasoning in which one assumes that the value of

the data that is the least favorable occurs at all times. This type of approach has been criticized

for being unnecessarily overly conservative and therefore producing a solution that performs poorly

in order to protect against the worst, even though unlikely, realization of the data. Indeed, even

though data may vary, it is very unlikely that they equal their worst case scenario value at all

times. Introducing a budget of uncertainty on the data is an efficient way to measure the trade-off

between conservativeness and performance by providing a bound on the allowed spread of the data

around the nominal value over time. The budget of uncertainty is data in the model, the modeler

can decide whether she wants to obtain a more conservative solution (by choosing a large budget

of uncertainty) while sacrificing optimality, or a solution that performs well and is less immune to

data uncertainty (by choosing a smaller budget of uncertainty).

When dealing with uncertainty on input parameters, a natural question is to decide what the
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objective value should be. A common approach when assuming demand follows a probability

distribution is to maximize the expected value of the objective. Depending on the context and on

risk preferences, it is possible to optimize the best or worst case objective, or to model a utility

function based on expected value and standard deviation of the objective. In robust optimization,

since no such distribution is assumed, one option is to aim at optimizing the realized objective, which

is reformulated as maximizing the worst case objective within the uncertainty set of the parameters.

In this paper, we consider a robust approach that maximizes the nominal objective function. In

other words, we maximize the “expected” objective function value, not in the probabilistic sense,

but in terms of considering the values at the center of the range of realized values. However,

we still consider demand uncertainty in the feasibility constraints. Another motivation for this

approach comes from the following qualitative observation. The worst case objective corresponds

to low demand, while the worst case for the no backorder constraint corresponds to high demand.

Therefore the worst case cannot occur simultaneously for both the objective and the constraints,

and it would be overly conservative to protect against both occurrences simultaneously. As a

result, we choose to focus on ensuring the feasibility of the problem and solve for the worst case

of the constraints, but maximize the nominal objective. In the numerical study in Section 7.2,

we evaluated the realized objective value in two cases of price sensitivities, 6 cases of budget of

uncertainty and for uncertain parameters generated from either a normal distribution or a uniform

distribution. We simulated 1000 realizations and averaged the objective value. In all cases, we

found that the average realized objective was within 1% of the nominal objective.

B Notations

Superscript k (k = A, B) denotes supplier k. Superscript −k denotes supplier k’s competitor (i.e.

if k = A, then −k = B and if k = B, then −k = A).
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[0, T ] time horizon;

N number of products;

Kk(t) shared production capacity rate at time t (non negative) for supplier k;

Ik0

i initial non negative inventory level for product i for supplier k;

hk
i (t) coefficient of quadratic holding cost for product i at time t for supplier k;

γk
i (t) coefficient of quadratic production cost for product i at time t for supplier k;

αk
i (t), βk,k

i (t), βk,−k
i (t) nominal coefficients (fixed term and price sensitivities) for product i

at time t in the linear relationship between price and demand for supplier k

Outputs

pk
i (t) price of one unit of product i at time t for supplier k (control variable);

uk
i (t) production flow rate of product i at time t for supplier k (control variable);

Ik
i (t) inventory level (number of units) of product i at time t for supplier k (state variable).

C Vector space and associated norm, feasible set

C.1 Vector space and associated norm

Let E1 be the vector space such that any element of E1 has 3N components (price, production and

inventory vectors) that are real bounded functions defined over [0, T ]. The integral of the square

of their absolute value is well-defined. Let E = E1 ×E1 be the Hilbert space (we use the L2 norm

on E so we have a reflexive Banach space):

||(x1, x2)|| =
√√√√

∫ T

0

3N∑

i=1

∑

k=1,2

(xk
i (t))2dt ∀x1, x2 ∈ E1,

associated with the inner product

< (x1, x2), (x̄1, x̄2) >=
∫ T

0

3N∑

i=1

∑

k=1,2

xk
i (t)x̄

k
i (t)dt.

Note that this space has an infinite dimension.
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the state variables of player k in the following way:

xk = (pk, uk, Ik) where pk = (pk
1(.), . . . , p

k
N (.)), uk = (uk

1(.), . . . , u
k
N (.)), Ik = (Ik

1 (.), . . . , Ik
N (.)).

The vector (xA, xB) ∈ E represents the collective strategy and state vector.

As a result the norm for a collective strategy and state vector is given by:

||x|| =
√√√√

∫ T

0

N∑

i=1

∑

k=A,B

[
(pk

i (t))2 + (uk
i (t))2 + (Ik

i (t))2
]
dt, x ∈ E

associated with the inner product

< x, x̄ >=
∫ T

0

N∑

i=1

∑

k=A,B

(
pk

i (t)p̄
k
i (t) + uk

i (t)ū
k
i (t) + Ik

i (t)Īk
i (t)

)
dt, x, x̄ ∈ E.

C.2 Feasible set

Let’s denote Xk ⊂ E1 the set of strategy and state vectors for player k satisfying the constraints

that are independent of the competitor’s strategy:

Xk =
{
x = (p, u, I) ∈ E1 : ui(t), pi(t), Ii(t) ≥ 0 ∀i, t,

N∑

i=1

ui(t) ≤ Kk(t) ∀t, Ii(0) = Ik0

i ∀i}.

Let X ⊂ E such that X = XA ×XB.

The following lemma follows directly from the definition of X.

Lemma 1. X is a non empty, convex, closed subset of E.

For a fixed strategy and state vector of the competitor, let’s denote Qk(x̄−k) ⊂ Xk the subset

of all feasible strategy and state vectors for player k, given the strategy and state vector x̄−k of her
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competitor:

Qk(x̄−k) =
{

x = (p1(.), . . . , pN (.), u1(.), . . . , uN (.), I1(.), . . . , IN (.)) ∈ Xk :

pi(t) ≤ αk
i (t) + βk,−k

i (t)p̄−k
i (t)

βk,k
i (t)

∀i, t,

İi(t) = ui(t)− αk
i (t) + βk,k

i (t)pi(t)− βk,−k
i (t)p̄−k

i (t) ∀i, t
}
.

Lemma 2. For all x̄−k ∈ X−k, Qk(x̄−k) is a non empty, closed, convex subset of Xk.

Proof. Convexity follows from the fact that the constraints defining the set are linear. To see that

the set is closed, note that if we take a convergent sequence of vectors of Xk (even not uniformly

convergent), since the inventory levels are bounded and the time horizon is finite, we can interchange

the limit and the integral, and as a result the limit belongs to the set as well.

It is easy to verify that the vector x = (p, u, I) such that

pi(t) =
αk

i (t) + βk,−k
i (t)p̄−k

i (t)

βk,k
i (t)

, ui(t) =
Kk(t)

N
, Ii(t) = Ik0

i +
∫ t

0

Kk(s)
N

ds ∀i

is an element of Qk(x̄−k).

We denote Y ⊂ X the set of collectively feasible strategy and state vectors for both players:

Y = {x ∈ X : xk ∈ Qk(x−k), k = A,B}.

Lemma 3. Y is a convex, closed, non empty subset of X.

Proof. Convexity and closedness follow from the fact that sets X and Qk(x̄−k) are convex and

closed.

It is easy to verify that vector x = (p, u, I) such that

pk
i (t) =

αk
i (t)β

−k,−k
i (t) + α−k

i (t)βk,−k
i (t)

βB,B
i (t)βA,A

i (t)− βB,A
i (t)βA,B

i (t)
, uk

i (t) =
Kk(t)

N
, Ik

i (t) = Ik0

i +
∫ t

0

Kk(s)
N

ds

is an element of Y .
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of feasible collective strategy and state vectors for both players when the competitor keeps her

strategy fixed at x−k.

The following lemma follows from Lemma 2.

Lemma 4. Q(x) is a non empty convex closed subset of X.

The following proposition is immediate.

Proposition 1. The following equivalence holds:

x ∈ Q(x) ⇔ x ∈ Y.

D Existence of a Nash Equilibrium for the Deterministic Problem

D.1 Quasi-variational inequality formulation

We observe that the payoff function of player k may be formulated as

Jk(x) = −ak(xk, xk)− 2bk(x−k, xk) + 2Lk(xk) where

• ak : E1 × E1 7→ R is the continuous bilinear form, symmetric and non-negative along the

diagonal such that ak(x, x̄) =
∫ T
0

∑N
i=1

(
βk,k

i (t)pi(t)p̄i(t) + γk
i (t)ui(t)ūi(t) + hk

i (t)Ii(t)Īi(t)
)
dt

• bk : E1×E1 7→ R is the continuous bilinear form such that bk(x, x̄) = −1
2

∫ T
0

∑N
i=1 βk,−k

i (t)p̄i(t)pi(t)dt

• Lk : E1 7→ R is the continuous linear functional such that Lk(x) = 1
2

∫ T
0

∑N
i=1

(
αk

i (t)pi(t)
)
dt.

Let a : E ×E 7→ R and L : E 7→ R defined by

a(x, x̄) = aA(xA, x̄A) + aB(xB, x̄B) + bB(xA, x̄B) + bA(x̄A, xB) (1)

=
∫ T

0

N∑

i=1

∑

k=A,B

(
βk,k

i (t)pk
i (t)p̄

k
i (t) + γk

i (t)uk
i (t)ū

k
i (t) + hk

i (t)I
k
i (t)Īk

i (t)− 1
2
βk,−k

i (t)p̄k
i (t)p

−k
i (t)

)
dt.

L(x) = LA(xA) + LB(xB). (2)

We reformulate the Nash equilibrium problem as a quasi-variational inequality problem. The

following proposition follows from (1) and (2).

9
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Proposition 2. There exists f ∈ E and a linear operator A on E such that

a(x, x̄) = < Ax, x̄ > ∀x, x̄ ∈ E, L(x) = < f, x > ∀x ∈ E

with f =
1
2

(
αA

1 (.), . . . , αA
N (.), 0, . . . , 0, 0, . . . , 0, αB

1 (.), . . . , αB
N (.), 0, . . . , 0, 0, . . . , 0

)

Ax =
(
βA,A

1 (.)pA
1 (.)− 1

2
βA,B

1 (.)pB
1 (.), . . . , βA,A

N (.)pA
N (.)− 1

2
βA,B

N (.)pB
N (.),

γA
1 (.)uA

1 (.), . . . , γA
N (.)uA

N (.), hA
1 (.)IA

1 (.), . . . , hA
N (.)IA

N (.),

βB,B
1 (.)pB

1 (.)− 1
2
βB,A

1 (.)pA
1 (.), . . . , βB,B

N (.)pB
N (.)− 1

2
βB,A

N (.)pA
N (.),

γB
1 (.)uB

1 (.), . . . , γB
N (.)uB

N (.), hB
1 (.)IB

1 (.), . . . , hB
N (.)IB

N (.)
)
.

Theorem 1. [3] x ∈ Y is a Nash Equilibrium if and only if

a(x, x− x̄) ≤ L(x− x̄) ∀x̄ ∈ Q(x). (3)

Corollary 1. x ∈ Y is a solution of (3) if and only if

< Ax− f, x− x̄ > ≤ 0 ∀x̄ ∈ Q(x). (4)

We observe that the problem is thus reformulated as a quasi -variational inequality (QVI), since

the set in which the inequality must be satisfied depends on the QVI solution x.

D.2 Properties

Lemma 5. Under Assumption 1, operator a (and thus A) is coercive.

The proof can be found in the next section of the Appendix.

Definition 1. Q : X 7→ 2X is lower semi continuous on D0 if and only if

for a generalized sequence xn converging to x in D0, for every x̄ ∈ Q(x), there exists an integer n0

and a sequence x̄n ∈ X converging to x̄, such that x̄n ∈ Q(xn), for all n ≥ n0.

Definition 2. Q : X 7→ 2X is upper semi continuous on D0 if and only if

for every generalized sequence (xn, x̄n) converging to (x, x̄) in D0 ×D0 and satisfying x̄n ∈ Q(xn),

then in the limit x̄ ∈ Q(x).
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Definition 3. Q : X 7→ 2X is continuous on D0 ⊂ X if and only if it is lower semi continuous

and upper semi continuous on D0.

Let S be the selection map corresponding to the quasi-variational inequality (4): S : X 7→ E

associates with any fixed vector u ∈ X the unique solution v ∈ E of the following variational

inequality:

v ∈ Q(u), < Av − f, v − w >≤ 0 ∀w ∈ Q(u).

Definition 4. [22] A set D0 is stable under selection map S if set S(u) is contained in set D0

whenever u belongs to D0.

Theorem 2. [22] If

• a(., .) is a coercive continuous bilinear form on the Hilbert space E

• f is a continuous linear functional on E

• Q is a map that associates with each vector u of the convex closed subset X of E a non empty

convex closed subset Q(u) of E

• There exists a Hilbert space E0, which has a continuous injection ↪→ into E, and a non empty

convex closed subset D0 of E0, with D0 ↪→ X, such that D0 is stable under S, Q is continuous

on D0 and S(D0) is bounded in E0

then (4) admits a solution.

We are going to show that the assumptions from this theorem hold with E0 = E, D0 = X and

the injection ↪→ being the identity function. Since the space E consists of bounded functions, it is

immediate that S(X) is bounded in E.

Proposition 3. X is stable under S.

Proof. Let x ∈ X and let x̄ ≡ S(x). Then x̄ ∈ Q(x) ⊂ X. As a result, S(X) ⊂ X.

Proposition 4. The mapping Q is upper semi continuous on X.
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Proof. Consider a sequence (xn, x̄n) converging to (x, x̄) = (p, u, I; p̄, ū, Ī) in X × X such that

x̄n ∈ Q(xn), i.e. x̄n ∈ X and ∀ n, i, t

p̄k
n,i(t) ≤

αk
i (t) + β−k

i (t)p−k
n,i (t)

βk
i (t)

and ˙̄Ik
n,i(t) = ūk

n,i(t)− αk
i (t) + βk,k

i (t)p̄k
n,i(t)− βk,−k

i (t)p−k
n,i (t)

where xn = (xA
n , xB

n ) = (pA
n , uA

n , IA
n , pB

n , uB
n , IB

n ), x̄n = (x̄A
n , x̄B

n ) = (p̄A
n , ūA

n , ĪA
n , p̄B

n , ūB
n , ĪB

n ), x =

(xA, xB) = (pA, uA, IA, pB, uB, IB), and x̄ = (x̄A, x̄B) = (p̄A, ūA, ĪA, p̄B, ūB, ĪB).

Since lim p−k
n,i (t) = p−k

i (t), lim p̄k
n,i(t) = p̄k

i (t), lim ūk
n,i(t) = ūk

i (t), and lim Īk
n,i(t) = Īk

i (t), we obtain

that Ī is differentiable and

˙̄Ik
i (t) = ūk

i (t)− αk
i (t) + βk,k

i (t)p̄k
i (t)− βk,−k

i (t)p−k
i (t) ∀i, t and p̄k

i (t) ≤
αk

i (t) + βk,−k
i (t)p−k

i (t)

βk,k
i (t)

.

As a result, x̄ ∈ Q(x).

Proposition 5. The mapping Q is lower semi continuous on X.

Proof. Consider a sequence xn = (xA
n , xB

n ) = (pA
n , uA

n , IA
n , pB

n , uB
n , IB

n ) ∈ X converging to x =

(xA, xB) = (pA, uA, IA, pB, uB, IB). Let x̄ = (x̄A, x̄B) = (p̄A, ūA, ĪA, p̄B, ūB, ĪB) ∈ Q(x). Since X

is closed, x ∈ X. Let x̄n = (x̄A
n , x̄B

n ) = (p̄A
n , ūA

n , ĪA
n , p̄B

n , ūB
n , ĪB

n ) such that

ūk
n,i(t) = ūk

i (t) ∀ n, i, t

p̄k
n,i(t) =





p̄k
i (t) if p̄k

i (t) = 0 and p−k
n,i (t)− p−k

i (t) < 0

p̄k
i (t) + βk,−k

i (t)

βk,k
i (t)

(p−k
n,i (t)− p−k

i (t)) ∀ n, i, t if p̄k
i (t) > 0 or p−k

n,i (t)− p−k
i (t) > 0

Īk
n,i(t) = Ik0

i +
∫ T

0
(ūk

n,i(s)− αk
i (s) + βk,k

i (s)p̄k
n,i(s)− βk,−k

i (s)p−k
n,i (s))ds ∀ n, i, t.

We want to show that x̄n constructed above satisfies x̄n → x̄ and x̄n ∈ Q(xn). We clearly have

Īn(0) = I0, ūn(.) ≥ 0 and
∑

i ū
k
n,i(t) ≤ Kk(t). We notice that

Īk
n,i(t)− Īk

i (t) =
∫ t

0
(βk,k

i (s)(p̄k
n,i(s)− p̄k

i (s))− βk,−k
i (s)(p−k

n,i (s)− p−k
i (s)))ds

= −
∫

Dk
i ∩[0,t]

βk,−k
i (s)(p−k

n,i (s)− p−k
i (s)))ds ≥ 0

12



where Dk
i = {t ∈ [0, T ] : p̄k

i (t) = 0 and p−k
n,i (t) − p−k

i (t) < 0}. Therefore, Īn ≥ Ī ≥ 0. Also, when

p̄k
n,i(t) is equal to the expression p̄k

i (t) + βk,−k
i (t)

βk,k
i (t)

(p−k
n,i (t) − p−k

i (t)), since p−k
n,i (t) − p−k

i (t) → 0, we

notice that for n sufficiently large p̄k
n,i(t) ≥ 0 (either it is equal to a positive term to which we add a

term that tends to zero, or it is zero plus a positive term that tends to zero). Clearly, when p̄k
n,i(t)

is given by the first expression, this still holds. As a result, x̄n ∈ X. Moreover, ūn → ū and since

p−k
n − p−k → 0 we also have Īn → Ī , p̄n → p̄, so that x̄n → x̄. Finally, we notice that when p̄k

n,i(t)

is equal to the expression p̄k
i (t) + βk,−k

i (t)

βk,k
i (t)

(p−k
n,i (t)− p−k

i (t)), then

p̄k
n,i(t)−

αk
i (t) + βk,−k

i (t)p−k
n,i (t)

βk,k
i (t)

= p̄k
i (t)−

αk
i (t) + βk,−k

i (t)p−k
i (t)

βk,k
i (t)

≤ 0.

Clearly, when p̄k
n,i(t) is equal to p̄k

i (t), then p̄k
n,i(t) = p̄k

i (t) = 0 so the inequality p̄k
n,i(t) ≤

αk
i (t)+βk,−k

i (t)p−k
n,i(t)

βk,k
i (t)

is also satisfied. As a result x̄n ∈ Q(xn).

Corollary 2. Q is continuous on X.

The following result then follows from Theorem 2.

Theorem 3. Under Assumption 1, there exists a Nash equilibrium to the deterministic problem

under competition.

E Proofs

E.1 Proof of Proposition 1

Proof. It is clear from the definition of a Nash Equilibrium that the inequality is a necessary

condition. For the reverse, suppose x ∈ Y satisfies the inequality above for all x̄ ∈ Q(x) and

∃k, x̄k ∈ Qk(x−k) such that Jk(xk, x−k) < Jk(x̄k, x−k). Let y such that yk = x̄k, y−k = x−k. Then

y ∈ Q(x) and

JA(yA, xB)+JB(xA, yB) = Jk(x̄k, x−k)+J−k(xk, x−k) > Jk(xk, x−k)+J−k(xk, x−k) = JA(x)+JB(x)

which is a contradiction.
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E.2 Proof of Theorem 1

Proof. We obtain that in the robust counterpart, the price constraint (8) is written as pk
i (t) ≤

αk
i (t)−α̂k

i (t)+(βk,−k
i (t)−β̂k,−k

i (t))p−k
i (t)

βk,k
i (t)+β̂k,k

i (t)
∀i, t. We observe that we may write the realized inventory level

at time t as follows:

Ĩk
i (t) = Ik

i (t)−
∫ t

0
(zk

i (s)α̂k
i (s)− yk,k

i (s)β̂k,k
i (s)pk

i (s) + yk,−k
i (s)β̂k,−k

i (s)p−k
i (s))ds

where Ik
i (t) = Ik0

i +
∫ t
0 (uk

i (s) − αk
i (s) + βk,k

i (s)pk
i (s) − βk,−k

i (s)p−k
i (s))ds is the nominal inventory

level. The no backorder constraint at time t is a constraint that is instantaneous on the inventory

level. It indirectly involves the control decisions on prices and production rates from time 0 to

time t, and as such, the budget of uncertainty has an impact on it. As a result, constraint (9) is

equivalent to

Ik
i (t) ≥ Ωk

i (t) ∀i, t (5)

where Ωk
i (t) can be viewed as a minimum inventory security level that can be computed via the

following deterministic continuous linear program

Ωk
i (t) = max

zk
i (.),yk,k

i (.),yk,−k
i (.)

∫ t

0
(zk

i (s)α̂k
i (s)− yk,k

i (s)β̂k,k
i (s)pk

i (s) + yk,−k
i (s)β̂k,−k

i (s)p−k
i (s))ds

s.t. zk
i (s), yk,k

i (s), yk,−k
i (s) ∈ [−1, 1] ∀s ∈ [0, t]

∫ t

0
|zk

i (s)|ds ≤ Γk
i (t),

∫ t

0
|yk,k

i (s)|ds ≤ Θk,k
i (t),

∫ t

0
|yk,−k

i (s)|ds ≤ Θk,−k
i (t).

Notice that Ωk
i (t) depends on the pricing strategies of both suppliers on [0, t] via the objective

function. To make this dependence clear, we will denote it by Ωk
i (t, p

k(.), p−k(.)). After a change

of variables, this problem separates into three subproblems that are continuous linear programs as

follows:

Ωk
i (t, p

k(.), p−k(.)) = Ωk1

i (t) + Ωk2

i (t, pk(.)) + Ωk3

i (t, p−k(.)) (6)
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with

Ωk1

i (t) = max
zk
i (.)

∫ t

0
zk
i (s)α̂k

i (s)ds

s.t. 0 ≤ zk
i (t) ≤ 1 ∀s ∈ [0, t],

∫ t

0
zk
i (s)ds ≤ Γk

i (t)

and Ωk2

i (t, pk(.)), Ωk3

i (t, p−k(.)) are obtained similarly after substituting respectively β̂k,k
i (.)pk

i (.)

and β̂k,−k
i (.)p−k

i (.) for α̂k
i (.), and Θk,k

i (.) and Θk,−k
i (.) for Γk

i (.). Notice that Ωk2

i (t, pk(.)) depends

on pk
i (s), 0 ≤ s ≤ t and Ωk3

i (t, p−k(.)) depends on p−k
i (s), 0 ≤ s ≤ t. Under regularity assumptions

(see [1]) we have strong duality and the respective dual subproblems are given by the continuous

linear programs:

Ωk1

i (t) = min
ωk

i (t),rk
i (.,t)

ωk
i (t)Γk

i (t) +
∫ t

0
rk
i (s, t)ds (7)

s.t. ωk
i (t) + rk

i (s, t) ≥ α̂k
i (s) ∀s ∈ [0, t]

ωk
i (t) ≥ 0, rk

i (s, t) ≥ 0 ∀s ∈ [0, t]

Ωk2

i (t, pk(.)) = min
θk,k
i (t),qk,k

i (.,t)
θk,k
i (t)Θk,k

i (t) +
∫ t

0
qk,k
i (s, t)ds (8)

s.t. θk,k
i (t) + qk,k

i (s, t) ≥ β̂k,k
i (s)pk

i (s) ∀s ∈ [0, t]

θk,k
i (t) ≥ 0, qk,k

i (s, t) ≥ 0 ∀s ∈ [0, t]

Ωk3

i (t, p−k(.)) = min
θk,−k
i (t),qk,−k

i (.,t)
θk,−k
i (t)Θk,−k

i (t) +
∫ t

0
qk,−k
i (s, t)ds (9)

s.t. θk,−k
i (t) + qk,−k

i (s, t) ≥ β̂k,−k
i (s)p−k

i (s) ∀s ∈ [0, t]

θk,−k
i (t) ≥ 0, qk,−k

i (s, t) ≥ 0 ∀s ∈ [0, t].

By noticing that the inventory level constraint holds when the threshold is the lowest possible, we

obtain the result.
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E.3 Proof of Lemma 5

Proof. Let λ > 0 a constant.

a(x, x)− λ||x||2 =
∫ T

0

N∑

i=1

[
(βA,A

i (t)− λ)(pA
i (t))2 + (βB,B

i (t)− λ)(pB
i (t))2

− 1
2
(βA,B

i (t) + βB,A
i (t))pA

i (t)pB
i (t)

+ (γA
i (t)− λ)(uA

i (t))2 + (γB
i (t)− λ)(uB

i (t))2

+ (hA
i (t)− λ)(IA

i (t))2 + (hB
i (t)− λ)(IB

i (t))2
]
dt.

Let

λ1 = min
k

min
i

inf
t∈[0,T ]

hk
i (t), λ2 = min

k
min

i
inf

t∈[0,T ]
γk

i (t).

A sufficient condition for the expression above to be positive is that λ < λ1, λ < λ2 and the

symmetric matrix (defined at fixed i, t)

Q =




βA,A − λ − (βA,B+βB,A)
4

− (βA,B+βB,A)
4 βB,B − λ




is positive semi-definite for all i, t (we omit the product index and time variable for the sake of

clarity).

We notice that

Q º 0 ⇔ (
Tr(Q) ≥ 0 and Det(Q) ≥ 0

)

⇔ (
βA,A + βB,B − 2λ ≥ 0 and (βA,A − λ)(βB,B − λ)− 1

16
(βA,B + βB,A)2 ≥ 0

)

⇔





λ ≤ βA,A+βB,B

2

λ2 − λ(βA,A + βB,B) + βA,AβB,B − 1
16(βA,B + βB,A)2 ≥ 0.
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The determinant of the polynomial above is

∆ = (βA,A + βB,B)2 − 4
(
βA,AβB,B − 1

16
(βA,B + βB,A)2

)

= (βA,A − βB,B)2 +
1
4
(βA,B + βB,A)2 > 0

so the polynomial has two real roots βA,A+βB,B±√∆
2 and only one satisfies λ ≤ βA,A+βB,B

2 . Since we

are interested in positive parameters λ, we obtain that

(λ > 0 and Q º 0) ⇔





βA,A+βB,B−√∆
2 > 0

0 < λ < βA,A+βB,B−√∆
2

⇔





(βA,A − βB,B)2 + 1
4(βA,B + βB,A)2 < (βA,A + βB,B)2

0 < λ < βA,A+βB,B

2 −
√

4∆
4

⇔





1
4(βA,B + βB,A)2 < 4βA,AβB,B

0 < λ < βA,A+βB,B

2 −
√

4∆
4

which is satisfied under Assumption 1 and provided that 0 < λ < λ3 where

λ3 = min
i

inf
t∈[0,T ]

βA,A
i (t) + βB,B

i (t)
2

− 1
4

√
4(βA,A

i (t)− βB,B
i (t))2 + (βA,B

i (t) + βB,A
i (t))2 > 0.

As a result, by taking 0 < λ < min{λ1, λ2, λ3}, we obtain that

a(x, x)− λ||x||2 > 0 ∀x ∈ E.

E.4 Proof of Proposition 2

Proof. We consider the dual subproblem (Pt) and (Pt+dt) respectively at times t and t + dt, whose

optimal objective values equal respectively Ωk1

i (t) and Ωk1

i (t + dt):
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min
ωk

i (t),rk
i (.,t)

ωk
i (t)Γk

i (t) +
∫ t

0
rk
i (s, t)ds

s.t. ωk
i (t) + rk

i (s, t) ≥ α̂k
i (s) ∀s ∈ [0, t]

ωk
i (t) ≥ 0

rk
i (s, t) ≥ 0 ∀s ∈ [0, t],

min
ωk

i (t+dt),rk
i (.,t+dt)

ωk
i (t + dt)Γk

i (t + dt) +
∫ t+dt

0
rk
i (s, t + dt)ds

s.t. ωk
i (t + dt) + rk

i (s, t + dt) ≥ α̂k
i (s) ∀s ∈ [0, t + dt]

ωk
i (t + dt) ≥ 0

rk
i (s, t + dt) ≥ 0 ∀s ∈ [0, t + dt].

We denote by (ωk∗
i (t), rk∗

i (., t)), (ωk∗
i (t + dt), rk∗

i (., t + dt)) the respective optimal solutions. It is

clear that (ωk∗
i (t + dt), rk∗

i (., t + dt)) is feasible for (Pt), therefore, we have

ωk∗
i (t)Γk

i (t) +
∫ t

0
rk∗
i (s, t)ds ≤ ωk∗

i (t + dt)Γk
i (t)

∫ t

0
rk∗
i (s, t + dt)ds.

As a result, we observe that

Ωk1

i (t + dt) = ωk∗
i (t + dt)Γk

i (t + dt) +
∫ t+dt

0
rk∗
i (s, t + dt)ds

= ωk∗
i (t + dt)Γk

i (t) + ωk∗
i (t + dt)Γ̇k

i (t)dt +
∫ t

0
rk∗
i (s, t + dt)ds +

∫ t+dt

t
rk∗
i (s, t + dt)ds

≥ ωk∗
i (t)Γi(t) +

∫ t

0
rk∗
i (s, t)ds + ωk∗

i (t + dt)Γ̇k
i (t)dt +

∫ t+dt

t
rk∗
i (s, t + dt)ds

= Ωk1

i (t) + ωk∗
i (t + dt)Γ̇k

i (t)dt +
∫ t+dt

t
rk∗
i (s, t + dt)ds.

Since Γ̇k
i (t) ≥ 0 by assumption, and for feasibility of (Pt+dt), ωk∗

i (t+dt) ≥ 0, rk∗
i (s, t+dt) ≥ 0 ∀s ∈

[t, t + dt], we obtain that

Ωk1

i (t + dt) ≥ Ωk1

i (t).
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E.5 Proof of Proposition 3

Proof. We prove this result by showing that Ωk1

i , Ωk2

i , and Ωk3

i are respectively non decreasing

with Γk
i (t), Θk,k

i (t) and Θk,−k
i (t). We describe the proof for Ωk1

i , and it is similar for Ωk2

i and

Ωk3

i . Let Γ
′k
i (t) such that Γk

i (t) < Γ
′k
i (t), and let (ω(t), r(., t)) and (ω′(t), r′(., t)) the respective

optimal solutions of the dual subproblems, which we denote (D) and (D′), and Ωk1

i (t) and Ω
′k1

i (t)

the respective optimal objective values. Notice that (ω′(t), r′(., t)) is feasible for (D), since (D) and

(D′) have the same feasible sets. Therefore

Ωk1

i (t) = ω(t)Γk
i (t) +

∫ t

0
r(s, t)ds ≤ ω′(t)Γk

i (t) +
∫ t

0
r′(s, t)ds,

since (ω′(t), r′(., t)) is feasible suboptimal

≤ ω′(t)Γ
′k
i (t) +

∫ t

0
r′(s, t)ds = Ω

′k1

i (t), since ω′(t) ≥ 0, Γk
i (t) < Γ

′k
i (t)

E.6 Proof of Proposition 4

Proof. Let us for example, show the convexity of Ωk
i (t, p

k
i (.), p

−k
i (.)) in pk

i (.). Ωk
i (t, p

k
i (.), p

−k
i (.))

is the sum of the objective values of the three corresponding dual subproblems. Two of these

subproblems are independent of pk
i (.) (the ones dealing with uncertainty on respectively α̂k

i and

β̂k,−k
i ). Therefore, it is necessary and sufficient to show that Ωk2

i (t, pk
i (.)) given by (8) is convex in

pk
i (.). Let pk1

i (.), pk2

i (.), λ ∈ (0, 1) and pk3

i (.) = λpk1

i (.) + (1− λ)pk2

i (.). We will use superscripts 1,

2, 3 similarly to denote the optimal solutions of the corresponding subproblems with input pk1

i (.),

pk2

i (.), pk3

i (.). Clearly,

λθk,k1

i (t) + λqk,k1

i (s, t) ≥ β̂k,k
i (s)λpk1

i (s) ∀s ∈ [0, t]

(1− λ)θk,k2

i (t) + (1− λ)qk,k2

i (s, t) ≥ β̂k,k
i (s)(1− λ)pk2

i (s) ∀s ∈ [0, t].

Adding these inequalities shows that λθk,k1

i (t) + (1 − λ)θk,k2

i (t) along with λqk,k1

i (., t) + (1 −
λ)qk,k2

i (., t), is feasible for the subproblem with input pk3

i (.) (non negativity is clearly satisfied).
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Since it may not yield the optimal objective value, we have

Ωk2

i (t, pk3

i (.)) ≤ (λθk,k1

i (t) + (1− λ)θk,k2

i (t))Θk,k
i (t) +

∫ t

0
(λqk,k1

i (s, t) + (1− λ)qk,k2

i (s, t))ds

= λΩk1

i (t, pk1

i (.)) + (1− λ)Ωk1

i (t, pk2

i (.)).

E.7 Proof of Theorem 2

We start by reformulating the robust counterpart problem.

The following lemma follows from the derivation of the robust counterpart by integrating the dual

subproblems into the main optimization problem.

Lemma 6. The robust counterpart for the best response problem faced by supplier k (at p−k
i (.)

fixed) can be written:

max
∫ T

0

N∑

i=1

(
pk

i (t)(α
k
i (t)− βk,k

i (t)pk
i (t) + βk,−k

i (t)p−k
i (t))− γk

i (uk
i (t))

2 − hk
i (t)(I

k
i (t))2

)
dt (10)

s.t. İk
i (t) = uk

i (t)− αk
i (t) + βk,k

i (t)pk
i (t)− βk,−k

i (t)p−k
i (t) ∀i ∀t ∈ [0, T ]

Ik
i (0) = Ik0

i ∀i
N∑

i=1

uk
i (t) ≤ Kk(t) ∀t ∈ [0, T ]

pk
i (t) ≤

αk
i (t)− α̂k

i (t) + (βk,−k
i (t)− β̂k,−k

i (t))p−k
i (t)

βk,k
i (t) + β̂k,k

i (t)
∀i ∀t ∈ [0, T ]

pk
i (t), uk

i (t) ≥ 0 ∀i ∀t ∈ [0, T ]

Ik
i (t) ≥ ωk

i (t)Γk
i (t) + θk,k

i (t)Θk,k
i (t) + θk,−k

i (t)Θk,−k
i (t)

+
∫ t

0
(rk

i (s, t) + qk,k
i (s, t) + qk,−k

i (s, t))ds ∀i ∀t ∈ [0, T ]

ωk
i (t) + rk

i (s, t) ≥ α̂k
i (s) ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ]

θk,k
i (t) + qk,k

i (s, t) ≥ β̂k,k
i (s)pk

i (s) ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ]

θk,−k
i (t) + qk,−k

i (s, t) ≥ β̂k,−k
i (s)p−k

i (s) ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ]

ωk
i (t), θk,k

i (t), θk,k
i (t) ≥ 0 ∀i ∀t ∈ [0, T ]

rk
i (s, t), qk,k

i (s, t), qk,−k
i (s, t) ≥ 0 ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ].
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Adding the constraint that prices must be lower than their maximum price leaves the problem

unchanged. After introducing new variables in order to reformulate the constraint involving an

integral expression, we obtain the following:

Lemma 7. The robust counterpart problem can be reformulated equivalently as a deterministic

fluid model with linear constraints:

max
∫ T

0

N∑

i=1

(
pk

i (t)(α
k
i (t)− βk,k

i (t)pk
i (t) + βk,−k

i (t)p−k
i (t))− γk

i (uk
i (t))

2 − hk
i (t)(I

k
i (t))2

)
dt (11)

s.t. İk
i (t) = uk

i (t)− αk
i (t) + βk,k

i (t)pk
i (t)− βk,−k

i (t)p−k
i (t) ∀i ∀t ∈ [0, T ]

Ik
i (0) = Ik0

i ∀i
N∑

i=1

uk
i (t) ≤ Kk(t) ∀t ∈ [0, T ]

pk
i (t) ≤

αk
i (t)− α̂k

i (t) + (βk,−k
i (t)− β̂k,−k

i (t))p−k
i (t)

βk,k
i (t) + β̂k,k

i (t)
∀i ∀t ∈ [0, T ]

pk
i (t) ≤ pk

imax
(t) ∀i ∀t ∈ [0, T ]

pk
i (t), uk

i (t) ≥ 0 ∀i ∀t ∈ [0, T ]

Ik
i (t) ≥ ωk

i (t)Γk
i (t) + θk,k

i (t)Θk,k
i (t) + θk,−k

i (t)Θk,−k
i (t) + Rk

i (t, t)

+ Sk,k
i (t, t) + Sk,−k

i (t, t) ∀i ∀t ∈ [0, T ]

ωk
i (t) + rk

i (s, t) ≥ α̂k
i (s) ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ]

θk,k
i (t) + qk,k

i (s, t) ≥ β̂k,k
i (s)pk

i (s) ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ]

θk,−k
i (t) + qk,−k

i (s, t) ≥ β̂k,−k
i (s)p−k

i (s) ∀i ∀s ∈ [0, t] ∀t ∈ [0, T ]

ωk
i (t), θk,k

i (t), θk,k
i (t) ≥ 0 ∀i ∀t ∈ [0, T ]

Rk
i (0, t) = Sk,k

i (0, t) = Sk,−k
i (0, t) = 0 ∀i ∀t ∈ [0, T ]

∂Rk
i

∂s
(s, t) = rk

i (s, t) ∀i ∀s ∈ [0, t], ∀t ∈ [0, T ]

∂Sk,k
i

∂s
(s, t) = qk,k

i (s, t) ∀i ∀s ∈ [0, t], ∀t ∈ [0, T ]

∂Sk,−k
i

∂s
(s, t) = qk,−k

i (s, t) ∀i ∀s ∈ [0, t], ∀t ∈ [0, T ]

rk
i (s, t), qk,k

i (s, t), qk,−k
i (s, t) ≥ 0 ∀i ∀s ∈ [0, t], ∀t ∈ [0, T ].

Note that the fluid equations as well as the constraints remain linear, even though there are

more variables than in the nominal problem: only the size has increased, but the complexity is of
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We now prove Theorem 2.

Proof. The variables space is now the space of vectors x = (xA, xB) with

xk = (pk
i (.), uk

i (.), Ik
i (.), ωk

i (.), θk,k
i (.), θk,−k

i (.), rk
i (., .), qk,k

i (., .), qk,−k
i (., .),

Rk
i (., .), Sk,k

i (., .), Sk,−k
i (., .), i = 1, . . . , N).

To ease the exposition, we will denote yk = (pk
i (.), uk

i (.), Ik
i (.), i = 1, . . . , N) and

λk
i = (ωk

i (.), θk,k
i (.), θk,−k

i (.), rk
i (., .), qk,k

i (., .), qk,−k
i (., .), Rk

i (., .), Sk,k
i (., .), Sk,−k

i (., .), i = 1, . . . , N)

so that xk = (yk, λk).

By defining Xk as the set of variables xk that satisfy the constraints that are independent from

p−k, and X such that X = XA × XB, it is clear that X is convex and closed. We notice that it

is non empty by taking all variables equal to 0 except rk
i (s, t) = α̂k

i (s), Rk
i (τ, t) =

∫ τ
0 α̂k

i (s)ds, and

Ik
i (t) = Ik0

i + Rk
i (t, t) ∀i, t, k = A,B.

As previously, we denote Qk(x̄−k) ⊂ Xk the subset of all feasible strategy and state vectors xk for

player k including all constraints, given the strategy and state vector x̄−k of her competitor. Again,

it is clear that for all x̄−k ∈ X−k, Qk(x̄−k) is a closed and convex subset of Xk. We will prove that

it is non empty by showing that the solution (feasible under Assumption 2) such that ∀i, t:

ω
k
i (t) = θ

k,k
i (t) = θ

k,−k
i (t) = 0

pk
i (t) =

αk
i (t)− α̂k

i (t) + (βk,−k
i (t)− β̂k,−k

i (t))p̄−k
i (t)

βk,k
i (t) + β̂k,k

i (t)

rk
i (s, t) = α̂k

i (s), qk,k
i (s, t) = β̂k,k

i (s)pk
i (s), qk,−k

i (s, t) = β̂k,−k
i (s)p̄−k

i (s) ∀s ∈ [0, t]

R

k
i (τ, t) =

∫ τ

0
rk
i (s, t)ds, Sk,k

i (τ, t) =
∫ τ

0
qk,k
i (s, t)ds, Sk,−k

i (τ, t) =
∫ τ

0
qk,−k
i (s, t)ds ∀τ ∈ [0, t]

uk
i (t) = 2α̂k

i (t) + 2β̂k,k
i (t)pk

i (t) + 2β̂k,−k
i (t)p̄−k

i (t)
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Ik
i (t) = Ik0

i +
∫ t

0
(uk

i (s)− αk
i (s) + βk,k

i (s)pk
i (s)− βk,−k

i (s)p̄−k
i (s))ds

belongs to the set Qk(x̄−k) for x̄−k ∈ X−k.



Since x̄−k ∈ X−k, p̄−k
i (t) ≤ p−k

imax
(t) and therefore pk

i (t) ≤ pk
imax

(t).

Since both prices are below their maximum threshold, it is clear that under Assumption 2,
∑

i u
k
i (t) ≤ Kk(t).

Finally, it is easy to derive that İk
i (t) = α̂k

i (t) + β̂k,k
i (t)pk

i (t) + β̂k,−k
i (t)p̄−k

i (t), and since Ik0

i ≥ 0 =

Rk
i (0, 0) + Sk,k

i (0, 0) + Sk,−k
i (0, 0), using inequality (11), the security level for Ik

i (t) is satisfied.

We denote Y ⊂ X the set of feasible collective strategy and state vectors:

Y = {x ∈ X : xk ∈ Qk(x−k), k = A,B}.

Then clearly Y is a convex closed subset of X. To show that it is non empty, we take the same

solution as above except that both prices are set to their maximum threshold. Using the same

reasoning, this point is an element of set Y .

The objective function is unchanged, so all the properties we proved regarding it earlier still hold

for this problem.

The proof of upper semi continuity of Q can be adapted from the proof of Proposition 5 in a

straightforward way.

Now let’s prove that Q is lower semi continuous. Consider xn ∈ X such that xn → x(∈ X) and

x̄ ∈ Q(x). We want to construct x̄n such that x̄n → x̄ and for n large enough, x̄n ∈ Q(xn). We

observe that the difficulty comes from the inventory security level guarantee; it is straightforward

to satisfy the constraints that are involving directly the control variables.

Let’s denote

mk
i (t, λ) ≡ ωk

i (t)Γk
i (t) + θk,k

i (t)Θk,k
i (t) + θk,−k

i (t)Θk,−k
i (t) + Rk

i (t, t) + Sk,k
i (t, t) + Sk,−k

i (t, t)

the minimum security level for the inventory of product i at time t for supplier k. The constraint

guaranteeing no backorder is written Ik
i (t) ≥ mk

i (t, λ). Note that mk
i (t, .) is a continuous function.

First, we notice that if Īk
i (t) > mk

i (t, λ̄) ∀i, t, then for any x̄n such that x̄n → x̄, we will have

Īk
n,i(t) > mk

i (t, λ̄n) for n large enough since Īn(t) → Ī(t) and mk
i (t, λ̄n) → mk

i (t, λ̄). It is therefore
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easy to construct x̄n such that x̄n → x̄ and x̄n ∈ Q(xn) in that case, so let’s assume we have a time

t and a product i such that Īk
i (t) = mk

i (t, λ̄) for supplier k.

To prove the result, it would be sufficient to construct feasible x̄n such that in particular

Īk
n,i(t)− Īk

i (t) ≥ mk
i (t, λ̄n)−mk

i (t, λ̄),

(in addition to other feasibility constraints) i.e.

∫ t

0
(ūk

n,i(t)− ūk
i (t)) + (βk,k

i (s)(p̄k
n,i(s)− p̄k

i (s))− βk,−k
i (s)(p−k

n,i (s)− p−k
i (s)))ds ≥

(ω̄k
n,i(t)− ω̄k

i (t))Γk
i (t) + (θ̄k,k

n,i (t)− θ̄k,k
i (t))Θk,k

i (t) + (θ̄k,−k
n,i (t)− θ̄k,−k

i (t))Θk,−k
i (t)

+
∫ t

0
(r̄k

n,i(s, t)− r̄k
i (s, t) + q̄k,k

n (s, t)− q̄k,k(s, t) + q̄k,−k
n (s, t)− q̄k,−k(s, t))ds. (12)

In order to satisfy this inequality, we should attempt to choose x̄n such that ūk
n,i− ūk

i , p̄
k
n,i− p̄k

i are

as large as possible (while converging to zero) and mk
i (t, λ̄n)−mk

i (t, λ̄) as small as possible (while

converging to zero). Our goal is thus to construct λ̄n by modifying λ̄ (this modification converging

to zero) while decreasing its value is possible, and satisfying all feasibility constraints.

Note that for a given x and ȳ (in particular their price components), the vector λ̄ that minimizes

mk
i (t, λ̄) under the constraint x̄ ∈ Q(x) is obtained if λ̄ is formed by the variables that solve the

dual subproblems presented in section 5.2. Let’s denote Ωk∗
i (t, p̄k(.), p−k(.)) the minimum value

of the security level obtained with the solution above. Let λ̄k∗
i (t, p̄k(.), p−k(.)) the corresponding

components (we write explicitly the arguments for the same reason as just explained).

Let ε > 0. We claim that given xn → x and ȳn → ȳ, if λ̄k
i 6= λ̄k∗

i (t, p̄k(.), p−k(.)) (and thus

mk
i (t, λ̄) > Ωk∗

i (t, p̄k(.), p−k(.))), there exists ¯̄λk
n,i → λ̄k

i such that for n large enough, mk
i (t,

¯̄λn) =

mk
i (t, λ̄)− εmk

n,i for some positive mk
n,i that converges toward zero, and such that ¯̄λk

n,i satisfies the

feasibility constraints depending on p̄k
n,i and p−k

n,i for n sufficiently large. To see this, notice that λ̄ is

not the optimal solution of the continuous LPs shown above; therefore the linearity of the problem

implies that it is possible to perturb its components (in a way that converges to zero at n → ∞)

while decreasing the objective value. Furthermore, the linearity of the constraints satisfied by λ̄

that involve prices p̄k
i and p−k

i implies that it is again possible to perturb the components of λ̄ (in

a way that converges to zero at n →∞) to make the perturbed solution feasible with p̄k
n,i and p−k

n,i ,
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Moreover, the only situation in which we cannot choose ūk
n,i strictly greater than ūk

i is when

the capacity constraint is tight under ūk and the inventory security level guarantee is satisfied with

equality for all products. Indeed, otherwise we can increase infinitesimally the production rate by

shifting production from a product that has a non tight inventory level constraint (shifting pro-

duction from that product will slightly decrease its inventory level, but as long as the security level

constraint is not tight we can do it infinitesimally and remain feasible).

Similarly, the only situation in which we cannot perturb p̄k
i by increasing it while remaining feasible

is when the price is already at its maximum (for fixed p−k).

Let’s define on [0, t] (omitting the time argument for the sake of clarity) for some ε′ > 0

ūk
n,i =





ūk
i if

∑
i ū

k
i = Kkand Īk

j (t) = mj(t, λ̄) ∀j
ūk

i + mk
n,iε

′ else

p̄k
n,i =





αk
i (t)−α̂k

i (t)+(βk,−k
i (t)−β̂k,−k

i (t))p−k
n,i(t)

βk,k
i (t)+β̂k,k

i (t)
if p̄k

i = αk
i (t)−α̂k

i (t)+(βk,−k
i (t)−β̂k,−k

i (t))p−k
i (t)

βk,k
i (t)+β̂k,k

i (t)

p̄k
i + mk

n,iε
′ else

λ̄k
n,i = =





λ̄k∗
i (t, p̄k

n(.), p−k
n ) if λ̄k

i = λ̄k∗
i (t, p̄k(.), p−k)

¯̄λk
i else.

We observe that if for some product i, either ūk
n,i or p̄k

n,i is given by its second expression on a domain

with positive measure, or if λ̄k
n,i is given by its second expression, then the inequality (12) that we

want to prove can be rewritten ε′′mk
n,i +Ak

n,i ≥ 0, with ε′′ depends on ε, ε′ and the measure of that

domain. If An ≥ 0, taking mk
n,i = 0 will satisfy the inequality. Otherwise, we take mk

n,i = −Ak
n,i/ε′′.

So now let’s suppose that for all products i, ūk
n,i and p̄k

n,i are given at all times by their first

expression and that so is λ̄k
n,i. Therefore we are supposing that at time t, the production capacity

is tight, that for all products the inventory security level is tight, and for some product i prices

are equal to their upper bounds, and the variables introduced by the dual subproblems are at their

25



optimum. We will show that this situation is impossible by displaying a contradiction.

In this case, the fact that the inventory security level is tight can be rewritten as

Ik0

i +
∫ t

0

(
ūk

i (s)−αk
i (s)+βk,k

i (s)
αk

i (s)− α̂k
i (s) + (βk,−k

i (s)− β̂k,−k
i (s))p−k

i (s)

βk,k
i (s) + β̂k,k

i (s)
−βk,−k

i (s)p−k(s)
)
ds =

Ωk
i

(
t,

αk
i (s)− α̂k

i (s) + (βk,−k
i (s)− β̂k,−k

i (s))p−k
i (s)

βk,k
i (s) + β̂k,k

i (s)
, s ∈ [0, t], p−k

i (.)
)

≤
∫ t

0

(
α̂k

i (s) + β̂k,k
i (s)

αk
i (s)− α̂k

i (s) + (βk,−k
i (s)− β̂k,−k

i (s))p−k
i (s)

βk,k
i (s) + β̂k,k

i (s)
+ β̂k,−k

i (s)p−k
i (s)

)
ds

which (after calculations) implies

Ik0

i +
∫ t

0

(
ūk

i (s)−2α̂k
i (s)−2β̂k,−k

i (s)p−k
i (s)−2β̂k,k

i (s)
αk

i (s)− α̂k
i (s) + (βk,−k

i (s)− β̂k,−k
i (s))p−k

i (s)

βk,k
i (s) + β̂k,k

i (s)

)
ds ≤ 0.

Note that the left hand side is lower bounded by

Ik0

i +
∫ t

0

(
ūk

i (s)− 2α̂k
i (s)− 2β̂k,−k

i (s)p−k
imax

(s)− 2β̂k,k
i (s)pk

imax
(s)

)
ds

which, after adding over all products, and under Assumption 2, since the capacity is tight, is lower

bounded by
∑N

i=1 Ik0

i > 0. This is a contradiction since the right hand side in the last equality is

negative.

E.8 Proof of Proposition 6

Proof. Let x∗ a Nash equilibrium and z ∈ Q(x∗). By definition of a Nash equilibrium, since

(zk, x∗−k) ∈ Y, k = A,B, we have Jk(zk, x∗−k) − Jk(x∗k, x∗−k) ≤ 0, k = A,B. Summing these

inequalities over k = A, B leads to ψ(x∗, z) ≤ 0 ∀z ∈ Q(x∗). Since x∗ ∈ Q(x∗) and ψ(x∗, x∗) = 0,

we have maxz∈Q(x∗) ψ(x∗, z) = 0.

To show the reverse, let’s assume that x∗ ∈ Y is given and maxz∈Q(x∗) ψ(x∗, z) = 0, and sup-

pose x∗ is not a Nash equilibrium. Then there exists k0 and zk0 such that (zk0 , x−k0) ∈ Y and

Jk0(zk0 , x∗−k0) − Jk0(x∗k0 , x∗−k0) > 0. Let z∗ such that z∗k0 = zk0 and z∗−k0 = x−k0 . Then z∗ ∈
Q(x∗) and ψ(x∗, z∗) =

∑
k Jk(z∗k, x∗−k)−Jk(x∗k, x∗−k) = Jk0(zk0 , x∗−k0)−Jk0(x∗k0 , x∗−k0) > 0
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which contradicts maxz∈Q(x∗) ψ(x∗, z) = 0.



E.9 Proof of Theorem 4

Proof. Rosen [27] provides the proof of this result in the case where all coupled constraints are

shared by the agents. In this paper, the minimum inventory level constraint, the upper bound

on the price, and the inventory flow constraint for supplier k are not included in supplier −k’s

program. Specifically, in our model, Ωk(x̄−k) ≡ {xk : (xk, x̄−k) ∈ Y } ⊂ Qk(x̄−k), while in Rosen’s

model these two sets are equal. Nevertheless, when we focus on normalized Nash equilibria, we

consider the sum of the utility functions and we maximize it over the cartesian product of each set

across k = A, B. Since we have x ∈ Q(x) ⇔ x ∈ Ω(x) ⇔ x ∈ Y , where Ω(x) = ΩA(xB)×ΩB(xA),

Rosen’s proof is still valid.

E.10 Proof of Theorem 6

Proof. In this problem we have (we abuse notations by mentioning only the component for product

i at time t in order to ease the exposition):

g(x) =



∇xAJA(x)

∇xBJB(x)


 =




αA
i (t)− 2βA,A

i (t)pA
i (t) + βA,B

i (t)pB
i (t)

−2γA
i (t)uA

i (t)

−2hA
i (t)IA

i (t)

αB
i (t)− 2βB,B

i (t)pB
i (t) + βB,A

i (t)pA
i (t)

−2γB
i (t)uB

i (t)

−2hB
i (t)IB

i (t)




G(x) =




−2βA,A
i (t) βA,B

i (t)

−2γA
i (t)

−2hA
i (t)

βB,A
i (t) −2βB,B

i (t)

−2γB
i (t)

−2hB
i (t)



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G(x) + GT (x) is a symmetric and strictly diagonally dominant matrix under Assumption 1 for

x ∈ Y , with negative elements on the diagonal. Therefore, it is negative definite. The result then

follows from Theorem 7.

E.11 Proof of Proposition 7

Proof. Let’s consider formulation (12). Let x ∈ Y ; we can rewrite BR(x) as the solution of the

quadratic program minz∈Y zT Mz−c(x)T z where M ∈ R6NT is positive definite, c(x) is a vector

such that c(.) a continuous mapping. (M is a diagonal matrix with components βk,k
i (t), γk

i (t), hk
i (t),

and c(x) has components αk
i (t) + βk,−k

i (t)p−k
i (t), with the prices p−k

i (t) taken from vector x).

Based on the fact that the feasible set is convex and independent of x, Daniel1 showed using

variational inequalities that if x′ ∈ Y , ε ≡ ||c(x)− c(x′)|| and κ is the smallest eigenvalue of matrix

M , then we have ||BR(x′) − BR(x)|| ≤ ε(κ − ε)−1(1 + ||BR(x)||) for ε < κ. Since c(.) is a

continuous mapping, it follows that BR is continuous.

E.12 Proof of Proposition 8

Proof. Let θ1 ∈ [0, 1] and θ2 = 1− θ1. To ease the exposition, we omit the time argument.

∆ = θ1ψ(x, ¯̄x) + θ2ψ(x̄, ¯̄x)− ψ(θ1x + θ2x̄, ¯̄x)

=
T∑

t=1

N∑

i=1

∑

k=A,B

[
θ1

(
(αk

i + βk,−k
i p−k

i )(¯̄pk
i − pk

i )− βk,k
i (¯̄pk2

i − pk2

i )− γk
i (¯̄uk2

i − uk2

i )− hk
i (

¯̄Ik2

i − Ik2

i )
)

+ θ2

(
(αk

i + βk,−k
i p̄−k

i )(¯̄pk
i − p̄k

i )− βk,k
i (¯̄pk2

i − p̄k2

i )− γk
i (¯̄uk2

i − ūk2

i )− hk
i (

¯̄Ik2

i − Īk2

i )
)

− (
αk

i + βk,−k
i (θ1p

−k
i + θ2p̄

−k
i )

)
(¯̄pk

i − θ1p
k
i − θ2p̄

k
i ) + βk,k

i

(
¯̄pk2

i − (θ1p
k
i + θ2p̄

k
i ))

2
)

− γ(¯̄uk2

i − (θ1u
k
i + θ2ū

k
i )

2)− hk
i (

¯̄Ik2

i − (θ1I
k
i + θ2Ī

k
i )2)

]
.

1Daniel [10] proved the result under linear equality and inequality constraints. Nevertheless, it is easy to see that
the proof remains the same under a more general convex set.
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After calculations,

∆ =
T∑

t=1

N∑

i=1

∑

k=A,B

[
− θ1θ2β

k,−k
i (p−k

i − p̄−k
i )(pk

i − p̄k
i ) + θ1θ2β

k,k
i (pk

i − p̄k
i )

2 + γk
i θ1θ2(uk

i − ūk
i )

2

+hk
i θ1θ2(Ik

i − Īk
i )2

]

= θ1θ2v(x, x̄), where

v(x, x̄) =
T∑

t=1

N∑

i=1

∑

k=A,B

[
− βk,−k

i (p−k
i − p̄−k

i )(pk
i − p̄k

i ) + βk,k
i (pk

i − p̄k
i )

2 + γk
i (uk

i − ūk
i )

2 + hk
i (I

k
i − Īk

i )2
]
.

We have

v(x, x̄) = −
T∑

t=1

N∑

i=1

(βA,B
i + βB,A

i )(pB
i − p̄B

i )(pA
i − p̄A

i ) + O1(||x− x̄||2),

and thus

v(x, x̄)
||x− x̄|| = −

∑T
t=1

∑N
i=1(β

A,B
i + βB,A

i )(pB
i − p̄B

i )(pA
i − p̄A

i )√∑T
t=1

∑N
i=1

∑
k=A,B

[
(pk

i − p̄k
i )2 + (uk

i − ūk
i )2 + (Ik

i − Īk
i )2

] + O1(||x− x̄||)

which tends to 0 as x, x̄ → w ∈ Y since in the ratio above, the numerator is of the order of ε2 and

the denominator is of the order of ε, with ε → 0.

E.13 Proof of Proposition 9

Proof. This is clear considering that in the expression of ψ(x, x̄), the dependence in x̄ appears as

negative quadratic terms in p̄, ū and Ī. More explicitly, let θ1 ∈ [0, 1] and θ2 = 1− θ1. To ease the
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exposition, we omit the time argument.

∆ = θ1ψ(¯̄x, x) + θ2ψ(¯̄x, x̄)− ψ(¯̄x, θ1x + θ2x̄)

=
T∑

t=1

N∑

i=1

∑

k=A,B

[
θ1

(
(αk

i + βk,−k
i

¯̄p−k
i )(pk

i − ¯̄pk
i )− βk,k

i (pk2

i − ¯̄pk2

i )− γ(uk2

i − ¯̄uk2

i )− hk
i (I

k2

i − ¯̄Ik2

i )
)

+ θ2

(
(αk

i + βk,−k
i

¯̄p−k
i )(p̄k

i − ¯̄pk
i )− βk,k

i (p̄k2

i − ¯̄pk2

i )− γk
i (ūk2

i − ¯̄uk2

i )− hk
i (Ī

k2

i − ¯̄Ik2

i )
)

− (
αk

i + βk,−k
i

¯̄p−k
i

)
(θ1p

k
i + θ2p̄

k
i − ¯̄pk

i

)
+ βk,k

i

(
(θ1p

k
i + θ2p̄

k
i )

2 − ¯̄pk2

i

)

− γk
i ((θ1u

k
i + θ2ū

k
i )

2 − ¯̄uk2

i )− hk
i ((θ1I

k
i + θ2Ī

k
i )2 − ¯̄Ik2

i )
]
.

After calculations,

∆ =
T∑

t=1

N∑

i=1

∑

k=A,B

[
− θ1θ2

(
βk,k

i (pk
i − p̄k

i )
2 + γk

i (uk
i − ūk

i )
2 + hk

i (I
k
i − Īk

i )2
)]

= θ1θ2µ(x, x̄), where

µ(x, x̄) = −
T∑

t=1

N∑

i=1

∑

k=A,B

[
βk,k

i (pk
i − p̄k

i )
2 + γk

i (uk
i − ūk

i )
2 + hk

i (I
k
i − Īk

i )2
]
.

We have µ(x, x̄) = O1(||x− x̄||2), and thus µ(x,x̄)
||x−x̄|| = O1(||x− x̄||) which tends to 0 as x, x̄ → w ∈ Y .

In particular, ψ is weakly concave with respect to the second argument.

E.14 Proof of Proposition 10

Proof. Consider ζ(x) = λx2 for some λ > 0.

v(x, x̄)− µ(x̄, x)− λ||x− x̄||2 =
T∑

t=1

N∑

i=1

[
(2βA,A

i (t)− λ)(pA
i (t)− p̄A

i (t))2 + (2βB,B
i (t)− λ)(pB

i (t)− p̄B
i (t))2

− (βA,B
i (t) + βB,A

i (t))(pA
i (t)− p̄A

i (t))(pB
i (t)− p̄B

i (t))

+ (2γA
i (t)− λ)(uA

i (t)− ūA
i (t))2 + (2γB

i (t)− λ)(uB
i (t)− ūB

i (t))2

+ (2hA
i (t)− λ)(IA

i (t)− ĪA
i (t))2 + (2hB

i (t)− λ)(IB
i (t)− ĪB

i (t))2
]
.
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Let

λ1 = 2min
k

min
i

min
t

hk
i (t), λ2 = 2min

k
min

i
min

t
γk

i (t).

A condition for the expression above to be positive is that λ < λ1, λ < λ2 and the symmetric

matrix

N =




2βA,A
i (t)− λ − (βA,B

i (t)+βB,A
i (t))

2

− (βA,B
i (t)+βB,A

i (t))
2 2βB,B

i (t)− λ




is positive semi-definite for all i, t.

Indeed, this condition implies on the one hand that 2hk
i (t)−λ > 0 ∀i, k, t and 2γk

i (t)−λ > 0 ∀i, k, t,

and on the other hand that for any vector v = (v1, v2), we have

0 ≤ vT Nv = (2βA,A
i (t)− λ)v2

1 + (2βB,B
i (t)− λ)v2

2 − (βA,B
i (t) + βB,A

i (t))v1v2

In particular, using v1 = pA
i (t)− p̄A

i (t) and v2 = pB
i (t)− p̄B

i (t) leads to the result.

We notice that

N º 0 ⇔ (
Tr(N) ≥ 0 and Det(N) ≥ 0

)

⇔ (
βA,A

i (t) + βB,B
i (t)− λ ≥ 0 and (2βA,A

i (t)− λ)(2βB,B
i (t)− λ)− 1

4
(βA,B

i (t) + βB,A
i (t))2 ≥ 0

)

⇔





λ ≤ βA,A
i (t) + βB,B

i (t)

λ2 − 2λ(βA,A
i (t) + βB,B

i (t)) + 4βA,A
i (t)βB,B

i (t)− 1
4(βA,B

i (t) + βB,A
i (t))2 ≥ 0.

The simplified determinant of the polynomial above is (for fixed i, t)

∆ = (βA,A
i (t) + βB,B

i (t))2 − 4βA,A
i (t)βB,B

i (t) +
1
4
(βA,B

i (t) + βB,A
i (t))2

= (βA,A
i (t)− βB,B

i (t))2 +
1
4
(βA,B

i (t) + βB,A
i (t))2 > 0

so the polynomial has two real roots βA,A
i (t) + βB,B

i (t)±√∆ and only one satisfies λ ≤ βA,A
i (t) +
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βB,B
i (t). Since we are interested in positive parameters λ, we obtain that

(λ > 0 and N º 0) ⇔





βA,A
i (t) + βB,B

i (t)−√∆ > 0

0 < λ ≤ βA,A
i (t) + βB,B

i (t)−√∆

⇔





(βA,A
i (t)− βB,B

i (t))2 + 1
4(βA,B

i (t) + βB,A
i (t))2 < (βA,A

i (t) + βB,B
i (t))2

0 < λ ≤ βA,A
i (t) + βB,B

i (t)−√∆

⇔





1
4(βA,B

i (t) + βB,A
i (t))2 < 4βA,A

i (t)βB,B
i (t)

0 < λ ≤ βA,A
i (t) + βB,B

i (t)−√∆.

The first condition is satisfied under Assumption 1. Let

λ3 = min
i

inf
t∈[0,T ]

βA,A
i (t) + βB,B

i (t)−
√

(βA,A
i (t)− βB,B

i (t))2 +
1
4
(βA,B

i (t) + βB,A
i (t))2 > 0.

As a result, by taking 0 < λ < min{λ1, λ2, λ3}, we obtain that

v(x, x̄)− µ(x̄, x)− λ||x− x̄||2 > 0 ∀x, x̄ ∈ Y.

F Solution of the dual subproblems

In what follow, we omit the subscript i, the superscript k, and we fix time t and thus omit the time

argument. The notations below correspond to the first subproblem concerning the uncertainty on

the fixed term in the demand αk(.). The method for the two other subproblems is identical after

substituting respectively β̂k,kpk and β̂k,−kp−k for α̂, and Θk,k and Θk,−k for Γ.
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Consider:

Ω = min
ω,r(.)

ωΓ +
∫ t

0
r(s)ds

s.t. ω + r(s) ≥ α̂(s) ∀s ∈ [0, t]

ω ≥ 0

r(s) ≥ 0 ∀s ∈ [0, t]

where Γ ≥ 0, α̂(.) ≥ 0.

Case 1 :

If ω∗ = 0, then r∗(s) = α̂(s), ∀s ∈ [0, t] and

Ω1 =
∫ t

0
α̂(s)ds.

Case 2 :

If ω∗ ≥ sups∈[0,t] α̂(s), then r∗(s) = 0, ∀s ∈ [0, t] and Ω = Γω∗. Therefore if this case is

optimal, ω∗ = sups∈[0,t] α̂(s) and

Ω2 = Γ. sup
s∈[0,t]

α̂(s).

Note: a necessary condition for Case 2 to be better than Case 1 is Γ < t.

Case 3 :

If 0 < ω∗ < sups∈[0,t] α̂(s), then

r(s) =





0 if ω∗ ≥ α̂(s)

α̂(s)− ω∗ if ω∗ < α̂(s)
= (α̂(s)− ω∗)+

and

Ω3 = Γω∗ +
∫ t

0
(α̂(s)− ω∗)+ds.

In other words, by denoting Dω∗ the domain Dω∗ = {s ∈ [0, t] : α̂(s) > ω∗} and lω∗ its
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measure, then

Ω3 = (Γ− lω∗)ω∗ +
∫

s∈Dω∗
α̂(s)ds.

We then have to determine the value ω∗ ∈ (0, sups∈[0,t] α̂(s)) that minimizes the expression

above for Ω3.

Notice that if Γ ≥ t, then

Ω1 − Ω3 = −(Γ− lω∗)ω∗ +
∫

s∈Dc
ω∗

α̂(s)ds < −(Γ− lω∗)ω∗ + (t− lω∗)ω∗ = (t− Γ)ω∗ < 0

so Case 1 is optimal.

• Case 3a: if ω∗ ≤ infs∈[0,t] α̂(s), then

Ω3a = (Γ− t)ω∗ +
∫ t

0
α̂(s)ds.

If Γ ≥ t, the best value is ω∗ = 0 and this leads to Case 1.

If Γ < t, the best value is ω∗ = infs∈[0,t] α̂(s) and

Ω3a = −(t− Γ). inf
s∈[0,t]

α̂(s) +
∫ t

0
α̂(s)ds.

Clearly then the objective value is lower than in Case 1. Note that depending on actual

data, if Γ < t, either Case 2 or Case 3a may be optimal. Indeed,

Ω2 − Ω3a = −
∫ t

0
α̂(s)ds + t inf

s∈[0,t]
α̂(s) + Γ( sup

s∈[0,t]
α̂(s)− inf

s∈[0,t]
α̂(s))

which tends to a non positive value as Γ → 0+ and to a non negative value as Γ → t−.

• Case 3b: if infs∈[0,t] α̂(s) < ω∗ < sups∈[0,t] α̂(s): notice that at the extreme points of

this range, we are respectively in Case 3a and Case 2. However, it is possible that for

some value of ω∗ in this range, Ω3 takes an even lower value than in those two other

cases.

In particular, if α̂(.) is strictly increasing and differentiable, then Dω∗ = (α̂−1(ω∗), t],
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lω∗ = t− α̂−1(ω∗) and

Ω3b(ω∗) = (Γ− t + α̂−1(ω∗))ω∗ +
∫ t

α̂−1(ω∗)
α̂(s)ds.

We have

Ω′3b(ω
∗) = Γ− t + α̂−1(ω∗) +

ω∗

α̂′(α̂−1(ω∗))
− α̂(α̂−1(ω∗))

α̂′(α̂−1(ω∗))
= Γ− t + α̂−1(ω∗)

so Ω3b(ω∗) reaches a minimum on the considered range if Γ < t, and then

Ω3b =
∫ t

t−Γ
α̂(s)ds

(note: we verify that this case yields indeed a smaller objective value than Case 3a and

Case 2)

Finally, we have to compare which of Cases 1, 2, 3 provides the smallest value of Ω.

Note in particular that Ω ≤ Ω1 =
∫ t
0 α̂(s)ds which yields inequality (11).

We observe that if Γ ≥ t, then Case 1 is optimal. If Γ < t, in general, either of the cases may

be optimal depending on the data.

In the particular case where α̂(.) is strictly increasing and differentiable,

Ω =





∫ t
t−Γ α̂(s)ds if Γ < t

∫ t
0 α̂(s)ds else.

To summarize, in the general case, Ω as a function of t, Γ and α̂(.) is as follows:

• if Γ ≥ t, then Ω =
∫ t
0 α̂(s)ds.

• else, Ω = min{Ω2, Ω3a, Ω3b} where

Ω2 = Γ. sup
s∈[0,t]

α̂(s)
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Ω3a = −(t− Γ). inf
s∈[0,t]

α̂(s) +
∫ t

0
α̂(s)ds

and

Ω3b = min
ω∗∈(infs∈[0,t] α̂(s),sups∈[0,t] α̂(s))

[
Γω∗ +

∫ t

0
(α̂(s)− ω∗)+ds

]
.

Notice that this can be rewritten as

Ω = min
ω∗∈[infs∈[0,t] α̂(s),sups∈[0,t] α̂(s)]

[
Γω∗ +

∫ t

0
(α̂(s)− ω∗)+ds

]

(the minimum is taken over the closed interval).

G Additional Numerical Results

Scenario βA,A(t) βB,B(t) βA,B(t) βB,A(t) ρA ρB

a 1 + 0.2t 1 + 0.2t 0.5 + 0.1t 0.5 + 0.1t 0.5 0.5

b 1 + 0.2t 1 + 0.2t 0.25 + 0.05t 0.25 + 0.05t 0.25 0.25

c 3− 0.2t 3− 0.2t 1.5− 0.1t 1.5− 0.1t 0.5 0.5

d 3− 0.2t 3− 0.2t 0.75− 0.05t 0.75− 0.05t 0.25 0.25

e 1 + 0.2t 0.6 + 0.2t 0.5 + 0.1t 0.3 + 0.1t 0.5 0.5

f 1 + 0.2t 0.6 + 0.2t 0.5 + 0.1t 0.15 + 0.05t 0.5 0.25

g 1 + 0.2t 0.6 + 0.2t 0.25 + 0.05t 0.15 + 0.05t 0.25 0.25

h 3− 0.2t 2.2− 0.2t 1.5− 0.1t 1.1− 0.1t 0.5 0.5

i 3− 0.2t 2.2− 0.2t 1.5− 0.1t 0.55− 0.05t 0.5 0.25

j 3− 0.2t 2.2− 0.2t 0.75− 0.05t 0.55− 0.05t 0.25 0.25

G.1 Effect of capacity

To study the effect of the capacity level, we choose the sensitivities as given by scenario f and

h (asymmetric, respectively increasing and decreasing with time. Supplier A has higher price

sensitivities.) and the coefficients αk = 15, I0k
= 10 also fixed as in the previous section. We
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Scenario Supplier A’s obj. Supplier B’s obj. Total obj.
a 514.83 514.83 1023.8
b 375.83 375.83 750.8
c 581.49 581.49 1157.1
d 484.80 484.80 848.7
e 578.86 611.73 1183.6
f 540.71 481.20 1018.2
g 401.45 465.57 866.1
h 1012.9 1171.2 2097.5
i 944.24 975.63 1866.5
j 586.77 934.24 1518.8

Table 1: Results: Profits under different demand sensitivity scenarios in the deterministic case

compute the equilibrium for a capacity limit taking values 6, 8, 10, 12, 14, 16 (identical for the

two suppliers).

First, we notice that under scenario f, when the capacity equals 10, the production rate for supplier

K 6 8 10 12 14 16
Supplier A’s profit 540.86 540.22 540.71 540.71 540.71 540.71

Scenario f Supplier B’s profit 505.56 492.58 481.20 481.20 481.20 481.20
Total profits 1046.4 1032.8 1021.9 1021.9 1021.9 1021.9

Supplier A’s profit 1031.8 1006.6 1012.9 1018.5 1018.5 1018.4
Scenario h Supplier B’s profit 1270.1 1239.2 1171.2 1141.8 1135.4 1134.8

Total profits 2283.9 2245.8 2184.1 2160.3 2153.9 2153.1

Table 2: Results: Effect of production capacity. Profits for various symmetric capacity levels

A never reaches 10. As a result, the optimal policy is identical for higher capacity levels.

In scenario f (sensitivities increasing with time), supplier A gets higher profits than supplier B, but

the reverse is true in scenario h (sensitivities increasing with time).

Overall, we observe that when capacity increases the prices decrease at the equilibrium.

Interestingly, supplier B’s profits tend to slightly decrease as the capacity increase. This may

look surprising since a higher capacity gives more flexibility. This illustrates that the presence of

competition may not yield an equilibrium that is unilaterally optimal for a given supplier.

Notice also that in scenario h, when the capacity is high enough in order to enable to meet the no

backorders constraint towards the end of the time horizon (when sensitivities are lower and prices

can increase) without using all available capacity, at the equilibrium the inventory levels decrease

from the beginning of the time horizon in order to decrease holding costs. However when the

capacity is low, inventories are kept around the initial value until the sensitivities become lower, so
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that selling yields more significant profits.

G.2 Effect of initial inventory level

To study the effect of the initial inventory level, we choose the sensitivities as given by scenario f

and h (asymmetric, increasing and decreasing with time) and the coefficients αk = 15, Kk = 10 also

fixed. We compute the optimal solution for an initial inventory level identical for both suppliers,

and taking values 6, 8, 10, 12, 14, 16 (identical for the two suppliers).

I0 6 8 10 12 14 16
Supplier A’s profit 540.51 540.63 540.71 540.73 540.67 540.43

Scenario f Supplier B’s profit 481.03 481.14 481.20 481.21 481.17 481.00
Total profits 1021.5 1021.8 1021.9 1021.9 1021.8 1021.4

Supplier A’s profit 1011.8 1012.7 1012.9 1012.5 1011.5 1011.5
Scenario h Supplier B’s profit 1181.6 1176.4 1171.2 1166.0 1160.9 1160.2

Total profits 2193.4 2189.1 2184.1 2178.5 2172.4 2171.8

Table 3: Results: Effect of initial inventory level. Profits for various symmetric initial inventory
levels
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Figure 1: Results: (a) Effect of initial inventory level. Equilibrium in the case of scenario h for
various initial inventory levels. (b) Effect of production capacity. Equilibrium in the case of scenario
h for various symmetric capacity levels
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We observe that in scenario f where the capacity constraint is not tight, when the initial inven-

tory level changes, the production rates changes in such a way that the effects cancel out (i.e. the

production rate increases by as much as the initial inventory level decreased), and the prices and

cumulative profits do not vary. Therefore, the initial inventory levels seem to have a low impact.

The same is true for supplier B in scenario h for the same reason. However, for supplier A in case

h, the capacity constraint is tight, the only way to compensate for the increase in initial inventory

level is by decreasing prices. The profits slightly increase for supplier B, and slightly decrease for

supplier A. As a result, suppliers with high price sensitivities are slightly advantaged by having low

initial inventories, if the capacity is a binding constraint.
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Figure 2: Results: Effect of price sensitivities. Equilibrium in the case of price sensitivities increas-
ing with time in the deterministic problem
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Figure 3: Results: Effect of production capacity. Equilibrium in the case of scenario f for various
symmetric capacity levels in the deterministic problem
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Figure 4: Results: Effect of initial inventory level. Equilibrium in the case of scenario f for various
initial inventory levels
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Figure 5: Results: robust formulation. Equilibrium in the case of price sensitivities scenario f for
various scenarios of budget of uncertainty
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Figure 7: Histogram of minimum inventory level reached in the robust formulation for uniformly
distributed realization in scenario f
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distributed realization in scenario f
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