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EC.1. Proofs of Technical Lemmas and Theorems

LEMMA 1. Let C (RB) be the total cost incurred by the RB policy. Then we have,

E[C (RB)]≤ 3 ·
T−L
∑

t=1

E[ZRB
t ]. (EC.1)

Proof of Lemma 1. Using the marginal cost accounting in Equation (4) and standard arguments

of conditional expectations, we express

E[C (RB)] =
T−L
∑

t=1

E[HRB
t (QRB

t )+ΠRB
t (QRB

t )+K ·1(QRB
t > 0)] (EC.2)

=
T−L
∑

t=1

E
[

E[HRB
t (QRB

t )+ΠRB
t (QRB

t )+K ·1(QRB
t > 0) | Ft]

]

=
T−L
∑

t=1

E[2ZRB
t +PtK]≤ 3

T−L
∑

t=1

E[ZRB
t ].

The third equality follows directly from (11). To establish the first inequality in (EC.2) above, we

shall show that Zt ≥ PtK almost surely. That is, for each ft ∈ Ft, zt ≥ ptK. Given any information

set ft, all the quantities xt, θt, ψt, φt and pt defined above are known deterministically. We split

the analysis into two cases:

1. If θt ≥K, then qRB
t = q̂t (the balancing quantity) with probability pt = 1 implying zt = θt ≥K.

The claim follows.

2. If θt <K, then qRB
t = q̃t (the holding-cost-K quantity) with probability pt and q

RB
t = 0 with

1− pt. Thus, by Equations (8) and (9), we have zt = ptK, and the claim follows.

This concludes the proof of the lemma. �

LEMMA 2. The overall holding cost and backlogging cost incurred by OPT are denoted by HOPT

and ΠOPT , respectively. Then we have, with probability 1,

HOPT ≥
∑

t

HRB
t ·1(t∈T1H

⋃

T2H), ΠOPT ≥
∑

t

ΠRB
t ·1(t∈T1Π

⋃

T2Π). (EC.3)

Proof of Lemma 2. The proof is identical to Lemmas 4.2 and 4.3 in Levi et al. (2007). �

ec1
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LEMMA 3. The expected holding cost and backlogging cost incurred by OPT plus the expected amount

borrowed from the bank account A are at least
∑T−L

t=1 E[ZRB
t ]. That is, The following inequality

holds

E
[(

HOPT +ΠOPT
)

+A
]

≥
T−L
∑

t=1

E[ZRB
t ]. (EC.4)

Proof of Lemma 3. Using linearity of expectation, it suffices to show

E
[

HOPT +ΠOPT
]

≥
T−L
∑

t=1

E
[

1(t∈TN) ·Z
RB
t

]

. (EC.5)

Using Lemma 2 and standard arguments of condition expectations, we have

E[HOPT ] ≥ E

[

∑

t

HRB
t ·1(t∈T1H

⋃

T2H)

]

(EC.6)

= E

[

E

[

∑

t

HRB
t ·1(t∈T1H

⋃

T2H) | Ft

]]

= E

[

∑

t

ZRB
t ·1(t∈T1H

⋃

T2H)

]

.

Similarly, we also have

E[ΠOPT ] ≥ E

[

∑

t

ZRB
t ·1(t∈T1Π

⋃

T2Π)

]

. (EC.7)

Equation (EC.5) follows from summing up Equations (EC.6) and (EC.7). �

LEMMA 4. The following inequality holds

E [A]≤E

[

T−L
∑

t=1

K ·1(QOPT
t > 0)

]

. (EC.8)

In other words, the expected borrowing E[A] is less than the total expected fixed ordering cost

incurred by OPT .

Proof of Lemma 4. First we define the reduced information set f−

t to be the information up to

period t excluding the randomized decisions of the RB policy over [1, t−1]. In particular, given the

entire evolution of demand f−

T , the sequence of orders placed by OPT is known deterministically.

Let 1≤ t1 < t2 < . . . < tn ≤ T −L be the periods in which OPT placed n= n | f−

T orders sequentially.

Let t0 = 0 and tn+1 = T −L+1. We shall show that there are no problematic periods within (t0, t1)

and that, for each i= 1, . . . n, the expected borrowing within the interval [ti, ti+1) does not exceed

K. That is,



e-companion to Levi and Shi: Approximation Algorithms for the Stochastic Lot-sizing Problem with Order Lead Times ec3

(t0, t1)
⋂

T2M = ∅, (EC.9)

E





∑

t∈[ti,ti+1)
⋂

T2M

ZRB
t | f−

T



 ≤ K. (EC.10)

It is important to note that f−

T does not include the randomized decisions of the RB policy.

Thus, the set T2M is still random and so is the amount borrowed from the bank. In particular,

the expectation in Equation (EC.10) is taken with respect to the randomized decisions of the RB

policy. Equations (EC.10) and (EC.9) imply that, for each f−

T ,

E





∑

t∈T2M

ZRB
t | f−

T



≤K ·n | f−

T =K ·n, (EC.11)

and therefore

E[A]≤K ·E[N ] =E

[

T−L
∑

t=1

K ·1(QOPT
t > 0)

]

. (EC.12)

Thus, it suffices to prove Equations (EC.10) and (EC.9). Figure EC.1 gives a graphical interpre-

tation of Equation (EC.10), i.e., we want to show that the fixed ordering cost K incurred by OPT

in period ti will cover the expected amount borrowed from the bank in periods that belong to set

T2M within the interval [ti, ti+1).

Figure EC.1 Decomposition of the problematic periods in the set T2M into intervals between ordering points of

OPT

Proof of Equation (EC.9). We first show that Equation (EC.9) holds. Recall the definition T2M =
{

t : Θt <K and XRB
t <Y OPT

t ≤XRB
t + Q̃RB

t

}

. Since at the beginning of the planning horizon, it

is assumed that every feasible policy will have the same initial inventory position, it follows that

if period t is in T2M , OPT must have placed an order and overtaken the inventory position of the

RB policy. (The two policies face the same sequence of demands.) However, (t0, t1) denotes the set

of periods in which OPT has not placed any order yet. Thus, the intersection of these two sets is

empty.
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Proof of Equation (EC.10). Next we show that Equation (EC.10) holds. Recall that f−

T denotes

an entire evolution of the system excluding the randomized decisions of the RB policy. Given the

entire evolution of demands f−

T , construct a decision tree based on the randomized decisions of the

RB policy. The root node corresponding to period 1 contains the information set f1 = f−

1 ∈ f−

T .

The tree is built in layers, each corresponding to a period, where the number of nodes in layer

t is 2t−1 numbered l = 1, . . . ,2t−1. In particular, a node l in period (layer) t corresponds to some

information set ft ∈ Ft which includes the realized reduced information set f−

t ⊆ f−

T , and the

realized randomized decisions up to period t− 1 of the RB policy. Therefore it is known whether

under this state period t belongs to the set T2M or not.

The edges in the tree represent the different (randomized) decisions that the RB policy may

make with their respective probabilities. Each path from the root to a specific node corresponds to

a sequence of realized randomized ordering decisions made by the RB policy. For example, consider

again some node l in period (layer) t in which the RB policy will order q̃RB
tl units with probability

ptl and nothing with probability 1 − ptl; then the node l in period t (denoted by tl) will have

two edges to two children nodes in the next period t+ 1 each containing its distinctive ordering

information. Conceptually one can think about the decision tree as a collection of independent

coins, each corresponding to a node in the tree. The coin corresponding to node l at layer (period)

t has probability of success (ordering) ptl.

Next we partition the nodes in the tree into problematic nodes (pn nodes), i.e., nodes that

correspond to a pair (t, ft) for which t∈T2M , and non-problematic nodes (nn nodes). An example

of a general decision tree is illustrated in Figure EC.2.

Focus now on a specific time interval [ti, ti+1). Suppose we have constructed the tree from period

1 to T ; the number of nodes and paths are clearly finite (possibly exponential). Let the set G to be

the set of all possible outcomes of the randomized decisions in all nodes in layers within the interval

[1, ti − 1] and in all the nn nodes within the interval [1, T ]. In particular, each g ∈ G corresponds

to a specific set of outcomes in all nodes in layers (periods) within the interval [1, ti − 1] and in

all the nn nodes in the tree. Using the terminology of coins proposed before, g corresponds to the
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Figure EC.2 An example of a general decision tree

outcome of the respective subset of coins corresponding to all nodes within [1, ti − 1] and all nn

nodes within [1, T ].

Conditioning on some g ∈ G induces a path from the root of the tree (in period 1) up to the

earliest pn node, say j, where j corresponds to the period (layer) of that node. Here we abuse the

notation ignoring the index of the node within layer j. (Namely, the exact value will be je for some

e.) It is straightforward to see that j ≥ ti. If j falls outside the interval [ti, ti+1), i.e., j ≥ ti+1, it

follows that there are no pn nodes within the interval [ti, ti+1), and there is no borrowing over the

interval. Assume now that j falls within the interval [ti, ti+1) (j can possibly be in period (layer)

ti). We will show that the expected borrowing does not exceed K. That is,

E





∑

s∈[j,ti+1)
⋃

T2M

ZRB
s | f−

T , g



≤K. (EC.13)

The proof of Equation (EC.10) will then follow.

Recall that node j corresponds to some information set fj ∈Fj . It follows that the starting inven-

tory position xRB
j and the corresponding holding-cost-K quantity q̃RB

j are known deterministically.

Conditioning on g, the only uncertainty in the evolution of the system depends on the randomized

decisions made in pn nodes within [j, ti+1). Consider the sub-tree induced by conditioning on g. The
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Figure EC.3 An example of a decision subtree: focus on the interval [ti, ti+1) and some g ∈ G , j is the earliest

period in which a problematic node (pn) occurs. According to g, there are two possible outcomes

whenever a problematic node (pn) is reached, and there is only one possible outcome whenever a

non-problematic node (nn) is reached. If a problematic node (pn) orders, there will not be further

borrowing until the next order of OPT in period ti+1.

non-problematic nodes (nn nodes) in the sub-tree have only one outgoing edge that corresponds to

the decision (order/no-order) specified by g to that node. The problematic nodes (pn nodes) have

two outgoing edges corresponding to the order/no-order decisions, respectively. (Recall that g does

not specify the decisions in these nodes.) Moreover, each pn node s∈ [j, ti+1) is associated with the

probability ps of ordering. (We again abuse the notation introduced before and omit the index e

of the node within the layer/period.) An example of a decision subtree specified by some g ∈ G is

illustrated in Figure EC.3. Any sequence of randomized outcomes corresponding to the decisions

in the pn nodes induces a path of evolution of the system. The resulting cumulative borrowing

from the bank account A, corresponding to this path, is equal to K times the sum of probabilities

associated with the pn nodes in this path. (For each pn node s in the path, the borrowing is equal

to psK = zs.)

Next we claim that the sub-tree defined above includes at most one pn node in each layer (period).
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This follows from the fact that any path between two pn nodes r, s such that j ≤ r < s < ti+1 in

the tree includes only no-ordering edges of pn nodes. To see why the latter is true, observe that

if an order is placed by the RB policy in a pn node, the resulting inventory position of the RB

policy is higher than OPT . Since both policies face the same sequence of demands, the RB policy

will not have higher inventory position than OPT at least until the next order placed by OPT .

This excludes the existence of pn nodes in subsequent periods until OPT places another order, i.e.,

beyond period ti+1 − 1.

In light of the latter observation, we re-number all the pn nodes in the sub-tree as 1,2, . . . ,M

(where 1 corresponds to j, specified before). Moreover, it follows that the probability to arrive at

node m = 1, . . . ,M and borrow pmK is equal to
∏m−1

s=1 (1− ps). (This probability corresponds to

no-ordering decisions in all the pn nodes prior to m.) The total expected borrowing is then

K ·

{

p21 +
M
∑

m=2

{(

m−1
∏

s=1

(1− ps)

)

pm

(

m
∑

k=1

pk

)}}

. (EC.14)

Observe that the probability to borrow exactly K ·
∑m

k=1 pk is equal to
(

∏m−1

s=1 (1− ps)
)

pm. More-

over, we have already shown that the expression in (EC.14) is bounded above by K (see Lemma

5). This concludes the proof of the lemma. �

LEMMA 5. Let {pl}
∞

l=1 satisfy the condition 0≤ pl ≤ 1 for all l. Then the following inequality holds,

p21 +
∞
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

≤ 1. (EC.15)

Proof of Lemma 5. We construct an increasing sequence {am} where

am = p21 +
m
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

. (EC.16)

For each m, if we replace pm by 1, we get

ām = p21 +
m−1
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

+

(

m−1
∏

s=1

(1− ps)

)(

1+
m−1
∑

k=1

pk

)

, (EC.17)

such that am ≤ ām. Next we will show by induction that ām ≤ 1 for all m from which the proof of
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the lemma follows. It is straightforward to verify ā1, ā2 ≤ 1. Assume that ām ≤ 1 for some m∈Z
+,

we will show that ām+1 ≤ 1.

ām+1 = p21 +
m
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

+

(

m
∏

s=1

(1− ps)

)(

1+
m
∑

k=1

pk

)

(EC.18)

= am−1 +

(

m−1
∏

s=1

(1− ps)

)

pm

(

m
∑

k=1

pk

)

+

(

m
∏

s=1

(1− ps)

)(

1+
m
∑

k=1

pk

)

= am−1 +

(

m−1
∏

s=1

(1− ps)

)[(

1+
m
∑

k=1

pk

)

(1− pm)+ pm

m
∑

k=1

pk

]

= am−1 +

(

m−1
∏

s=1

(1− ps)

)(

1+
m−1
∑

k=1

pk

)

= ām ≤ 1.

Hence the claim follows by induction. �

EC.2. Performance of the proposed algorithms

The first two columns specify the test instances, namely, fixed ordering cost K, per-unit holding

cost h, per-unit backlogging cost p and demand rate vector λ. The third column shows the cost

incurred by the optimal policy. The fourth column shows the optimal parameters of parametrized

RB policy. The fifth column shows the cost incurred by the parameterized RB policy. The sixth

column shows the cost ratio of the parameterized RB policy to the optimal policy. The seventh

column shows the cost of unparameterized RB policy (i.e., the original policy without parameter

optimization). The eighth columns shows the cost ratio of the unparameterized RB policy to the

optimal policy.
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Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (λ0, λ1, λ2) OPT (β∗, γ∗, η∗) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 46.85 (*,2,*) 49.18 1.0497 58.30 1.2444
(0,1,9) (4,1,2) 46.39 (*,2,*) 49.30 1.0627 55.24 1.1908
(0,1,9) (4,1,1) 46.20 (*,2,*) 47.81 1.0348 54.26 1.1745
(0,1,9) (3,1,2) 41.02 (*,2,*) 41.41 1.0095 49.40 1.2043
(0,1,9) (2,1,3) 32.88 (*,2,*) 34.42 1.0468 41.51 1.2625
(0,1,9) (1,1,4) 24.74 (*,2,*) 26.40 1.0671 31.40 1.2692

(5,1,9) (4,1,1) 102.66 (0.2,2,9) 108.28 1.0547 135.37 1.3186
(5,1,9) (1,1,4) 86.47 (0.2,2,9) 90.70 1.0489 128.70 1.4884

(5,1,1) (4,1,1) 71.35 (0.4,1,1) 75.42 1.0570 84.13 1.1791

(100,1,9) (5,1,0) 427.81 (0.9,*,9) 451.68 1.0558 605.10 1.4144
(100,1,9) (4,1,1) 424.81 (0.9,*,9) 449.65 1.0585 601.29 1.4154
(100,1,9) (3,1,2) 421.76 (0.9,*,9) 443.12 1.0506 595.10 1.4110
(100,1,9) (2,1,3) 418.63 (0.9,*,9) 443.64 1.0597 611.48 1.4607
(100,1,9) (1,1,4) 415.49 (0.8,*,9) 437.36 1.0526 618.36 1.4883
(100,1,9) (0,1,5) 412.29 (0.8,*,9) 435.65 1.0567 593.88 1.4404

Table EC.1 Numerical results with lead time L= 0 and finite horizon T = 12.

Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (λ0, λ1, λ2) OPT (β∗, γ∗, η∗) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 93.81 (*,2,*) 98.32 1.0481 120.14 1.2807
(0,1,9) (4,1,2) 88.27 (*,2,*) 94.25 1.0677 108.24 1.2262
(0,1,9) (4,1,1) 85.48 (*,2,*) 90.21 1.0553 93.97 1.0993
(0,1,9) (3,1,2) 80.04 (*,2,*) 89.73 1.1211 90.40 1.1294
(0,1,9) (2,1,3) 73.98 (*,1.5,*) 84.42 1.1411 90.99 1.2625
(0,1,9) (1,1,4) 70.96 (*,1.5,*) 81.40 1.1471 87.60 1.2345

(5,1,9) (4,1,1) 137.66 (0.2,2,9) 153.97 1.1185 161.10 1.1703
(5,1,9) (1,1,4) 121.47 (0.2,2,9) 140.26 1.1525 148.47 1.2223

(5,1,1) (4,1,1) 78.18 (0.4,1,1) 90.42 1.1566 97.47 1.2467

(100,1,9) (5,1,0) 434.30 (0.9,*,9) 479.03 1.1030 614.17 1.4142
(100,1,9) (4,1,1) 431.87 (0.9,*,9) 466.33 1.0798 611.96 1.4170
(100,1,9) (3,1,2) 429.41 (0.9,*,9) 453.24 1.0555 551.00 1.2832
(100,1,9) (2,1,3) 426.86 (0.9,*,9) 451.17 1.0570 644.13 1.5090
(100,1,9) (1,1,4) 424.25 (0.9,*,9) 466.43 1.0994 623.56 1.4698
(100,1,9) (0,1,5) 421.56 (0.9,*,9) 461.65 1.0951 595.40 1.4124

Table EC.2 Numerical results with lead time L= 2 and finite horizon T = 12.
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Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (λ0, λ1, λ2) OPT (β∗, γ∗, η∗) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 57.71 (*,2,*) 58.23 1.0090 61.92 1.0730
(0,1,9) (4,1,2) 57.71 (*,2,*) 58.36 1.0113 60.94 1.0560
(0,1,9) (4,1,1) 57.71 (*,2,*) 58.30 1.0102 60.38 1.0463
(0,1,9) (3,1,2) 50.19 (*,2,*) 51.49 1.0259 53.62 1.0683
(0,1,9) (2,1,3) 41.27 (*,2,*) 41.96 1.0167 43.63 1.0572
(0,1,9) (1,1,4) 30.55 (*,2,*) 30.88 1.0108 31.66 1.0363

(5,1,9) (4,1,1) 128.17 (0.2,2,9) 133.91 1.0448 166.10 1.2959
(5,1,9) (1,1,4) 101.70 (0.2,2,9) 107.34 1.0555 148.85 1.4636

(5,1,1) (4,1,1) 86.07 (0.4,1,1) 90.51 1.0516 104.24 1.2111

(100,1,9) (5,1,0) 535.14 (1.1,*,9) 566.23 1.0581 663.61 1.2401
(100,1,9) (4,1,1) 533.51 (1.1,*,9) 570.65 1.0696 659.29 1.2358
(100,1,9) (3,1,2) 529.77 (1.1,*,9) 566.09 1.0686 682.76 1.2888
(100,1,9) (2,1,3) 523.94 (1.1,*,9) 555.57 1.0604 729.15 1.3917
(100,1,9) (1,1,4) 520.03 (1.0,*,9) 550.36 1.0583 744.45 1.4316
(100,1,9) (0,1,5) 516.05 (1.0,*,9) 550.65 1.0670 711.22 1.3782

Table EC.3 Numerical results with lead time L= 0 and finite horizon T = 15.


