
Approximating the Crowd

SUPPLEMENTARY MATERIAL

Şeyda Ertekin · Cynthia Rudin · Haym Hirsh

A. Proposition 1
Proposition 1: The score in (11) is always nonnegative.
NT = Total number of voters, which is an odd number so a majority always

exists.
Nvoted = number of voters that have voted already.
Ncurrent majority = number of voters that constitute the current majority vote.
That is,

Ncurrent majority >
Nvoted

2
(1)

Nunvoted = NT - Nvoted = number of labelers that have not yet voted.

To establish that the current majority vote is the true majority vote, we need

Nneeded =

⌈
NT

2

⌉
−Ncurrent majority.

Using (1), Nneeded <
NT + 1

2
− Nvoted

2
=
Nunvoted + 1

2

PBin(Nunvoted,0.5)(X ≥ Nneeded) ≥

P

(
X ≥ Nunvoted + 1

2

)
≥ 1

2
.

Şeyda Ertekin · Cynthia Rudin
MIT CSAIL, Sloan School of Management, and Center for Collective Intelligence,
Massachusetts Institute of Technology, Cambridge, MA
E-mail: seyda@mit.edu, rudin@mit.edu

Haym Hirsh
Department of Computer Science and Information Science,
Cornell University, Ithaca NY, USA
E-mail: hirsh@cs.cornell.edu

2 Ertekin et al.

To get the last inequality:

– If Nunvoted is odd, this probability is 1/2 with equality from the symmetry
of the binomial distribution Bin(Nunvoted,

1
2).

– If Nunvoted is even, this probability is greater than 1/2, since there is prob-

ability mass at X =
Nunvoted + 1

2
.

B. Flipping Labelers’ Votes

Labelers who have a negative correlation with the majority vote can be
“flipped” to consider the opposite of their votes. We will demonstrate how to
do this using CrowdSense.Ind. When a labeler is flipped, observing a vote Vi
with Pi < 0.5 is equivalent to observing −Vi with probability 1 − Pi. In the
online iterations, if a labeler’s quality estimate drops below 0.5, we flip the
labeler’s original vote and use this vote as the labeler’s non-adversarial vote.
For these labelers’ quality estimates, their a coefficients are incremented when
they disagree with the majority vote. In Algorithm 1, we present the pseu-
docode of CrowdSense.Ind with this heuristic. Figure 1 presents the tradeoff
curves for CrowdSense.Ind with and without flipping the votes of the labelers
with quality estimates less than 0.5, averaged over 100 runs. A remarkable
difference between these two curves are observed only in experiments with
ChemIR dataset. In experiments with all other datasets, both methods give
similar results.

3600 3650 3700 3750 3800 3850 3900

0.86

0.87

0.88

0.89

0.9

ChemIR Dataset

Number of Labels

A
c

c
u

ra
c

y

CrowdSense.Ind Flipped

CrowdSense.Ind

ε = 0.2

ε = 0.005

0 500 1000 1500 2000
0.97

0.972

0.974

0.976

0.978

0.98

MovieLens Dataset

Number of Labels

A
c

c
u

ra
c

y

CrowdSense.Ind Flipped

CrowdSense.Ind

ε = 0.5ε = 0.1

2 4 6 8 10

x 10
4

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

Reuters Dataset

Number of Labels

A
c

c
u

ra
c

y

CrowdSense.Ind Flipped

CrowdSense.Ind

ε = 0.5

ε = 0.05

0 1 2 3 4 5

x 10
5

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Adult Dataset

Number of Labels

A
c

c
u

ra
c

y

CrowdSense.Ind Flipped

CrowdSense.Ind

ε = 0.1

ε = 0.5

Fig. 1 Tradeoff curves for CrowdSense.Ind with and without the flipping heuristic.

Approximating the Crowd 3

Algorithm 1 Pseudocode for CrowdSense.Ind with flipping.
1. Input: Examples {x1, x2, . . . , xN}, Labelers {l1, l2, . . . , lM}, confidence threshold ε,

smoothing parameter K.
2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending order of their quality estimates.

P+ is the prior probability of a +1 majority vote.
3. Initialize: ai ← 0, ci ← 0 for i = 1, . . . ,M .
4. Loop for t = 1, ..., N

(a) Qit = ai+K
ci+2K

, ∀i
(b) ∀i , If Qit <

1
2

then Qit ← 1−Qit, Fi = 1 else Fi = 0
(c) Update LQ with the new quality estimates.

(d) Select 3 labelers and get their votes. St = {l(1), l(2), l(k)}, where k is chosen uni-
formly at random from the set {3, . . . ,M}.

(e) if Fi = 1, Vit ← −Vit (flip labeler’s vote)

(f) V bin
it =

(Vit+1)
2

, ∀i ∈ St

(g) ψit = Q
V bin
it

it (1−Qit)
1−V bin

it , ∀i ∈ St

(h) θit = (1−Qit)
V bin
it Q

1−V bin
it

it , ∀i ∈ St

(i) Loop for candidate = 3 . . .M, candidate 6= k

i. f(xt|votes) =
1

1 +
(
∏

i∈St
θit)(1− P+)

(
∏

i∈St
ψit)P+

ii. ψcandidate = 1−Qcandidate,t

iii. θcandidate = Qcandidate,t

iv. f(xt|votes, Vcandidate,t) =
1

1 +
(
∏

i∈St
θit)θcandidate(1− P+)

(
∏

i∈St
ψit)ψcandidateP+

v. If f(xt|votes) ≥ 0.5 and f(xt|votes, Vcandidate,t) < 0.5 + ε
ShouldBranch = 1

vi. If f(xt|votes) < 0.5 and f(xt|votes, Vcandidate,t) > 0.5− ε
ShouldBranch = 1

vii. If ShouldBranch = 1 then St = {St ∪ candidate}, get the candidate’s vote
else Don’t need more labelers, break out of loop.

(j) ŷt = 2× 1[f(xt|votes)>0.5] − 1
(k) ∀i ∈ St where Vit = ŷt, ai = ai + (1− Fi)
(l) ∀i ∈ St where Vit 6= ŷt, ai = ai + Fi

(m) ci = ci + 1, ∀i ∈ St

5. End

C. A Type of Baseline that Does Not Work Well – “Learning
the Weights”

We experimented with algorithms where the weights λj are learned, or de-
termined implicitly, using machine learning algorithms. To do this, we used
the data and labels collected so far in order to fit the λj ’s and produce predic-
tions. We describe one algorithm, which learns weights via AdaBoost, and uses
CrowdSense’s mechanism for adding labelers. AdaBoost constructs a classifier
as a linear combination of “weak” classifiers. In the context of approximating
the majority vote, each weak classifier (also known as a feature) corresponds
to a labeler and their classifications are the observed labels from that labeler.
In formal terms, let F denote the hypothesis space that is the class of convex
combinations of features {hj}j=1...n, where hj : X → {−1, 1}. The function

4 Ertekin et al.

f ∈ F is then defined as a linear combination of the features:

f := fλ :=
∑
j

λjhj ,

where λ ∈ Rn are the minimizers of the objective function. Consider we have
already collected votes on t examples, and are selecting labelers for the next
example. Following the initialization scheme of CrowdSense, we initialize with
three labelers that follow the exploration/exploitation tradeoff and add new
labelers on-demand based on exploitation qualities. We minimize AdaBoost’s
objective considering all the votes we have seen so far from the selected la-
belers and the next candidate labeler. Let λS denote the weights of the label-
ers already selected, and λc denote the candidate labeler’s weight. We decide
whether to add the candidate labeler to the set based on

|Vt+1,SλS| − |λc|(∑
i∈S |λi|

)
+ |λc|

< ε

where Vt+1,S are the votes of the selected labelers. The normalization needs
to depend on the λ’s, since the scaling of λ’s produced by AdaBoost can
be extremely large. The criteria of adding the new labeler follows the same
intuition as CrowdSense and determines whether the vote of the new labeler
would bring us into the regime of uncertainty. Our experiments with this
approach yielded poor results compared to CrowdSense.

The reason why this approach fails is because of overfitting in the early
iterations. The amount of available data in early iterations is, by definition,
small. This leads to problems with overfitting, which leads to poor predictions.
This, in turn, leads to problems with the labels used in later iterations, which
again leads to poor predictions in later iterations. The predictions become
worse and worse, and the overall results were worse than many, if not all, of
the baselines.

On the other hand, one could use a better method (like CrowdSense) to
more accurately calculate the weights in early iterations, and then switch over
to machine learning of the weights after a sufficiently large amount of data has
been established.

D. Runtime Performance of CrowdSense and IEThresh

In Figure 2, we compare CrowdSense and IEThresh on MovieLens and
Reuters datasets from several perspectives to compare their runtime perfor-
mance and the breakdown of their labeler choices. For both datasets, we used
ε = 0.1 for CrowdSense and ε = 0.9 for IEThresh, which allows IEThresh
to use approximately twice the budget of CrowdSense. The average running
accuracy (over 100 runs) in plots (Figures 2(a)(e)) indicate that CrowdSense
achieves higher accuracy even though it‘ collects fewer number of labels (Fig-
ures 2(b)(f)) than IEThresh. Figures 2(c) and 2(g) present a bar plot of how
many times each labeler was selected and Figures 2(d) and 2(h) show a bar

Approximating the Crowd 5

0 50 100 150
0.97

0.974

0.978

0.982

0.986

Number of Examples

R
u

n
n

in
g

 A
c
c
u

ra
c
y

MovieLens Dataset

CrowdSense

IEThresh

(a)

0 200 400 600 800
0.97

0.974

0.978

0.982

0.986

MovieLens Dataset

Number of Labels

R
u

n
n

in
g

 A
c
c
u

ra
c
y

CrowdSense

IEThresh

(b)

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

MovieLens Dataset

Labeler ID

N
u

m
b

e
r
 o

f
L

a
b

e
ls

CrowdSense

IEThesh

(c)

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

MovieLens Dataset

Labeler Subset Size

N
u

m
b

e
r

o
f

E
x
a
m

p
le

s

CrowdSense

IEThesh

(d)

0 2000 4000 6000
0.9

0.92

0.94

0.96

0.98

1

Number of Examples

R
u

n
n

in
g

 A
c
c
u

ra
c
y

Reuters Dataset

CrowdSense

IEThresh

(e)

0 1 2 3 4 5

x 10
4

0.9

0.92

0.94

0.96

0.98

1

Reuters Dataset

Number of Labels

R
u

n
n

in
g

 A
c
c
u

ra
c
y

CrowdSense

IEThesh

(f)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2000

4000

6000

8000

Reuters Dataset

Labeler ID

N
u

m
b

e
r
 o

f
L

a
b

e
ls

CrowdSense

IEThesh

(g)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1000

2000

3000

4000

5000

6000

Reuters Dataset

Labeler Subset Size

N
u

m
b

e
r

o
f

E
x
a
m

p
le

s

CrowdSense

IEThesh

(h)

Fig. 2 Comparison of CrowdSense and IEThresh on MovieLens and Reuters datasets, av-
eraged over 100 runs. The first two columns represent the accuracy as a function of the
number of examples seen and labels collected, respectively. The third column presents the
number of votes collected from each labeler, and the last column shows the breakdown of
the number of labelers selected to vote on each example.

6 Ertekin et al.

20 40 60 80 100 120 140

0.9

0.92

0.94

0.96

0.98

1

MovieLens Dataset

Number of Examples

R
u

n
n

in
g

 A
c
c
u

ra
c
y

CrowdSense GS=0

IEThresh GS=0

CrowdSense GS=4

IEThresh GS=4

0 200 400 600 800 1000 1200
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ChemIR Dataset

Number of Examples

R
u

n
n

in
g

 A
c

c
u

ra
c

y

CrowdSense GS=0

IEThresh GS=0

CrowdSense GS=10

IEThresh GS=10

Fig. 3 Comparison of running accuracy with and without gold standard, averaged over
100 runs. For CrowdSense, we used ε = 0.1 and for IEThresh, we used ε = 0.97 to have
comparable number of labelers.

plot of how many labelers were selected to vote on each round. For instance,
for the MovieLens dataset, Figure 2(d) shows that CrowdSense most often
chooses 3 labelers per examples whereas IEThresh rarely chooses 3 labelers
per example and prefers 4,5,6, or 7 labelers per example. This also indicates
that CrowdSense makes better use of the fewer number of votes it collects. Both
algorithms collect labels mostly from the highest accuracy labelers (see Table
1 for labeler accuracies), but IEThresh is less effective in combing these la-
bels. IEThresh and CrowdSense both select the highest quality labelers, where
IEThresh combines them by using a simple majority vote, while CrowdSense
uses a weighted majority vote; an interesting observation is that CrowdSense’s
weighted majority vote (of fewer labelers) is more effective for approximating
the crowd’s true simple majority vote than IEThresh’s simple majority vote
(of a larger number of labelers) – this is, in some sense, ironic.

E Initialization with Gold Standard

Gold standard examples are the “actual” opinion of the crowd gathered by
taking the majority vote of all members. Even though collecting votes from
the entire crowd for some of the examples initially increases the overall cost,
it might help us make better estimate the true characteristics of the labelers
earlier, and thus, achieve higher overall accuracy. In CrowdSense, initialization
with gold standard refers to updating step 3 in the pseudocode by initializing
ci1 with the number of gold standard examples and ai1 with the number of
times labeler li agrees with the entire crowd for those gold standard examples.

In Figure 3, we present the effect of initializing with gold standard for
CrowdSense and IEThresh. For the MovieLens dataset, the gold standard set
contains four examples, where two of them were voted as +1 by the majority
of the crowd, and the other two voted as -1. Since ChemIR is a larger dataset,
we increase the gold standard set to 10 examples with an equal number of
positives and negatives. The curves in Figure 3 start after observing the gold
data.

Approximating the Crowd 7

As expected, gold standard data clearly improves CrowdSense’s perfor-
mance because the estimates are now initialized with perfect information for
the first few examples. An interesting observation is that providing gold stan-
dard data to IEThresh can actually make its performance substantially worse.
Consider a labeler who agrees with the crowd’s vote on every gold standard ex-
ample. In this case, the labeler will get a reward for every single vote, yielding
UI = 1 (since s(a) = 0 and m(a) = 1). On the other hand, the labelers that
disagree with the crowd on some examples will have standard error s(a) > 0
due to missing rewards, so these labelers will receive UI > 1 and therefore they
will be preferred over the labelers that were in total agreement with the entire
crowd’s vote for each gold standard example. Examples of this phenomenon are
shown in Figure 3, where IEThresh performs worse with gold standard than
without. This illustrates why we believe that upper confidence intervals may
not be the right way to handle this particular problem. In any case, we note
that it may be possible to achieve better performance for IEThresh by using
the upper confidence interval for a multivariate binomial distribution rather
than the t-distribution, since the number of correct votes is approximately
binomially distributed rather than normally distributed.

