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Benjamin Letham∗ Cynthia Rudin† Katherine A. Heller‡

This supplementary material expands on the experiments and theory given in the main text of Growing
a List. In Section 1 we give further detail on the Wikipedia gold standard experiments. In Section 2 we give
the proofs of our main theoretical results, Proposition 1 and Theorem 1.

1 Wikipedia Gold Standard Experiments

In Table S1 we give a complete enumeration of the results from the Wikipedia gold standard experiments.
For each list growing problem, we provide the Precision@10 and average precision (AveP) for all three
methods (our method, Google Sets, and Boo!Wa!). This table illustrates both the diversity of the sampled
list growing problems and the substantially improved performance of our method compared to the others.
We focused on Precision@10 because 10 is the typical number of search results returned by a search engine.
We supplement these results further with Precision@5 and Precision@20 in Figure S1.

2 Proofs

In this section, we provide the proofs of Proposition 1 and Theorem 1, comments on the effect of the prior
(γmin) on generalization, and an example showing that Bayesian Sets does not satisfy the requirements for
“uniform stability” defined by Bousquet and Elisseeff (2002).

Recall the definition of the scoring function:

fS(x) :=
1

Z(m)

N∑
j=1

xj log
αj +

∑m
s=1 x

s
j

αj
+ (1− xj) log

βj +m−
∑m
s=1 x

s
j

βj
, (S1)

where

Z(m) := N log

(
γmin +m

γmin

)
∗Operations Research Center, MIT
†MIT Sloan School of Management
‡Center for Cognitive Neuroscience, Statistical Science, Duke

Figure S1: (a) Precision@5 and (b) Precision@20 across all 50 list growing problems sampled from
Wikipedia. The median is indicated in red.
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Table S1: Results for all 50 experiments with Wikipedia gold standards. “Us” indicates our method, “BW”
indicates Boo!Wa!, and “GS” indicates Google Sets. “List of” has been removed from the title of each
Wikipedia article, for brevity.

Precision@10 AveP
Wikipedia gold standard list Us BW GS Us BW GS

Awards and nominations received by Chris Brown 1 1 0 0.66 0.34 0
Medal of Honor recipients educated at the United States Military Academy 0.2 0 0 0.28 0.01 0
Nine Inch Nails concert tours 0.8 0 0 0.51 0 0
Bleach episodes (season 4) 0 0 0 0 0 0
Storms in the 2005 Atlantic hurricane season 0.1 0 0 0.13 0.11 0
Houses and associated buildings by John Douglas 0.6 0.6 0 0.26 0.32 0
Kansas Jayhawks head football coaches 0.9 0.8 0 0.91 0.79 0
Kraft Nabisco Championship champions 0 0 0 0.05 0.05 0
Washington state symbols 0 0 0 0 0 0
World Heritage Sites of the United Kingdom 0.3 0 0 0.19 0.08 0
Philadelphia Eagles head coaches 0 0 0 0.09 0 0
Los Angeles Dodgers first-round draft picks 0.6 0 0 0.19 0.28 0.00
New York Rangers head coaches 0.3 0.8 0 0.16 0.46 0
African-American Medal of Honor recipients 1 0 0 0.73 0.06 0
Current sovereign monarchs 0.5 0 0 0.15 0 0
Brotherhood episodes 0.9 0.2 0 0.72 0.06 0
Knight’s Cross of the Iron Cross with Oak Leaves recipients (1945) 0 0 0 0 0.01 0.00
Pittsburgh Steelers first-round draft picks 0.1 0 0 0.38 0.00 0
Tallest buildings in New Orleans 0.6 0 0.6 0.45 0 0.08
Asian XI ODI cricketers 0.2 0 0.4 0.18 0.01 0.08
East Carolina Pirates head football coaches 0.1 0 0 0.05 0.01 0
Former championships in WWE 0.4 0 0.4 0.31 0.09 0.15
Space telescopes 0 0 0 0 0 0
Churches preserved by the Churches Conservation Trust in Northern England 0 0 0 0 0 0
Canadian Idol finalists 0.4 0 0.2 0.27 0.14 0.02
Wilfrid Laurier University people 0.3 0 0 0.34 0.11 0
Wario video games 0.1 0.6 0.8 0.12 0.22 0.34
Governors of Washington 0.5 0 0 0.42 0.13 0
Buffalo Sabres players 0.1 0 0 0.03 0 0
Australia Twenty20 International cricketers 0.6 0 1 0.24 0.01 0.32
Awards and nominations received by Madonna 0.9 1 0.2 0.70 0.13 0.00
Yukon Quest competitors 0.7 0.4 0.2 0.02 0.35 0.00
Arsenal F.C. players 0.8 0 0 0.85 0.18 0
Victoria Cross recipients of the Royal Navy 0.4 0 0 0.12 0.01 0
Formula One drivers 0 0.6 1 0 0.15 0.01
Washington & Jefferson College buildings 0 0 0 0 0 0
X-Men video games 0.4 0.2 0 0.27 0.05 0
Governors of Florida 0.4 0 0 0.25 0.04 0
The Simpsons video games 0.1 0 0 0.18 0 0
Governors of New Jersey 0.7 0 0 0.34 0.07 0
Uncharted characters 0.4 0 0.6 0.27 0.01 0.33
Miami Marlins first-round draft picks 0.4 1 0 0.16 0.27 0
Tallest buildings in Dallas 0.7 0.2 0 0.34 0.14 0
Cities and towns in California 0.8 0.6 1 0.35 0.04 0.04
Olympic medalists in badminton 0.3 0 0 0.13 0.05 0
Delegates to the Millennium Summit 0.9 0.4 0 0.51 0.01 0
Honorary Fellows of Jesus College, Oxford 0 0.4 0 0.03 0.34 0
Highlander: The Raven episodes 0.2 1 0 0.14 0.95 0
Voice actors in the Grand Theft Auto series 0.4 0 0 0.16 0.18 0
Medal of Honor recipients for the Vietnam War 0.9 0.8 0 0.84 0.08 0
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and γmin := min
j

min{αj , βj}. We begin by showing that the normalized score fS(x) in (S1) takes values

only on [0, 1].

Lemma S1. 0 ≤ fS(x) ≤ 1.

Proof. It is easy to see that fS(x) ≥ 0. To see that fS(x) ≤ 1,

max
S,x

fS(x) =
1

Z(m)
max
S,x

N∑
j=1

(
xj log

αj +
∑m
s=1 x

s
j

αj
+ (1− xj) log

βj +m−
∑m
s=1 x

s
j

βj

)

≤ 1

Z(m)

N∑
j=1

max
xj ,x1

j ,...,x
m
j

(
xj log

αj +
∑m
s=1 x

s
j

αj
+ (1− xj) log

βj +m−
∑m
s=1 x

s
j

βj

)

=
1

Z(m)

N∑
j=1

max

{
max

x1
j ,...,x

m
j

log
αj +

∑m
s=1 x

s
j

αj
, max
x1
j ,...,x

m
j

log
βj +m−

∑m
s=1 x

s
j

βj

}

=
1

Z(m)

N∑
j=1

max

{
log

αj +m

αj
, log

βj +m

βj

}

=
1

Z(m)

N∑
j=1

log
min{αj , βj}+m

min{αj , βj}

≤ 1

Z(m)

N∑
j=1

log
γmin +m

γmin

= 1.

Now we provide the proof to Proposition 1.

Proof of Proposition 1. For convenience, denote the seed sample average as µj := 1
m

∑m
s=1 x

s
j , and the

probability that xj = 1 as pj := Ex[xj ]. Then,

1

m

m∑
s=1

fS(xs)− Ex [fS(x)]

=
1

N log
(
γmin+m
γmin

) N∑
j=1

(
(µj − pj) log

αj +mµj
αj

+ (pj − µj) log
βj +m(1− µj)

βj

)

≤ 1

N

N∑
j=1

|µj − pj |. (S2)

For any particular feature j, Hoeffding’s inequality (Hoeffding, 1963) bounds the difference between the
empirical average and the expected value:

P(|µj − pj | > ε) ≤ 2 exp
(
−2mε2

)
. (S3)

We then apply the union bound to bound the average over features:

P

 1

N

N∑
j=1

|µj − pj | > ε

 ≤ P

 N⋃
j=1

{|µj − pj | > ε}


≤

N∑
j=1

P (|µj − pj | > ε)

≤ 2N exp
(
−2mε2

)
. (S4)
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Thus,

P

(
1

m

m∑
s=1

fS(xs)− Ex [fS(x)] > ε

)
≤ 2N exp

(
−2mε2

)
, (S5)

and the proposition follows directly.

The bound in Proposition 1 has a tighter dependence on δ than the bound in Theorem 1, however it
depends inversely on N , the number of features.

We now present the proof of Theorem 1. The result uses the algorithmic stability bounds of Bousquet
and Elisseeff (2002), specifically the bound for pointwise hypothesis stability. We begin by defining an
appropriate loss function. Suppose x and S were drawn from the same distribution D. Then, we wish for
fS(x) to be as large as possible. Because fS(x) ∈ [0, 1], an appropriate metric for the loss in using fS to
score x is:

`(fS , x) = 1− fS(x). (S6)

Further, `(fS , x) ∈ [0, 1].
For algorithmic stability analysis, we will consider how the algorithm’s performance changes when an

element is removed from the training set. We define a modified training set in which the i’th element has
been removed: S\i := {x1, . . . , xi−1, xi+1, . . . , xm}. We then define the score of x according to the modified
training set:

fS\i(x) =
1

Z(m− 1)

N∑
j=1

xj log
αj +

∑
s6=i x

s
j

αj
+ (1− xj) log

βj + (m− 1)−
∑
s6=i x

s
j

βj
, (S7)

where

Z(m− 1) = N log

(
γmin +m− 1

γmin

)
. (S8)

We further define the loss using the modified training set:

`(fS\i , x) = 1− fS\i(x). (S9)

The general idea of algorithmic stability is that if the results of an algorithm do not depend too heavily on any
one element of the training set, the algorithm will be able to generalize. One way to quantify the dependence
of an algorithm on the training set is to examine how the results change when the training set is perturbed,
for example by removing an element from the training set. The following definition of pointwise hypothesis
stability, taken from Bousquet and Elisseeff (2002), states that an algorithm has pointwise hypothesis stability
if, on expectation, the results of the algorithm do not change too much when an element of the training set
is removed.

Definition S1 (Bousquet and Elisseeff, 2002). An algorithm has pointwise hypothesis stability η with respect
to the loss function ` if the following holds

∀i ∈ {1, . . . ,m}, ES
[
|`(fS , xi)− `(fS\i , xi)|

]
≤ η. (S10)

The algorithm is said to be stable if η scales with 1
m .

In our theorem, we suppose that all of the data belong to the same class of “relevant” items. The
framework of Bousquet and Elisseeff (2002) can easily be adapted to the single-class setting, for example by
framing it as a regression problem where all of the data points have the identical “true” output value 1. The
following theorem comes from Bousquet and Elisseeff (2002), with the notation adapted to our setting.

Theorem S1 (Bousquet and Elisseeff, 2002). If an algorithm has pointwise hypothesis stability η with respect
to a loss function ` such that 0 ≤ `(·, ·) ≤ 1, we have with probability at least 1− δ,

Ex [`(fS , x)] ≤ 1

m

m∑
i=1

`(fS , x
i) +

√
1 + 12mη

2mδ
. (S11)
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We now show that Bayesian Sets satisfies the conditions of Definition S1, and determine the corresponding
η. The proof of Theorem 1 comes from inserting our findings for η into Theorem S1. We begin with a lemma
providing a bound on the central moments of a Binomial random variable.

Lemma S2. Let t ∼ Binomial(m,p) and let µk = E
[
(t− E[t])k

]
be the kth central moment. For integer

k ≥ 1, µ2k and µ2k+1 are O
(
mk
)
.

Proof. We will use induction. For k = 1, the central moments are well known (e.g., Johnson et al, 2005):
µ2 = mp(1 − p) and µ3 = mp(1 − p)(1 − 2p), which are both O(m). We rely on the following recursion
formula (Johnson et al, 2005; Romanovsky, 1923):

µs+1 = p(1− p)
(
dµs
dp

+msµs−1

)
. (S12)

Because µ2 and µ3 are polynomials in p, their derivatives will also be polynomials in p. This recursion makes
it clear that for all s, µs is a polynomial in p whose coefficients include terms involving m.

For the inductive step, suppose that the result holds for k = s. That is, µ2s and µ2s+1 are O(ms). Then,
by (S12),

µ2(s+1) = p(1− p)
(
dµ2s+1

dp
+ (2s+ 1)mµ2s

)
. (S13)

Differentiating µ2s+1 with respect to p yields a term that is O(ms). The term (2s+ 1)mµ2s is O(ms+1), and
thus µ2(s+1) is O(ms+1). Also,

µ2(s+1)+1 = p(1− p)
(
dµ2(s+1)

dp
+ 2(s+ 1)mµ2s+1

)
. (S14)

Here
dµ2(s+1)

dp is O(ms+1) and 2(s+ 1)mµ2s+1 is O(ms+1), and thus µ2(s+1)+1 is O(ms+1).
This shows that if the result holds for k = s then it must also hold for k = s + 1 which completes the

proof.

The next lemma provides a stable, O
(

1
m

)
, bound on the expected value of an important function of a

binomial random variable.

Lemma S3. For t ∼ Binomial(m, p) and α > 0,

E
[

1

α+ t

]
=

1

α+mp
+O

(
1

m2

)
. (S15)

Proof. We expand 1
α+t at t = mp:

E
[

1

α+ t

]
= E

[ ∞∑
i=0

(−1)i
(t−mp)i

(α+mp)i+1

]

=

∞∑
i=0

(−1)i
E
[
(t−mp)i

]
(α+mp)i+1

=
1

α+mp
+

∞∑
i=2

(−1)i
µi

(α+mp)i+1
(S16)

where µi is the ith central moment and we recognize that µ1 = 0. By Lemma S2,

µi
(α+mp)i+1

=
O
(
mb

i
2 c
)

O (mi+1)
= O

(
mb

i
2 c−i−1

)
. (S17)

The alternating sum in (S16) can be split into two sums:

∞∑
i=2

(−1)i
µi

(α+mp)i+1
=

∞∑
i=2

O
(
mb

i
2 c−i−1

)
=

∞∑
i=2

O

(
1

mi

)
+

∞∑
i=3

O

(
1

mi

)
. (S18)

These are, for m large enough, bounded by a geometric series that converges to O
(

1
m2

)
.
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The following three lemmas provide results that will be useful for proving the main lemma, Lemma S7.

Lemma S4. For all α > 0,

g(α,m) :=
log
(
α+m
α

)
log
(
α+m−1

α

) (S19)

is monotonically non-decreasing in α for any fixed m ≥ 2.

Proof. Define a = m−1
α and b = m

m−1 . Observe that a ≥ 0 and b ≥ 1, and that for fixed m, a is inversely
proportional to α. We reparameterize (S19) to

g(a, b) :=
log (ab+ 1)

log (a+ 1)
. (S20)

To prove the lemma, it is sufficient to show that g(a, b) is monotonically non-increasing in a for any fixed
b ≥ 1. Well,

∂g(a, b)

∂a
=

b
ab+1 log (a+ 1)− 1

a+1 log (ab+ 1)

(log (a+ 1))
2 ,

so ∂g(a,b)
∂a ≤ 0 if and only if

h(a, b) := (ab+ 1) log (ab+ 1)− b(a+ 1) log (a+ 1) ≥ 0. (S21)

h(a, 1) = (a+ 1) log (a+ 1)− (a+ 1) log (a+ 1) = 0, and,

∂h(a, b)

∂b
= a log (ab+ 1) + a− (a+ 1) log (a+ 1)

= a (log (ab+ 1)− log (a+ 1)) + (a− log (a+ 1))

≥ 0 ∀a ≥ 0,

because b ≥ 1 and a ≥ log(1 + a) ∀a ≥ 0. This shows that (S21) holds ∀a ≥ 0, b ≥ 1, which proves the
lemma.

Lemma S5. For any m ≥ 2, t ∈ [0,m− 1], α > 0, and γmin ∈ (0, α],

1

Z(m)
log

α+ t+ 1

α
≥ 1

Z(m− 1)
log

α+ t

α
. (S22)

Proof. Denote,

g(t;m,α) :=
1

Z(m)
log

α+ t+ 1

α
− 1

Z(m− 1)
log

α+ t

α
. (S23)

By Lemma S4 and γmin ≤ α, for any α > 0 and for any m ≥ 2,

log
(
α+m
α

)
log
(
α+m−1

α

) ≥ log
(
γmin+m
γmin

)
log
(
γmin+m−1

γmin

) =
Z(m)

Z(m− 1)
.

Thus,
log
(
α+m
α

)
Z(m)

≥
log
(
α+m−1

α

)
Z(m− 1)

, (S24)

which shows

g(m− 1;m,α) =
1

Z(m)
log

α+m

α
− 1

Z(m− 1)
log

α+m− 1

α
≥ 0. (S25)

Furthermore, because Z(m) > Z(m− 1),

∂g(t;m,α)

∂t
=

1

Z(m)

1

α+ t+ 1
− 1

Z(m− 1)

1

α+ t
< 0, (S26)

for all t ≥ 0. Equations S25 and S26 together show that g(t;m,α) ≥ 0 for all t ∈ [0,m− 1],m ≥ 2, proving
the lemma.
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Lemma S6. For any m ≥ 2, t ∈ [0,m− 1], β > 0, and γmin ∈ (0, β],

1

Z(m)
log

β +m− t
β

≥ 1

Z(m− 1)
log

β +m− 1− t
β

. (S27)

Proof. Let t̃ = m− t− 1. Then, t̃ ∈ [0,m− 1] and by Lemma S5, replacing α with β,

1

Z(m)
log

β + t̃+ 1

β
≥ 1

Z(m− 1)
log

β + t̃

β
. (S28)

The next lemma is the key lemma that shows Bayesian Sets satisfies pointwise hypothesis stability,
allowing us to apply Theorem S1.

Lemma S7. The Bayesian Sets algorithm satisfies the conditions for pointwise hypothesis stability with

η =
1

log
(
γmin+m−1

γmin

)
(γmin + (m− 1)pmin)

+O

(
1

m2 logm

)
. (S29)

Proof.

ES |`(fS , xi)− `(fS\i , xi)|
= ES

∣∣fS\i(xi)− fS(xi)
∣∣

= ES

∣∣∣∣∣∣ 1

Z(m− 1)

N∑
j=1

[
xij log

αj +
∑
s6=i x

s
j

αj
+ (1− xij) log

βj + (m− 1)−
∑
s6=i x

s
j

βj

]

− 1

Z(m)

N∑
j=1

[
xij log

αj +
∑m
s=1 x

s
j

αj
+ (1− xij) log

βj +m−
∑m
s=1 x

s
j

βj

]∣∣∣∣∣∣
≤ ES

N∑
j=1

xij

∣∣∣∣∣ 1

Z(m− 1)
log

αj +
∑
s6=i x

s
j

αj
− 1

Z(m)
log

αj +
∑m
s=1 x

s
j

αj

∣∣∣∣∣
+ (1− xij)

∣∣∣∣∣ 1

Z(m− 1)
log

βj + (m− 1)−
∑
s6=i x

s
j

βj
− 1

Z(m)
log

βj +m−
∑m
s=1 x

s
j

βj

∣∣∣∣∣ (S30)

:= ES
N∑
j=1

xijterm1
j + (1− xij)term2

j (S31)

=

N∑
j=1

Ex1
j ,...,x

m
j

[
xijterm1

j + (1− xij)term2
j

]
=

N∑
j=1

Exi
j

[
Exs 6=i

j |xi
j

[
xijterm1

j

]]
+ Exi

j

[
Exs 6=i

j |xi
j

[
(1− xij)term2

j

]]

=

N∑
j=1

Exi
j

[
xijExs 6=i

j |xi
j

[
term1

j

]]
+ Exi

j

[
(1− xij)Exs 6=i

j |xi
j

[
term2

j

]]

=

N∑
j=1

Exs 6=i
j

[
term1

j |xij = 1
]
P
(
xij = 1

)
+ Exs 6=i

j

[
term2

j |xij = 0
]
P
(
xij = 0

)
≤

N∑
j=1

max
{
Exs 6=i

j

[
term1

j |xij = 1
]
,Exs 6=i

j

[
term2

j |xij = 0
]}
, (S32)
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where (S30) uses the triangle inequality, and in (S31) we define term1
j and term2

j for notational convenience.
Now consider each term in (S32) separately,

Exs 6=i
j

[
term1

j |xij = 1
]

= Exs 6=i
j

∣∣∣∣ 1

Z(m− 1)
log

αj +
∑
s6=i x

s
j

αj
− 1

Z(m)
log

αj +
∑
s6=i x

s
j + 1

αj

∣∣∣∣
= Exs 6=i

j

[
1

Z(m)
log

αj +
∑
s 6=i x

s
j + 1

αj
− 1

Z(m− 1)
log

αj +
∑
s6=i x

s
j

αj

]
, (S33)

where we have shown in Lemma S5 that this quantity is non-negative. Because {xs} are independent, {xsj}
are independent for fixed j. We can consider {xsj}s6=i to be a collection of m−1 independent Bernoulli random
variables with probability of success pj = Px∼D(xj = 1), the marginal distribution. Let t =

∑
s6=i x

s
j , then

t ∼ Binomial(m− 1, pj). Continuing (S33),

Exs 6=i
j

[
term1

j |xij = 1
]

= Et∼Bin(m−1,pj)

[
1

Z(m)
log

αj + t+ 1

αj
− 1

Z(m− 1)
log

αj + t

αj

]
≤ 1

Z(m− 1)
Et∼Bin(m−1,pj)

[
log

αj + t+ 1

αj + t

]
=

1

Z(m− 1)
Et∼Bin(m−1,pj)

[
log

(
1 +

1

αj + t

)]
≤ 1

Z(m− 1)
log

(
1 + Et∼Bin(m−1,pj)

[
1

αj + t

])
=

1

Z(m− 1)
log

(
1 +

1

αj + (m− 1)pj
+O

(
1

m2

))
. (S34)

The second line uses Z(m) ≥ Z(m−1), the fourth line uses Jensen’s inequality, and the fifth line uses Lemma
S3. Now we turn to the other term.

Exs 6=i
j

[
term2

j |xij = 0
]

= Exs 6=i
j

∣∣∣∣ 1

Z(m− 1)
log

βj + (m− 1)−
∑
s6=i x

s
j

βj
− 1

Z(m)
log

βj +m−
∑
s 6=i x

s
j

βj

∣∣∣∣
= Exs 6=i

j

[
1

Z(m)
log

βj +m−
∑
s6=i x

s
j

βj
− 1

Z(m− 1)
log

βj + (m− 1)−
∑
s6=i x

s
j

βj

]
. (S35)

We have shown in Lemma S6 that this quantity is non-negative. Let qj = 1− pj . Let t = m− 1−
∑
s6=i x

s
j ,

then t ∼ Binomial(m− 1, qj). Continuing (S35):

Exs 6=i
j

[
term2

j |xij = 0
]
≤ 1

Z(m− 1)
Et∼Bin(m−1,qj)

[
log

βj + t+ 1

βj + t

]
≤ 1

Z(m− 1)
log

(
1 +

1

βj + (m− 1)qj
+O

(
1

m2

))
. (S36)
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where the steps are as with (S34). We now take (S34) and (S36) and use them to continue (S32):

ES |`(fS , xi)− `(fS\i , xi)|

≤
N∑
j=1

max

{
1

Z(m− 1)
log

(
1 +

1

αj + (m− 1)pj
+O

(
1

m2

))
,

1

Z(m− 1)
log

(
1 +

1

βj + (m− 1)qj
+O

(
1

m2

))}
≤

N∑
j=1

1

Z(m− 1)
log

(
1 +

1

min{αj , βj}+ (m− 1) min{pj , qj}
+O

(
1

m2

))

≤ N

Z(m− 1)
log

(
1 +

1

γmin + (m− 1)pmin
+O

(
1

m2

))
:= η. (S37)

Using the Taylor expansion of log(1 + x),

η =
N

Z(m− 1)

(
1

γmin + (m− 1)pmin
+O

(
1

m2

)
− 1

2

(
1

γmin + (m− 1)pmin
+O

(
1

m2

))2
)

=
N

Z(m− 1)

(
1

γmin + (m− 1)pmin
+O

(
1

m2

))
=

1

log
(
γmin+m−1

γmin

)
(γmin + (m− 1)pmin)

+O

(
1

m2 logm

)
. (S38)

The proof of Theorem 1 is now a straightforward application of Theorem S1 using the result of Lemma
S7.

Proof of Theorem 1. By Lemma S7, we can apply Theorem S1 to see that with probability at least 1− δ on
the draw of S,

Ex [`(fS , x)] ≤ 1

m

m∑
i=1

`(fS , x
i) +

√
1 + 12mη

2mδ

Ex [1− fS(x)] ≤ 1

m

m∑
s=1

(1− fS(xs)) +

√
1 + 12mη

2mδ

Ex [fS(x)] ≥ 1

m

m∑
s=1

fS(xs)−
√

1 + 12mη

2mδ

=
1

m

m∑
s=1

fS(xs)

−

√√√√ 1

2mδ
+

6

δ log
(
γmin+m−1

γmin

)
(γmin + (m− 1)pmin)

+O

(
1

δm2 logm

)
.

2.1 Comments on the effect of the prior on generalization.

The prior influences the generalization bound via the quantity

h(γmin,m, pmin) := log

(
γmin +m− 1

γmin

)
(γmin + (m− 1)pmin) . (S39)
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Figure S2: The stability bound η as a function of the prior γmin, for fixed m = 100 and pmin = 0.001. For
γmin large enough relative to pmin, stronger priors yield tighter bounds.

As this quantity increases, the bound becomes tighter. We can thus study the influence of the prior on gen-
eralization by studying the behavior of this quantity as γmin varies. The second term, (γmin + (m− 1)pmin),
is similar to many results from Bayesian analysis in which the prior plays the same role as additional data.
This term is increasing with γmin, meaning it yields a tighter bound with a stronger prior. The first term,

log
(
γmin+m−1

γmin

)
, is inherited from the normalization Z(m). This term is decreasing with γmin, that is, it

gives a tighter bound with a weaker prior. The overall effect of γmin on generalization depends on how these
two terms balance each other, which in turn depends primarily on pmin.

Exact analysis of the behavior of h(γmin,m, pmin) as a function of γmin does not yield interpretable results,
however we gain some insight by considering the case where γmin scales with m: γmin := γ̃(m− 1). Then we
can consider (S39) as a function of γ̃ and pmin alone:

h(γ̃, pmin) := log

(
γ̃ + 1

γ̃

)
(γ̃ + pmin) . (S40)

The bound becomes tighter as γ̃ increases, as long as we have ∂h(γ̃,pmin)
∂γ̃ > 0. This is the case when

pmin < γ̃(γ̃ + 1) log

(
γ̃ + 1

γ̃

)
− γ̃. (S41)

The quantity on the right-hand side is increasing with γ̃. Thus, for pmin small enough relative to γ̃, stronger
priors lead to a tighter bound. To illustrate this behavior, in Figure S1 we plot the stability bound η (ex-

cluding O
(

1
m2 logm

)
terms) as a function of γmin, for m = 100 and pmin = 0.001. For γmin larger than about

0.01, the bound tightens as the prior is increased.

2.2 Bayesian Sets and Uniform Stability.

In addition to pointwise hypothesis stability, Bousquet and Elisseeff (2002) define a stronger notion of
stability called “uniform stability.”
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Definition S2 (Bousquet and Elisseeff, 2002). An algorithm has uniform stability κ with respect to the loss
function ` if the following holds

∀S, ∀i ∈ {1, . . . ,m}, ||`(fS , ·)− `(fS\i , ·)||∞ ≤ κ. (S42)

The algorithm is said to be stable if κ scales with 1
m .

Uniform stability requires a O
(

1
m

)
bound for all training sets, rather than the average training set as

with pointwise hypothesis stability. The bound must also hold for all possible test points, rather than testing
on the perturbed point. Uniform stability is actually a very strong condition that is difficult to meet, since
if (S42) can be violated by any possible combination of training set and test point, then uniform stability
does not hold. Bayesian Sets does not have this form of stability, as we now show with an example.

Choose the training set of m data points to satisfy:

xij = 0 ∀j, i = 1, . . . ,m− 1

xmj = 1 ∀j,

and as a test point x, take xj = 1 ∀j. Let xm be the point removed from the training set. Then,

κ = |`(fS , x)− `(fS\m , x)|
= |fS\m(x)− fS(x)|

=

∣∣∣∣∣∣ 1

Z(m− 1)

N∑
j=1

xj log
αj +

∑m
s=1 x

s
j − xmj

αj
− 1

Z(m)

N∑
j=1

xj log
αj +

∑m
s=1 x

s
j

αj

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

Z(m− 1)

N∑
j=1

log
αj
αj
− 1

Z(m)

N∑
j=1

log
αj + 1

αj

∣∣∣∣∣∣
=

1

Z(m)

N∑
j=1

log
αj + 1

αj

≥
log

maxj αj+1
maxj αj

log
(
γmin+m
γmin

) , (S43)

which scales with m as 1
logm , not the 1

m required for stability.
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