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ABSTRACT 

 We investigate User-Generated Content (UGC) as a source of customer needs from which to 
identify attributes and attribute levels for a high-craft conjoint-analysis study. Non-informative 
and repetitive content crowd out information about customer needs in a large corpus of UGC. 
We design a machine-learning hybrid approach to enhance customer-need extraction making it 
more effective and efficient. We use a convolutional neural network (CNN) to identify informa-
tive content. Using pre-trained word embeddings, we create numerical sentence representations 
to capture the semantic meaning of UGC sentences. We cluster sentence representations and 
sample sentences from different clusters to enhance the diversity of the content selected for man-
ual review. The final extraction of customer needs from informative diverse sentences relies on 
human effort. In a proof-of-concept application to oral care, we compare customer needs identi-
fied from UGC to customer needs identified from experiential interviews. First, our analyses 
suggest that, for comparable human effort, UGC allows identifying a comparable set of customer 
needs. Second, machine learning enables analysts to identify the same number of customer needs 
with less effort. 

 
This paper summarizes results from Timoshenko and Hauser (2017). All copyrights remain 

with the original paper, which provides much greater detail. Non-exclusive permission is given 
to Sawtooth Software to publish this paper. 

 

MOTIVATION 

 A conjoint-analysis study is only as good as the attributes upon which the study is based. 
Missing important attributes lowers the quality of the study and leads to inefficient product de-
velopment. Identifying new highly-valued attributes and attribute levels leads to major break-
throughs in product strategy. Consider “Attack,” a laundry detergent introduced by the Kao 
Group in the 1980s. At the time, the customer needs for laundry detergents were well estab-
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lished: cleaning, safe and gentle, good for the environment, ready to wear after drying, easy to 
use, smell fresh and clean, and value. To design new detergents, most manufacturers focused on 
combining attributes to address these customer needs. Perceived “value” played a major role in 
the market for detergents. For example, detergents were sold in large “high-value” boxes to en-
hance perceived value. Figure 1 compares a vintage Tide box with Attack’s packaging at its 
launch. 

 Kao did not limit itself to established attributes and attribute levels. Japanese consumers did 
not have the space to store laundry detergent in their apartments and, as a result, they went to the 
store often. Consumers commonly went by bicycle or by foot. Kao recognized an unmet custom-
er need and the corresponding attribute level (the need for small package for the same cleaning 
power). Kao launched Attack, a highly-concentrated detergent in an easy-to-store and easy-to-
carry package. Laundry customers were willing to pay a substantial price premium for this prod-
uct and, within a year, despite the higher price, Attack commanded almost 50% of the Japanese 
laundry market (Kao Group 2016). Other firms, including US-based firms, were slow to identify 
this customer need and did not immediately include the ‘low-package-size’ attribute level in their 
marketing studies, which gave Kao a competitive advantage. 

Figure 1. Vintage Tide Detergent Box and Attack’s Package at Launch1 

     

 Examples of successful major innovations based on newly identified attributes and underly-
ing customer needs include the touchscreen features in the smartphone category and Procter & 
Gamble’s Swiffer mop (Continuum 2016). Even point-of-care blood-gas testing in intensive care 
units of hospitals was revolutionized when the need for new attributes for these important medi-
cal instruments was recognized, analyzed, and satisfied. 

 These examples come from product development, but conjoint analysis is also used widely to 
value patents and copyrights (Cameron, Cragg, and McFadden 2013). Accepted litigation prac-
tice pairs a marketing expert, who provides estimates of willingness to pay, with a “damages” 
expert, who handles the implications of WTP. The damages expert testifies about the value of the 

                                                            
1 Tide image from https://www.pinterest.com/blacklab3/vintage-soap/. Attack image from 
http://www.kao.com/group/en/group/history_01.html. 
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patent or copyright. Recently, Allenby et al. (2014) proposed that the marketing expert play both 
roles. Instead of computing WTP, the authors propose that conjoint analysis be used directly to 
estimate the change in market price that is due to the patent. They propose that a conjoint-
analysis simulator be used to determine the (Nash) market equilibrium prices at which all firms 
in the market simultaneously select maximum-profit prices, each assuming the other firms do not 
change their prices. Their proposed method requires a reasonably complete set of attributes, be-
cause equilibrium prices depend upon the error term in conjoint analysis which, in turn, depends 
on unmodeled attributes. See Eggers, Hauser, and Selove (2016) in this volume. The courts have 
intuited this dependence. When conjoint analysis is used for more than WTP (or willingness to 
buy, WTB), some courts have disallowed testimony from conjoint-analysis experts because the 
courts perceive that the attribute description is inadequate (e.g., Alsup 2012). 

 Whether a conjoint analysis is used to price a product, identify new product opportunities, 
estimate the impact of a change in attributes, or value copyrights and patents, it is important that 
the conjoint-analysis study is based on a rich set of attributes for the product category. The accu-
racy and relevance of the conjoint-analysis study depends on the quality and completeness of the 
attribute-based description. 

 

TYPICAL APPROACHES TO IDENTIFY ATTRIBUTES 

 DIRECT APPROACHES. Often, the client provides a list of attributes and attribute levels and asks 
the analyst to design and execute the conjoint-analysis experiment. This is a perfectly fine ap-
proach, but pushes the responsibility back to the client to specify an appropriate list of attributes. 
Alternatively, an analyst might search competitive websites, search websites that compare and 
contrast products, and search websites that make recommendations. Advertising claims comple-
ment these Internet searches. If the market is relatively stable, or if the conjoint analysis is used 
for WTP or WTB, then well-conducted Internet searches are an efficient means to identify the 
attributes for the conjoint-analysis study. Internet searches are less useful if the market is in flux, 
or if the goal is to identify new innovations. “Unarticulated” needs and attributes might not be 
found in these Internet searches because no existing product has the attributes. New opportunities 
could be missed. Analysts must also be careful because comparison websites focus on points of 
difference among products. They might miss basic “must have” attributes. 

 INDIRECT CUSTOMER‐BASED APPROACHES. Indirect customer-based approaches begin directly with 

the customer. Focus groups and experiential interviews enable customers to articulate their needs 
and desires for the product category. The analyst experiences the experiences of the customers. 
Rather than asking directly about attributes, the analyst seeks first to understand the customers’ 
needs and then translates those customer needs into attributes (solutions) that address the cus-
tomer’s expressed needs. Fortunately, there are a variety of proven methods to translate customer 
needs into attributes, including hedonic regression, Quality Function Deployment, and the 
Brunswik “lens” model (Brunswik 1952; Hauser and Clausing 1988; Sullivan 1986). 



4 
 

 The direct approaches are easier to implement and less expensive, but the indirect customer-
need-based approaches provide certain advantages. Indirect approaches identify a broad set of 
attributes with less functional overlap. This is particularly valuable because survey formats and 
respondent attention often limit the number of attributes and attribute levels. Furthermore, indi-
rect approaches often identify unmet customer needs that lead to successful innovations.  

 Our study focuses on identifying customer needs for an indirect approach. We rely on estab-
lished methods to translate customer needs into attributes and attribute levels.  

 CUSTOMER NEEDS VERSUS CUSTOMER SOLUTIONS. Customer needs, as used in this paper, are abstract 

statements that describe what a customer seeks to obtain from a product in the category. For ex-
ample, in oral care, a customer need might be: “Easy to know the correct amount of mouthwash 
to use.” Customer needs are purposefully abstract so that they provide sufficient flexibility for 
the firm to design attributes that fulfill customer needs. With these definitions, attributes in con-
joint analysis are solutions to customer needs. For example, a solution to the customer need 
might be to put “ticks on a cap that is used for dosage” or “pictures and numbers on the bottle to 
indicate dosage.” See Figure 2. 

Figure 2. Attribute-based Solution to Customer Need to  
Know Easily the Correct Amount of Mouthwash to Use 

 

 VOICE OF THE CUSTOMER. A structured set of customer needs is often called the “voice of the 
customer (VOC).” The most common VOC method consists of four steps: (1) experiential inter-
views with customers, (2) sentences highlighted by multiple human judges, (3) “winnowing” to 
obtain a reduced, non-redundant set of customer needs, and (4) methods to organize the customer 
needs into an hierarchy of “primary,” “secondary,” and “tertiary” customer needs (Ulrich and 
Eppinger 2016; Griffin and Hauser 1993; Herrmann, Huber, and Braunstein 2000). There are at 
least two common procedures to organize customer needs into an hierarchy: (1) affinity groups 
where customers, themselves, sort the needs, and (2) card-sort methods where customers sort to-
gether customer needs that are similar and analysts cluster customer-need co-occurrence matri-
ces. Figure 3 provides an example of the first two levels of a customer-need hierarchy that was 



5 
 

delivered to an oral-care client. This VOC was produced by a marketing consulting firm with 
almost thirty years of experience in the voice of the customer.  

Figure 3. Voice of the Customer for Oral Care Products 

 

 

USER GENERATED CONTENT (UGC) 

 User-generated content (UGC) is text (and pictorial) content about products that customers 
themselves generate. For example, Twitter posts, customer blogs, and customer reviews are all 
UGC. UGC might also include customer-complaint data or data collected from customer-help 
records. UGC is an exciting new source of information from which customer needs (and con-
joint-analysis attributes) can be extracted. UGC is often available quickly and at low incremental 
cost to the firm. UGC is updated automatically and never gets stale. 

 However, UGC presents its own challenges. First, there are often too much data for human 
readers to process. For example, there are over 115,000 oral-care reviews on Amazon consisting 
of over 400,000 sentences. Human readers just cannot process that entire corpus. Second, much 
of the data in UGC are repetitive and not relevant. Sentences such as “I recommend Crest for 
oral care.” do not express any customer need. We expect, and our analysis confirms, that most of 
the UGC on oral care concentrates on a relatively few needs. Third, UGC data are unstructured 
and mostly-text based. Identifying customer needs requires a thorough understanding of the con-
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tent, and the unstructured nature of UGC complicates automatic analysis. 

OUR GOALS 

 UGC VERSUS EXPERIENTIAL INTERVIEWS. Our first goal is to compare in completeness and quality a 
set of customer needs, identified from UGC, to customer needs identified by standard methods as 
practiced by experienced analysts working from high-quality experiential interviews. Ideally, 
UGC-based customer needs should (1) have a substantial overlap with interview-based customer 
needs, (2) miss relatively few interview-based customer needs when limited to comparable ana-
lyst effort, and (3) include customer needs that were not identified from an exhaustive search of 
experiential-interview transcripts. We feel that if we confirm that customer needs from UGC sat-
isfy these criteria then we validate UGC as a viable replacement for costly experiential inter-
views. 

 MACHINE‐HUMAN HYBRID VERSUS HUMAN‐ONLY PROCESSING. Our second goal is to use machine 
learning (deep learning) to streamline the identification of customer needs from UGC. In particu-
lar, we seek to use machine learning to eliminate non-relevant content and organize the remain-
ing content to minimize redundancy. 

 For example, suppose that analysts, who are experienced in the use of VOC methods, have 
the capability of reading ܰ sentences from UGC to identify customer needs. (Their capability 
might be limited by time, monetary budgets, or simply attention.) Not all ܰ sentences will be rel-
evant and many sentences will describe redundant customer needs. Let’s suppose that the ana-
lysts can identify ܭ௢ unique customer needs. A machine-human approach is more efficient if it 
can identify at least ܭ௢ customer needs with human effort that is less than or equal to that which 
would have been required for VOC experts to review ܰ random sentences and identify ܭ௢ cus-
tomer needs. (Computational costs are trivial compared to human effort.) 

 If we demonstrate that the machine-human hybrid is more efficient, then, with continuous 
improvement through application, the evolved method might be able to optimize the machine-
human hybrid and achieve the best human-effort cost per identified customer need. (We assume 
that the machine-learning method is fully programmed. The computation cost is a very small 
fraction of human effort.) 

 OPTIMIZATION OF HUMAN EFFORT. In our scheme, there are multiple types of human effort that 

enter any analysis. In standard VOC methods, experiential interviews are extremely costly. UGC 
eliminates recruiting, interviewing, and transcription costs. In the machine-human hybrid meth-
od, there are two types of human effort required. Human analysts review sentences to determine 
whether the sentences are “informative” or “non-informative.” Then, human analysts review in-
formative sentences to extract customer needs. The former is less onerous and time-consuming 
than the latter. For the purposes of this paper, we leave the optimization of human effort to future 
research. Such optimization requires that we quantify the value of additional customer needs and 
quantify the effort costs of interviewing, customer-need extraction, and informative-vs.-non-
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informative classification. 

 

A PROPOSED MACHINE‐HUMAN HYBRID FOR ATTRIBUTE IDENTIFICATION 

 WHY A MACHINE‐HUMAN HYBRID. When machine-learning methods improve, we might be able to 

automate all stages in the identification of customer needs from UGC. To date, the final stage has 
defied automation. Formulations of customer needs must be precise for subsequent analyses. 
Moreover, the machine-learning methods are not sufficiently sensitive to semantic context to ex-
tract abstract customer needs from informative content. UGC is unstructured and not necessarily 
generated to articulate customer needs. Context matters and customer needs appear to be more 
than “buckets of words.” For example, bucket-of-word methods, such as Latent Dirichlet Alloca-
tion (LDA, Blei, Ng, and Jordan 2003) and LDA with hidden Markov models (LDA-HMM, 
Griffiths, et al. 2004) do not seem to capture the semantic context necessary for identifying cus-
tomer needs. But stay tuned. 

 We have successfully automated two critical tasks in the analysis of UGC: identifying in-
formative content and sampling representative a diverse set of content for review. The resulting 
machine-human hybrid is more efficient, and equally as effective, as a pure human-effort-based 
method. We feel this is substantial progress in a relatively short time. Analysts have had almost 
thirty years of continuous improvement to optimize human-effort-based VOC methods.2 VOC 
identification by experienced analysts is a challenging benchmark. 

 OVERVIEW OF THE MACHINE‐HUMAN HYBRID. Table 1 provides an overview of the four stages in 

our proposed method. The stages are: 

1. UGC. Rather than relying on expensive experiential interviews, we harvest readily availa-

ble UGC from either public sources or propriety company databases. 
 

2. IDENTIFY INFORMATIVE CONTENT. We use a machine-learning classifier called a convolutional 

neural network (CNN) to filter out non-informative sentences so that the remaining cor-
pus is rich in informative content. Because a CNN is a supervised learning method, it 
must be “trained.” Training requires human effort to classify a subset of sentences as in-
formative vs. non-informative. In practice, the number of training sentences should be a 
small fraction of the corpus.  
 

3. SAMPLE DIVERSE CONTENT. We cluster “sentence representations” to select a set of sentences 
likely to represent diverse customer needs. Sentence representations are, in turn, based on 

                                                            
2 Consulting firms, with experience in VOC methods, make human effort more efficient with software that makes it 
easy to highlight phrases in interview transcripts. Additional “bookkeeping‐like” software makes it easy to keep 
track of redundant phrases during the winnowing process. Such proprietary software does not have the capabili‐
ties to be called machine‐learning. These firms have also optimized human effort through training and experience. 



8 
 

dense numerical representations of words that capture semantic meanings. 
 

4. FINAL EXTRACTION OF REPRESENTATIVE CUSTOMER NEEDS. Analysts review the winnowed, in-

formative sentences to identify customer needs. In the machine-human hybrid approach, 
this final stage is based on human effort and is the same task as that used in existing hu-
man-effort-based methods.  

We now describe the two machine-learning methods that we customized to the identification 
of customer needs. We then describe a proof-of-concept application to oral care. 

Table 1. Automating Attribute Identification—Machine-Human Hybrid 

Traditional Machine‐learning Hybrid 

Experiential interviews User Generated Content  

Highlight informative sentences manually Machine learning (convolutional neural net‐

work, CNN) identifies informative sentences 

Reduce customer‐need redundancy manually 

(winnowing) 

Cluster numerical “sentence representations” 

to remove sentence redundancy and thus 

identify diverse customer needs 

Extract customer needs manually from inter‐

view‐based sentences 
Extract customer needs manually from in‐

formative diverse UGC sentences 

 

PREPROCESSING UGC TO IDENTIFY SENTENCES WITHIN THE UGC 

 Sentences are most likely to contain customer needs and are a natural unit by which human 
analysts process either experiential interviews or UGC. But in UGC, customers do not always 
use a sentence structure. We preprocess raw UGC to transform the UGC corpus into a set of sen-
tences. We use an unsupervised sentence tokenizer from the natural language toolkit (Kiss and 
Strunk 2006). We automatically eliminate stop-words (e.g., ‘the’ and ‘and’) and non-
alphanumeric symbols (e.g., question marks and apostrophes). We transform numbers into num-
ber signs and letters to lower case. We further screen sentences to account for the artifacts of 
grammatical or punctuation errors in UGC. In particular, we drop sentences that are too short 
(less than three words) or too long (more than ten words). UGC tends to have many fewer com-
pound sentences than experiential-interview transcripts. 
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CONVOLUTIONAL NEURAL NETWORK (CNN) 

 We use a convolutional neural network (CNN) on the corpus of sentences after preprocessing 
to classify sentences as either informative or non-informative. A CNN is a supervised classifica-
tion model (e.g., Kim 2014). We use a CNN to transform numerical representations of sentences 
into a prediction of whether or not the sentence is informative. A CNN has multiple types of lay-
ers and can have multiple layers of each type. Figure 4 illustrates the types of layers that are con-
tained in our CNN. (Our CNN is not an off-the-shelf CNN, but rather customized for our appli-
cation.) The two key properties of the CNN are that (1) the CNN learns how to quantify and 
classify sentences simultaneously in the model, and (2) the model is able to process input (sen-
tences) of different length. 

Figure 4. Examples of the Types of Layers in our Convolutional Neural Network 

 

 NUMERIC REPRESENTATIONS OF WORDS. For every word in the English-language dictionary, the 

CNN represents the word by a numerical vector. We use pre-trained 300-dimensional word em-
beddings as described in the next section. If the word embeddings were unavailable, and with 
sufficient training data, a CNN could be used to learn word representations simultaneously with 
other parameters. The CNN quantifies the sentence by concatenating the representations of the 
words. 

 CONVOLUTIONAL LAYERS. A convolutional layer begins by applying filters to the sentence repre-
sentation. A filter selects varying contiguous subsets of the sentence representations and weights 
the elements of the subset. The CNN then applies non-linear transformations, such as a logistic 
function, to the weighted subsets. The result of the application of this transformation to various 
parts of the sentence representation is called a “feature map.” 

 We calibrate the weights used in the filters by training the CNN on the sentences that have 
been coded by human effort. The number of filters and their sizes are hyperparameters of the 
CNN. We select these hyperparameters before the CNN is trained. We tune the hyperparameters 
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with cross-validation.  

 POOLING LAYERS. Convolutional layers often require many parameters and can become too 

complex to calibrate. If multiple convolutional layers are stacked without any dimensional reduc-
tion, then the number of parameters explodes. (The number of parameters also explodes if there 
are too many feature maps.) To maintain a feasible number of parameters, CNNs use pooling 
layers, which transform feature maps into shorter vectors. We use a ݉ܽݔ-pooling-over-time lay-
er in which we retain the largest feature from each feature map produced by a convolutional lay-
er (Collobert, et al. 2011).  

 SOFTMAX LAYER. The final layer, called a softmax layer, in the CNN transforms the output of 

the final pooling layer into a prediction of whether the sentence is informative (ݕ ൌ 1) or not in-
formative (ݕ ൌ 0). The softmax layer is a binary logit model applied to the output of the last 
pooling layer. The parameters of the logit model are calibrated with the training data. In our ap-
plication, we assign a sentence as informative if the estimated probability is greater than 50%. 
Future applications might assign sentences to categories for further review based on other crite-
ria. 

 NUMBER OF EACH TYPE OF LAYER. In our study, we stacked 3 convolutional layers and 1 pooling 

layer to generate input for the softmax layer. Each convolutional layer generates 40 feature maps. 
Performance of the trained CNN depends on a particular combination of layers and on the num-
ber of feature maps in convolutional layers. We used cross-validation to select these characteris-
tics of the model. 

 CNNS VS. SVMS. Readers may be familiar with the use of support-vector machines (SVMs) for 

classification. CNNs have an advantage relative to SVMs because CNNs automatically and en-
dogenously identify feature maps. In contrast, an SVM depends critically of the quality of the 
features used in the SVM. SVM features are often handcrafted, specific to application, dependent 
on context, and require substantial human effort. CNNs provide comparable performance to 
handcrafted SVMs without this substantial application-specific human effort (Kim 2014). 

 

CLUSTERING SENTENCE REPRESENTATIONS 

 Armed with a corpus of informative sentences, we use machine learning to reduce redundan-
cy. We cluster sentences that have similar semantic meaning and then sample from each cluster 
in proportion to the size of the cluster. For a given number of sentences, redundancy-reduced 
sentences are more likely to contain diverse needs than a random sample of informative sentenc-
es. Because the clustered corpus is designed for maximum diversity, it is more likely (for a given 
ܰ) to yield a complete set of customer needs. 

 In order to cluster sentences, we create numerical representations of the sentences that cap-
ture semantic meaning. The transformation for clustering is different than the concatenation for 
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CNN classification, but both transformations are based on machine-language constructs known 
as “word embeddings.” We first describe word embeddings and then describe how we aggregate 
word embeddings to sentence representations. 

 WORD EMBEDDINGS. Word embeddings are the numeric vectors that capture the semantic 

meaning of words. The basic concept is that semantically similar words appear in similar con-
texts. Information about the contexts is then used to represent words in the numerical space. We 
rely on a high-quality pre-trained set of word embeddings that have remarkable properties. For 
example, if a word embedding, ݒሺݓ௜ሻ, is a vector representation of word ݓ௜, then the ݒሺݓ௜ሻ have 
the following properties (Mikolov et al. 2013a): 

ሺkingሻݒ െ ሺmanሻݒ ൅ ሺwomanሻݒ 	ൎ  ሺqueenሻݒ

ሺwalkingሻݒ െ ሺswimmingሻݒ ൅ ሺswamሻݒ 	ൎ  ሺwalkedሻݒ

ሺParisሻݒ െ ሺFranceሻݒ ൅ ሺItalyሻݒ 	ൎ  ሺRomeሻݒ

 We use 300-dimensional word embeddings that were pre-trained on the Google News Corpus 
using the “Skip-gram” model (Mikolov et al. 2013b). The Skip-gram model trains word embed-
dings by maximizing the average log-likelihood of words appearing within ܿ words of one an-
other in a sequence. For our purposes we simply adopt the word embeddings without further 
transformation. 

 SENTENCE REPRESENTATIONS. In the CNN we concatenated word embeddings. This operation 
matches the use of filters in the feature maps. To create sentence representations for clustering 
we use an operation that retains the centrality of the semantic meaning. For our proof-of-concept 
application in oral care, we adopt the averaging method advocated by Iyyer et al. (2015). This 
operation is based on machine-learning experience. For example, Iyyer et al. (2015) demonstrate 
that the average of word embeddings is as effective as explicitly modeling semantic and syntactic 
structure with neural networks or training sentence representations simultaneously with word 
embeddings (Le and Mikolov 2014; Tai, Socher, and Manning 2015).  

 CLUSTERING SENTENCE REPRESENTATIONS. Because sentence representations have the property that 

similar vectors represent sentences with similar semantic meanings, we cluster the sentence rep-
resentations based on the Euclidean-distance norm. To be consistent with the hierarchical struc-
tures used in established VOC methods, we use an hierarchical clustering algorithm. Griffin and 
Hauser (1993) suggest Ward’s method, which we adopt. Not only has Ward’s method become 
standard practice for analyzing co-occurrence data, but, by using Ward’s method, we maintain 
comparability with the human-effort-based benchmarks that we compare to the machine-human 
hybrid approach. 

 FINAL EXTRACTION OF CUSTOMER NEEDS. The clustered sentence representations, sampled propor-
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tional to size, provide a set of informative sentences that are designed to be rich in diverse cus-
tomer needs. The final stage relies on trained analysts to read each sentence and extract the cus-
tomer needs. We expect that human-effort extraction is more efficient with informative, diverse 
sentences than with sentences sampled randomly from the UGC corpus. 

 

ORAL CARE PROOF‐OF‐CONCEPT, EVALUATION, AND COMPARISON TO ESTABLISHED METHODS 

 We have three goals.  

 Demonstrate that the machine-learning hybrid is feasible and that it can generate a set of 
customer needs from which attributes can be identified.  
 

 Compare the relative customer-need content of UGC and experiential interviews.  
 

 Evaluate the efficiency of the machine-human hybrid vs. a human-effort-based approach. 

We select the oral care category because oral care is best described by a relatively broad and 
challenging set of customer needs, but the set of tertiary customer needs in oral care is not too 
large to make the analysis unwieldy. 

 “GOLD STANDARD” HUMAN‐BASED APPROACH. A professional marketing consulting firm shared 

with us a VOC that they had delivered successfully to a client. Review Figure 3. The VOC was 
based on experiential interviews, with sentences highlighted by human analysts aided by the 
firm’s proprietary software. After winnowing, customer needs were clustered by an affinity 
group. The output was six primary customer needs and 22 secondary customer needs (Figure 3), 
as well as further elaboration into 86 tertiary customer needs. 

 UGC DATA. We consider 115,099 oral-care reviews from Amazon.com spanning the period 

from 1996 to 2014. Preprocessing with the sentence tokenizer produced 408,375 sentences. 

 UNIQUE DATASET. To compare the customer-need information in UGC to the customer-need 
information in experiential interviews, we randomly selected 8,000 sentences from the UGC cor-
pus. The sentence structure of UGC differs from that in experiential interviews. UGC sentences 
tend to be shorter and less compound. In experiential interviews, sentences tend to ramble as 
they do in normal conversation. They are not always complete, but make sense in context. Also, 
the questions asked by interviewers are part of the give-and-take and cannot be ignored. To af-
fect a valid comparison, we asked analysts, with experience extracting needs from interview 
transcripts, to estimate the number of UGC sentences that would be comparable to those con-
tained in a typical VOC study. They judged the human effort involved in extracting customer 
needs from 8,000 UGC sentences would be comparable, but slightly less than, the effort involved 
in extracting customer needs from interview transcripts. 

 The analysts, who extracted needs from the UGC, were drawn from the same marketing con-
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sulting firm that produced Figure 3. This enabled us to maintain a common level of training and 
experience. For each sentence, the analysts identified all customer needs in the sentence and cod-
ed those customer needs against the primary, secondary, and tertiary customer needs in the gold 
standard. If a tertiary customer need was not in the gold standard, the analysts attempted to as-
sign the customer need to an existing secondary-customer-need group. If the tertiary customer 
need could not be assigned to a pre-existing customer-need group, the tertiary customer need was 
given a new number. This data set is unique because the analysts coded all customer needs in 
every sentence of the UGC. Typical practice does not maintain such a map between the source of 
each customer need and the customer need. 

 INFORMATION CONTAINED IN UGC VERSUS EXPERIENTIAL INTERVIEWS. We compared the information 
contained in the two sources of customer needs. This comparison is summarized in Figure 5a. Of 
the 86 tertiary customer needs extracted by human effort applied to the transcripts, 74 customer 
needs (86%) were extracted by human effort from the UGC. Importantly, analysts extracted sev-
en new customer needs from the UGC, customer needs that were not extracted from the experi-
ential interviews. This is impressive. We then asked analysts to examine an additional 4,000 ran-
domly-selected UGC sentences to see if the customer needs, that were identified from experien-
tial interviews, could be identified from additional UGC. Nine of the remaining twelve needs 
were identified. See Figure 5b. The analysts’ supplementary task was limited; we do not know if 
the additional 4,000 sentences contained any additional customer needs. (We plan future research 
to identify the relative importances of the various customer needs.) 

Figure 5. Comparison of Customer-Need Extraction from a Sample of UGC  
versus Experiential-Interview Transcripts  

(a) Holding Extraction Costs for UGC to be Less than those for Experiential Interviews.  

 

(b) Allowing Higher Extraction Costs for UGC, but Still Saving Interviewing Costs  
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We conclude that UGC is at least a comparable source of customer needs as experiential inter-
views. Because UGC eliminates the substantial effort cost involved in scheduling and imple-
menting qualitative interviews, even with the additional 4,000 sentences, the total human-effort 
cost is less with the machine-human hybrid approach than with the human-only approach. We’ll 
see later in this paper that machine-learning methods make extracting customer needs more effi-
cient, thus enabling analysts to process a UGC corpus larger than 8,000 sentences for the same 
effort as was used to process transcripts. Further improvement should increase efficiency even 
more. 

Human-effort coding of the 8,000-sentence UGC corpus suggests that 52% of the UGC sentenc-
es are informative about customer needs (contain an identified customer need). There was also 
high redundancy. Ten percent (10%) of the most-frequently mentioned customer needs were ar-
ticulated in 54% of the informative sentences. These percentages suggest potential efficiency 
gains due to the CNN and clustering sentence representations. 

 CNN. When the training sample, ܺ, is larger, the CNN can classify sentences better. Figure 6 

plots the ability of the CNN to classify sentences as a function of ܺ. Figure 6 reports results up to 
6,000 sentences because preprocessing eliminated 1,394 sentences as too short or too long. This 
left 6,606 sentences eligible for use in training the CNN. 

 We report three statistics that are common in machine learning. Precision, in machine learn-
ing, is comparable to hit rates in conjoint analysis (and not to be confused with the scale factor in 
conjoint analysis). In sentence classification, precision is the percent of sentences that are in-
formative given that they have been labeled as informative. Recall is the percent of informative 
sentences that were correctly labeled as informative. ܨଵ is a composite measure equal to: 

ଵܨ ൌ
݊݋݅ݏ݅ܿ݁ݎ݌ ∙ ݈݈ܽܿ݁ݎ

ଵ
ଶሺ݊݋݅ݏ݅ܿ݁ݎ݌ ൅ ሻ݈݈ܽܿ݁ݎ

 

 There are tradeoffs in precision and recall as the size of the training sample increases, but 
their impact on the composite measure, ܨଵ, appears to stabilize around ܺ ൌ 1,000. At ܺ ൌ
1,000, Figure 6 reports a precision of 70% and a recall of 73%.  
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 The CNN is effective if it identifies customer needs in the UGC corpus that were not in the 
training data. This was the case. The CNN identified customer needs in the UGC corpus that 
were not in the training data. 

Figure 6. Precision, Recall, and ࡲ૚ as a Function of the Size of the Training Sample 

 

 CLUSTERS OF SENTENCE REPRESENTATIONS. To visualize whether or not clustering sentence repre-
sentations enhanced diversity in customer needs, we use principle components analysis to project 
the sentence representations onto two dimensions. Information is lost, but we can see visually 
whether or not customer needs were separated by clustering sentence representations. Figure 7 
reports the results. 

Figure 7. Two-dimensional Projection of 300-Dimensional Sentence Representations 
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 The red dots are sentence representations that were coded (by human judges) as belonging to 
the primary customer need of “strong teeth and gums.” The blue dots are sentence representa-
tions that were coded as “shopping/product choice.” The ovals represent the smallest ellipsis in-
scribing 90% of the corresponding set. Figure 7 suggests that, while not perfect, the clusters of 
sentence representations did achieve separation among customer needs. 

  GAINS IN EFFICIENCY DUE TO THE MACHINE‐HUMAN HYBRID METHOD. We use our database to com-
pare counterfactual simulations of the number of customer needs that would have been identified 
by various methods. We compare the methods for various numbers of sampled UGC sentences. 
We chose to train the CNN on 5,000 sentences to approximate how we expect the CNN to be 
used in practice. We believe the larger training sample eliminates randomness in our analysis, 
but we do not believe that the relative comparisons of methods would change. 

 When we train the CNN on 5,000 sentences, we can hold out 1,606 sentences after prepro-
cessing to eliminate sentences that are too short or too long. At this ܺ ൌ 5,000, the CNN 
achieves a precision of 76%, a recall of 78%, and an ܨଵ of 77%. The CNN identifies 1,040 of the 
1,606 sentences as informative. 

 For each of three methods, we compute counterfactuals assuming the analysts have only the 
resources to review ܻ sentences for ܻ ൌ 250, 500, 750, and	1,000. To compare to a human-
effort benchmark, we evaluate the customer needs identified from a random selection from the 
UGC corpus (assuming preprocessing to eliminate sentences that are too short or too long). For 
example, an analyst would randomly select 250 sentences from the preprocessed corpus and re-
view all 250 sentences. We redraw random samples 1,000 times and average. The results of ran-
dom selection are shown in Figure 8 by a dashed blue line.  

 We improve efficiency by using the CNN to identify informative sentences. To test efficien-
cy gains, we randomly select from informative sentences (dotted red line in Figure 8). We in-
crease efficiency further by using the CNN to screen for informative sentences, clustering sen-
tence representations, and selecting from sentence representations proportional to the size of the 
clusters (solid black line in Figure 8).  

 Over the range of the counterfactual simulations, Figure 8 suggests that the machine-learning 
stages enhance efficiency. There are gains due to using the CNN to eliminate non-informative 
sentences and additional gains due to using sentence representations to seek diversity within the 
corpus. The gains to diversity decrease with ܻ, but the gains due to the identification of informa-
tive sentences continue throughout the range of the counterfactual simulations.  

 We also interpret Figure 8 horizontally. Human effort requires, on average, 1,000 sentences 
to identify 65.6 customer needs. If we prescreen with machine learning to select diverse, in-
formative sentences, an analyst can identify, on average, 65.2 customer needs from 750 sentenc-
es. These efficiencies represent a human-effort saving of 25%. Given that human-effort-based 
reviewing of experiential interviews has been optimized over almost thirty years of continuous 
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improvement, these proof-of-concept results are promising. We expect the machine-learning 
methods, themselves, to be subject to continuous improvement as analysts learn, by trial and er-
ror, how best to merge machine learning with human effort. 

Figure 8. Comparison of Efficiencies among Various Means 
to Select UGC Sentences for Review 

 

  

DISCUSSION AND SUMMARY 

 A high-craft conjoint analysis study requires that attributes and attribute levels be chosen 
carefully. VOC methods are a proven method by which to identify a complete set of attributes. 
VOC methods identify customer needs, then established methods, such as QFD, hedonic regres-
sion, or the Brunswik lens model, select attributes that are solutions to customer needs. 

 In this paper we establish that machine-learning methods show promise to extract customer 
needs more effectively and more efficiently. Machine-learning methods also extract new cus-
tomer needs that are missed by traditional experiential-interview studies. Once perfected, ma-
chine-learning methods applied to UGC will enable conjoint-analysis analysts to extract a more-
complete set of customer needs (attributes) and do so quicker and with less human-effort costs. 

 UGC. Our results suggest that UGC can substitute for experiential interviews. In a limited 
corpus of 8,000 sentences, human analysts were able to extract roughly as many customer needs 
as would have been extracted from experiential interviews. The overlap was not perfect, but the 
UGC did identify customer needs not in the interview transcripts. A comparison of Figures 5a 
and 5b suggests that, with a larger corpus, particularly with efficiencies due to machine learning, 
UGC should provide sufficient information with which to extract a more-complete set of cus-
tomer needs than the typical experiential-interview study. 
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 CNN. The CNN successfully identified non-informative sentences. Future research might op-

timize the CNN. 

 SENTENCE REPRESENTATIONS. Clustering sentence representations increases diversity, especially 
for small samples. However, as the size of the sample of sentences to review increases, the ma-
chine-human hybrid gets close to an exhaustive set of needs and the value of diversity decreases. 

 EFFICIENCY GAINS. Perhaps the largest efficiency gain is the enhanced ability to replace experi-
ential interviews with UGC. Experiential interviews are costly and require calendar time to re-
cruit, schedule, and implement experiential interviews. A typical experiential-interview study 
requires about 4-5 weeks. UGC can be harvested quickly (less than a day) and at substantially 
lower cost. 

 We asked the marketing consulting firm to review 8,000 UGC sentences in depth because 
they judged that reviewing 8,000 UGC sentences was a conservative estimate of the effort re-
quired to review a typical set of experiential interviews. Even with 12,000 UGC sentences, the 
human effort for extraction is less than the human-effort in an experiential-interview study. Both 
the CNN and clustering sentence representations makes the review of the UGC sentences more 
efficient by as much as 25%. (A percentage we hope to increase with continuous improvement.) 

 MACHINE‐LEARNING APPLIED TO INTERVIEW TRANSCRIPTS. There is nothing to prevent using the 

CNN and the sentence representation clusters on interview transcripts. We expect to see efficien-
cies there as well. The machine-human hybrid method applied to the interview transcripts can be 
useful in a product categories where UGC is either not available or not extensive. 

 SUMMARY. Understanding customer needs helps define a more-complete set of attributes and 

improve the quality of the conjoint study. Based on our initial proof-of-concept application, we 
are optimistic about the potential of UGC and machine learning to transform the practice of iden-
tifying customer needs. We feel that the CNN and sentence representations are uniquely suited to 
the analysis of UGC because these methods do more than count words. They look to deep se-
mantic structure as is required in the analysis of UGC. 
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