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Abstract 
Can directed technical change be used to combat climate change? We construct new firm-

level panel data on auto industry innovation distinguishing between “dirty” (internal 

combustion engine) and “clean” (e.g. electric and hybrid) patents across 80 countries over 

several decades. We show that firms tend to innovate relatively more in clean technologies 

when they face higher tax-inclusive fuel prices. Furthermore, there is path dependence in the 

type of innovation both from aggregate spillovers and from the firm's own innovation history. 

Using our model we simulate the increases in carbon taxes needed to allow clean 

technologies to overtake dirty technologies. 
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1 Introduction

Greenhouse gas emissions, in particular carbon dioxide (CO2), are being increasingly

denounced as responsible for global warming. Automobiles are major contributors to these

emissions: according to the International Energy Agency (IEA) in 2009 road transport

accounted for 4.88 GT of CO2, which represented 16.5% of global CO2 emissions (transport

as a whole was responsible for 22.1%). In this paper we look at technological innovations

in the auto industry and examine whether government intervention can affect the direction

of this innovation. More specifically, we construct a new panel dataset on auto innovations

to examine whether firms redirect technical change in response to fuel prices (our proxy

for a carbon tax) in the context of path dependent innovation. We associate “dirty”

innovation with internal combustion engine patents and “clean” innovation with electric,

hydrogen and hybrid vehicle patents, but discuss carefully issues around this definition

and consider alternatives.1

Our main data are drawn from the European Patent Office’s (EPO) World Patent

Statistical database (PATSTAT). These data cover close to the population of all worldwide

patents since the mid 1960s. Our outcome measure focuses on “triadic” patents which

are those that have been taken out in all three of the world’s major patents offices:

the European Patent Office, the Japanese Patent Office (JPO) and the United States

Patents and Trademark Office (USPTO). Our database also reports the name of patent

applicants which in turn allows us to match clean and dirty patents with distinct patent

holders each of whom has her own history of clean versus dirty patenting. Finally, we

know the geographical location of the inventors listed on the patent so we can examine

location based knowledge spillovers.

We report three important empirical findings. First, higher fuel prices induce firms

to redirect technical change away from dirty innovation and towards clean innovation.

Second, a firm’s propensity to innovate in clean technologies appears to be stimulated by

its own past history of clean innovations (and vice versa for dirty technologies). In other

1We do not consider radical innovations in upstream industries such as biofuels, for instance. To
explore this is beyond the scope of the current paper which takes the more positive approach of exploring
the determinants of clean innovation in vehicles.
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words, there is path-dependence in the direction of technical change: firms that have

innovated a lot in dirty technologies in the past will find it more profitable to innovate in

dirty technologies in the future.2 Our third finding is that a firm’s direction of innovation

is affected by local knowledge spillovers. We measure this using the geographical location

of its inventors: more specifically, a firm is more likely to innovate in clean technologies if

its inventors are located in countries where other firms have been undertaking more clean

innovations (and vice versa for dirty technologies). This provides an additional channel

that re-enforces path dependency.

Our paper relates to several strands in the literature. First, our work is linked to

the literature on climate change, initiated by Nordhaus (1994).3 We contribute to this

literature by focusing on the role of innovation in mitigating global warming, and by

looking at how various policies can induce more clean innovation in the auto industry.

Our paper also relates to the literature on directed technical change, in particular

Acemoglu (1998, 2002; 2007) which itself was inspired by early contributions by Hicks

(1932) and Habakkuk (1962).4 We contribute to this literature by providing evidence on

the role of carbon prices in directing technical change. Popp (2002), in particular, is closely

related to our paper. He uses aggregate U.S. patent data from 1970 to 1994 to study the

effect of energy prices on energy-efficient innovations. He finds a significant impact from

both energy prices and past knowledge stocks on the direction of innovation. However,

2As shown in Acemoglu et al (2012), this path dependency feature when combined with the environ-
mental externality (whereby firms do not factor in the loss in aggregate productivity or consumer utility
induced by environmental degradation) will induce a laissez-faire economy to produce and innovate too
much in dirty technologies compared to the social optimum. This in turn calls for government intervention
to “redirect” technical change.

3Nordhaus (1994) developed a dynamic Ramsey based model of climate change (the DICE model),
which added equations linking production to emissions. Subsequent contributions have notably examined
the implications of risk and discounting for the optimal design of environmental policy. In particular,
see Stern (2006), Weitzman (2007, 2009), Dasgupta (2008), Nordhaus (2007), von Below and Persson
(2008), Mendelsohn et al (2008), and Yohe, Tol and Anthoff (2009). Recently, Golosov, Hassler, Krusell
and Tsyvinski (2011) have extended this literature by solving for the optimal policy in a full dynamic
stochastic general equilibrium framework.

4The theoretical literature on directed technical change is well developed. For applications to climate
change, see for example Messner (1997), Grubler and Messner, (1998), Goulder and Schneider (1999),
Manne and Richels (2004), Nordhaus (2002), Van der Zwaan et al. (2002), Sue Wing (2003), Smulders
and de Nooij (2003), Buonanno et al (2003), Gerlagh (2008), Gerlagh et al (2009) and Gans (2012). In
contrast, empirical work on directed technical is scarcer, but see Acemoglu and Linn (2004) for evidence
in the pharmaceutical industry, Acemoglu and Finkelstein (2008) in the health care industry, or, more
recently Hanlon (2011), for historical evidence in the textile industry.
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since Popp uses aggregate data a concern is that his regressions also capture macro-

economic shocks correlated with both innovation and the energy price.5 The novelty of

our approach is that we use international firm-level panel data and exploit differences

in firms’ expositions to different markets to build firm specific fuel prices, which allows

us to provide microeconomic evidence of directed technical change. Acemoglu, Akcigit,

Hanley and Kerr (2012) calibrate a microeconomic model of directed technical change

to derive quantitative estimates of the optimal climate change policy. The focus of our

work is more empirical, but we use our results to perform a related exercise: we simulate

the aggregate evolution of future clean and dirty knowledge stocks and analyze how this

evolution would be affected by changes in carbon taxes.

Finally, we draw on the extensive literature in industrial organization that estimates

the demand for vehicles (energy efficient and otherwise) as a function of fuel prices and

other factors.6 But this literature does not look at the direction of innovation.

The paper is organized as follows. Section 2 develops a simple model to guide our

empirical analysis and Section 3 presents the econometric methodology. The data are

presented in Section 4 with some descriptive statistics. Section 5 reports the results,

discusses their robustness and some extensions. We perform the simulation exercise in

Section 6. Section 7 concludes.

5Further evidence of directed technical change in the context of energy-saving can be found in Newell,
Jaffe and Stavins (1999) who focus on the air-conditioning industry, or in Crabb and Johnson (2010) who
also look at energy-efficient automotive technology. Hascic et al (2008) investigate the role of regulations
and fuel price on automative emission control technologies. Hassler, Krussell and Olovsson (2011) find
evidence for a trend increase in energy saving technologies following oil price shocks. They measure the
energy-saving bias of technology as a residual which is attractive as it side-steps the need to classify
patents into distinct classes. On the other hand, our technology variables are more directly related to
the innovation we want to measure.

6For example, using around 86 million transactions Alcott and Wozny (2011) find that fuel prices
reduce demand for autos, but by less than an equivalent increase in the vehicle price. They argue that
this is a behavioral bias causing consumers to undervalue fuel price changes. Readers are referred to this
paper for an extensive review of the literature on fuel prices and the demand for autos. Busse, Knittel
and Zettelmeyer (2011) use similar data in a more reduced form approach but, by contrast, find a much
larger impact of fuel price on auto demand. Although the magnitude of the fuel price effect on demand
differs between studies, it is generally accepted that there is an important effect of fuel prices on vehicle
demand.
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2 Theoretical Predictions

In this section we develop theoretical predictions which will guide our empirical analysis.

Full details are in Appendix A. We consider a one-period model of an economy where

consumers derive utility from an outside good and from motor vehicle services. To abstract

from income effects, utility is quasi-linear with respect to the outside good C0 (chosen as

the numeraire).

To consume motor vehicle services, consumers need to buy cars and fuel (call this a

“dirty car bundle”) or cars and electricity (call this a “clean car bundle ”). Utility is then

given by:

U = C0 +
β

β − 1

((∫ 1

0

Y
σ−1
σ

ci di

) σ
σ−1

ε−1
ε

+

(∫ 1

0

Y
σ−1
σ

di di

) σ
σ−1

ε−1
ε

) ε
ε−1

β−1
β

,

where the consumption of variety i of clean cars together with the corresponding clean

energy (electricity) is:

Yci = min (yci, ξcieci) ;

and the consumption of variety i of dirty cars together with the corresponding dirty energy

(fuel) is:

Ydi = min (ydi, ξdiedi) .

ezi is the amount of energy consumed for variety i of type-z car where z = c, d, i.e.

z = Clean,Dirty; ε is the elasticity of substitution between the clean and dirty cars,

σ is the elasticity of substitution among varieties within each type of car and β is the

elasticity of consumption of motor vehicle services with respect to its index price (this

parameter measures the degree of substitutability between motor vehicle services and the

outside good). Finally, ξci (respectively ξdi) is the energy efficiency of clean (respectively

dirty) cars. We impose the following parameters restrictions: 1 < ε ≤ σ, so that clean

cars are more substitutable with each other than with dirty cars, and ε > β: the elasticity

of substitution between clean and dirty cars is larger than the price elasticity for motor

vehicle services (which implies that the elasticity of substitution between clean and dirty

cars is larger than that between motor vehicle services and the outside good).
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Varieties of cars are produced by monopolists. Each monopolist owns a given number

of varieties in clean and/or dirty cars of mass zero. The monopoly producer of variety

i of a type-z car produces Azi cars using one unit of outside good as input, and the

energy requirement for that variety is ξzi. Therefore ξzi captures energy augmenting

technologies while Azi captures technologies which augment the other inputs (labor for

instance) for a car of type z. Prior to production, monopolists can spend R&D resources

to increase the level of their technologies (we assume that the cost function is quadratic

in the amount of technological improvement). We refer to increases in Adi as “dirty”

innovations: such an innovation reduces the price of dirty cars and increases the demand

for fossil fuel, generating more emissions. Increases in ξdi are “grey” innovations, they

reduce the amount of emissions per-unit of “dirty car bundles” but they also increase the

demand for dirty cars (through a “rebound ” effect), so that the impact on emissions is

ambiguous. Increases in ξci or Aci are clean innovations: they lead to a substitution from

dirty cars consumption to clean cars consumption, leading to a decrease in emissions.7

The model is solved in Appendix A. We show that, for typical parameter values we

can derive some key predictions:

Prediction 1: An increase in the price of the fossil fuel increases innovation in clean

technologies, decreases innovation in dirty technologies and has an ambiguous impact on

innovation in grey technologies.

Prediction 2: Firms with an initial higher level of clean technologies tend to innovate

more in clean technologies. Similarly those with higher initial levels of dirty technologies

will tend to innovate more in dirty technologies.

Here, we only provide the intuitions for these results. First, on the impact of an in-

crease in fuel price on clean innovations (Prediction 1): a higher fuel price makes the dirty

bundle more expensive, and since clean and dirty cars are substitutes, this encourages the

consumption of clean cars. Since the market share of clean cars is now larger, the return

to innovation in clean cars is also now larger. For dirty cars, a higher fuel price reduces the

market share and therefore profits, discouraging both dirty and grey innovation; however,

7As an increase in productivity increases income, there would be an additional rebound effect if cars
were a normal good.
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it also increases the returns from grey innovation as saving on fuel reduces the price of

a car bundle more when fuel prices are large. The total impact on grey innovations is

therefore ambiguous (it is more likely to be negative when the price elasticity of cars is

larger and when clean and dirty cars are better substitutes).8

Second, on path dependence within firms (Prediction 2): a higher level of dirty tech-

nologies implies a larger market share, but also lower benefits from further increases in

productivity on the price of a dirty car bundle. The net effect is positive when the elastic-

ity of substitution is sufficiently large (so that the market-size effect is large). The same

applies to grey and clean technologies.

These predictions are also generated by other models in the literature. Thus, Acemoglu

et al. (2012) and Gans (2012) study models where innovation can augment a clean or a

dirty energy, and show that a carbon tax (equivalent here to a higher fuel price) increases

innovation in clean energy augmenting technologies (to the detriment of dirty energy

augmenting technologies) provided that the two inputs are substitutes. This is similar to

the trade-off between clean and dirty innovations in our model. Smulders and de Nooij

(2003) and Hassler, Krusell and Olovsson (2012) consider models where innovation can

either augment (fossil-fuel) energy or other inputs which are complement to it. An increase

in the price of energy redirects innovation towards energy augmenting technology, but

since the total amount of innovation may decrease, the net impact on energy augmenting

innovation is generally ambiguous (this is similar to what happens to grey innovations

here in our model).

Our model departs from these models, however, in three main respects. First, we

simultaneously consider clean, dirty and grey technologies when looking at path depen-

dence. Second, we allow for firm heterogeneity. Both aspects are directly relevant to our

empirical analysis, since it is based on firm-level data, and we identify the role of path

dependence from the difference in innovation efforts by firms with differing technology

8In Appendix A, we further show that the impact of an increase in fuel price on innovation is not the
same for all varieties if their productivity levels differ. Indeed, the fuel price increase affects proportionally
less varieties with a high level of grey over dirty technologies, therefore these varieties can increase their
market share at the expense of other dirty cars. This has the effect of increasing both dirty and grey
innovations. On the contrary both types of innovations are further reduced for varieties with a low grey
over dirty technology levels ratio.
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levels. Third, we allow for an externality whereby local aggregate knowledge in a given

technology exogenously contributes to a firm’s own knowledge stock. This directly delivers

the third prediction that we take to the data:

Prediction 3: Firms innovate more in clean technologies when the aggregate level of

clean technologies is higher in neighboring varieties (and similarly for dirty technologies).

3 Econometrics

3.1 General approach

Consider the following Poisson specification for the determination of firm innovation in

clean technologies:9

PATClean,it = exp(βC,P lnFPit−1 + AC,it−1) + uC,it (1)

where PATClean,it is the number of patents applied for in clean technologies by firm i in

year t; ACit is the firm’s knowledge stock relevant for clean innovation, which depends both

upon its own stocks of past clean and dirty innovation and the aggregate spillovers from

other firms (discussed below); uC,it is an error term; exp(.) is the exponential operator;

and FPit is fuel price. We lag prices and knowledge stocks to reflect delayed response

and mitigate contemporaneous feedback effects.10 In the robustness section we show this

form is reasonable comparing it to alternative dynamic representations using other lag

structures and the Popp (2002) approach.

The fuel price has independent variation across time and countries primarily because

of country-specific taxes and we show the robustness of our results to using just fuel taxes

instead of (tax inclusive) fuel prices. The profile of car sales across countries differs across

auto firms. For example, General Motors has some “home bias” towards the US market

whereas Toyota has a home bias towards the Japanese market, i.e. they sell more in these

9In our regressions we use an equivalent equation for dirty technologies. We initially discuss only one
of these equations to simplify the notation.

10In principle, the price should be the firm’s expectation of the future evolution of the fuel price based
on the information set at time of making the innovation investment decision. Fuel prices appear to be
well approximated by a random walk process (e.g. Anderson et al, 2011a,b), so given our assumption that
decisions are made on t− 1 information, lagged prices should be a sufficient statistic for this expectation.
Note that the Anderson result is only for US data but it seems more generally true in other countries
(e.g. Hamilton, 2008; Liu et al, 2012).
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countries than one would expect from country and firm observables alone. Thus, different

firms are likely to be differently exposed to tax changes in different countries and the fuel

price has a firm-specific component. This firm-specific difference in market shares could

be because of product differentiation and heterogeneous tastes or it may be because of

government policies to promote domestic firms. To take this heterogeneity into account

we use the firm’s pre-sample history of patent filing to assess the relative importance of

the various markets the firm is operating in and construct firm-specific weights on fuel

prices for the corresponding market. Simply put, an unexpected increase in US fuel taxes

will have a more salient impact on car makers with a bigger market share in the US than

those with a smaller market share. We discuss this in more detail in Section 4.

We parameterize the firm’s total knowledge stock as:

ACit = βC,1 lnSPILLC,it + βC,2 lnSPILLD,it + βC,3 lnKC,it + βC,4 lnKD,it (2)

The firm’s knowledge will likely depend on its own history of innovation and we denote this

as KClean,it (firm’s own stock of clean innovation) and KDirty,it (firm’s own stock of dirty

innovation).11 In addition to building on its own past innovations firms will also “stand

on the shoulders of giants”, so we allow their knowledge stock to depend on spillovers

from other firms both in clean (SPILLC,it) and dirty technologies (SPILLD,it). We

use stocks of economy wide patents to construct these country-specific spillover measures.

Drawing on the evidence that knowledge has a geographically local component (e.g. Jaffe,

Trajtenberg, and Henderson, 1993) we use the firm’s distribution of inventors across

countries to weight the country spillover stocks. In other words, if the firm has many

inventors in the US regardless of whether the headquarters of the firm is in Tokyo or

Detroit, then the knowledge stock in the US is given a higher weight (see Section 4).

There are of course other factors that may influence innovation in addition to fuel

prices and the past history of innovation. These include government R&D subsidies for

clean innovation, regulations over emissions and the size and income level of the countries

11We construct stocks using the perpetual inventory method, but show robustness to using patent
flows and to considering alternative assumptions over knowledge depreciation rates. Some firms have
zero lagged knowledge stock in some periods, so we also add in three dummy indicator variables for when
lagged clean stock is zero, lagged dirty stock is zero or both are zero.
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a firm is expecting to sell to (proxied by GDP and GDP per capita). We denote these

potentially observable variables by the vector wC,it. We also allow for unobservable factors

by introducing a firm fixed effect (ηC,i), a full set of time dummies (TCt) and an error

term (uC,it, assumed to be uncorrelated with the right hand side variables). Adding these

extra terms and substituting equation (2) into (1) gives us our main empirical equation

for clean innovation:

PATClean,it = exp(βC,P lnFPit−1 + βC,1 lnSPILLC,it−1 + βC,2 lnSPILLD,it−1

+ βC,3 lnKC,it−1 + βC,4 lnKD,it−1

+ βC,wwit + TC,t)ηC,i + uC,it (3)

Symmetrically, we can derive an equation for dirty innovation:

PATDirty,it = exp(βD,P lnFPit−1 + βD,1 lnSPILLC,it−1 + βD,2 lnSPILLD,it−1

+ βD,3 lnKC,it−1 + βD,4 lnKD,it−1

+ βD,wwit + TD,t)ηD,i + uD,it (4)

Section 2 yielded predictions on the signs of the coefficients in these two equations. If

higher fuel prices induces more clean than dirty innovation then the marginal effect of the

fuel price must be larger on clean innovation than on dirty innovation: βC,P > βD,P and we

would expect that βC,P > 0 and βD,P < 0.12 Next, for there to be path dependence in the

direction of innovation it should be the case that (ceteris paribus) firms that are exposed

to more dirty spillovers become more prone to conduct dirty innovation in the future:

i.e. βD,2 > 0 and βD,2 > βC,2. In the clean innovation equation we have βC,1 > 0 and

βC,1 > βD,1. And path dependence should involve similar effects working through a firm’s

own accumulated knowledge: βD,4 > 0 and βD,4 > βC,4. (βC,3 > 0 and βC,3 > βD,3.) Also,

we would expect that the positive effect of dirty spillovers and dirty knowledge stocks

on dirty innovation be larger than the effects of clean spillovers and clean knowledge

stocks: βD,2 > βD,1 and βD,4 > βD,3. The reverse predictions should all apply for the clean

equation: βC,2 < βC,1 and βC,3 > βC,4

12Note that these two stronger second conditions are not necessary for induced (redirected) technical
change as the absolute sign of the price effects will depend on the elasticity of substitution between cars
and other goods.
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3.2 Dynamic count data models with fixed effects

To estimate equation (3) and (4) we use:

PATzit = exp (xitβz) ηzi + uzit (5)

where z ∈ {Dirty, Clean} and xit is the vector of regressors. We compare a number of

econometric techniques to account for firm level fixed effects ηzi in these Poisson models.

Our baseline is an econometric model we label CFX, the Control Function Fixed Effect

estimator. It builds on the pre-sample mean scaling estimator proposed in Blundell,

Griffith and Van Reenen (1999), henceforth BGVR.13

BGVR suggest conditioning on the pre-sample average of the dependent variable to

proxy out the fixed effect. Like BGVR, CFX uses a control function approach to deal

with the fixed effect but rather than using information from the pre-sample period in the

control function, we simultaneously estimate the main regression equation and a second

equation allowing us to identify the control function from future data (similar to the idea

of taking orthogonal deviations in the linear panel data literature, see Arellano, 2003).

The full details on this are provided in Appendix B, but in a nutshell, we use CFX to

deal with a potential concern with the BGVR approach, namely that it requires long

pre-sample history of realizations of the dependent variable. However, in our data -

particularly for clean - patenting is concentrated towards the end of our sample period.

Below, we provide results using both the CFX and BGVR method as well as two other

common approaches. First, we use the Hausman, Hall and Griliches (1984) method (the

count data equivalent to the within groups estimator) even though this requires strict

exogeneity, which is inconsistent with models including functions of the lagged dependent

variable as we have in equations (3) and (4). Second, we implement some simple linear

within groups models adding an arbitrary constant to the dependent variable before taking

logarithms. We show that all these approaches deliver similar qualitative results, although

CFX provides the best overall fit to the data.

13See also Blundell, Griffith and Windmeijer (2002) and Blundell, Griffith and Van Reenen (1995).
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4 Data

4.1 Main dataset

In this section, we briefly present our data (additional details can be found in Appendix

C). Our main data are drawn from the World Patent Statistical Database (PATSTAT)

maintained by the European Patent Office.14 Patent documents are categorized using the

International Patent Classification (IPC) and national classification systems. We extract

all the patents relating to “clean” and “dirty” technologies in the automotive industry.

Clean is identified by patents whose technology class is specifically related to electric,

hybrid and hydrogen vehicles. Our selection of relevant IPC codes for clean technologies

relies heavily on previous work by the OECD.15

Clearly, there is a debate as to how clean both electric cars and hydrogen cars really are

(Graff Zivin et al, 2014). This will depend, by and large, on how electricity and hydrogen

are being generated. However, we note that in most plausible long run scenarios, electricity

will be generated by renewable sources and hydrogen will be generated using electrolysis.

Consequently, electric and hydrogen cars would be clean. Assessing the speed of such a

transition for a full optimal environmental policy is beyond the scope of this paper, but

is an important topic for future research.

The precise description of the IPC codes used to identify relevant patents can be found

in Panel A of Table 1. Some typical IPC classification codes included in the clean category

are B60L11 (“Electric propulsion with power supplied within the vehicle”) and B60K6

(“Arrangement or mounting of hybrid propulsion systems comprising electric motors and

internal combustion engines”). US patent #645604116 is an example of a clean patent

from our dataset: it describes a “Power supply system for electric vehicle”. It was first

filed by Yamaha Motor in Japan in 1998 and was then filed at the European Patent Office

and at the USPTO in 1999. The front page and technical diagram of the patent is shown

in Appendix Figure A1.

14PATSTAT can be ordered from EPO at http://www.epo.org/searching/subscription/raw/product-
14-24.html

15See www.oecd.org/environment/innovation, Vollebergh (2010) and Hasčič et al (2008).
16We use the publication numbers in this and the following patent examples.

12



“Dirty” includes patents with an IPC code that is related to the internal combustion

engine. These can be found in various sub-categories of the F02 group, for example F02B

(“Combustion engines in general”), F02F (“Cylinders, pistons or casings for combustion

engines”) or F02N (“Starting of combustion engines”). The full list of IPC codes used to

identify dirty patents is in Panel B of Table 1. Each of these groups includes several dozen

sub-classes and an example of the full list of sub-classes for the F02F group is shown in Ap-

pendix Figure A2. The dirty category typically includes patents covering the various parts

that make up an internal combustion engine. For example, EPO patent #0967381 pro-

tects a “Cylinder head of an internal-combustion engine” and USPTO patent #5844336

protects a “Starter for an internal combustion engine”.

As noted above, an important feature of the dirty category is that some patents

included in this group aim at improving the fuel efficiency of internal combustion engines,

making the dirty technology less dirty. We refer to these fuel-efficiency patents as “grey”

patents. In our baseline results, grey patents are included in the dirty category, but we

also disaggregate the category to estimate models separately for grey and “Pure Dirty”

innovations separately (as well as splitting up the knowledge stocks along these lines on

the right hand side of the regressions). To select IPC codes for grey technologies, we use

recent work at the European Patent Office related to the new climate change mitigation

patent classification (see Veefkind et al. 2012). We complement this with information from

interviews with engineers working in the automobile industry.17 The list of IPC codes is

shown in Panel C of Table 1. An example of a grey patent is EPO patent #0979940, which

protects a “Method and device for controlling fuel injection into an internal combustion

engine.” Electronic fuel injection technologies constantly monitor and control the amount

of fuel burnt in the engine, with a view to reduce the amount of fuel unnecessarily burnt,

thus optimizing fuel consumption. Appendix Figure A3 has the front page and technical

diagram of this patent.

Alongside the grey fuel efficiency innovations there are many purely dirty patents,

such as EPO patent #0402091, which covers a “Four-cycle twelve cylinder engine” (see

17We are especially indebted to Christian Hue de la Colombe for many extremely helpful discussions.
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Appendix Figure A4). Fuel consumption is proportional to the number and the volume

of cylinders: the average car sold in Europe has four cylinders whereas it is six in the US.

A twelve cylinder engine is much more powerful than a four or six cylinders engine, but

this comes at the cost of increased fuel consumption. Twelve cylinder engines are used by

many car makers for their top-range models, including Aston Martin, Audi, BMW and

Rolls Royce. These cars typically run about 15 miles/gallon, while the average new car

sold in the US in 2011 obtains 33.8 miles/gallon.18

To measure innovation, we use a count of patents by application/filing date. The

advantages and limitations of patenting as a measure of innovation have been extensively

discussed.19 For our purposes, there are three advantages of using patents. First, they are

available at a highly technologically disaggregated level. We can distinguish innovations

in the auto industry according to specific technologies whereas R&D investment cannot

be easily disaggregated. Second, R&D is not reported for small and medium sized firms in

Europe nor for privately listed firms in the US (they are exempt from the accounting re-

quirement to report R&D). Third, the auto sector is an innovation intensive sector, where

patents are perceived as an effective means of protection against imitation, something

which is not true in all sectors (Cohen et al., 2000).20 In our view, these considerations

make patents a reasonably good indicator of innovative activity in the auto sector.

Patents do suffer from a number of limitations. They are not the only way to protect

innovations, although a large fraction of the most economically significant innovations

appear to have been patented (Dernis et al., 2001). Another problem is that patent values

are highly heterogeneous with most patents having a very low valuation. Finally, the

number of patents that are granted for a given innovation varies significantly across patent

18See http://www.fueleconomy.gov for details on car consumption and
http://www.bts.gov/publications/national transportation statistics/html/table 04 23.html for US av-

erage. Note that even though much of dirty innovations are efficiency improving this has been historically
more than offset by increases in horsepower and size of cars. For example, between 1980 and 2004 the fuel
efficiency of passenger cars increased by only 6.5%, while horsepower increased by 80% (Knittel, 2011).

19See Griliches (1990) and OECD (2009) for overviews. Dating by application is conventional in the
empirical innovation literature as it is much more closely timed with when the R&D was performed than
the grant date.

20Cohen et al. (2000) conducted a survey questionnaire administered to 1,478 R&D labs in the U.S.
manufacturing sector. They rank sectors according to how effective patents are considered as a means of
protection against imitation, and find that the top three industries according to this criterion are medical
equipment and drugs, special purpose machinery and automobile.
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offices with concerns over increasing laxity in recent years particularly in the USPTO (e.g.

Jaffe and Lerner, 2004).

To mitigate these problems, we focus on “triadic” patents as our main outcome mea-

sure21 which are those patents that have been taken out in all three of the world’s major

patents offices in the US, Europe and Japan (USPTO, EPO and JPO).22 Focusing on

triadic patents has a number of advantages. First, triadic patents provide us with a com-

mon measure of innovation worldwide, which is robust to administrative idiosyncrasies of

the various patent offices. For example, if the same invention is covered by one patent

in the US and by two patents in Japan, all of which are part of the same triadic patent

family, we will count it as one single invention. Secondly, triadic patents cover only the

most valuable inventions which explains why they have been used so extensively to cap-

ture high-quality patents.23 Third, triadic patents typically protect inventions that have

a potential worldwide application so these patents are thus relatively independent of the

countries in which they are filed.

Our data set includes 6,419 clean and 18,652 dirty triadic patents.24 Since the EPO

was created in 1978 our triadic patent data only starts in that year. The last year of fully

comprehensive triadic data is 2005, so this is our end year.25 Our basic dataset consists of

all those applicants (both firms and individuals) who applied for at least one of these clean

or dirty auto patents. We identify 3,423 distinct patent holders, which breaks down into

2,427 companies and 996 individuals. For every patent holder we subsequently identify all

21To identify triadic patents we use the INPADOC dataset in PATSTAT. For details on the construction
of patent families see Martinez (2010)

22Following standard practice we use all patents filed at the EPO and JPO and USPTO. The USPTO
only published ungranted patent applications after 2001 (when they changed policy in line with the other
major patent offices). For consistency we thus consider only triadic patents granted by the USPTO both
before and after 2001. For the official definition of triadic patents and how triadic patent families are
constructed, see Dernis and Kahn (2004) and Martinez (2010).

23It has been empirically demonstrated that the number of countries in which a patent is filed is
correlated with other indicators of patent value. See, for example, Lanjouw et al, 1998, Harhoff et al,
2003). Grupp et al. (1996); Grupp (1998); Dernis, Guellec and van Pottelsberghe (2001); Dernis and
Khan (2004); Guellec and van Pottelsberghe, (2004)

24In total, the PATSTAT data set includes 213,668 “clean” and 762,708 “dirty” patent applications
across all 80 patents offices. Thus by using triadic patents we focus on the high end of the quality
distribution.

25The number of triadic patent in all technologies (i.e. including patents that are neither clean nor
dirty) starts falling in 2006. This is because of time lags between application and grant date at the
USPTO.
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the patents they filed. We also extract other pieces of information based on this sample

which we use to construct weights for prices and spillovers. For example, we identify

all the other patents filed by holders of at least one clean or dirty triadic patent, which

represents a total of 1,505,719 patent applications.

4.2 Tax-inclusive fuel prices

To estimate the impact of a carbon tax on innovation in clean and dirty technologies, we

use information on fuel prices (FPct) and fuel taxes. Data on tax-inclusive fuel prices are

available from the International Energy Agency (IEA) for 25 major countries from 1978

onwards.26 We construct a time-varying country-level fuel price defined as the average

of diesel and gasoline prices.27 The average fuel price across countries for our regression

sample period 1986-2005 is shown in Panel A of Figure 1. Although this source of variation

will be absorbed by the time dummies in our econometric specifications, it gives a sense

of the overall evolution of prices. Fuel prices fell from the mid to late 1980s then rose

peaking just before the Dot-Com bust of 2000-01. Prices then fell before recovering after

2003. Average fuel taxes have followed a broadly similar pattern falling in late 1980s,

rising throughout the 1990s and falling back in the 2000s (Panel B of Figure 1). What is

more striking, however, is the high variability across countries of changes in the fuel price

over time, much of it being driven by cross-country differences in tax policies (see Figure

2). Figure 3 illustrates this by showing the evolution of fuel price by country relative to

the US normalized in 1995.

Fuel prices are available only at the country-year level, whereas our dependent variable

26The IEA reports some incomplete data for an additional 13 countries. We explore the robustness of
our main results to the precise range of countries considered. We find that our results emerge even if we
restrict ourselves to only the 10 largest economies.

27Diesel and petrol are differentially taxed in many countries which could provide an interesting ad-
ditional source of variation. However, this would also require distinguishing innovations between these
categories. This is not easily possible as internal combustion engine patent classes do not explicitly sepa-
rate between diesel and other types of engines. Our interviews with engineers working in the automobile
industry revealed that patent class F02B1 (“Engines characterised by fuel-air mixture compression”)
corresponds in practice mostly to gasoline engines, while patent class F02B3 (“Engines characterised by
air compression and subsequent fuel addition”) mostly corresponds to diesel engines. However, these
are only two sub-classes out of over 200 used in the paper to classify dirty patents. Consequently we
would not be able to classify the majority of patents into diesel or gasoline engines, in particular because
many engine parts, such as pistons and cylinders (see for example F02B55, Internal-combustion aspects
of rotary pistons), are used indifferently in both types of engines.
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has firm level variation that we would like to exploit. A related issue is that the auto

market is global and government policies abroad might be at least as important for a

firm’s innovation decisions as policies in the country where the company’s headquarters

are located. We allow fuel prices to have a different effect across firms by noting that

some geographical markets matter more than others for reasons that are idiosyncratic to

an auto firm. Firstly, auto manufacturers have different styles of vehicles reflecting their

heterogenous capabilities and branding that are differentially popular depending on local

tastes (e.g. Berry et al, 1995; Goldberg, 1995; Verboven, 1999). Second, there is typically

some home bias towards “national champion” auto manufacturers in government policies

and national tastes. For example, the 2008 auto bailouts in Detroit where paid for by US

taxpayers whereas the bailout of Peugeot has been shouldered by the French. The upshot

of this is that auto firms display heterogeneous current and expected market shares across

nations and their R&D decisions will be more influenced by prices and policies in some

countries than in others.

To operationalize this idea we construct a fuel price variable for each firm as a weighted

average of fuel prices across countries based on a proxy of where the firm expects its future

market to be. Our price index for firm i at time t is defined as:

lnFPit =
∑
c

wFPic0 lnFPct (6)

where FPct is the tax-inclusive fuel price discussed above and wFPic0 is a firm-specific weight

(this is time invariant and uses information only prior to the regression sample period).

The weight is determined by the importance of county c as a market outlet for firm i, so

we define wFPic0 as the fraction of firm i’s patents taken out in country c. The rationale for

doing this is that a firm will seek intellectual property protection in jurisdictions where

it believes it will need to sell in the future (even if it licenses the technology, the value of

license will depend on whether it has obtained intellectual property protection in relevant

markets). For every patent applied for, we know that the patenting firm has paid the cost

of legal protection in a discrete number of countries. For example, a firm may choose to

enforce its rights in all EU countries or only in a subset of EU countries, say Germany and

the UK. Similarly, the firm may decide to apply for patent protection in the US but not
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in smaller markets. Assuming that the country distribution of a firm’s patent portfolio

is a good indicator of the firm’s expectation of where its markets will be in the future,

we can use this distribution to construct a firm-specific fuel price, FPit, whose value is

computed as the weighted mean of the ln(fuel prices) in the relevant markets, with weights

wFPic0 equal to the shares of the corresponding countries in the firm’s patent portfolio. For

example, if a firm had filed 30 patents, 20 in the US and 10 in Germany, the price changes

in the US would get a weight of two-thirds and the German price changes a weight of one

third. In addition, to account for the greater importance of larger countries, we further

weight by each country’s average GDP.

We calculate the weights using the patent portfolio of each company averaged over

the 1965-1985 “pre-sample” period, whereas we run regressions over the period 1986-2005.

This is to make sure that the weights are weakly exogenous as patent location could be

influenced by shocks to innovation. Choosing 1985 as the cut-off is to ensure there is

enough time pre-sample to construct the weights. We perform robustness tests using

different pre-sample periods to check that nothing is driven by the precise year of cut-

off (e.g. use 1965-1990 as the pre-sample period and estimate the regressions from 1991

onwards).

Why do we not use an alternative weighting scheme which simply reflects where firms

currently sell their products (e.g. as in Bloom, Schankerman and Van Reenen, 2013)?

First, we believe that the information on where firms choose to take patent protection is

a potentially better measure because it reflects their expectations of where their future

markets will be. Second, there is a data constraint: although sales distributions by

geographic area are available for larger firms they are not available for smaller firms -

and there are many patents from these smaller firms. We show our weights compared to

sales weights for some of the largest car firms in Appendix Table A1 - Toyota, VW, Ford,

Honda and Peugeot. The correlation is generally high suggesting that the weights we

choose do a reasonable job at reflecting market shares.28 The distribution of the weights

across countries is shown in Figure A5.

28One exception is that VW appears to have a much higher patent share in Germany (its home country)
than its sales would suggest.

18



4.3 The firm’s own lagged patent stocks and spillovers

Firm patent stocks are calculated in a straightforward manner using the patent flows

(PATz,it) described above. Following Cockburn and Griliches (1988) and Peri (2005), the

patent stock is calculated using the perpetual inventory method:

Kz,it = PATz,it + (1− δ)Kz,it−1 (7)

where z ∈ {Dirty, Clean}. We take δ, the depreciation of R&D capital, to be 20%, as

is often assumed in the literature, but we check the robustness of our results to other

plausible values.

To construct aggregate spillovers for a firm, we use information on the geographical

location of the various inventors in that firm. Patent statistics allow us to locate an

inventor geographically regardless of nationality of the firm’s headquarters or the location

of the office where the patent was filed (e.g. the patents of Toyota’s scientists working

in US research labs are part of this US spillover pool). Implicit in our approach is the

view that the geographical location of an inventor is likely to be a key determinant of

knowledge spillovers rather than the jurisdiction over which the patent is taken out (which

matters more as a signal of where the market for sales is likely to be). Many papers have

documented the importance of the geographical component of knowledge spillovers in

patents and other indicators (e.g. Henderson, Jaffe and Trajtenberg, 1993, 2005 and

Griffith, Lee and Van Reenen, 2011).

To construct a firm-specific spillover pool we use an analogous empirical strategy to

that for the fuel price. The spillover weight wSic0 is the share of all firm i’s inventors (i.e.

where the inventor worked) in country c between 1965 and 1985. This weight is distinct

from wPic0 in equation (6) as it is based on the location of inventors who are more likely

to benefit from research conducted locally. Importantly, the distribution of the patent

portfolio across countries and the distribution of inventors vary considerably across firms.

This is illustrated for the US in Appendix Figure A6.

The spillover for firm i is:

SPILLz,it =
∑
c

wSic0SPILLz,ct (8)
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where SPILLz,ct is the spillover pool in country c at time t. This is defined as:

SPILLz,ct =
∑
j 6=i

wSjc0Kz,jt (9)

The spillover pool of a country is the sum of all other firms’ patent stocks with a weight

that depends on how many inventors the other firm has in that country.29

As noted above, a common problem with patent data is that the value of patents is

highly heterogeneous. We mitigate this problem by conditioning on triadic patents, which

screen out the very low value patents. But we also perform two other checks. First, we

weight patents by the number of future citations. Second, we use “biadic” patents filed

at the EPO and at the USPTO, following Henderson and Cockburn (1993) who argued

that patents were important if they had been applied in at least two of the three major

economic regions. Our results are robust to these two variants.

4.4 Descriptive statistics

Figure 4 shows that aggregate triadic clean and dirty patents have been rising over time.

Dirty patents increased steadily between 1978 and 1988, fell temporarily and then rose

again between 1992 and 2000, but have been decreasing during the last five years of our

dataset. The number of clean patents was low for a decade until 1992, then began rising

particularly after 1995 (at an average annual growth rate of 23%), peaking at 724 in

2002 alone, before falling back slightly. Consequently, while the number of clean patents

represented only 10% of the number of dirty patents filed annually during the 1980s this

reached 60% by 2005. Descriptive statistics for our dataset used in the regressions are

shown in Table 2. In any given year, the average number of dirty patents per firm is 0.22

and the average number of clean patents is 0.08.

Appendix C discusses more descriptive statistics showing more of the cross-country

distribution of patent filing and citation patterns which are consistent with spillovers

29An alternative approach would be to define the country level spillover as

SPILLz,ct =
∑
j

Kz,jct (10)

where Kz,jct = PATz,jct + (1 − δ)Kz,jct−1 and PATz,jct is the number of patents filed by inventors of
company j located in country c at year t. Empirically these two methods give very similar results.
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being much stronger within the two categories (clean or dirty) than between them.

We look at the top 10 patentors in clean technologies (Table A4) and dirty technolo-

gies (Table A5) between 1978 and 2005. Japanese and German companies predominate

although most top companies’ portfolios include both clean and dirty (the only exception

is Samsung SDI, a battery specialist). Recall that this is based on triadic patents and

US companies tend to file disproportionately more patents in the US than in Europe and

Japan. Tables A6 to A9 report top clean and dirty patentors at the EPO and at the

USPTO separately. General Motors is the third largest patentor of clean technologies at

the USPTO whereas it is not even in the top 10 at the EPO.30

5 Results

5.1 Main Results

Our main results are shown in Table 3. The first three columns use the number of clean

patents (a flow) in a firm as the dependent variable and the last three columns uses the flow

of dirty patents. All estimates include firm fixed effects using the Control Function Fixed

Effect (CFX) approach (described in Section 3 and in more detail in Appendix B), year

dummies and GDP per capita. Column (1) shows that the coefficient on the (tax inclusive)

fuel price is positive and significant. The elasticity of 0.97 implies that a 10% higher fuel

price is associated with about 10% more clean patents. The coefficients on spillovers

and lagged patent stocks take signs consistent with the path dependency hypothesis.

Firms who are more exposed to larger stocks of clean innovation by other firms’ (“clean

spillovers”, SPILLC,it−1) are significantly more likely to produce clean patents, whereas

those benefiting more from dirty spillovers (SPILLD,it−1) are significantly less likely to

innovate in clean technologies. An increase in the lagged clean spillover stock by 10% is

associated with an increase in firm’s clean innovation by 2.7%. By contrast, an increase

in the exposure to dirty spillovers by 10% reduces clean innovation by 1.7%.

30While it is clear that there a number of big companies active in both clean and dirty automotive
patenting, computing a Herfindahl Index for patenting over 1978 to 2005 for clean innovation we find a
Herfindahl of 0.023 and for dirty we find a HHI of 0.038, implying low concentration. The top 10 patent
holders in clean account for 35.6% of patents over 1978 to 2005 whereas the corresponding figure is 46.6%
for dirty.
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In addition to path dependency at the economy level through spillovers, there is also

path dependency at the firm level. Column (1) of Table 3 suggests that firms which have

innovated in clean innovation in the past (KC,it−1) are much more likely to continue to

innovate in clean technologies in the future, with a significant elasticity of 0.306. Inter-

estingly, a firm’s own history of dirty innovation (KD,it−1) is also associated with more

clean innovation with an elasticity of 0.139. This coefficient is, however, much smaller

than the corresponding coefficient on past dirty innovation stocks in the dirty innovation

equation (column (4)) which is four times as large (0.557). In other words, firms with

a history of dirty innovation are more likely to innovate in the future in either clean or

dirty (compared to those with little innovation), but this effect is much stronger for dirty

innovations than for clean innovation leading to path dependence. Moreover, note that

in column (1) the coefficient on a firm’s past dirty innovation stock on future clean inno-

vation (0.139) is much smaller than the effect of past clean innovations on future clean

innovation (0.306).31

Columns (2) and (3) of Table 3 include a measure of R&D subsidies for clean tech-

nologies and a control for emission regulations. R&D subsidies are from the IEA’s Energy

Technology Research Database and the emissions regulations index are from Dechezlepre-

tre, Perkins and Neumayer (2010) with details in Appendix C. In contrast to the proxy

for carbon taxes (fuel prices) neither of these additional policy variables is statistically

significant and the coefficients on the other variables do not change much. The absence of

an R&D subsidy effect is surprising, and we explain why below when discussing Table 4.

Columns (4) to (6) of Table 3 repeat the specification in the first three columns but use

dirty patents as the dependent variable instead of clean patents. The coefficient on fuel

prices is negative and significant in all columns. In column (4) a 10% increase in fuel prices

is associated with about a 6% decrease in dirty innovation. The estimates on spillovers

and knowledge stocks are symmetric to those in the clean equation. Exposure to dirty

spillovers fosters future dirty innovation, whereas clean spillovers reduces dirty patenting.

The coefficients suggest that a firm’s own history of either dirty of clean patenting has a

31This effect is not predicted by the theory but could result for instance from cross-technology knowledge
spillovers.
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positive effect on further dirty patenting, but the effect of past dirty patenting is stronger

on future dirty innovation than past clean innovations.

In summary, Table 3 offers considerable support for our model. First, higher fuel

prices significantly encourage clean innovation and significantly discourage dirty innova-

tion. Second there is path dependency in the direction of technical change: countries and

firms that have a history of relatively more clean (respectively dirty) innovation are more

likely to innovate in clean (respectively dirty) technologies in the future.

5.2 Grey Innovations

Our dirty category includes innovations relating to improvements in the energy effi-

ciency of internal combustion engines. We labeled these “grey” innovations and consider

disaggregating the dirty category into these grey and purely dirty innovations. As noted

in Section 2 the effect of fuel prices are more ambiguous in this middle grey category.

On the one hand, there are incentives to substitute research away from purely dirty into

grey innovation when the fuel price rises. On the other hand, there is also an incentive

to switch away from the internal combustion engines completely (including grey) towards

alternative clean vehicles.

Table 4 presents the results and shows that, as expected, the coefficient on the fuel

price for grey innovation in the second column (0.282) lies between the coefficients on clean

(positive at 0.848 in column (1)) and purely dirty (very negative at -0.832 in column (3)).

This is consistent with fuel prices having a positive effect on energy efficient innovation,

although smaller and insignificant when compared to the effect of fuel prices on purely

clean innovations. Another interesting feature of the results is that the coefficient on R&D

subsidies is positive and significant in the grey innovation equation whereas it continues

to be insignificant in the clean and purely dirty equations. This is consistent with the fact

that the majority of these government subsidies are for energy efficiency (see Appendix

C) rather than more radical clean technologies.

Since we have also disaggregated the spillover stocks and the firm’s own past innovation

stocks into the three categories now we have six variables reflecting path dependency on

the right hand side of the regression. The coefficients on these variables take a broadly
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sensible pattern, but precision has fallen as there is likely to be some collinearity issues

with a large number of highly correlated variables.

Given how demanding this specification is we find the overall results from Table 4

encouraging and consistent with the theory.

5.3 Magnitude of the fuel price effect on innovation

In quantitative terms, how do our estimates compare to others in the literature? Popp

(2002) reports short-run energy price elasticities for the impact of prices on the aggregate

number clean patents as a share of all patents (we look at long-run price effects in Section

6 below). We can compute this elasticity from our regression model as32

EC,P = βC,P (1− SC)− βD,PSD

where SC and SD are the share of clean and dirty patenting in economy wide patents (i.e.

clean, dirty and all others) and βC,P and βD,P are coefficients on ln(price) from our clean

and dirty innovation equations respectively. Compared to all patents in the economy,

innovation in the car industry is rather small. In our sample period only 0.9% of all

patents are clean auto patents and 2.5% are dirty auto patents. Hence, betaC,P provides a

good approximation of the elasticity. For example, using the estimates in Table 3 column

(1) the elasticity would be 0.970 under our approximation and 0.981 using the exact

formula above.

Popp looks at clean innovation in power generation technologies, whereas we are fo-

cused on innovation in the auto sector. Crabb and Johnson (2010) implement the same

specification as Popp but on the US auto sector, finding an elasticity of around 0.4 (com-

pared to Popp’s 0.06 for all power generation technologiesclean innovations). Both Popp

32EC,P = ∂ lnSC
∂ lnFP where SC = PATC

PATC+PATD+PATO
and total patents PATZ =

∑
i exp (xitβZ) ηZi for

Z ∈ {C,D,O} and where O represents “other”; i.e. non clean or dirty patents. Consequently, EC,P =
∂PATC
∂ lnFP

PATC
−

∂PATc
∂ lnFP +

∂PATD
∂ lnFP +

∂PATO
∂ lnFP

PATC+PATD+PATO

=
(PATC + PATD + PATO) ∂PATc∂ lnFP − PATC

(
∂PATc
∂ lnFP + ∂PATD

∂ lnFP

)
PATC (PATC + PATD + PATO)

=
(PATD + PATO)βP,C − PATDβP,D

PATC + PATD + PATO
= βC,P (1− SC)− βD,PSD

where βP,C and βP,D are the coefficients on ln(price) for the clean and dirty equation, respectively.
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and Crab and Johnson include what we have dubbed “grey” innovation in their definition

of clean. Thus to derive a comparable elasticity we report a weighted average of the price

coefficient for clean and the price coefficient for grey derived from our estimates reported

in Table 4 where we split the dirty category into “grey” and “pure non-grey dirty”. The

elasticity becomes (again abstracting away from the small effect on aggregate innovation):

EC+G,P ≈ βC,P
PATC

PATC + PATG
+ βD,P

PATG
PATC + PATG

where PATC and PATG are the aggregate number of clean (our definition) and grey

innovations at a particular point in time. As can be seen from Figure 5, this elasticity

ranges from 0.4 to 0.6, so is similar in magnitude to Crabb and Johnson’s estimates.

The increase over time is because the share of “pure clean” innovation relative to “grey”

innovations has been increasing over time.

5.4 Alternative Econometric Specifications

Table 5 considers the alternative econometric approaches for dynamic count data mod-

els with firm fixed effects discussed in Section 3. First, we follow Hausman, Hall and

Griliches (“HHG”) in column (1) for clean patents and column (3) for dirty patents. The

signs of coefficients are generally the same as in our baseline model of Table 3, but the

marginal effect of fuel price is much greater in absolute magnitude for dirty innovation

and smaller (and insignificant) for clean. Indeed the magnitude of the estimated elasticity

for dirty patents seems unreasonably large (-2.457). We suspect that the assumption of

strict exogeneity underlying HHG is problematic in our context, as we have a highly dy-

namic specification. Columns (2) and (4) implement the Blundell et al (1995, 1999, 2002,

BGVR) estimator. The pattern of the spillover effects and dynamics remain similar to

the baseline regression, and we still obtain a positive and significant effect of fuel prices

on clean innovation and a negative and significant effect on dirty innovation. The fuel

price coefficients are comparable to the baseline case.33

33However, notice that we find larger values for the effects of clean knowledge stocks on clean patenting
and dirty knowledge stocks on dirty patenting than in both the baseline CFX and the HHG specification.
This could mean that the BGVR approach is not fully controlling for all the fixed effects by relying on
pre-sample patenting only.
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The final two columns of Table 5 uses relative patenting ln(1 + PATClean,it) - ln(1 +

PATDirty,it) as the dependent variable in an OLS regression with firm dummies (i.e. the

linear within groups estimator). Column (5) shows that there is a significant and positive

effect of fuel prices on relative innovation. Column (6) shows that this result is robust to

including a full set of country by year fixed effects to absorb any potential country specific

time varying policy variables.34

Could the results somehow be driven by firms who were not patenting prior to 1986?

Table 6 repeats the baseline regressions for our three count data models (BGVR, HHG

and CFX) restricting the sample to firms with at least one patent before 1986. This leads

to only small changes in the coefficients and no change in the overall qualitative patterns.

5.5 Electricity prices

Most clean car technologies depend on electricity.35 We can therefore hypothesize that

electricity prices have the opposite effect from fossil fuel prices on the direction of technical

change. In Table 7 we find that, as expected, electricity prices have a negative effect on

clean and a positive effect on dirty innovation, although the coefficients are less precisely

determined than those on the fuel price. Looking simultaneously at fuel and electricity

prices can also be seen as a further robustness check for our main results. One concern

might be that our results on fossil fuels are driven by unobserved factors such as a general

concern for climate change or other climate related regulation that we do not control

for. However, for most such unobserved factors we would expect that they have a similar

effect on both fossil fuel and electricity prices, whereas the coefficients take opposite signs

in the regressions. Columns (2) and (4) use the relative fuel to electricity price as the

coefficients in column (1) and (3) are opposite and of similar magnitude. The coefficients

on the relative price look very similar to our baseline estimates.

34The country here is based on the headquarters whereas the previous country variables like fuel price
were based on weighted averages using patent weights. Note that it is computationally infeasible to
include the full set of country by time dummies in the non-linear count data models.

35Hydrogen for hydrogen cars can be produced via electrolysis of water. It can also be derived from
natural gas in a process called steam reforming. However, steam reforming still leads to CO2 emissions.
Consequently, many experts suggest that in the long run most hydrogen would be derived from electrolysis
using electricity from renewable sources.
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5.6 Other extensions and robustness tests

Oil prices are broadly global, so most of the country-specific variation over time in fuel

prices comes from differential taxation. Consequently, Table 8 substitutes fuel taxes

for fuel prices showing again a similar pattern of results. One difference is that the

point estimates of the fuel price response are smaller in absolute terms for both types of

innovation. This is to be expected as demand is driven by the final price the consumer

pays rather than the fuel tax itself.

Choosing 1986 as the first year for the regression sample is somewhat arbitrary, so we

we experimented with changing the cut-off year to check robustness. For example we used

1990 instead and ran the regressions 1991-2005 using data from 1965-1990 to construct the

weights. The results in Table 9 are quite comparable to our baseline, although standard

errors are a little larger as we would expect from using a smaller sample for the regressions.

Table 10 reports alternative dynamic specifications for fuel prices. The first five

columns are for clean innovation and use fuel prices dated in the current year in col-

umn (1), lagged one year in our baseline of column (2), lagged two years in column (3)

and lagged three years in column (4). In column (5) we construct a geometrically weighted

average of past fuel price levels as proposed by Popp(2002).36 We repeat these specifica-

tions in the last five columns but use dirty patents instead. With all these approaches we

find price coefficients that are very similar to our earlier estimates with a positive elastic-

ity of clean patents with respect to fuel price of around unity and a negative elasticity of

dirty patents of around -0.6. 37

We conducted many other robustness tests. First, our outcome variable is Triadic

patents, those filed at all three main patent offices in the world (USPTO, EPO and JPO).

A concern is that this screens out too many of the lower value patents. To address this we

ran our regressions based on biadic rather than triadic patents; i.e. we included all patents

36Popp (2002) uses an adaptive expectations model of prices, in which the expected future price of
energy is a weighted average of past prices: P ∗it =

∑n
k=0 λ

kPi,t−k. The parameter λ captures the speed at
which agents adjust their expectations based on the gap between the predicted and the realized values.
For comparison purposes we use the same adjustment factor of λ = 0.83 as in Popp (2002).

37We tried to pin down more precisely the dynamic response structure by including multiple lags of
price simultaneously but autocorrelation in prices made it difficult as all coefficients tended to be zero,
as in Popp (2002).
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into the construction of the innovation and knowledge stock variables that are filed at the

EPO and the USPTO but not necessarily the JPO. Table A10 shows that the results are

robust to this experiment. Second, we constructed the patent stock variables - including

the spillover variables - using citation weighted counts from all worldwide patents (Table

A11). This led to qualitatively similarly results, e.g. the fuel price response is larger

for clean patents than for dirty patents.38 Third, we experimented with a wide range of

other country specific variables and report that the results are robust to these additional

covariates. For example, in Table A12 we included total GDP in addition to GDP per

capita. The coefficient on GDP is insignificant and the basic pattern of our results is robust

to this extra control. Fourth, we were concerned that the results could be driven by high

price volatility in the smaller countries in our data, so we re-constructed the weights for

the fuel price based on sub-samples of the largest countries in GDP terms. Table A13

shows that the results are robust when just using the larger countries in our sample. Fifth,

as discussed in sub-section 4.2 it may be that it is not correct to classify hybrid cars as

clean innovation, so we experimented with dropping them from our definition of clean

technologies. The results are robust to this change (Table A14).39 Finally, we wanted to

make sure that our results were not driven by firms who rarely patent so we dropped the

least innovative firms who collectively only accounted for 5% of aggregate patents. The

results were robust to this test.

6 Simulation results

To obtain a better sense of the aggregate magnitude of the results we report a number

of counterfactual experiments. We explore the implications of our econometric models for

the evolution of future clean and dirty knowledge stocks and how this is affected by an

increase in the fuel price (generated, for example, by an international carbon tax). We

recursively compute values of expected patenting under different policy scenarios, use

38If anything, the results are generally stronger with elasticities that are larger in magnitude.
39We also re-ran Table 4 reclassifying all hybrids as grey innovations. The resulting point estimate on

clean is somewhat lower (0.565 instead of 0.848) and as a consequence looses significance. However, as
the coefficient on grey drops even more so that the clean grey gap becomes slightly larger we attribute
these changes to the somewhat reduced power of this specification and conclude that hybrid technologies
are not the main drivers of the clean advantage in our main specifications.
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those to update the knowledge stock variables (including the spillover variables) and feed

these into the next iteration. Hence, if we split the right hand side variables xit into

variables that are functions of the lagged knowledge stock (kit) and other variables such

as the fuel price (pit), we can write xit = [kit, pit] and a particular iteration in period T

greater than t as defined by:

P̂AT z,it+T = exp
(
kit+T−1βkz + pCFi,t+Tβpz

)
ηz,i

ki,t+T = f
(
ki,t+T−1, P̂ATClean,it+T , P̂ATDirty,it+T

) (11)

where P̂ATClean,it+T and P̂ATDirty,it+T are vectors of predicted patent flows for firms in the

sample and pCFit+T are potentially counterfactual values of the policy and other control vari-

ables. Our results imply that there is path dependence in the type of innovation pursued,

both through internal firm-level knowledge stock effects as well as external country-wide

spillovers. In this section we explore how important is this path dependence in quanti-

tative terms by studying the evolution of both clean and dirty knowledge stock implied

by our fitted models into the future. We do this for every firm in the dataset and then

aggregate across the world economy in each period.

More specifically, we are looking for conditions under which the clean knowledge stock

for the aggregate economy exceeds the dirty knowledge stock. In line with Acemoglu et al.

(2012a) this would be a requirement for clean technologies to be able to compete with

dirty ones, even without policy intervention. Our projections should be considered as a

rough exploration into the importance of carbon taxes and path dependency rather than

precise forecasts of future innovation.40

We focus on the period up to 2030 with 2020 as a focal point. This is somewhat

arbitrary but in line with scenarios of the International Energy Agency (IEA)41 suggesting

that globally fossil fuel use must peak by 2020 to avoid highly risky climate change. It is

also consistent with the European Commission’s 2020 targets.42

40Technically, the tipping point where the market starts innovating more in clean technologies than
in dirty technologies without policy intervention, occurs when the clean technology is more productive
than the dirty technology. Our stock of knowledge variables respectively on clean and dirty innovation
are natural proxies for measuring the relative productivity of clean versus dirty technologies.

41http://blogs.ft.com/energy-source/2009/11/10/fossil-fuel-use-must-peak-by-2020-warns-
iea/#axzz1tQmZyLoy

42See http://ec.europa.eu/news/economy/100303 en.htm
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We first check the within sample performance of the model by implementing simulation

runs providing recursively generated knowledge stocks over the regression sample period

(1986-2005) in Appendix Figure A7.43 Clean and dirty patent stocks are reported on the

y-axis. Comparing predicted aggregate patents to the actual values suggests that our

preferred CFX model does a reasonably good job at tracking the aggregate changes in

clean and dirty patenting (Panel A). The alternative BGVR and HHG estimates are not

too bad but do much less well in later years (Panels B and C).

Figure 6 reports simulations based on the regressions from Table 6 columns (1) and

(4) for years through to 2030. In Panel A we report the baseline case keeping fuel prices

(and time dummies) at their 2005 values.44 The regressions imply a strong enough path

dependency for the gap between dirty and clean knowledge stocks to remain far apart

for a considerable period of time. Clean innovation catches up with dirty only well after

2030. This catch up occurs because of delayed reaction to fuel price hikes leading up to

2005 and GDP per capita growth which tend to relatively favor clean innovation.

To what extent can carbon taxes speed up this convergence process? We examine

the effects of a permanent worldwide increase in fuel prices in 2006 (and fixed at this

level thereafter) of 10%, 20%, 30%, 40% and 50% in Panels B through F respectively. In

Panel B we see that the gap between clean and dirty becomes smaller with a fuel price

increase of 10% both because there is more clean innovation and because there is less

dirty innovation. However, parity is achieved between clean and dirty only after 2030. It

would take an increase of 40% in fuel prices in order to achieve parity in 2020 according

to our model (Panel E). This is a pretty large increase - comparable with the increase

that took place in the 1990s in Figure 1.

One criticism of the simulation is that we would expect such a large increase in the fuel

prices to have a negative effect on GDP per capita due to deadweight costs of taxation,

adjustment costs and so on. This in turn could slow down the growth of clean innovation

(e.g. Gans, 2012). To obtain some insight into the magnitude of these effects, Figure 7

43For the simulations we restrict the sample to the firms where we have pre sample information. In this
way we do not have to make further assumptions as to how changes in the spillover and policy variables
would affect firms where these variables are essentially missing.

44We assume per capita GDP grows at 1.5% p.a., but report alternative assumptions in Figure 7.
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considers the 40% fuel tax hike scenario coupled with a negative effect on GDP per capita

growth. Panel A reproduces the baseline case where there is no effect on GDP (as in

Figure 6 Panel E). Panel B considers a fall in the growth rate by 0.25 percentage point

(e.g. from 1.5% to 1.25%). This postpones the crossover year because income growth has

a stronger positive effect on clean innovation than dirty innovation in our estimates. But

the effect is rather small, moving the crossover year from 2020 to 2022, only two years.

Larger tax-driven falls in GDP per capita growth postpone things further, but it would

take a full one percentage point a year fall in the growth rate to postpone the crossover

year beyond 2030. We view it as very unlikely that fuel taxes would knock a percentage

point off annual growth for 15 years or more and this also ignores the damaging effects of

global warming itself on economic growth over the medium run. We therefore take some

comfort from Figure 7 that incorporating output effects would not dramatically change

the conclusions from Figure 6.

In Figure 8 we explore the importance of path dependence for the simulations. First

we repeat the baseline specifications allowing for all dynamic adjustments in the cases of

no fuel price change (Panel A) and of a 40% increase (Panel B). In panels C and D we

repeat this exercise while fixing all innovation stock variables - i.e. both spillovers and own

knowledge stocks - at their 2005 levels. As a consequence both clean and dirty innovation

and thus the growth rate of knowledge stocks reduces markedly as firms no longer benefit

from standing on the shoulders of either their own or others’ past innovation success.

Also note that in Panel C where we keep prices fixed, the gap between clean and dirty

is now much narrower than in the equivalent Panel A. Despite this, the 40% increase in

fuel prices in Panel D is much less effective than in Panel B where the dynamic effects

from knowledge stocks are switched on. This illustrates that path dependency is a double

edged sword as pointed out by Acemoglu et al (2012a). In the absence of effective policies

it creates a kind of lock-in for dirty innovation. But if effective policies are introduced

like a carbon tax or R&D subsidy, path dependency can help reinforce the growth of

clean innovation as the economy accumulates clean knowledge more rapidly. Hence, if we

switch off the two path dependency channels, innovation trends become less responsive
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to tax policy.

7 Conclusion

In this paper we have combined several patent datasets to analyze directed technical

change in the auto sector, which is a key industry of concern for climate change. We use

patenting data from 3,412 firms and individuals between 1965 and 2005 across 80 patent

offices. We exploit the fact that tax-inclusive fuel prices (our proxy for a carbon tax) evolve

differentially over time across countries in our dataset and that firms are differentially

exposed to these price changes because of their heterogeneous market positions in different

geographic markets. Consistent with what theory predicts we find that clean innovation

is stimulated by increases in the fuel prices whereas dirty innovation is depressed.

Our second key result is that there is strong evidence for “path dependency” in the

sense that firms more exposed to clean innovation from other firms are more likely to direct

their research energies to clean innovation in the future (a directed knowledge spillover

effect). Similarly, firms with a history of dirty innovation in the past are more likely to

focus on dirty innovation in the future. The fact that such path dependency holds for clean

(as well as dirty) innovation highlights the desirability of acting sooner to shift incentives

for climate change innovation. Since the stock of dirty innovation is greater than clean,

the path dependency effect will tend to lock economies into high carbon emissions, even

after the introduction of a mild carbon tax or R&D subsidies for clean. So this may make

the case for stronger action now, which could be relaxed in the future as the economy’s

stock of knowledge shifts in more of a clean direction. Increases to carbon prices can

bring about a change in direction. For example, our baseline results suggest an increase

of 40% of fuel prices with respect to the 2005 fuel price will allow clean innovation stocks

to overtake dirty stocks after fifteen years.

Our analysis could be extended in several directions. First, we could analyze output

effects beyond the macro adjustments in the simulations of Table 6 to examine the firm-

level effects. This would require a large extension in terms of using data on sales, however.

Second, we could use our framework to simulate other policies, such as country specific
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changes in carbon taxes (or R&D subsidies) to see how this would affect the innovation

profiles in specific countries rather than just globally. Third, the same basic approach

could be taken to look at other sectors than automobiles such as the energy sector as

in Acemoglu et al (2012b). Finally, we could use micro data to estimate the relative

efficiency of R&D investments in clean versus dirty innovation, and also the elasticity of

substitution between the two types of production technologies. As argued in Acemoglu et

al (2012a), these parameters play as important a role as the discount rate in characterizing

the optimal environmental policy. We acknowledge that a limitation of our analysis is

that we assume that non-combustion engine cars are needed for radically reducing carbon

emissions in transport. It may be that innovation in grey technologies will be sufficient,

although we view this as unlikely. To close the model, one would further need to measure

the emissions impact of each type of innovations (clean, grey or purely dirty) and include a

simultaneous analysis of emissions in electricity production. All these and other extensions

of our analysis in this paper are left for future research.
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Web Appendix (not intended for publication
unless requested)

A Appendix: Model

In this section we present a simple model to guide our empirical analysis. This model

rationalizes path dependence in firms’ own knowledge stock as well as the impact of a

change in the price of fuel on clean, grey and dirty innovations. We then show how one

can add knowledge spillovers to our framework.

A.1 Basic framework

We denote by fc the price of electricity and fd the price of fuel. To complete the description

of the model, we need to specify the innovation technology. We assume that at the

beginning of the period, by incurring total R&D cost 1
2
ψx2

zi in the outside good, the

producer of variety i of type-z car can increase productivity according to:

Azi = (1 + xzi)A
0
zi for z ∈ {c, d} , (12)

where A0
zi is the initial productivity for producing that type of cars. Spending 1

2
ψx2

ξi

units of final good in grey innovations allows to increase energy efficiency for dirty cars

according to

ξdi = (1 + xξi) ξ
0
di,

where ξ0
di is the initial energy efficiency for dirty cars (xξi represents grey innovations).

Note that we do not introduce innovations in ξci as they behave exactly like innovations

in Aci for the comparative statics that we are interested in. The timing is very simple: at

the beginning of the period producers invest in R&D and innovate; at the end of the pe-

riod, given their productivities resulting from R&D activities, producers make production

decisions to maximize profits.

Finally, the model assumes that energy and cars are Leontief in a car-bundle for

simplicity, but it is straightforward to extend the analysis to a CES case where the two

inputs are complement (with an elasticity of substitution smaller than 1).
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A.2 Solving the model

A.2.1 Equilibrium profits

Define the price indexes for dirty and clean car bundles as:

Pz =

(∫ 1

0

(
pzi +

fz
ξzi

)1−σ
) 1

1−σ

, for z ∈ {c, d} .

The inverse demand curves for clean and dirty cars, which simply result from utility

maximization subject to budget constraint, are given by:

yzi =

(
pzi +

fz
ξzi

)−σ
P σ−ε
z

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε for z ∈ {c, d} . (13)

For given (end-of-period) productivity Azi, the producer of variety i of type-z car

solves:

πzi = max
yzi
{pziyzi −

1

Azi
yzi}

where yzi for z ∈ {c, d} is given by (13).

This yields the following expression for the equilibrium profit of the corresponding car

producer:

πzi =
(σ − 1)σ−1

σσ

(
1

Azi
+
fz
ξzi

)1−σ

P σ−ε
z

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε for z ∈ {c, d} . (14)

In particular an increase in the firm’s productivity Azi, its energy efficiency ξzi, or a

reduction in the price of energy fz increases the equilibrium profit πzi since we assumed

σ > 1.

A.2.2 Equilibrium innovation efforts and path-dependence

Moving back to the beginning of the period, the equilibrium innovation intensities xzi

solve

max
xzi
{πzi −

1

2
ψx2

zi},

where πzi is given by equation (14) and Azi satisfies the growth equation (12). For ψ

sufficiently large the solution to this maximization problem is uniquely given by the first
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order condition. The resulting xzi satisfies:

xzi ∝
1

A0
zi (1 + xzi)

2

(
1

A0
zi (1 + xzi)

+
fz
ξzi

)−σ
, (15)

xξi ∝
fd

ξ0
di (1 + xξi)

2

(
1

Adi
+

fd
ξ0
di (1 + xξi)

)−σ
. (16)

In particular, the equilibrium innovation intensities xzi increases in the firm’s corre-

sponding technology stocks A0
zi if the elasticity of substitution σ is sufficiently large or if

the price of fuel fz represents a sufficiently small share of the total costs of a car. The

precise condition is σ−1
Azi

> fz
ξz
. A back of the envelope calculation shows that this condi-

tion is likely to be satisfied in practice. In our set-up the price of a new car is given by

pzi = σ
σ−1

1
Azi

+ 1
σ−1

fz
ξz

, so that the price ratio between fuel expenditure and a new car is

equal to x = fz
ξz
/
(

σ
σ−1

1
Azi

+ 1
σ−1

fz
ξz

)
. The average price of a new car in the US is $26,850

with a fuel efficiency of 33.8 miles per gallon and Americans drive on average 14,500 miles

per year.45 Assuming that fuel costs $4 a gallon (with a price increasing at the Hotelling

rate), and that a car lasts for 10 years, we obtain a price ratio of x = 0.64. Simple algebra

gives that fz
ξz
/ (σ−1)

Azi
= σ

(σ−1)(σ−1
x
−1)

which is equal to 0.70, so that fz
ξz
< σ−1

Azi
, when the

elasticity of substitution σ is equal to 3. An elasticity of substitution of 3 seems to be a

low value: in the model, the elasticity of substitution is the same as the price elasticity

for car varieties, which Berry, Levinsohn and Pakes (1995) estimated to lie between 5.05

and 37.49 (depending on the car variety).

Then, there is path dependence with respect to the firm’s own innovation history. The

ambiguity of the effect of the firm’s own technology stock A0
zi on the firm’s innovation

incentives reflects two counteracting forces of a higher A0
zi. On the one hand, the term

1
A0
zi

reflects that the impact of an additional dirty innovation on the price charged by the

monopolist is lower when the producer is already very productive; on the other hand, the

term
(

1
Azi

+ fz
ξz

)−σ
reflects the positive effect of a higher A0

zi on firm i’s market size (a

large market size encouraging more innovation). This latter effect is strongest when the

price of fuel fz represents a sufficiently small share of the total costs of a car or when the

elasticity of substitution σ between variety (i, z) and other varieties of the z-type cars is

sufficiently large, which in turn implies that a lower price allows producer (i, z) to capture

more market share from other (j, z) producers.

45Source: http://www.bts.gov/publications/national transportation statistics/
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Similarly xξi increases in the firm’s corresponding technology stocks Azi0 as long as

(σ − 1) fz
ξzi

> 1
Azi

. This is also likely to hold, as (σ − 1) fz
ξzi
/ 1
Azi

= σ
x−1− 1

σ−1

, which is

increasing in σ and equal to 2.8 for x = 0.64 and σ = 3.

A.2.3 Redirecting innovation through changes in the fuel price

We now investigate the impact of a change in the fuel price on clean, dirty innovations

and grey. Totally differentiating equation (15) for z = c with respect to the fuel price,

and then using the notation X̂ = dX
X
,we obtain:

(1− ω) x̂ci =

(
σ − ε+ (ε− β)

P 1−ε
c

P 1−ε
c + P 1−ε

d

)
P̂c + (ε− β)

P 1−ε
d

P 1−ε
c + P 1−ε

d

P̂d, (17)

where ω ≡ d
dxzi

ln

(
1

(1+xzi)
2

(
1

Aci0(1+xci)
+ fz

ξz

)−σ)
< 1.46

For sufficiently small innovation intensities, one can neglect the indirect impact of an

increase in fuel price via the innovation response of other firms, so that P̂c ≈ 0.47 Then

we approximately have:

x̂ci ∝ (ε− β)
P 1−ε
d

P 1−ε
c + P 1−ε

d

P̂d.

This in turn implies that the equilibrium intensity of clean innovation increases with fuel

price since we assumed ε ≥ β. Intuitively, a higher fuel price makes dirty car bundles

more expensive; this in turn might favor the demand either for clean car bundles or for

the outside good. It will boost the demand for clean car bundles if the elasticity of

substitution between dirty and clean car bundles is higher than the price elasticity of

motor-vehicle services as a whole, as we assumed.

Similarly, we get:

(1− ω) x̂di ≈ σ

(
P̂d −

fd
ξdi

1
Adi

+ fd
ξdi

f̂d

)
−
(
ε

P 1−ε
c

P 1−ε
c + P 1−ε

d

+ β
P 1−ε
d

P 1−ε
c + P 1−ε

d

)
P̂d (18)

once we neglect the indirect impact of a change in fuel price on the price indexes working

through the innovation response. The first term captures a reallocation effect among

46That ω be less than 1 follows from the fact that at the equilibrium the left-hand side of (15) crosses
the right-hand side from below.

47Another reason to neglect this indirect impact is that firms typically operate in several markets,
with different exposures to each market for each firm. Therefore, the allocation of innovation of the
competitors does not depend only on the fuel price in a given country but also on the fuel price in other
countries.
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varieties of dirty cars, from most to least productive dirty car producers. This term

would indeed be equal to zero if all firms had the same dirty technologies, otherwise it

has the sign of f̂d for the least productive dirty firms and the opposite sign for the most

productive dirty firms. The second term captures a substitution effect between clean and

dirty car producers. This term has the opposite sign from that of f̂d: namely, an increase

in fuel price reduces the benefit of dirty innovation both because it induces substitution

towards clean cars and because it reduces the overall consumption of cars.

Finally, totally differentiating (16) with respect to the fuel price leads to:

(1− ω) x̂ξi ∝ σ

(
P̂d −

fd
ξdi

1
Adi

+ fd
ξdi

f̂d

)
−
(
ε

P 1−ε
c

P 1−ε
c + P 1−ε

d

+ β
P 1−ε
d

P 1−ε
c + P 1−ε

d

)
P̂d + f̂d.

This expression is similar to equation (18) except for the last term which captures a

direct positive effect of an increase in the fuel price on energy efficiency innovation. The

overall impact of an increase in the fuel price on grey innovation is therefore ambiguous,

whereas we saw that it is unambiguously positive on clean innovation. The reason for the

ambiguous effect is that, on the one hand, an increase in fuel price reduces the demand for

dirty cars and therefore the profitability of producing (and innovating) in the dirty sector

altogether, but on the other hand, it induces dirty firms to save more on fuel energy by

improving dirty energy efficiency.

We use the expression “grey” as the impact of these innovations on the environment is

also ambiguous.48 On one hand, these innovations increase energy efficiency and therefore

reduce the amount of fuel consumption per car; on the other hand they make fossil fuel

cars cheaper, thereby increasing total consumption of these cars.49

48Formally, one obtains

edi =
ydi
ξdi

=
σ

σ − 1

1

ξdi

(
1

Adi
+
fd
ξdi

)−σ
Pσ−εd

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε ,

so that replacing gi with edi

dgi
dξdi

=

(
(σ − 1)

fd
ξdi
− 1

Adi

)
1

ξ2di

(
1

Adi
+
fd
ξdi

)−σ−1
σ

σ − 1
Pσ−εd

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε ,

which is ambiguously signed. The expression is negative if the price of fuel is sufficiently low relative to
other costs, but it is positive if the elasticity of substitution across cars is sufficiently large.

49Empirically, this latter “rebound effect” is estimated at around 20 - 25% (see for instance Small and
Van Dender, 2007), however some studies have estimated much larger rebound effects (87% in West,
2004).
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A.3 Knowledge spillovers

In the empirical part of the paper we investigate not only the effects of firms’ own past

knowledge but also the effects of aggregate knowledge spillovers across firms in the country

where innovation occurs. To introduce the possibility of such aggregate spillovers in our

model, suppose the existence for each firm i of knowledge spillovers from a set Ωi of

neighboring varieties of cars of the same type z = c, d, so that abstracting from innovation,

firm i’s initial productivity is:

Ãzi0 = Azi0(1 + η(Azi0))

where

Azi0 =

∫
Ωi

Azj0dj

and η is an increasing function.50

Equilibrium innovation xzi is now given by:

xzi ∝
1

Ãzi0 (1 + xzi)
2

(
1

Ãzi0 (1 + xzi)
+
fz
ξz

)−σ
(19)

which again is increasing in the aggregate initial knowledge variable Azi0 if σ is sufficiently

large.

B Econometric Models

We separately examine clean and dirty patent counts using a standard Poisson model

PATzit = exp (xitβz) ηzi + uzit (20)

where z∈ {Dirty, Clean} and xit is a vector of regressors including functions of the lagged

dependent variable. For identification we assume E(uzit|xit) = 0.51 We consider four

50Our modeling of knowledge spillovers is dictated by our empirical estimation strategy, whereby for
each patenting firms, we compute the stock of patents generated by scientists who are geographically
close.

51Note that we can equivalently represent the model in terms of a multiplicative shock νzit with
E(νzit|xit) = 1. We would have

νzit = 1 +
uzit

exp (xitβz) ηzi
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alternative estimation techniques that allow for the possibility of firm level fixed effects

ηzit in the propensity to patent. The standard approach is Hausman, Hall and Griliches

(1984, HHG) who suggest a transformation akin to the within groups estimator in the

linear panel data context. In GMM terms, their estimator can be expressed as relying

on the following moment condition for identification (e.g. Blundell, Griffith, Windmeijer,

2002):

E

{(
PATzit − µzit

¯PATzi
µ̄zi

)
xkit

}
= 0

for all variable in xit where µzit = exp (xitβz) and a bar represents the average of a

variable over time for a specific firm. Note that

PATzit − µzit
¯PATzi
µ̄zi

= uzit −
µzit
µ̄zi

ūzit

implying that we require strict exogeneity, i.e. the shock uzit must be uncorrelated with

xit not only contemporaneously, but in all periods; i.e. E {uzit|xiτ} = 0 for all t and τ .

When using regressors that depend on past realizations of the dependent variable such as

the knowledge capital stocks, this assumption is violated.

Blundell, Griffith and Van Reenen (1999, BGVR) proposed an alternative estimator

which is robust to relaxing the strict exogeneity assumption. It relies on introducing

a control function term for the fixed effects, which is identified from realizations of the

dependent variable in a pre-sample period. Hence, the idea is to think of the fixed effect

as the combination of a control term φ (·) and an error, ωi.

ηzi = φ
(
ln ¯PAT zi0, I

{
¯PAT zi0 = 0

})
+ ωi

where ¯PAT zi0 is the average amount of patenting by firm i in the pre-sample period.

BGVR show that with φ (·) = exp
(
φzl ln ¯PAT zi0 + φz2I

{
¯PAT zi0 = 0

})
, pre-determined

xit
52 and stationarity in the dynamic system implied by equation (5) estimates of βz are

unbiased as the duration of the pre-sample period becomes large. Thus, effectively we

estimate the following model:

PATzit = exp
(
xitβ + φzl ln ¯PAT zi0 + φz2I

{
¯PAT zi0 = 0

})
+ uzit

and our assumptions concerning uzit imply E(νzit|xit) = 1.
52i.e. E {uiτ |xit }= 0 for τ ≥ t.
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The BGVR approach requires the realizations of the dependent variable in the pre-sample

period to be representative of a firm’s behavior over the sample period. Formally, the series

must be mean stationary (conditionally on the time dummies). It is easy to see why this

might be violated in particular for clean patents, whose realizations are concentrated

towards the end of our sample period. Consequently, for many firms we do not observe

any clean patenting in the pre-sample period which could inform us about variations in

their fixed propensity to patent in clean.

To address this problem we propose a new estimator in the same spirit of using a control

function as in BGVR. However, rather than using information from the pre-sample period

to calibrate the control function, we simultaneously exploit future data. We estimate the

main regression equation as well as a second equation allowing us to identify the control

function from future data. The key idea is the following. In general, a control term

φ̆zit (·) will lead to consistent estimates, if the resulting error term ω̌zit = ηzit − φ̆zit (·) is

orthogonal to xit; i.e. E {ω̌zit |xit} = 0. Note, that given a parameter vector β we can

obtain such an estimate by regressing53

PATziT
µziT

= ηzi +
uziT
µziT

= φ̆z (xit) + ω̆zit (21)

with T > t, provided that the variables in xit are pre-determined because then

E

{
uziT
µziT

|xit
}

= 0 (22)

and we can interpret φ̆zit (xit) as the expectation of the fixed effects given xit:

φ̆z (xit) = E {ηi |xit}

As in the standard case we parameterize φ̆z (xit) as an exponential function,54

φ̆z (xit) = exp (xzitγ)

53For notational simplicity we write the following equation with just one future term. In practice we can
improve efficiency by regressing on an average of future values 1

T−t+1

∑T
τ=t

PATziτ
µ ziτ

. In our regressions
reported above we identify the control function from averages over the current and one future period; i.e.
T = t+ 1

54In theory we can even allow a more flexible specification where the conditional expectation varies
over time; i.e. φ̆zt (xit) = Et {ηi |xit }. This could reflect firms learning more about their fixed effect
over time for instance. In practice this increases the number of parameters to be estimated greatly and
becomes computationally very burdensome. In our baseline results we therefore fix φ̆z (·) over time.
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.

Notice, that given this control function we can transform our main regression equation

as
PATzit

φ̆z (xit)
= exp (xitβz) + exp (xitβz)

ω̆zit

φ̆z (xit)
+

uzit

φ̆z (xit)
(23)

where we replaced ηi by φ̆zit (xit) + ω̆zit and divided by φ̆zit (xit). Because the xit are

pre-determined, given the definition of ω̆zit and recalling the definition µzit = exp (xitβz)

we have that

E

{(
µzit

ω̆zit

φ̆z (xit)
+

uzit

φ̆z (xit)

)
|xit

}
= 0 (24)

Hence, we have two equations that depend on each other as well as two sets of moment

conditions. We can consequently estimate equations (21) and (23) as a system of two

simultaneous equations using the sample analog of the following moments

E


 PATzit

φ̆z(xit)
− µzit

PATziT
µziT

− φ̆z (xit)

 |xit
 = 0

We refer to this approach below as the control function fixed effects estimator (CFX).

In addition to these three dynamic count data approaches we also explore the common

practice of implementing equation (5) as a linear panel data estimator by taking logs of

the dependent variable after simply adding the value of unity (an arbitrary constant); i.e.

the regression equation becomes:

ln (1 + PATzit) = xitβz + αzi + εzit

Although this model has undesirable features like generating negative predicted values

of patenting it is attractive because it is straightforward to estimate a relative clean vs.

dirty regression; i.e.

ln (1 + PATClean,it)− ln (1 + PATDirty,it) = xit (βClean − βDirty) (25)

+ (αClean,i − αDirty,i) + (εClean,it − εDirty,it)

(26)
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We show in the results section that the results are qualitatively similar no matter

which precise estimation technique we use.

C Data Appendix

C.1 Basic dataset

As described in the main text we draw from PATSTAT data all patent filings relating to

IPC classes over clean and dirty auto innovation as defined in Table 1 and illustrated in

Appendix Figure A1-A4.55 Our patent data is drawn from the World Patent Statistical

Database (PATSTAT) maintained by the European Patent Office. We use the September

2009 version of PATSTAT. The innovation outcomes we use as the dependent variable and

in the construction of the spillovers and own lagged innovation stocks are triadic patents

(filed in all three of USPTO, EPO or JPO). For the weights (see below) we use a wider

definition to patenting.

If a single patent filing has multiple IPC codes we include it so long as at least one of

the IPC codes relates to clean or dirty innovation.56 Patents are coded by whichever firm

first applied so we ignore traded patents, but these are rare: less than 3% of triadic patents

are traded. As is standard in the literature, patents are dated by their application/filing

date as this is close to the time when the R&D was performed.

C.2 Identifying unique patent holders

The PATSTAT database reports the name of patent applicants, but a common problem

with patent data is that the name of patentees often varies, because of spelling mis-

takes, typographical errors and name variants. To identify unique patent holders we

use the ECOOM-EUROSTAT-EPO PATSTAT Person Augmented Table (EEE-PPAT)

database, available at http://www.ecoom.be/nl/eee-ppat, which provides a dictionary of

harmonized patent applicants’ names produced through a computer algorithm followed

by visual inspection. We then manually check the name match, which allows us to put

55To identify clean and dirty innovations filed at the US patent office we use the same IPC codes as
the ones used for EPO and JPO patents. However, the USPTO has only recently adopted the IPC
classification so a few older US patents do not have IPC codes. We therefore complement IPC codes with
their US equivalents using the IPC/US concordance table available on the USPTO website

56In the small number of cases where a patent had both a dirty and a clean IPC code we coded the
patent to be clean, but nothing hinges on this.
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together companies that a typical computer algorithm would consider distinct. For exam-

ple we match Ford Motor Company with Ford Werke, its German subsidiary. As a result,

we are able to reduce the number of distinct patent holders of clean and dirty patents

from 20,916 to 3,423; 2,427 of which are companies and 996 are individuals.

C.3 Firm-level weights

C.3.1 Weights based on patent portfolios

As explained above in the main text, the firm-specific fuel price is computed as the

weighted geometric mean of the fuel prices across countries with weights reflecting the

shares of the corresponding countries in the firm’s patent portfolio. Our price variable is

thus defined as:

lnFP it =
∑
c

wFPic0 lnFP ct (27)

where FP ct is the tax-inclusive fuel price in country c at time t and wFPic0 is the firm-specific

weight for country c. In order to make sure that the computed exposures are an exogenous

source of variation across firms, the weights are calculated using the patent portfolio of

each company over the 1965-1985 “pre-sample” period (with the regressions performed

on the 1986-2005 period). We cross check the 1985 cut-off in the robustness section using

1965-1990 as the pre-sample period for weights and 1991-2005 for the regression sample.

To make matters concrete consider the example of Hitachi, a large Japanese car parts

manufacturer, who filed 90,381 patents between 1965 and 1985. 63,175 of these filings

were in Japan, 8,315 in the US and 3,498 in Germany. The rest were in a large number of

other patent offices. Note that there are a larger number of filings than there are patents,

as one invention can be filed in multiple patent offices. For example, Hitachi’s patent

11464997 (this is the DOCDB family number) was developed by a Japanese inventor and

filed in 1980 both in Japan and in the US. This patent enters twice in the patent-portfolio

weight: once for Japan and once for US, since it indicates that both the US and Japan

matter for Hitachi. Hitachi’s 90,381 patents filed between 1965 and 1985 correspond

to only 70,526 distinct inventions (or patent families), some of which were patented in

several countries even though almost all of Hitachi’s R&D activities are conducted in

Japan (we use inventor location below for spillovers - see next section). In order to reflect

the greater importance of larger countries when constructing fuel price weights, we take
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each country’s average GDP over 1965-1985 into account (although nothing hinges on this

for the results). The firm-specific weight for country c is thus equal to:

wFPic0 =
sFPic0 GDPc∑
c s

FP
ic0 GDPc

(28)

where sFPic0 is the share of country c in Hitachi’s patent portfolio between 1965 and 1985

and GDPc is the share of country c in the world’s GDP over 1965-1985. The weights

used for Hitachi are 68.8% for Japan, 23.9% for US and 2.7% for Germany. The weights

summed across all other countries are 4.6% so the total weights sum to 100. We report

descriptive statistics on the patent shares and weights across countries in Table A5.

We use the patent-portfolio weights, wFPic , to construct the fuel price, fuel tax, GDP

per capita and emission regulations variables. Note that in constructing the weights we

use all patent filings from applicant firms who have filed at least one auto-related patent.

These are all applicants who have filed a dirty or clean patent as defined by Table 1 from

the OECD or in an IPC class defined as autos according to the OECD’s cross walk. We

could have also included patent filings by applicants who were part of the auto-related

firms who had never filed for a clean or dirty auto patent according to our definitions.

This would have increased our sample of patent filings from 4.5m to about 16m. We chose

not to do this as many of these patents are only distantly related to autos and so would

not be relevant for tracking the demand for cars. Going in the other direction, we could

narrow our definition to include only patents in IPC classes we deem as clean or dirty and

exclude all other patents by the same applicants. Building weights from this narrower

pool led to similar results to those presented in the main text.

Although we have filings in 80 patent offices, the 25 countries we use for the fuel

price data are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, Japan, Luxembourg, Mexico, Netherlands, New Zealand,

Norway, Portugal, South Korea, Spain, Sweden, Switzerland, UK and the USA.

C.3.2 Weights based on location of inventors

To construct the firm-specific spillover pools in clean and dirty knowledge we use an

analogous empirical strategy to that for the fuel price. The firm-specific spillover pool is

computed as the weighted geometric mean of the knowledge pools across countries with

weights reflecting the shares of the corresponding countries in the firm’s pool of inventors.
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The spillover pool for firm i is calculated as:

SPILLzit =
∑
c

wSic0SPILLzct (29)

where z ∈ {Dirty, Clean} and SPILLzct is the spillover pool in country c at time t,

which can be firm specific (see below). The spillover weight wSic0 is the share of all firm i’s

inventors (i.e. where the inventors worked when they discovered the invention) in country

c between 1965 and 1985.

This weight differs from the patent-portfolio weight wFPic0 described above in two ways.

First, instead of using information on where each patent was filed (for example, the

USPTO) we use the location of the patent inventors (who are more likely to benefit from

other research conducted locally). Inventor countries are counted fractionally, so if a

patent is filed by two inventors, one from Germany and one from the US, each country

will receive one half.57 Note that we use information on the country of residence of the

inventor, not on his nationality. This seems natural because the geographical location of

the inventor is likely to be the critical issue for knowledge spillovers.

The second difference with respect to patent-portfolio weight is that each invention is

only counted once, no matter in how many patent offices it has been filed. This is to avoid

double counting. Returning to Hitachi’s patent 11464997 filed in 1980 both in Japan and

in the US, this patent enters twice in the patent-portfolio weight but only once in the

inventor location weight, as a Japan-developed invention. So although wFPHitachi,Japan =

0.688 as above, wSHitachi,Japan = 0.99. This indicates that although almost all Hitachi’s

R&D is based in Japan, it sells car parts to a much wider geographical market.

The spillover pool SPILLz,ct is defined as:

SPILLz,ct =
∑
j 6=i

wSjcKz,jt (30)

i.e. the spillover pool of a country is the sum of all other firms’ patent stocks with a weight

that depends on how many inventors the other firm has in that country. The aggregate

stocks in equation (30) are thus entirely based on firm level stocks. This allows us to

make out of sample simulations of aggregate stocks below using firm level equations only.

57We do this in order to avoid giving an artificially higher weight to a patent with multiple inventors
compared to one with just a single named inventor
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As an alternative strategy we constructed country level spillover stocks by aggregating

over all patents of inventors based in that country:

SPILLz,ct =
∑

j∈Inventors based in c

Kz,cjt (31)

where Kz,jct = PATz,it + (1− δ)Kz,jt−1 and PATz,jt are the patents filed that associated

with inventor j in year t. Empirically, both methods give very similar results. For con-

sistency with our simulation results we use the first method (Equation (30)) throughout

the paper.

We also use the inventor weights to construct the amount of R&D in energy-efficient

transportation in country c at time t.

C.4 More descriptive statistics on patents filing and citations

For every patent in our data set, we know whether the invention has also been filed (prior

to or following the first filing of the patent at USPTO, EPO or JPO) at any other patent

office included in PATSTAT (over 80 offices). Table A2 provides information on the

geographical coverage of clean and dirty innovations for some of the main patent offices.

Interestingly, 31% of clean inventions are also patented in China. This is almost twice

the rate for dirty inventions (18%). Germany’s specialization in traditional combustion

engines is apparent from this table, with 61% of dirty patents protected in Germany but

only 41% of clean patents.

When a patent is filed, it must include citations to earlier patents that are related to the

new invention. Citations to earlier patents are indicative of the accumulated knowledge

used by the inventor to develop the new invention (e.g. Jaffe and Trajtenberg, 2002).

There are 181,151 citations for all clean and dirty triadic patents included in our data set

(13.1 citations for the average patent). Among patents cited by clean patents, 47% are

clean, whereas 5% are dirty. The remaining 48% refer to other, neither clean nor dirty

(Table A3). If citations were not technology specific we would expect that the likelihood of

a citation to a dirty patent would be three times higher than towards a clean patent. The

likelihood of a clean on clean citations (47%) is almost as high as the likelihood of dirty

on dirty citations (59%). This suggests that within category spillovers are much higher

than between category spillovers. This is consistent with path-dependent innovation as
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the theory suggests.

C.4.1 Other data

Fuel price and fuel tax come from the International Energy Agency’s Energy Prices and

Taxes database, available online at http://data.iea.org. We use Households End-Use

Prices in USD PPP/unit. Since data are available for both diesel and gasoline fuels, we

define fuel price as the average of diesel and gasoline prices.

Data on public R&D expenditures comes from the IEA’s Energy Technology Research

and Development database, available online at http://data.iea.org. We use Total R&D

in Million USD (2010 prices and exchange rates). We use the data on public R&D

expenditures in ”Energy efficiency - transportation” (Flow 13). This includes: electric

cars, hybrid cars and stirling motors; analysis and optimization of energy consumption in

the transport sector; efficiency improvements in light-duty vehicles, heavy-duty vehicles,

non-road vehicles; public transport systems; engine-fuel optimization; use of alternative

fuels (liquid, gaseous); fuel additives; diesel engines. Note that the IEA also reports R&D

on ”Hydrogen and fuel cells”, in particular ”fuel cells for mobile applications” but the

data only start to be available in 2004, at the very end of our sample.

Data for environmental standards governing maximum permissible levels of tailpipe

emissions for pollutants from new automobiles were sourced from a dataset originally

constructed by Perkins and Neumayer (2012). Countries’ regulatory stringency is coded

on a scale of 0 to 5. The basis of the classification scheme is the European Union’s (EU)

Euro emission standards which were originally implemented across member states in 1992

and have subsequently been tightened in a series of incremental steps. Countries are coded

0 if they had no national emissions standards in place for new vehicles, or if standards

were less stringent than the equivalent of Euro 1, during the year in question. Countries

where Euro 1 or its equivalent was legally enforceable are coded 1, and so on, with 5 for

countries having implemented the equivalent of the Euro 5 standard.58

Data on GDP, GDP per capita and population are taken from the World Bank’s

World Development Indicators, available at http://data.worldbank.org/. GDP and GDP

58A problem with these measures of regulation, of course, is that they are formal and do not fully
take into account different degrees of effective enforcement. Jacobsen (2013) for example finds that US
firms were more strongly affected by CAFE standards than those of other countries. We test whether US
headquarters firms responded more than others by interacting a dummy for the US with US regulations
and found that they did not
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per capita are PPP and constant 2005 USD.

Sales data used to compare the patent weights with sales distribution are from com-

pany accounts (see the URLs in notes to Table A1).
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Figure 1: Average fuel price and fuel tax 1986-2005 

 

Panel A: Fuel price  

 

Note: this graph shows the average annual price of fuel for all countries available in the IEA database. The fuel price is the 
average between diesel and gasoline price. Prices are in 2005 USD PPP. There are 25 countries underlying this figure. 
 
Source: IEA.  

 

Panel B: Fuel tax 

 
 
 
Note: this graph shows the average annual tax on fuel for all countries available in the IEA database. The fuel tax is the 
average between diesel and gasoline tax. Tax is in 2005 USD PPP. There are 24 countries underlying this figure (taxes are 
missing for South Korea). 
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Source: IEA. 
 

 

Figure 2: Country-specific changes over time  

Panel A : Fuel price  

 
Panel B : Fuel tax  
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Note: These graphs show the average annual price of fuel and the tax on fuel for all countries available in the IEA 
database. The fuel tax is the average between diesel and gasoline tax. Prices and taxes are in 2005 USD PPP. 
Source: IEA. 
 

 

 

Figure 3: Residuals from a regression of fuel prices on country and year dummies 

 
Note: This graphs shows the residuals from a regression of country level ln(fuel prices) on country and year 

dummies. This illustrates the variation that is driving the identification of price effects in our main regressions. 

The baseline (excluded dummy variables) is US & year 1995. The standard deviation of the residuals is 0.107 
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Figure 4: Number of clean and dirty triadic patents 1978-2005 

 
Note: This graph shows the number of annual triadic patents filed worldwide between 1978 and 2005 in clean 
and dirty technologies.  
Source: Authors' calculations based on the PATSTAT database. 
 

 

Figure 5: Aggregate price elasticities over time  (Clean+Grey Share) 

 

Notes: The figure reports estimates of aggregate fuel price elasticities implied by our firm level estimates. The 

detailed methodology is explained in the text. 
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Figure 6: Simulations over time of the effects of increases in fuel price 

A: No change in fuel price 

 

B: 10% increase in fuel prices 

 

C: 20% increase in fuel prices 

 

D: 30% increase in fuel prices 

 
E: 40% increase in fuel prices

 

F: 50% increase in fuel prices

 

Notes: these graphs show the simulated evolution of the aggregate clean and dirty knowledge stocks between 
2005 and 2030 depending on the variation in fuel prices. The knowledge stock is the discounted sum of past 
patents. Fuel prices are assumed to increase at once in 2005 and remain constant thereafter. Simulations are 
based on CFX estimations presented in Table 6 columns (1) and (4).  
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Figure 7: Simulations over time of the effect of a 40% increase in fuel prices allowing for a 

negative effect of the carbon tax on GDP per capita growth 

A: Baseline case : No effect of carbon tax on GDP per capita growth  

 

B: Tax reduces GDP per capita growth by 0.25 

percentage points 

 

C: Tax reduces GDP per capita growth by 0.50 

percentage points 

 

D: Tax reduces GDP per capita growth by 0.75 

percentage points 

 

E: Tax reduces GDP per capita growth by 1.0 

percentage points 

 

Notes: These graphs show the simulated evolution of the aggregate clean and dirty knowledge stocks between 
2005 and 2030 after a fuel price increase of 40% using the model in Table 6 columns (1) and (4).  We consider a 
negative effect on per capita GDP growth of the carbon tax of between zero as in the baseline case (Panel A 
replicates Panel E of Figure 5) and one percentage point (in Panel E).  
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Figure 8: Simulations over time based on partial updating of innovation stock variables 

 

A: No change in fuel price 

 

B: 40% increase in fuel prices 

 

C : No change fuel price, no change in own 

stocks and no change in spillovers 

 

D: 40% increase in fuel prices, no change in 

own stocks and no change in spillovers 

 

 
Notes: these graphs show the simulated evolution of the aggregate clean and dirty knowledge stocks between 
2005 and 2030. The knowledge stock is the discounted sum of past patents. Fuel prices are assumed to increase 
at once in 2005 and remain constant thereafter. In Panels A and B knowledge stocks and spillover stocks are 
recursively updated using the estimates from Table 6 columns (1) and (4). In panels C and D we switch off the 
effects of past innovation stocks by the firm itself and of spillovers. In all figures we assume a 1.5% growth rate 
of per capita GDP.  
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Table 1: Definition of IPC patent classes for clean and dirty patents 

 

Panel A- Clean patents 

 

  

Description IPC code

Electric vehicles

Electric propulsion with power supplied within the vehicle B60L 11

B60L 3

B60L 15

Arrangement or mounting of electrical propulsion units B60K 1

Hybrid vehicles

B60K 6

B60W 20

Regenerative braking

Dynamic electric regenerative braking B60L 7/1

B60L 7/20

Hydrogen vehicles / fuel cells

B60W 10/28

B60L 11/18

Fuel cells; Manufacture thereof H01M 8

Electric devices on electrically-propelled vehicles for safety 
purposes; Monitoring operating variables, e.g. speed, deceleration, 
power consumption
Methods, circuits, or devices for controlling the traction- motor 
speed of electrically-propelled vehicles

Conjoint control of vehicle sub-units of different type or different 
function / including control of electric propulsion units, e.g. motors 
or generators / including control of energy storage means / for 
electrical energy, e.g. batteries or capacitors

B60W 10/08, 24, 
26

Arrangement or mounting of plural diverse prime-movers for 
mutual or common propulsion, e.g. hybrid propulsion systems 
comprising electric motors and internal combustion engines
Control systems specially adapted for hybrid vehicles, i.e. vehicles 
having two or more prime movers of more than one type, e.g. 
electrical and internal combustion motors, all used for propulsion 
of the vehicle

Braking by supplying regenerated power to the prime mover of 
vehicles comprising engine -driven generators

Conjoint control of vehicle sub-units of different type or different 
function; including control of fuel cells
Electric propulsion with power supplied within the vehicle - using 
power supplied from primary cells, secondary cells, or fuel cells
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Panel B- Dirty patents 

 
 

Panel C- Grey patents 

 
  

Description IPC code

Internal combustion engine

Internal-combustion piston engines; combustion engines in general F02B
Controlling combustion engines F02D

F02F

F02M

F02N

F02P

Cylinders, pistons, or casings for combustion engines; arrangement 
of sealings in combusion engines
Suplying combusion engines with combustible mixtures or 
constituents thereof

Starting of combusion engines
Ignition (other than compression ignition) for internal-combustion 
engines
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Table 2: Descriptive statistics  

Variable Mean SD Min Max 

Clean Patents (𝑃𝐴𝑇𝐶𝑙𝑒𝑎𝑛) 0.081 1.231 0 125 

Dirty Patents (𝑃𝐴𝑇𝐷𝑖𝑟𝑡𝑦) 0.227 3.424 0 355 

Fuel Price (ln 𝐹𝑃) -0.276 0.251 -1.053 0.438 

Government R&D subsidies  (ln R&𝐷) 3.885 1.447 0 5.725 

Emission Regulations Index 1.573 1.334 0 5 

Clean Spillover (ln 𝑆𝑃𝐼𝐿𝐿𝐶) 3.774 1.258 -9.864 7.071 

Dirty Spillover (ln 𝑆𝑃𝐼𝐿𝐿𝐷)  5.401 0.991 -5.509 7.677 

Own Stock Clean innovation (ln 𝐾𝐶) -0.174 0.790 -6.718 5.740 

Own Stock Dirty innovation (ln 𝐾𝐷) -0.910 1.618 -7.593 6.958 

     

     

Notes: These are the values from our regression sample of 68,240 observations across 3,412 firms between 1986 and 2005. 
Emission Regulations for maximum level of tailpipe emissions for pollutants for new automobiles are coded between 0 and 5 
following Dechezlepretre, Perkins and Neumayer (2012). Government R&D subsidies on clean transportation is from the IEA. 
See Appendix B for exact definitions 
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Table 3:  Regressions of clean and dirty patents  

 
(1) (2) (3) (4) (5) (6) 

Dependent Variable Clean Patents Dirty Patents 

  
 

Fuel Price  0.970*** 0.962** 0.886** -0.565*** -0.553*** -0.644*** 

ln(FP) (0.374) (0.379) (0.362) (0.146) (0.205) (0.143) 

R&D subsidies 
 

-0.005 -0.001  -0.006 -0.014 

ln(R&D) 
 

(0.025) (0.024)  (0.021) (0.021) 

Emission Regulation 
 

 0.055  
 

0.046 

 
 

 (0.276)  
 

(0.197) 

Clean Spillover 0.268*** 0.301*** 0.266*** -0.093* -0.078 -0.058 

 
(0.076) (0.087) (0.087) (0.048) (0.067) (0.066) 

Dirty Spillover -0.168** -0.207** -0.160* 0.151** 0.132 0.114 

 
(0.085) (0.098) (0.097) (0.064) (0.082) (0.081) 

Own Stock Clean 0.306*** 0.320*** 0.303*** -0.002 -0.004 0.016 

 
(0.026) (0.027) (0.026) (0.022) (0.022) (0.026) 

Own Stock Dirty 0.139*** 0.135*** 0.139*** 0.557*** 0.549*** 0.542*** 

 
(0.017) (0.017) (0.017) (0.031) (0.022) (0.020) 

  
   

  Observations 68240 68240 68240 68240 68240 68240 

Firms 3412 3412 3412 3412 3412 3412 

 
Notes: *,**,***= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  Estimation is by the CFX method. 
All regressions include controls for GDP per capita, year dummies, fixed effects and three dummies for no clean knowledge, 
no dirty knowledge and no dirty or clean knowledge (in the previous year). Fuel price is the tax-fuel price faced. . R&D 
subsidies are public R&D expenditures in energy efficient transportation. Emissions Regulations are maximum levels of 
tailpipe emissions for pollutants from new automobiles.  The dependent variable is the flow of clean patents in columns (1)-
(3) and the flow of dirty patents in columns (4)-(6). 
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Table 4:  Disaggregating dirty patents into fuel efficiency (grey) and purely dirty 

 (1) (2) (3) 

Dependent variable: Clean Grey Purely  Dirty 

 

Patents Patents Patents 

Fuel Price 0.848* 0.282 -0.832*** 

 (0.461) (0.398) (0.214) 

R&D subsidies 0.031 0.081** -0.02 

 (0.047) (0.034) (0.030) 

Clean Spillover 0.333** -0.171* -0.014 

 
(0.165) (0.098) (0.094) 

Grey Spillover 0.215 0.173 0.235** 

 
(0.228) (0.112) (0.102) 

Purely Dirty Spillover -0.509 0.045 -0.208 

 (0.377) (0.136) (0.161) 

Own Stock Clean 0.379*** -0.005 0.047 

 
(0.090) (0.035) (0.035) 

Own Stock Grey 0.185* 0.418*** -0.141*** 

 
(0.106) (0.035) (0.025) 

Own Stock Purely Dirty -0.011 0.192*** 0.544*** 

 (0.066) (0.038) (0.026) 

Observations 68240 68240 68240 

Firms 3412 3412 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  Estimation is by the CFX method. 
This table disaggregates the dirty patents into those that are “grey” (related to fuel efficiency) and those that are not (“purely 
dirty”). We construct all spillovers and own past stocks based on this disaggregation and include on the right hand side 
(hence two extra terms compared to Table 3). We estimate two dirty equations, one where grey innovations are the 
dependent variable (in column (2)) and one for the purely dirty in column (3). All regressions include controls for GDP per 
capita, year dummies, fixed effects and 4 dummies for no own innovations in (i) clean, (ii) grey (iii) dirty and (iv)  no clean, 
grey nor purely dirty in the previous year. Fuel price is the tax-inclusive fuel price faced. R&D subsidies are public R&D 
expenditures in energy efficient transportation. 

Table 5: Alternative Econometric Models 

 

(1) (2) (3) (4) (5) (6) 

Dependent Variable Clean Patents Dirty Patents 
Difference between Clean and Dirty 

ln(1 + PAT𝐶𝑙𝑒𝑎𝑛) − 
ln (1 + PAT𝐷𝑖𝑟𝑡𝑦) 

Model HHG BGVR HHG BGVR Quasi Linear Within Groups 

Fuel Price 0.295 0.672** -2.457*** -0.614*** 0.141** 0.143** 

 

(1.062) (0.332) (0.897) (0.192) (0.061) (0.061) 

Clean Spillover 0.495** 0.294*** 0.393** -0.136** -0.007 -0.009 

 

(0.236) (0.077) (0.197) (0.054) (0.007) (0.007) 

Dirty Spillover -0.409 -0.277*** 0.254 0.198*** 0.015 0.010 

 

(0.484) (0.084) (0.300) (0.065) (0.014) (0.014) 

Own Stock Clean 0.424*** 0.883*** 0.042 -0.003 0.048*** 0.059*** 

 

(0.051) (0.031) (0.036) (0.021) (0.007) (0.011) 

Own Stock Dirty 0.133 0.091*** 0.648*** 1.069*** -0.016*** -0.010 

 

(0.087) (0.029) (0.042) (0.022) (0.004) (0.008) 

  
  

   
Country X year effects no no no no no Yes 

Firm fixed effects yes yes yes yes yes Yes 

Observations 22420 68240 42300 68240 68240 68240 

Firms 1121 3412 2115 3412 3412 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level. Regressions are same 
specifications as Table 3, i.e. column (3) for clean and column (6) for dirty. Fuel price is the tax-inclusive fuel price faced by 
the firm. The dependent variable is the flow of clean patents in columns (1)-(2), the flow of dirty patents in columns (3)-(4) 
and the log-ratio of clean to dirty patents in columns (5) and (6). Different columns control for fixed effects in different ways: 
HHG is the Hausman, Hall and Griliches (1984), BGVR is Blundell, Griffith and Van Reenen (1999) and last two columns are 
Within Groups (i.e. adding a dummy variable for each firm). 
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Table 6: Regressions for sample of firms with at least one pre-sample clean or dirty patent 

 (1) (2) (3) (4) (5) (6) 

Dependent variable Clean Patents Dirty Patents 

Model CFX HHG BGVR CFX HHG BGVR 

Fuel Price 0.632** -0.293 0.825** -0.580*** -2.194*** -0.488*** 

 
(0.296) (1.091) (0.331) (0.147) (0.738) (0.171) 

Clean Spillover 0.240*** 0.451* 0.317*** -0.07 0.358 -0.126** 

 (0.068) (0.247) (0.076) (0.051) (0.230) (0.057) 

Dirty Spillover -0.152** -0.223 -0.281*** 0.139** 0.395 0.197*** 

 (0.074) (0.473) (0.085) (0.068) (0.280) (0.069) 

Own Stock Clean 0.300*** 0.403*** 0.834*** -0.001 0.126*** 0.002 

 
(0.025) (0.060) (0.038) (0.027) (0.037) (0.021) 

Own Stock Dirty 0.142*** 0.13 0.098*** 0.523*** 0.467*** 1.040*** 

 
(0.017) (0.089) (0.032) (0.018) (0.045) (0.022) 

       

Observations 25400 7900 25400 25400 13340 25400 

Firms 1270 395 1270 1270 667 1270 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  This is a sub-sample of the data in 
Table 3 where we condition on firms having at least one patent in the pre-sample period. is All regressions include controls 
for GDP per capita, fixed effects, year dummies, three dummies for no clean knowledge, no dirty knowledge and no dirty or 
clean knowledge (in the previous year). Fuel price is the tax- inclusive fuel price faced by the firm. The dependent variable is 
the flow of clean patents in columns (1)-(3) and the flow of dirty patents in columns (4)-(6). HHG is the Hausman et al (1984) 
method; BGVR is the Blundell et al (1999) method and CFX is the Control Function Fixed Effect method. 
 

Table 7: Controling for electricity prices 

 (1) (2) (3) (4) 

Dependent variable Clean Patents Dirty Patents 

Fuel Price 1.261***  -0.642***  

 '(0.361)  '(0.249)  

Electricity Price -0.996*  0.402  

 '(0.594)  '(0.478)  

Fuel Price/Electricity  Price  1.122***  -0.885*** 

  (0.390)  (0.241) 

Clean Spillover 0.242*** 0.224*** -0.07 -0.061 

 

(0.074) (0.074) (0.044) (0.043) 

Dirty Spillover -0.146** -0.116 0.104* 0.107* 

 

(0.074) (0.079) (0.055) (0.056) 

Own Stock Clean 0.371*** 0.353*** 0.026 0.033* 

 

(0.032) (0.029) (0.021) (0.020) 

Own Stock Dirty 0.126*** 0.138*** 0.533*** 0.528*** 

 

(0.018) (0.018) (0.013) (0.013) 

     

Observations 68240 68240 68240 68240 

Firms 3412 3412 3412 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  Estimation is by the CFX (Control 
Function Fixed Effect) method described in the Econometrics Section. All regressions include controls for GDP per capita, 
year dummies, three dummies for no clean knowledge, no dirty knowledge and no dirty or clean knowledge in the previous 
year. The dependent variable is the flow of clean patents in columns (1)-(2) and is the flow of dirty patents in columns (3)-
(4).  
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Table 8: Regressions with fuel taxes instead of fuel price 

 (1) (2) (3) (4) (5) (6) 

Dependent variable Clean Patents Dirty Patents 

Model CFX HHG BGVR CFX HHG BGVR 

Fuel Tax 0.400** -0.969 0.227 -0.229*** -2.643*** -0.301*** 

 

(0.167) (0.901) (0.203) (0.069) (0.850) (0.091) 

Clean Spillover 0.284*** 0.442* 0.286*** -0.085* 0.394 -0.142*** 

 (0.075) (0.228) (0.077) (0.047) (0.257) (0.049) 

Dirty Spillover -0.193** -0.433 -0.275*** 0.141** 0.093 0.204*** 

 (0.084) (0.487) (0.077) (0.061) (0.288) (0.063) 

Own Stock Clean 0.327*** 0.430*** 0.884*** -0.008 0.051 -0.005 

 

(0.027) (0.052) (0.032) (0.021) (0.036) (0.021) 

Own Stock Dirty 0.134*** 0.126 0.091*** 0.546*** 0.645*** 1.071*** 

 

(0.017) (0.087) (0.029) (0.028) (0.041) (0.022) 

       

Observations 68240 22420 68240 68240 42300 68240 

Firms 3412 1121 3412 3412 2115 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  All regressions include controls for 
GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty knowledge and no dirty or clean 
knowledge in the previous year. The dependent variable is the flow of clean patents in columns (1)-(3) and is the flow of dirty 
patents in columns (4)-(6). HHG is the Hausman et al (1984) method, BGVR is the Blundell et al (1999) method and CFX is the 
Control Function Fixed Effect method. 
 

Table 9: Alternative sample period  

(pre-sample period for weights from 1990 and before, regressions run on data 1991-2005) 

 (1) (2) (3)    (4) (5) (6) 

Dependent variable  Clean Patents      Dirty Patents  

Model CFX HHG BGVR    CFX HHG BGVR 

Fuel Price 0.806** -0.742 -0.038    -0.235 -2.547*** -0.602** 

 
(0.341) (1.110) (0.315)    (0.233) (0.904) (0.273) 

Clean Spillover 0.177** 0.684* 0.390***    -0.05 0.763* -0.066 

 

(0.077) (0.381) (0.111)    (0.066) (0.397) (0.093) 

Dirty Spillover -0.106 -0.31 -0.367***    0.136* 0.024 0.134 

 
(0.084) (0.549) (0.138)    (0.075) (0.334) (0.094) 

Own Stock Clean 0.349*** 0.258*** 0.892***    0.009 0.128** 0.024 

 

(0.023) (0.069) (0.035)    (0.032) (0.051) (0.022) 

Own Stock Dirty 0.136*** 0.153 0.138***    0.519*** 0.318*** 1.098*** 

 
(0.018) (0.097) (0.042)    (0.053) (0.060) (0.032) 

          

Observations 50820 15105 50820    50820 23985 50820 

Firms 3388 1007 3388    3388 1599 3388 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  All regressions include controls for 
GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty knowledge and no dirty or clean 
knowledge in the previous year. Fuel price is the tax- inclusive fuel price faced by the firm (using pre-sample patent 
portfolios as weights). The dependent variable is the flow of clean patents in columns (1)-(3) and the flow of dirty patents in 
columns (4)-(6). HHG is the Hausman et al (1984) method, BGVR is the Blundell et al (1999) method and CFX is the Control 
Function Fixed Effect method. 
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Table 10:  Alternative dynamic specifications on fuel price 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dependent Variable Clean Patents Dirty Patents 

 
  

 
  

 

Fuel Price in t 0.882**     -0.550***     

ln(FPt) (0.354)     (0.152)     

Fuel Price in t-1  0.970***     -0.565***    

ln(FPt-1)  (0.374)     (0.146)    

Fuel Price in t-2   1.102***     -0.568***   

ln(FPt-2)   (0.390)     (0.140)   

Fuel Price in t-3    1.081***     -0.571***  

ln(FPt-3)    (0.401)     (0.138)  

Fuel Price (Popp, 2002)     1.047***     -0.591*** 

ln(FPPopp)     (0.403)     (0.157) 

 

  

 
     

  Observations 68240 68240 68240 68240 68240 68240 68240 68240 68240 68240 

Firms 3412 3412 3412 3412 3412 3412 3412 3412 3412 3412 

 
Notes: *,**,***= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level. Estimation is by the CFX method. 
All regressions include controls for GDP per capita, year dummies, fixed effects (BGV method) and three dummies for no 
clean knowledge, no dirty knowledge and no dirty or clean knowledge in the previous year. Fuel price is the tax-inclusive fuel 
price. FPPopp is the geometrically weighted average fuel price from 1978 until current year with a discount factor of 0.829 
(following Popp, 2002). The dependent variable is the flow of clean patents in columns (1)-(5) and is the flow of dirty patents 
in columns (6)-(10). 
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WEB APPENDIX: NOT INTENDED FOR PUBLICATION UNLESS REQUESTED 
 

 
Figure A1: Front page of patent US 6456041 B1 
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Figure A2: Disaggregation of F02F group 

 

 

 

  

F02F 

 (2012.01), F 1 

F02 COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS 

XXXX 

F02F 

F02F 

XXXX 

 

F02F CYLINDERS, PISTONS, OR CASINGS FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN 

COMBUSTION ENGINES (specially adapted for rotary-piston or oscillating-piston internal-combustion engines F02B; specially 

adapted for gas-turbine plants F02C; specially adapted for jet-propulsion plants F02K) [2] 

 

(1) Attention is drawn to the Notes preceding class F01. 

(2) Class F16 takes precedence over this subclass, except for subject matter specific to combustion engines. 

 

 

 1 / 00 Cylinders; Cylinder heads (in general F16J) 

 1 / 02 . having cooling means (cylinder heads F02F 1/26) 

 1 / 04 . . for air cooling 

 1 / 06 . . . Shape or arrangement of cooling fins; Finned 

cylinders 

 1 / 08 . . . . running-liner and cooling-part of cylinder 

being different parts or of different material 

 1 / 10 . . for liquid cooling 

 1 / 12 . . . Preventing corrosion of liquid-swept surfaces 

 1 / 14 . . . Cylinders with means for directing, guiding, or 

distributing liquid stream 

 1 / 16 . . . Cylinder liners of wet type 

 1 / 18 . Other cylinders 

 1 / 20 . . characterised by constructional features providing 

for lubrication 

 1 / 22 . . characterised by having ports in cylinder wall for 

scavenging or charging 

 1 / 24 . Cylinder heads 

 1 / 26 . . having cooling means 

 1 / 28 . . . for air cooling 

 1 / 30 . . . . Finned cylinder heads 

 1 / 32 . . . . . the cylinder heads being of overhead-

valve type 

 1 / 34 . . . . . with means for directing or distributing 

cooling medium (F02F 1/32 takes 

precedence) 

 1 / 36 . . . for liquid cooling 

 1 / 38 . . . . the cylinder heads being of overhead-valve 

type 

 1 / 40 . . . . cylinder heads with means for directing, 

guiding, or distributing liquid stream 

(F02F 1/38 takes precedence) 

 1 / 42 . . Shape or arrangement of intake or exhaust 

channels in cylinder heads 

 3 / 00 Pistons (in general F16J) 

 3 / 02 . having means for accommodating or controlling heat 

expansion 

 3 / 04 . . having expansion-controlling inserts 

 3 / 06 . . . the inserts having bimetallic effect 

 3 / 08 . . . the inserts being ring-shaped 

 3 / 10 . having surface coverings (F02F 3/02 takes 

precedence) 

 3 / 12 . . on piston heads 

 3 / 14 . . . within combustion chambers 

 3 / 16 . having cooling means 

 3 / 18 . . the means being a liquid or solid coolant, 

e.g. sodium, in a closed chamber in piston 

 3 / 20 . . the means being a fluid flowing through or along 

piston 

 3 / 22 . . . the fluid being liquid 

 3 / 24 . having means for guiding gases in cylinders, e.g. for 

guiding scavenging charge in two-stroke engines 

 3 / 26 . having combustion chamber in piston head (the 

surface thereof being covered F02F 3/14) 

 3 / 28 . Other pistons with specially-shaped head 

 5 / 00 Piston rings, e.g. associated with piston crown 

 7 / 00 Casings, e.g. crankcases (engine casings in general 

F16M) 

 11 / 00 Arrangements of sealings in combustion engines 
(piston rings F02F 5/00; sealings per se F16J)
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Figure A3: Front page and diagram for patent EP 0979940 B1 
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Figure A3: Front page and diagram for patent EP 0979940 B1 – cont. 
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Figure A4: Front page and diagram for patent EP 0402091 B1 
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Figure A4: Front page and diagram for patent EP 0402091 B1 – cont. 
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Figure A5: Patent weights for fuel prices 

 

 

Notes: These are the average weights used to calculate the importance of different country fuel prices  

 

Figure A6: Patent weights vs inventor weights for US 

 

Notes: this graph shows the share of companies' patent portfolio at the USPTO (on the y-axis) together with the 
share of inventors located in the US for the same companies (on the x-axis). The patent weight is used to 
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calculate the firm-level fuel price and the inventor weight is used to calculate the firm-level spillover variables. 
Each point corresponds to a combination of patent weight and inventor weight for the US for a given company.  
We see (along the y-axis) that many companies file patent in the US but do not carry out R&D in this country. 
There are also a few companies (along the x-axis), which have R&D labs in the US but file their patents only in 
foreign countries.  

 
 

Figure A7: Simulations over sample period 

A: CFX 

 
 

 
B: HHG 

 

C: BGVR 

 
Notes: These graphs show the simulated evolution of annual clean and dirty patents stocks from 1986 onwards. 
Prices and other exogenous variables (including time dummies, controls for GDP per capita) are set at their 
actual values. Own knowledge stocks as well as spillover effects are simulated. The simulated series are 
therefore directly comparable to the actual knowledge stocks over time, which are also plotted in the graphs. 
Estimation taken from the relevant columns of Table 6. 
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Table A1: Car sales and patent portfolios across countries for selected large auto firms 

Company and markets Car sales Patent weights 

TOYOTA (2003-2005) 
  

Japan 0.34 0.42 

North America 0.31 0.34 

Europe 0.13 0.23 

VW (2002-2005) 
  

Germany 0.19 0.52 

UK 0.07 0.07 

Spain 0.06 0.03 

Italy 0.05 0.05 

France 0.05 0.08 

USA 0.07 0.14 

Mexico 0.03 0.00 

Canada 0.02 0.00 

Japan 0.01 0.02 

FORD (1992-2002) 
  

USA 0.59 0.59 

Canada 0.04 0.01 

Mexico 0.02 0.00 

Britain 0.08 0.08 

Germany 0.06 0.15 

Italy 0.03 0.03 

Spain 0.02 0.02 

France 0.02 0.04 

Australia 0.02 0.00 

Japan 0.01 0.05 

Peugeot (2001-2005) 
  

Western Europe 0.75 0.83 

France 0.25 0.31 

Other countries 0.50 0.52 

The Americas 0.04 0.13 

Asia-Pacific 0.12 0.04 

Honda (2004-2005) 
  

Japan 0.23 0.31 

North America 0.50 0.48 

Europe 0.08 0.20 
   

 

Notes: Car sales are taken from company annual reports from the years as noted. Patent weights are constructed 
from filings in each country across patent offices for the same years as noted. Sources for sales data are the 
following (last accessed 25th November 2012): 
TOYOTA: http://www.toyota-global.com/investors/ir_library/annual/pdf/2005/pdf/04.pdf  
VW (VolksWagen): 
http://www.volkswagen.co.uk/assets/common/content/volkswagen-world/annual-report-2003.pdf;  
http://www.volkswagen.co.uk/assets/common/content/volkswagen-world/annual-report-2004.pdf; 
http://www.volkswagen.co.uk/assets/common/content/volkswagen-world/annual-report-2005.pdf; 
FORD: http://corporate.ford.com/doc/2002_full.pdf  
PEUGEOT: http://www.psa-peugeot-citroen.com/en/publications  
HONDA: http://world.honda.com/investors/library/annual_report/2006/ar2006.pdf  
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Table A2: Geographical coverage of patent protection 

 
Note: the patents in our data set are triadic patents, filed in USA, Japan and at the European Patent Office. The 
table reports the share of patents that are also filed in Germany, China, Canada, Korea Australia, Brazil, Spain, 
Austria, France and the UK for each category.  
 
Source: authors' calculations based on the PATSTAT database. 
 

 
Table A3: Citation patterns 

 

 

 
Note: the table shows the type of patents cited by triadic patents in clean, dirty and other (ie, neither clean nor 
dirty) technologies. For example, 46.8% of patents cited by clean patents are clean, 5.2% are dirty and 48.0% 
pertain to other technologies (i.e. neither clean nor dirty).  
 
Source: authors' calculations based on the PATSTAT database. 

 
 

Clean Dirty

Germany 40.9% 61.0%

China 31.1% 18.3%

Canada 30.4% 12.6%

Korea 16.6% 11.2%

Australia 15.8% 11.0%

Brazil 7.3% 10.7%

Spain 7.0% 10.6%

Austria 9.6% 9.0%

France 3.8% 3.9%

UK 3.4% 3.8%

Share of inventions 
also patented in:

Type of technology:

Citing patent
Cited patent

Clean Dirty Other

Clean 46.8% 5.2% 48.0%

Dirty 1.5% 59.6% 38.9%

Other 0.2% 0.5% 99.3%
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Table A4: Main clean patent holders 1978-2005 – Triadic patents 

 
Note: the table reports the top 10 clean triadic patent holders between 1978 and 2005. We also report the 
number of dirty patents and the number of total patents (including clean, dirty and other patents) held by these 
applicants.  
Source: authors' calculations based on the PATSTAT database. 

 
Table A5: Main dirty patent holders 1978-2005 – Triadic patents 

 
Note: the table reports the top 10 dirty triadic patent holders between 1978 and 2005. We also report the 
number of clean patents and the number of total patents (including clean, dirty and other patents) held by these 
applicants.  
Source: authors' calculations based on the PATSTAT database. 
 

Company Clean patents Dirty patents Other patents Total patents

Toyota 568 1238 3500 5306

Nissan 472 811 1735 3018

Honda 374 904 1871 3149

Hitachi 169 746 6987 7902

Robert Bosch 111 2734 4534 7379

Siemens 105 426 6786 7317

Mitsubishi 95 445 8138 8678

Daimler-Benz 87 295 1421 1803

Samsung 75 3 5123 5201

74 195 1611 1880NGK Spark Pulg

Company Dirty patents Clean patents Other patents Total patents

Robert Bosch 2734 111 4534 7379

Toyota 1238 568 3500 5306

Honda 904 374 1871 3149

Nissan 811 472 1735 3018

Hitachi 746 169 6987 7902

454 38 947 1439

Mitsubishi 445 95 8138 8678

Siemens 426 105 6786 7317

336 28 236 600

Yamaha 312 48 869 1229

Denso

Isuzu
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Table A6: Main clean patent holders 1978-2005 – EPO 

 
Note: the table reports the top 10 clean patent holders at the EPO between 1978 and 2005. We also report the 
number of dirty patents and the number of total patents (including clean, dirty and other patents) held by these 
applicants.  
Source: authors' calculations based on the PATSTAT database. 

 
 

Table A7: Main dirty patent holders 1978-2005 – EPO 

 
Note: the table reports the top 10 dirty patent holders at the EPO between 1978 and 2005. We also report the 
number of clean patents and the number of total patents (including clean, dirty and other patents) held by these 
applicants.  
 
Source: authors' calculations based on the PATSTAT database. 
 
 

Company Clean patents Dirty patents Other patents Total patents

Toyota 473 1280 4272 6025

Nissan 423 730 2465 3618

Honda 378 886 2726 3990

Siemens 313 1612 32454 34379

Daimler-Benz 201 844 4910 5955

Hitachi 162 784 9838 10784

Ballard Power Systems 155 0 46 201

International Fuel Cells 153 31 1957 2141

Panasonic 135 2 6078 6215

Robert Bosch 132 4109 11627 15868

Company Dirty patents Clean patents Other patents Total patents

Robert Bosch 4109 132 11627 15868

Siemens 1612 313 32454 34379

Toyota 1280 473 4272 6025

Honda 886 378 2726 3990

Daimler-Benz 844 201 4910 5955

Ford 825 72 2849 3746

Hitachi 784 162 9838 10784

Nissan 730 423 2465 3618

Audi 697 103 2821 3621

BMW 542 86 2626 3254
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Table A8: Main clean patent holders 1978-2005 – USPTO 

 
Note: the table reports the top 10 clean patent holders at the USPTO between 1978 and 2005. We also report the 
number of dirty patents and the number of total patents (including clean, dirty and other patents) held by these 
applicants.  
 
Source: authors' calculations based on the PATSTAT database. 

 
 

Table A9: Main dirty patent holders 1978-2005 – USPTO 

 
Note: the table reports the top 10 dirty patent holders at the USPTO between 1978 and 2005. We also report the 
number of clean patents and the number of total patents (including clean, dirty and other patents) held by these 
applicants.  
 
Source: authors' calculations based on the PATSTAT database. 

  

Company Clean patents Dirty patents Other patents Total patents

Honda 909 3107 7767 11783

Toyota 735 2832 8753 12320

General Motors 532 1587 7923 10042

Nissan 474 2180 5508 8162

International Fuel Cells 429 75 4556 5060

Hitachi 360 1819 31719 33898

Ford 325 2112 5862 8299

Ballard Power Systems 255 2 84 341

Daimler-Benz 249 1571 6134 7954

Mitsubishi 228 2138 27985 30351

Company Dirty patents Clean patents Other patents Total patents

Robert Bosch 4476 165 7774 12415

Honda 3107 909 7767 11783

Toyota 2832 735 8753 12320

Nissan 2180 474 5508 8162

Mitsubishi 2138 228 27985 30351

Ford 2112 325 5862 8299

1954 143 6149 8246

Hitachi 1819 360 31719 33898

General Motors 1587 532 7923 10042

Daimler-Benz 1571 249 6134 7954

Denso
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Table A10: Using the biadic patents 

 (1) (2) (3)    (4) (5) (6) 

Dependent variable  Clean Patents      Dirty Patents  

Model CFX HHG BGVR    CFX HHG BGVR 

Fuel Price 0.980** 0.425 0.845**    -0.516*** -1.960** -0.368* 

 
(0.395) (0.999) (0.332)    (0.187) (0.791) (0.207) 

Clean Spillover 0.233*** 0.657*** 0.314***    -0.058 0.277* -0.044 

 
(0.079) (0.185) (0.077)    (0.047) (0.168) (0.059) 

Dirty Spillover -0.162* -0.955** -0.334***    0.101 -0.042 0.088 

 
(0.090) (0.467) (0.080)    (0.067) (0.265) (0.073) 

Own Stock Clean 0.385*** 0.424*** 0.888***    0.024 0.017 -0.017 

 
(0.035) (0.046) (0.030)    (0.022) (0.034) (0.021) 

Own Stock Dirty 0.124*** 0.107 0.106***    0.517*** 0.683*** 1.090*** 

 
(0.019) (0.078) (0.024)    (0.013) (0.041) (0.023) 

          

Observations 92700 29480 92700    92700 57500 92700 

Firms 4635 1474 4635    4635 2875 4635 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  Sample includes all patents taken 
out at both EPO and USPTO (Triadic patents used in the main paper are a sub-sample of these who were also filed in the JPO). 
All regressions include controls for GDP per capita, year dummies, three dummies for no clean knowledge, no dirty 
knowledge and no dirty or clean knowledge in the previous year. Fuel price is the tax-inclusive fuel price faced. The 
dependent variable is the flow of clean patents in columns (1)-(3) and is the flow of dirty patents in columns (4)-(6). HHG is 
the Hausman et al (1984) method, BGVR is the Blundell et al (1999) method, CFX is Control Function Fixed Effect method.  
 

Table A11: Using citation weighted knowledge stocks 

 (1) (2) (3) (4) (5) (6) 

Dependent variable  Clean Patents   Dirty Patents  

Model CFX HHG BGVR CFX HHG BGVR 

Fuel Price 1.972*** 1.59 2.909*** -0.817*** -1.004 0.960** 

 (0.585) (1.318) (0.714) (0.167) (1.258) (0.462) 

Clean Spillover 0.957*** 0.859** 0.628*** -0.066 0.914*** -0.103 

 
(0.203) (0.360) (0.179) (0.088) (0.281) (0.120) 

Dirty Spillover -0.674*** -0.67 -0.333 0.186* 0.168 0.232* 

 
(0.211) (0.549) (0.210) (0.098) (0.599) (0.133) 

Own Stock Clean 0.330*** 0.412*** 0.657*** 0.073** 0.225*** 0.061 

 
(0.047) (0.086) (0.046) (0.037) (0.056) (0.045) 

Own Stock Dirty 0.064 0.163* 0.086* 0.300*** 0.259*** 0.697*** 

 
(0.043) (0.088) (0.052) (0.020) (0.060) (0.051) 

       

Observations 68240 22420 68240 68240 42300 68240 

Firms 3412 1121 3412 3412 2115 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  All regressions include controls for 
GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty knowledge and no dirty or clean 
knowledge in the previous year. Fuel price is the tax-inclusive fuel price faced. The dependent variable is the flow of clean 
patents in columns (1)-(3) and is the flow of dirty patents in columns (4)-(6). HHG is the Hausman et al (1984) method, BGVR 
is the Blundell et al (1999) method, and CFX is Control Function Fixed Effect method.  
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Table A12: Controlling for GDP  

 (1) (2) (3) (4) (5) (6) 

Dependent variable  Clean Patents   Dirty Patents  

Model CFX HHG BGVR CFX HHG BGVR 

Fuel Price 0.857** 0.203 0.618* -0.408 -2.521*** -0.410* 

 (0.334) (1.162) (0.321) (0.356) (0.878) (0.214) 

GDP 0.219 0.138 0.021 0.248 0.896 0.212 

 (0.201) (1.809) (0.190) (0.217) (2.802) (0.163) 

GDP per capita 1.650 -2.174 2.342** -0.765 -3.178 -0.826* 

 (1.500) (3.260) (1.071) (0.578) (2.326) (0.455) 

Clean Spillover 0.308*** 0.478** 0.296*** -0.107 0.405* -0.124** 

 

(0.078) (0.231) (0.074) (0.080) (0.224) (0.052) 

Dirty Spillover -0.201** -0.438 -0.280*** 0.164* 0.238 0.188*** 

 

(0.086) (0.488) (0.090) (0.085) (0.284) (0.064) 

Own Stock Clean 0.302*** 0.426*** 0.883*** 0.039 0.044 0.000 

 

(0.032) (0.052) (0.032) (0.033) (0.037) (0.023) 

Own Stock Dirty 0.134*** 0.131 0.091*** 0.519*** 0.648*** 1.065*** 

 

(0.019) (0.087) (0.029) (0.023) (0.042) (0.023) 

       

Observations 68240 22420 68240 68240 42300 68240 

Firms 3412 1121 3412 3412 2115 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level.  Estimation is by the various 
methods described in the Econometrics Section. All regressions include controls for GDP per capita, GDP, year dummies, 
three dummies for no clean knowledge, no dirty knowledge and no dirty or clean knowledge in the previous year. The 
dependent variable is the flow of clean patents in columns (1)-(3) and is the flow of dirty patents in columns (4)-(6). HHG is 
the Hausman et al (1984) method, BGVR is the Blundell et al (1999) method, and CFX is Control Function Fixed Effect method. 

 
 

Table A13: Constructing fuel price using only the largest countries  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent variable Clean Patents Dirty Patents 

Model 
CFX CFX 

Fuel price construction Baseline Top 5 Top 10 Top 15 Baseline Top 5 Top 10 Top 15 

Fuel Price 0.970*** 0.955** 0.579** 0.732** -0.565*** -0.12 -0.536*** -0.504*** 

 
(0.374) (0.435) (0.295) (0.315) (0.146) (0.379) (0.154) (0.150) 

Clean Spillover 0.268*** 0.251*** 0.254*** 0.246*** -0.093* -0.134*** -0.117** -0.116** 

 (0.076) (0.076) (0.075) (0.074) (0.048) (0.042) (0.047) (0.047) 

Dirty Spillover -0.168** -0.143* -0.160* -0.143* 0.151** 0.194*** 0.168*** 0.167*** 

 (0.085) (0.085) (0.083) (0.083) (0.064) (0.056) (0.064) (0.064) 

Own Stock Clean 0.306*** 0.322*** 0.321*** 0.309*** -0.002 0.009 0.01 0.011 

 
(0.026) (0.026) (0.024) (0.025) (0.022) (0.020) (0.020) (0.020) 

Own Stock Dirty 0.139*** 0.136*** 0.132*** 0.136*** 0.557*** 0.583*** 0.542*** 0.541*** 

 
(0.017) (0.017) (0.016) (0.016) (0.031) (0.034) (0.019) (0.019) 

         

Observations 68240 68240 68240 68240 68240 68240 68240 68240 

Firms 3412 3412 3412 3412 3412 3412 3412 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. “Top 5” are the five countries with the largest GDP on average in our 25 country 
sample (US, Japan, Germany, France and Italy) with “Top 10” and “Top 15” defined analogously. Standard errors are clustered 
at the firm level. Estimation is by the CFX (Control Function Fixed Effect) method described in the Econometrics Section. All 
regressions include controls for GDP per capita, fixed effects, year dummies, three dummies for no clean knowledge, no dirty 
knowledge and no dirty or clean knowledge (in the previous year). Fuel price is the tax-inclusive fuel price faced by the firm. 
The dependent variable is the flow of clean patents in columns (1)-(4) and the flow of dirty patents in columns (5)-(8). The 
baseline figures reported in columns (1) and (5) correspond to columns (1) and (4) of Table 3 in the paper. 
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Table A14: Excluding hybrid patents from clean innovation 

 (1) (2) 

Dependent variable Clean Patents Dirty Patents 

Fuel Price 0.812** -0.612*** 

 (0.363) (0.132) 

Clean Spillover 0.236*** -0.091** 

 (0.071) (0.045) 

Dirty Spillover -0.122 0.164*** 

 
(0.080) (0.062) 

Own Stock Clean 0.317*** -0.006 

 
(0.030) (0.025) 

Own Stock Dirty 0.125*** 0.555*** 

 
(0.016) (0.028) 

   

Observations 68240 68240 

Firms 3412 3412 

Notes: *,**,**= significant at 10,% 5%, 1%. Standard errors are clustered at the firm level. Estimation is by the CFX method 
described in the Econometrics Section. All regressions include controls for GDP per capita, year dummies, three dummies for 
no clean knowledge, no dirty knowledge and no dirty or clean knowledge in the previous year. The dependent variable is the 
flow of clean patents in columns (1) and is the flow of dirty patents in columns (2).  
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