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Abstract

A sensitivity analysis in an observational study assesses the robustness of signif-
icant findings to unmeasured confounding. While sensitivity analyses in matched
observational studies have been well addressed when there is a single outcome vari-
able, accounting for multiple comparisons through the existing methods yields overly
conservative results when there are multiple outcome variables of interest. This stems
from the fact that unmeasured confounding cannot affect the probability of assign-
ment to treatment differently depending on the outcome being analyzed. Existing
methods allow this to occur by combining the results of individual sensitivity analy-
ses to assess whether at least one hypothesis is significant, which in turn results in an
overly pessimistic assessment of a study’s sensitivity to unobserved biases. By solving
a quadratically constrained linear program, we are able to perform a sensitivity anal-
ysis while enforcing that unmeasured confounding must have the same impact on the
treatment assignment probabilities across outcomes for each individual in the study.
We show that this allows for uniform improvements in the power of a sensitivity anal-
ysis not only for testing the overall null of no effect, but also for null hypotheses on
specific outcome variables while strongly controlling the familywise error rate. We
illustrate our method through an observational study on the effect of smoking on
naphthalene exposure.
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1 Introduction

1.1 Unmeasured Confounding with Multiple Outcomes
Conclusions drawn from an observational study should be subjected to additional

scrutiny due to their vulnerability to unmeasured confounding. Unlike with a ran-
domized experiment, a covariate which has not been adjusted for in the primary
analysis may very well drive the observed relationship, thus nullifying the study’s
original finding. This necessitates an additional step known as a sensitivity analysis
to assess the robustness of an observational study’s conclusions. A sensitivity analysis
seeks an answer to the following question: how extreme would hidden bias have to
be in order for the conclusions of a study to be materially altered? A study whose
findings could be overturned with a small amount of unmeasured confounding invites
warranted skepticism, while a study’s conclusions are bolstered if a large degree of
unmeasured confounding is required.

A sensitivity analysis computes worst-case bounds on the desired inference at a
given level of unmeasured confounding. In observational studies employing matching
to adjust for overt biases, the corresponding sensitivity analysis has been well stud-
ied when there is a single outcome variable of interest; see Section 4 of Rosenbaum
(2002) for a comprehensive overview. It is parameterized by a number Γ ≥ 1 which
controls the allowable departure from purely random assignment for individuals who
are similar on the basis of their observed covariates: two individuals in the same
matched set can, due to the presence of unmeasured confounding, differ in their odds
of assignment to treatment by at most Γ. Higher values of Γ thus allow for unmea-
sured confounding to more substantially bias the treatment assignment probabilities
for individuals in the same matched set. As discussed in Section 2.2, the impact
of unmeasured confounding can be encoded by a scalar latent variable, uij , which
represents the aggregate impact of unmeasured confounding on the assignment prob-
abilities for individual j in matched set i. Individuals in the same matched set with
higher values for uij have higher probabilities of assignment to treatment. At each
level of Γ, one finds the vector of unmeasured confounders for all individuals in the
study, u, which maximizes the p-value, hence yielding the worst possible inference for
a given departure from purely random assignment.

Matched observational studies may seek to investigate the impact of a single treat-
ment on multiple outcome variables; see Sabia (2006), Voigtländer and Voth (2012),
and Obermeyer et al. (2014) for recent examples from policy analysis, economics, and
health care. When there are multiple outcome variables of interest, there may exist
unmeasured factors that influence a particular outcome while not impacting others. In
order for these factors to affect the performed inference (and hence, to be confounders
in the sense of VanderWeele and Shpitser (2013)), these factors must also impact the
treatment assignment probabilities. Figure 1 demonstrates that these factors yield an
aggregate impact on the assignment probabilities (U in the figure) despite affecting
the outcomes differently. Controlling for the aggregate impact of unmeasured con-
founding on the assignment probabilities is sufficient for identifying the causal effect
of the treatment on all of the outcome variables of interest, as these probabilities
are themselves a minimally sufficient adjustment set (Rosenbaum and Rubin, 1983).
The reader should keep in mind that uij truly reflects a dimension reduction of all
unmeasured confounders to their relevant scalar component for impacting the assign-
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ment probabilities, and hence that this model for a sensitivity analysis does not limit
the potential impact of unmeasured confounding on any of the outcome variables.
Moving forward, we will refer to uij interchangeably as the “unmeasured confounder"
and “unobserved covariate" for individual j in matched set i, as is conventional in
sensitivity analyses following the model of Rosenbaum (2002).

U

W1 W2

W12

Z

R1 R2

Figure 1: A Directed Acyclic Graph (DAG) showing how our method accounts for unmeasured
confounding on multiple outcome variables by controlling for their joint effect on the treatment.
W1,W2,W12 represent unmeasured factors which affect outcome R1, outcome R2, and both out-
comes respectively. U is an aggregate measure of the impact of {W1,W2,W12} on the treatment
assignment vector, Z. For any known value of U , only the direct causal pathway of the treatment,
Z, on the outcome variables, R1 and R2, remains open if we condition on U (denoted by the
square around U). Implicit in this diagram is that adjustment has been made for any observed
pre-treatment confounders, X.

When conducting a sensitivity analysis with multiple outcomes, the unmeasured
confounder which affects assignment probabilities in the worst-case manner for out-
come k, u∗k, may not be worst-case for outcome k′; in fact, it may actually result
in more favorable inference for outcome k′. As is noted in Rosenbaum and Silber
(2009), naïvely combining the results of outcome-specific sensitivity analyses while
accounting for multiple comparisons is unduly conservative precisely because of this:
it allows the worst-case unmeasured confounder to affect the probabilities of assign-
ment to treatment differently from one outcome to the next for the same test subject.
Consequently, a uniform improvement in the power of a sensitivity analysis for testing
the overall null hypothesis for any subset of outcomes could be attained by eliminat-
ing this logical inconsistency. As tests for the overall null hypothesis with respect to
subsets of outcomes form the basis of multiple comparisons procedures such as closed
testing (Marcus et al., 1976), hierarchical testing (Meinshausen, 2008), and the inher-
itance procedure (Goeman and Finos, 2012), such an advance would also uniformly
improve the power of a sensitivity analysis for testing null hypotheses for particular
outcomes while strongly controlling the familywise error rate.

The approaches for conducting a sensitivity analysis with a single outcome heavily
utilize the fact that within each matched set, the search for the worst-case unmeasured
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confounder can be restricted to a readily enumerable set of binary vectors (Rosenbaum
and Krieger, 1990). When testing whether the treatment has an effect on at least one
of many outcome variables of interest, this is no longer the case. Thus, the potential
gain in power cannot be actualized through simple extensions of existing methods.
In this work, we present a new formulation of the required optimization problem as a
quadratically constrained linear program which allows one to claim improved robust-
ness to unmeasured confounding in an observational study with multiple outcomes
when testing the overall null. This can, in turn, improve the reported robustness of
individual level outcomes through its incorporation into certain sequential rejection
procedures (Goeman and Solari, 2010). To illustrate these ideas, we now present an
observational study on the impact of smoking on naphthalene levels in the body.

1.2 Motivating Example: Naphthalene Exposure in Smok-
ers

Naphthalene is a simple polycyclic aromatic hydrocarbon (PAH) which has been
linked to numerous adverse health outcomes. Exposure to excessive amounts of naph-
thalene can cause hemolysis (abnormal damage to or destruction of red blood cells in
the body), which can in turn lead to hemolytic anemia (Todisco et al., 1991; Sanctucci
and Shah, 2000). Further, naphthalene has been shown to be carcinogenic in animal
studies (Hecht, 2002), prompting the International Agency for Research on Cancer
(IARC) to label it as “possibly carcinogenic to humans” (IARC, 2002). Given the po-
tential for adverse health outcomes from exposure to naphthalene, it is of interest to
assess the impact of other sources of exposure to naphthalene on levels of naphthalene
metabolites found in the body.

In the 2007-2008 National Health and Nutrition Examination Survey (NHANES),
urinary concentrations of two monohydroxylated naphthalene metabolites, 1- and 2-
naphthol (also known as α- and β-naphthol) were collected for 1706 patients from a
representative sample of adults aged 20 and older in the United States. Through this
study, we seek to address the following question: after controlling for other sources
of exposure and other relevant demographic variables, does smoking (one source of
exposure to naphthalene) lead to elevated naphthalene metabolite levels in our study
population? If this were the case, it would lend further credence to the belief that
naphthalene is a useful biomarker for exposure to PAHs through inhalation (Nan
et al., 2001; Hecht, 2002; Preuss et al., 2004), and it may serve to further highlight
the health risks from smoking.

Through full matching (Hansen, 2004), 453 current smokers were placed into
matched sets with 1253 non-current smokers who were similar on the basis of pre-
treatment variables which, following the criterion for confounder selection of Vander-
Weele and Shpitser (2011), were deemed important to the decision to be a smoker or
the outcomes; see Appendix A for further details on the performed matching. Our
two outcome variables were the urinary concentrations of 1- and 2-naphthol. Using
an aligned rank test (Hodges and Lehmann, 1962) within the stratification yielded
by our full match, we sought to determine whether there was evidence for smok-
ing causing elevated levels for at least one of the two metabolites, and also whether
smoking caused elevated metabolite levels for 1-naphthol and 2-naphthol considered
individually. Assuming a multiplicative treatment effect model (additive on the log-
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scale), under no unmeasured confounding smoking was estimated to elevate urinary
concentrations by a factor of 4.66 and 3.29 for 1- and 2-naphthol respectively using a
Hodges-Lehman estimator (Hodges and Lehmann, 1963), with 95% confidence inter-
vals of [4.00; 5.41] and [2.92; 3.69] attained by inverting a series of tests on the value of
the multiplicative effect (Lehmann, 1963). Correcting for multiple comparisons using
Holm-Bonferroni (Holm, 1979), the asymptotically separable algorithm of Gastwirth
et al. (2000) applied individually to each metabolite yielded strong insensitivity to
unmeasured confounding: the minimum and maximum of the two outcome-specific
findings were below 0.025 and 0.05 respectively until a Γ of 7.78. This means that an
unmeasured confounder would have to result in a difference in the odds of smoking
for two individuals in the same matched set by a factor of 7.78 while nearly perfectly
predicting naphthalene metabolite concentrations to render our results insignificant.

Based on these results, we can also attest to the robustness of a rejection of
the overall null of no effect for either naphthalene metabolite: we have evidence for
significance of at least one naphthalene metabolite at Γ = 7.78. As previously men-
tioned, this is conservative as using Holm-Bonferroni to combine individual sensitivity
analyses allows for differing worst-case confounders for each outcome for the same in-
dividual. Naturally, the worst-case unmeasured confounder for 2-naphthol need not
be the worst-case confounder for 1-naphthol. In fact, at Γ = 7.78 the worst-case u
for 2-naphthol actually yields a significant result for 1-naphthol, and similarly the
worst-case u for 1-naphthol makes our result for 2-naphthol significant. Through the
methodology presented in this paper, it can be determined there is no vector of hidden
covariates that simultaneously makes 1- and 2-naphthol insignificant at this level of
unmeasured confounding. In fact, it takes a Γ of 10.22 to overturn the rejection of
the overall null of no effect for either naphthalene metabolite. Thus Γ = 7.78 actually
understates the robustness of a test of overall significance. Furthermore, we show in
Section 5 that through a closed testing procedure we can actually claim robustness
of the particular metabolites up until Γ = 7.83 for 1-naphthol and Γ = 8.20 for 2-
naphthol, which are the same levels of robustness to unmeasured confounding that
would have been arrived upon without controlling for multiple comparisons.

Section 2 provides notation for and a review of randomization inference and sen-
sitivity analysis within a matched observational study. Section 3 introduces testing
and sensitivity analysis for the overall null hypothesis when there are multiple out-
comes. After highlighting the room for improvement relative to combining sensitivity
analyses for each outcome, Section 4 formulates a quadratically constrained linear
program which allows us to perform a sensitivity analysis for the overall null hypoth-
esis while enforcing that for each outcome, the unmeasured confounder must be the
same for each individual. Section 5 describes how our method can facilitate strong
familywise error control for testing null hypotheses on particular outcomes through its
incorporation into certain sequential rejection procedures. In Section 6, we present a
simulation study demonstrating the potential gains in power of a sensitivity analysis
on the overall null and on outcome-specific nulls using this procedure. We return
to our motivating example in Section 7, where we elucidate the improvements in
reported robustness to unmeasured confounding attained through our procedure as
they pertain to testing elevated naphthalene levels in smokers.
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2 Notation for a Matched Observational Study

2.1 A Stratified Experiment with Multiple Outcomes
We now present notation for the idealized experiment targeted by matching algo-

rithms wherein each treated unit is placed in a matched set with one or more control
units. This framework can be trivially extended to dealing with strata resulting from
full matching, such as the one presented in Section 1.2; see Rosenbaum (2002, Section
4, Problem 12) for details. Suppose there are I independent strata, the ith of which
contains ni ≥ 2 individuals, that were formed on the basis of pre-treatment covariates.
In each stratum, 1 individual receives the treatment and ni − 1 individuals receive
the control. There are K outcome variables collected for each individual. For each
outcome k, individual j in stratum i has two potential outcomes: one under treat-
ment, rT ijk, and one under control, rCijk; let rT ij and rCij be the K-dimensional
vector of potential outcomes for this individual. The observed response vector for
each individual is Rij = rT ijZij + rCij(1 − Zij), where Zij is an indicator variable
that takes the value 1 if individual j in stratum i is assigned to the treatment; see, for
example, Neyman (1923) and Rubin (1974). Each individual has a vector of observed
covariates xij and an unobserved covariate uij .

There are N =
∑I

i=1 ni total individuals in the study. Let Z = [Z11, Z12, ...,,
ZInI

]T be the binary vector of treatment assignments, and let R, rT , and rC be the
N ×K matrices of observed responses and potential outcomes under treatment and
control. Let Ω be the set of

∏I
i=1 ni possible values of Z under the given stratifica-

tion. In randomization inference for a randomized experiment, randomness is modeled
solely through the assignment to treatment or to control (Fisher, 1935). Quantities
dependent on Z, such as the observed outcomes R, are random, while rT ij , rCij ,xij ,
and uij are fixed across randomizations. Let F be the set of such fixed quantities.
For a randomized experiment adhering to this design P(Zij = 1|F ,Z ∈ Ω) = 1/ni
and P(Z = z|F ,Z ∈ Ω) = 1/|Ω|, where |A| denotes the number of elements in a finite
set A.

2.2 Randomization Inference and Sensitivity Analysis
For each outcome k, we consider hypotheses of the form Hk : fTk(rT ijk) =

fCk(rCijk) ∀i, j for specified functions fTk(·) and fCk(·). For example, Fisher’s sharp
null of no effect can be tested through fTk(rT ijk) = rT ijk and fCk(rCijk) = rCijk, and
a test of an additive treatment effect τk can be tested by setting fTk(rT ijk) = rT ijk
and fCk(rCijk) = rCijk + τk. While tests for Neyman’s weak null of no average
treatment effect cannot be accommodated within the framework that follows, other
choices of fTk(·) and fCk(·) can yield tests allowing for subject-specific causal effects
such as tests of effect modification, dilated treatment effects, displacement effects, to-
bit effects, and attributable effects; see Rosenbaum (2002, Section 5) and Rosenbaum
(2010, Sections 2.4-2.5) for an overview.

From our data alone we observe Fijk = fTk(rT ijk)Zij+fCk(rCijk)(1−Zij); let Fk =
[F11k, ..., FInIk] . Under Hk, the vectors fCk = [fCk(rC11k), ..., fCk(rCInIk)] and fTk =
[fTk(rT11k), ..., fTk(rTInIk)] are known to be equal, and hence are entirely specified.
Further, they are constant across randomizations as they are known functions of the
potential outcomes. Hence, under the null Fk = fTk = fCk ∈ F , which in turn allows
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us to use randomization inference to test Hk. Specifically, under Hk and under the
stratified experiment discussed in Section 2.1 the null distribution of a test statistic
tk(Z,Fk) can be written as:

P{tk(Z,Fk) ≥ a|F ,Z ∈ Ω;Hk} =
|z ∈ Ω : tk(z, fCk) ≥ a|

|Ω|
, (1)

where we use fCk in the right-hand side to emphasize that this distribution is known
under the null.

The distribution of tk(Z,Fk) in (1) is appropriate if the observed data truly re-
sulted from the randomized experiment described in Section 2.1. In an observational
study employing matching, we aim to replicate this idealized randomized experiment
by creating strata wherein individuals are similar on the basis of their observed co-
variates, xij (Ming and Rosenbaum, 2000; Hansen, 2004; Stuart, 2010). While this
seeks to control for observed confounders, individuals placed in a given stratum i
may be different on the basis of the unobserved covariate uij . If this uij is influential
for the assignment of treatments and the response, the distribution in (1) may yield
highly misleading inferences.

We follow the model for a sensitivity analysis discussed in Rosenbaum (2002,
Section 4), which states that failure to account for unobserved covariates may result
in biased treatment assignments within a stratum. This model can be parameterized
by a number Γ = exp(γ) ≥ 1 which bounds the extent to which the odds ratio of
assignment can vary between two individuals who are in the same matched stratum.
Under this formulation, the probability of a given allocation of treatment and control
within the stratification under consideration can be stated in the form P(Z = z|F ,Z ∈
Ω) = exp(γzTu)/

∑
b∈Ω exp(γbTu), where u = [u11, u12, ..., uI,ni ] ∈ [0, 1]N =: U

is a vector of unmeasured confounders for the individuals in the study. Note that
Γ = 1 corresponds to the randomization distribution discussed in Section 2.1, while
for Γ > 1 the resulting distribution differs from that of a randomized experiment,
with Γ controlling the extent of this departure.

We consider test statistics of the form tk(Z,Fk) =
∑I

i=1

∑ni
j=1 Zijqijk, where qijk

are functions of Fk. Under Hk these values become functions of fCk, and hence
are known quantities fixed across randomizations. Let qk = [q11k, ..., qInIk], and let
qik = [qi1k, ..., qinik]. Many commonly employed statistics can be written in this
form. For example, suppose we are testing Fisher’s sharp null, so that Fijk = Rijk,
within the block-randomized experiment described in Section 2.1. Setting qijk =∑

j′ 6=j(Fijk − Fij′k)/(I(ni − 1)), tk(Z,Fk) is the mean over the I matched sets of the
average treated-minus-control difference in each matched set for outcome k. In the
case of a matched pairs design, ni = 2 ∀i, this yields the paired permutation t-test.
If qijk are the ranks of the aligned response Fijk −

∑ni
j′=1 Fij′k/ni from 1 to N , then

a test on tk(Z,Fk) yields the aligned rank test of Hodges and Lehmann (1962). To
recover Wilcoxon’s signed rank statistic for a matched pairs design, let dik be the
ranks of |Fi1k − Fi2k| from 1 to I, and let qijk = dik1{Fijk > Fij′k}. See Rosenbaum
(2002) for additional examples and further discussion.

For any given value of Γ ≥ 1, a sensitivity analysis proceeds by finding the alloca-
tion of the unmeasured confounder u∗ which maximizes the p-value for the hypothesis
test being conducted. While not explicitly noted, this worst-case unmeasured con-
founder can vary with the value of Γ under investigation. One then finds the smallest
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value of Γ such that the conclusions of the study would be altered (i.e., such that the
conclusion of the hypothesis test would change from rejecting to failing to reject the
null hypothesis). The more robust a given study is to unmeasured confounding, the
larger the value of Γ must be to alter its findings. Under mild regularity conditions
on qk, the distribution under the null of tk(Z,Fk) converges to that of a normal ran-
dom variable as I → ∞ for the worst-case confounder u∗ at any Γ. An example of
regularity conditions on the constants qijk is that the Lindeberg condition holds for
the random variables Bik :=

∑ni
j=1 Zijqijk (Lehmann, 2004, Theorem A.1.1). While

the value of Γ itself does not affect the limiting distribution, it does influence the
rate at which this limit is reached as larger values of Γ allow for larger discrepancies
in the assignment probabilities within a matched set. Under asymptotic normality,
large sample bounds on the tail probability can instead be expressed in terms of
corresponding bounds on standardized deviates.

For further discussion of sensitivity analyses, including illustrations and alternate
models, see Cornfield et al. (1959), Marcus (1997), Imbens (2003), Yu and Gastwirth
(2005), Wang and Krieger (2006), Egleston et al. (2009), Hosman et al. (2010), Van-
derWeele and Arah (2011), Zubizarreta et al. (2013), Liu et al. (2013) and Ding and
Vanderweele (2014).

3 Sensitivity Analysis for Overall Significance

3.1 Testing the Overall Null Hypothesis
We begin with notation for the truth of the null hypotheses on all K outcomes;

extensions of notation to dealing with subsets of outcomes, which will in turn facilitate
strong familywise error control for testing individual outcomes, will be made in Section
5. There are K hypotheses, H1, ...,HK , and we are interested in testing the overall
truth of the hypotheses {H1, ..,HK} while strongly controlling the familywise error
rate at level α for a range of Γ.

Ho :
K∧
k=1

Hk

Ha :

K∨
k=1

Hc
k

We will refer to a test of Ho as a test of the overall null. Moving forward, we assume
each individual hypothesis Hk has an associated test statistic tk(Z,Fk) of the form
discussed in Section 2.2.

3.2 Combining Individual Sensitivity Analyses is Conser-
vative

A simple approach for conducting a sensitivity analysis at a given Γ would be
to separately find the worst-case p-value for each hypothesis test, call it P ∗k with
corresponding allocation of worst-case confounder u∗k, and suggest through the use
of a Bonferroni correction that at least one hypothesis is false if mink P

∗
k ≤ α/K.
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This trivially controls familywise error rate at α as desired; however, as is noted
in Rosenbaum and Silber (2009, Section 4.5), this approach is conservative as the
worst-case p-value for hypothesis test k may be found at a different allocation of the
unmeasured confounder as that of hypothesis test k′ 6= k for k, k′ ∈ {1, ...,K} (i.e.,
u∗k 6= u∗k′). In other words, the biased treatment assignment probabilities caused
by unmeasured confounding that yield the worst-case inference for outcome k and
outcome k′ need not be the same. This can be better understood in light of the
following well known minimax inequality (for instance, Karlin, 1992, Lemma 1.3.1)

min
k∈{1,..,K}

max
u∈U

Pk,u ≥ max
u∈U

min
k∈{1,..,K}

Pk,u. (2)

Combining the results of K separate hypothesis tests and Bonferroni correcting corre-
sponds to the left-hand side of (2). Strict inequality is possible in (2): it could be the
case that mink maxu∈U Pk > α/K, meaning that we would fail to reject the overall
null hypothesis if we conducted sensitivity analyses separately for each k and then
Bonferroni corrected, while in reality maxu∈U mink Pk ≤ α/K, such that we should
have rejected the overall null. This would occur if for each k there exists a u∗k ∈ U
such that Hk is not rejected, yet there does not exist a single u∗ ∈ U for which all
Hk are simultaneously not rejected.

A uniform improvement over combining individual sensitivity analyses could be
achieved by a procedure which directly solved for the right-hand side of (2). Such a
procedure cannot be derived by extending existing methods for conducting individual
level sensitivity analyses, as these methods rely upon the fact that the search for a
worst-case confounder can be restricted to vectors in U+ or U− for any particular
hypothesis k. Unfortunately, it is not the case that vector u∗ which achieves
maxu∈U mink∈{1,..,K} Pk,u lies within an easily enumerated set of vertices of U ; in fact,
the solution need not even lie at a vertex. To exploit this potential improvement, a
new formulation of the required optimization problem that allows for solutions in all
of U is thus required.

4 Improving Power through Quadratically Con-
strained Linear Programming

In this section, we assume the individual level hypotheses Hk have two-sided
alternatives; simple extensions to the one-sided case are discussed in Appendix B.
Using a normal approximation, we can equivalently express our problem as minimizing
over U the maximal squared deviate over the K hypotheses in question:

min
u∈U

max
k∈{1,..,K}

(tk − µk,u)2

σ2
k,u

, (3)

where tk is the observed value of the statistic tk(Z,Fk), and µk,u = EΓ,u[ZTqk|F ,Z ∈
Ω] and σ2

k,u = VarΓ,u(ZTqk|F ,Z ∈ Ω) are the means and variances of the test statistic
tk(Z,Fk) with a given value of Γ and vector u under the permutation distribution
given by (1). Under a normal approximation for tk(Z,Fk), the squared deviate follows
a χ2

1 distribution. Hence, a determination of whether or not we can reject at least
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one null hypothesis can be made by checking whether or not the solution to (3) is
greater than or equal to χ2

1,1−α/K , where χ2
1,1−α/K is the 1 − α/K quantile of a χ2

1

distribution.
Moving forward, all expectations and variances are taken with respect to the

distribution in (1), i.e. under the truth of the null hypothesis Hk for each k, and
are conditional on F and Z ∈ Ω; this is omitted for notational ease. Let %ij =
exp(γuij)/

∑ni
j′=1 exp(γuij′) = P(Zij = 1|F ,Z ∈ Ω). Let %i = [%i1, .., %ini ], and

let % = [%11, .., %InI
]. Note that we can express our test statistics as the sums of

stratum-wise contributions, tk(Z,Fk) =
∑I

i=1Bik where Bik :=
∑ni

j=1 Zijqijk. The
expectation and variance of the contribution from stratum i, Bik, can be written as

E[Bik;%] = %Ti qik

Var(Bik;%) = %Ti q
2
ik − (%Ti qik)

2,

where the simplified form of Var(Bik;%) comes from the constraint that
∑ni

j=1 Zij =
1 ∀i.

For a given %, we can reject the null hypothesis for a two sided alternative at level
α/K if (tk −E[tk(Z,Fk);%])2/Var(tk(Z,Fk);%) ≥ χ2

1,1−α/K , where E[tk(Z,Fk);%] =∑I
i=1 E[Bik;%], and Var(tk(Z,Fk);%) =

∑I
i=1 Var(Bik;%) due to independence be-

tween strata. This is equivalent to rejecting if ζk(%) := (tk − E[tk(Z,Fk);%])2 −
χ2

1,1−α/KVar(tk(Z,Fk);%) ≥ 0. If we can determine that ζk(%) ≥ 0 for all feasible
values of % at a given value of Γ, we can then say that we have rejected the null at
level of unmeasured confounding Γ; otherwise, we fail to reject.

Consider the following optimization problem:

minimize
%ij ,si

ζk(%) (Hk)

subject to
ni∑
j=1

%ij = 1 ∀i

si ≤ %ij ≤ Γsi ∀i, j
%ij ≥ 0 ∀i, j

The variables si stem from an application of a Charnes-Cooper transformation,
si = 1/

∑ni
j′=1 exp(γuij′) (Charnes and Cooper, 1962), and allow us to incorporate

the restrictions on the allowable departure from pure randomization, 1 ≤ exp(γuij) ≤
Γ ∀i, j, in terms of the probabilities themselves.

Problem (Hk) is a quadratic program, which can be readily solved using a host of
free and commercially available solvers; however, solving this problem merely results
in a sensitivity analysis for a particular hypothesis Hk, rather than one of the overall
null ∧Hk. Towards this end, define ζ(%) = max{ζ1(%), ..., ζK(%)}. We can now pose
our problem as finding min% ζ(%) subject to constraints on % imposed by Γ. This
optimization can be performed through incorporating an auxiliary variable y and
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solving the following quadratically constrained linear program:

minimize
y,%ij ,si

y (∧Hk)

subject to y ≥ ζk(%) ∀k
ni∑
j=1

%ij = 1 ∀i

si ≤ %ij ≤ Γsi ∀i, j
%ij ≥ 0 ∀i, j

The auxiliary variable y is forced to be larger than ζk(%) for all k, and by mini-
mizing over y the optimization problem searches for the feasible value of % that allows
for y to become as small as possible, hence minimizing the maximum value as de-
sired. This is a commonly employed device for solving minimax problems; see, for
example, Charalambous and Conn (1978). To determine whether or not we can reject
at least one null hypothesis, we simply check whether the optimal value y∗ ≥ 0. If
it is, we can reject at least one null hypothesis; otherwise, we cannot. Quadratically
constrained linear programs can be solved using many available solvers; we provide an
implementation using the R interface to Gurobi, a commercial solver which is freely
available for academic use. Henceforth, we will refer to this procedure for conducting
a sensitivity analysis the overall null with K outcomes as the “minimax” procedure
(for minimizing the maximum squared deviate).

5 Familywise Error Control for Individual Null
Hypotheses

By addressing the right-hand side of (2), the minimax procedure provides a sen-
sitivity analysis for the overall null hypothesis that uniformly dominates combining
individual sensitivity analyses. In this section, we discuss how the minimax proce-
dure can be used with sequential rejection procedures (Goeman and Solari, 2010)
which progress through testing the overall null for a sequence of subsets of outcomes
(henceforth referred to as intersection nulls) to provide uniform improvements in
power for testing hypotheses on particular outcome variables. Sequential rejection
procedures of this sort include closed testing (Marcus et al., 1976), hierarchical test-
ing (Meinshausen, 2008), and the inheritance procedure (Goeman and Finos, 2012).
These procedures have appealing properties for conducting a sensitivity analysis, of-
ten allowing researchers to claim improved robustness of a study’s findings against
unmeasured confounding; see Rosenbaum and Silber (2009) for a discussion of this
fact as it relates to closed testing procedures.

We now introduce notation for the class of sequential rejection procedures which
can be used in conjunction with our method, i.e. those for which each step involves
testing the truth of an intersection null hypothesis for a subset of the K outcome
variables. There are L intersection null hypotheses ordered from 1,...,L, the `th of
which, Ho`, pertains to the null hypothesis being true for all outcomes in the subset
K` ⊆ {1, ...,K}. That is, Ho` =

∧
k∈K`

Hk`. |K`| ≤ K is the number of outcomes
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being tested in the `th subset; |K`| = 1 then corresponds to a test of a particular out-
come. Let H be the set of these L intersection null hypotheses, H = {Ho1, ...,HoL}.

Following Goeman and Solari (2010), let Ra ⊆ H be the collection of intersection
nulls rejected after step a of the sequential rejection procedure, and let N (Ra) be the
set of intersection nulls that can now be rejected in step a + 1 if all elements of Ra
have been rejected by step a. The sequential rejection procedure can then be defined
by

R0 = ∅
Ra+1 = Ra ∪N (Ra),

and is repeated until convergence (i.e., until Ra+1 = Ra). Goeman and Solari (2010)
show that sequential rejection procedures strongly control the familywise error rate
at α under the conditions (1) the procedure controls the familywise error at α for
the so-called critical case in which procedure has rejected all of the false overall null
hypotheses and none of the true overall nulls and (2) no false rejections in the critical
case implies no false rejections in situations with fewer rejections than the critical
case.

Closed testing, hierarchical testing, and the inheritance procedure can all be recov-
ered through specific choices ofN (·) that provably adhere to these conditions. Testing
the intersection nulls Ho` for any ` at level of unmeasured confounding Γ as required
by these procedures can be performed using the minimax procedure of Section 4,
which through inequality (2) provides improved power for each subset tested.

To illustrate, suppose one is interested in using a closed testing procedure to
conduct a sensitivity analysis with K = 2 outcomes; this is the procedure used for
multiple testing in our motivating example. In this case, L = 3, K1 = {1, 2}, K2 =
{1}, K3 = {2}. The function N (·) then takes on the following form:

N (∅) =

{
Ho1 if reject H1 ∧H2 at level α
∅ otherwise

N (Ho1) =


{Ho1,Ho2,Ho3} if H1 and H2 each reject individually at level α
{Ho1,Ho2} if only H1 rejects at level α
{Ho1,Ho3} if only H2 rejects at level α
{Ho1} otherwise,

and N (A) = A if A 6= ∅ and A 6= Ho1. In this example, the test of Ho1 can be
performed using the minimax procedure with a test that is locally level α; the tests of
Ho2 and Ho3 only involve one outcome and thus can be conducted through the usual
methods for a sensitivity analysis which, by the closure principle, can be performed
locally at level α while strongly controlling the familywise error rate.
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6 Simulation Study: Gains in Power of a Sensi-
tivity Analysis

6.1 Overall Null Hypothesis
Through the minimax procedure, we arrive at a uniform improvement for testing

the overall null relative to combining the results of individual sensitivity analyses.
In this section, we present a simulation study to demonstrate the potential gains in
power for testing the overall null. In each of 24 simulation settings, we simulate 10,000
data sets with I = 250 pairs and K = 5 outcome variables of interest. The vector
of treated-minus-control paired differences Di are simulated iid from a multivariate
normal with mean vector τ and covariance matrix Σ. For each outcome, we use an
M-statistic of the type favored by Huber (1981), tk(Z,Fk) =

∑I
i=1 ψ(Dik/sk), to

conduct inference, where sk is the median of |Dik| across individuals i and ψ(y) =
sign(y) min(|y|, 2.5). See Maritz (1979) for a discussion of randomization inference for
M -statistics, and see Rosenbaum (2007, 2013, 2014) for various aspects of sensitivity
analyses for M -statistics.

In evaluating these two procedures, we assume as is advocated in Rosenbaum
(2004, 2007) that unbeknownst to the practitioner the paired data at hand truly
arose from a stratified randomized experiment (i.e., Γ = 1). Hence, using a standard
randomization test without assuming unmeasured confounding would provide honest
type I error control. The practitioner, blind to this, would like to not only perform
inference under the assumption of no unmeasured confounding, but also assess the
robustness of the study’s findings to unobserved biases of varying severity.

Our 24 simulation settings are the 8 possible combinations of the following mean
and covariance vectors, each tested at Γ = 1.25, 1.5 and 1.75:

1. τ (1) = [0.25, 0.25, 0.25, 0.25, 0.25]; τ (2) = [0.25, 0.25, 0.25, 0.25, 0];
τ (3) = [0.3, 0.3, 0, 0, 0]; τ (4) = [0.3, 0, 0, 0, 0]

2. Σ(1) = Diag(1); Σ
(2)
ij = 1 if i = j, Σ

(2)
ij = 0.5 otherwise.

All hypothesis tests are of Fisher’s sharp null, and are conducted with two-sided
alternatives at α = 0.05. Table 1 displays the probabilities of (correctly) rejecting the
overall null of no effect for any of the outcomes. The first column contains the proba-
bilities of rejection when combining the results of individual sensitivity analyses, while
the second contains these probabilities for the minimax procedure. The relative im-
provement through the minimax procedure can be quite substantial when the paired
differences are independent across outcomes (Σ(1)), while more modest improvements
are attained when the paired differences are positively correlated (Σ(2)). With posi-
tively correlated differences across outcomes, the worst-case unmeasured confounder
for a particular outcome begins to align more closely with the worst-case unmeasured
confounder for the other outcomes, while for independent paired differences this often
is not the case. For both independent and correlated paired differences, gains are
also more substantial when there are 5 or 4 nonzero treatment effects (τ (1) and τ (2))
versus 2 larger nonzero effects (τ (3)), and with only one large nonzero effects (τ (4))
the two methods tend to coincide. With fewer nonzero effects, the significance of the
overall null at a given level of unmeasured confounding depends on the pattern of
paired differences in a small number of outcomes, such that even if the worst-case
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Table 1: Power of a sensitivity analysis for the overall null.

Gamma Moments Separate Minimax

Γ = 1.25

τ (1),Σ(1) 0.94 0.99
τ (1),Σ(2) 0.77 0.80
τ (2),Σ(1) 0.89 0.96
τ (2),Σ(2) 0.73 0.77
τ (3),Σ(1) 0.92 0.96
τ (3),Σ(2) 0.85 0.87
τ (4),Σ(1) 0.72 0.72
τ (4),Σ(2) 0.71 0.72

Γ = 1.5

τ (1),Σ(1) 0.34 0.78
τ (1),Σ(2) 0.25 0.33
τ (2),Σ(1) 0.28 0.66
τ (2),Σ(2) 0.21 0.28
τ (3),Σ(1) 0.45 0.65
τ (3),Σ(2) 0.39 0.45
τ (4),Σ(1) 0.26 0.26
τ (4),Σ(2) 0.25 0.25

Γ = 1.75

τ (1),Σ(1) 0.04 0.36
τ (1),Σ(2) 0.03 0.06
τ (2),Σ(1) 0.03 0.23
τ (2),Σ(2) 0.03 0.05
τ (3),Σ(1) 0.09 0.24
τ (3),Σ(2) 0.09 0.12
τ (4),Σ(1) 0.05 0.05
τ (4),Σ(2) 0.04 0.04
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unmeasured confounder for an outcome with a nonzero effect actually improves the
squared deviate for an outcome with zero effect it is unlikely to elevate said deviate
to a level of significance.

Naturally, the probabilities of rejection decrease as Γ increases for each combina-
tion of mean vector and covariance matrix. We also note that as Γ increases, the
gains from using the minimax procedure also increase . For example, with combi-
nation τ (2),Σ(1) the powers of the combined approach versus the minimax approach
are 0.89 and 0.96 at Γ = 1.25, and are 0.28 versus 0.66 at Γ = 1.5. These simula-
tions indicate that conducting a sensitivity analysis for the overall null by minimizing
the maximum squared deviate allows for substantial and clinically relevant gains in
the power of a sensitivity analysis. Additionally, the computational burden of the
required optimization problem was minimal in these simulations: across all 24 sim-
ulation settings, the average computation time on a desktop computer with a 3.40
GHz processor and 16.0 GB RAM was 0.12 seconds.

6.2 Individual Hypotheses
As discussed in Section 5, the benefits of our procedure extend beyond testing

the overall null, and can in fact yield improved power for a sensitivity analysis on
hypotheses for individual outcomes. To illustrate this fact, we present a simulation
study assessing the individual-level power of a sensitivity analysis for each of K = 3
outcomes. We use a closed testing procedure in order to test hypotheses on individual
outcomes. Briefly, the closed testing principle states that if there are K hypotheses
H1, ...,HK that are of interest, we can reject any particular hypothesis Hk with fami-
lywise error control at α if all intersections of hypotheses including Hk can be rejected
with tests that are individually level α. For example, with three outcomes we can
reject H1 if we can reject H1 ∧H2 ∧H3, H1 ∧H2, H1 ∧H3, and H1 with tests that
are locally level α. When combining the results of individual sensitivity analyses, this
equates to the Holm-Bonferroni procedure. When using the minimax procedure for
closed testing, one instead solves problem (∧Hk) for each intersection hypothesis.

In each of 24 simulation settings, we simulate 10,000 data sets under no unmea-
sured confounding with I = 250 pairs for the three outcome variables of interest and
again use Huber’s M-statistic. For each of the 8 combinations of treatment effects
and covariances, closed testing is used to test individual hypotheses, and tests are
run at Γ = 1.25, 1.375, and 1.5. We also include the power for rejecting the overall
null for each combination and at each level of Γ. The values for the treatment effect
vector and the covariances were as follows:

1. τ (1) = [0.2, 0.225, 0.25]; τ (2) = [0.25, 0.3, 0.35]; τ (3) = [0.2, 0.25, 0.35];
τ (4) = [0.15, 0.25, 0.35]

2. Σ(1) = Diag(1); Σ
(2)
ij = 1 if i = j, Σ

(2)
ij = 0.5 otherwise.

Table 4 shows the power for rejecting Fisher’s sharp null for each outcome under
four different vectors of true treatment effect values and two different forms of the
covariance matrix. The magnitude of the improvement attained through the mini-
max procedure can be seen to depend on many factors. All else equal, as Γ increases
the gains in power also increase. The gains in power tend to be more substantial in
the iid cases (Σ(1)) versus the positively correlated case (Σ(2)), as for each intersec-
tion hypothesis the minimax procedure tends to resemble more closely the individual
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Table 2: Power of closed testing for individual nulls.
Separate Minimax

Gamma Moments H1 H2 H3 ∧Hk H1 H2 H3 ∧Hk

Γ = 1.25

τ (1),Σ(1) 0.27 0.40 0.54 0.74 0.33 0.46 0.60 0.84
τ (1),Σ(2) 0.29 0.40 0.53 0.62 0.31 0.43 0.56 0.65
τ (2),Σ(1) 0.65 0.86 0.96 0.99 0.68 0.88 0.97 1.00
τ (2),Σ(2) 0.65 0.85 0.95 0.97 0.66 0.86 0.96 0.97
τ (3),Σ(1) 0.32 0.59 0.95 0.97 0.35 0.63 0.97 0.99
τ (3),Σ(2) 0.34 0.58 0.94 0.95 0.35 0.60 0.95 0.95
τ (4),Σ(1) 0.09 0.27 0.94 0.95 0.11 0.29 0.95 0.97
τ (4),Σ(2) 0.11 0.27 0.93 0.94 0.11 0.28 0.94 0.94

Γ = 1.375

τ (1),Σ(1) 0.09 0.16 0.27 0.41 0.14 0.22 0.34 0.61
τ (1),Σ(2) 0.11 0.18 0.27 0.35 0.13 0.20 0.30 0.39
τ (2),Σ(1) 0.37 0.63 0.85 0.94 0.42 0.70 0.90 0.99
τ (2),Σ(2) 0.39 0.62 0.84 0.87 0.41 0.65 0.85 0.89
τ (3),Σ(1) 0.12 0.31 0.83 0.87 0.16 0.37 0.88 0.95
τ (3),Σ(2) 0.14 0.32 0.82 0.83 0.16 0.35 0.83 0.84
τ (4),Σ(1) 0.02 0.10 0.81 0.83 0.03 0.12 0.85 0.89
τ (4),Σ(2) 0.03 0.11 0.82 0.82 0.03 0.12 0.82 0.82

Γ = 1.5

τ (1),Σ(1) 0.03 0.06 0.11 0.18 0.05 0.09 0.16 0.36
τ (1),Σ(2) 0.03 0.06 0.12 0.16 0.05 0.08 0.14 0.19
τ (2),Σ(1) 0.16 0.38 0.64 0.77 0.22 0.48 0.76 0.95
τ (2),Σ(2) 0.18 0.38 0.64 0.69 0.20 0.42 0.68 0.74
τ (3),Σ(1) 0.04 0.13 0.62 0.66 0.06 0.18 0.71 0.84
τ (3),Σ(2) 0.04 0.14 0.62 0.63 0.05 0.16 0.64 0.66
τ (4),Σ(1) 0.00 0.03 0.62 0.63 0.01 0.04 0.67 0.73
τ (4),Σ(2) 0.01 0.04 0.62 0.62 0.01 0.04 0.63 0.63
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testing approach when there is positive correlation since the worst-case confounders
across outcomes tend to align more closely. For example, with τ (2) = [0.25, 0.3, 0.35]
at Γ = 1.5, the power after combining individual sensitivity analyses and after
using the minimax procedure are [0.16, 0.38, 0.64] versus [0.22, 0.48, 0.76] when the
paired differences are independent across outcomes, yet were [0.18, 0.38, 0.64] versus
[0.20, 0.42, 0.68] when positively correlated. Gains are also most apparent when the
treatment effects are of roughly the same magnitude (τ (1) and τ (2)), while the gains
tail off as one outcome increasingly determines the rejection of the overall null (com-
pare τ (2), τ (3), τ (4)). Thus, while the gains for testing the overall null hypothesis may
be most apparent, the minimax procedure can provide meaningful improvements for
testing nulls on individual outcomes.

In Appendix C, we show that our procedure does provide strong familywise error
control in the presence of true intersection nulls as desired.

7 Improved Robustness to Unmeasured Confound-
ing for Elevated Napthalene in Smokers

7.1 Conflicting Desires for the Worst-Case Confounder

Table 3: Worst-Case Confounders in a Particular Pair at Γ = 10

1-Naphthol 2-Naphthol
Rij1 qij1 u∗ij1 E[Ti1] Rij2 qij2 u∗ij2 E[Ti2]

NS 6.39 353 0 1274 8.63 1350 1 1260
S 8.54 1366 1 7.07 363 0

Minimax
u∗ E[Ti1] E[Ti2]

[0.953, 0.391] 571 1137

To make concrete the factors allowing for the gains discussed in this work, Table 3
show the values and aligned ranks for loge urinary concentrations of 1-naphthol and
2-naphthol for two individuals, one smoker and one nonsmoker, who were matched
as a pair by the full match described in Appendix A. Both individuals are Hispanic
males aged over 50, are similar in terms of height and weight, and are both exposed
to PAHs occupationally, yet the smoker (labeled S) has higher levels of 1-naphthol
and lower levels of 2-naphthol.

The tests of both 1-naphthol and 2-naphthol had observed test statistics that were
larger than their expectations under Fisher’s sharp null with Γ = 1. Hence, the indi-
vidual sensitivity analyses will choose the binary vector of u∗k such that the individual
with the larger observed response is given the value 1, thus having the higher prob-
ability of smoking. For 1-naphthol this is the smoker, but for 2-naphthol this is the
nonsmoker, as is shown in Table 3. Although we do not know the value of this un-
measured confounder, we do know that logically, the unmeasured confounder cannot
simultaneously increase the odds that individual 1 smokes relative to individual 2 and

16



the odds that individual 2 smokes relative to individual 1. Simply combining these
two sensitivity analyses would ignore the contradictory values of u∗k. Table 3 also gives
the expectation of the test statistic for the individual outcomes assessed separately
at Γ = 10, a value of Γ for which the minimax procedure rejects the overall null,
but using Holm-Bonferroni to combine sensitivity analyses fails to reject. Conducting
sensitivity analyses separately and allowing for an illogical effect of the unmeasured
confounder, the worst-case expectations for the contribution from this matched set
to the test statistics’ expectations are 1274 and 1260 for 1- and 2-naphthol.

Recognizing that the unmeasured confounders must have the same impact on
odds of treatment for individuals in a matched set yields markedly different results
for the overall sensitivity analysis in this pair, as is demonstrated in the section
labeled “Minimax” in Table 3. First, we note that the values of the unmeasured
confounder for both individuals are fractional, an occurrence which is provably im-
possible when conducting sensitivity analyses for any given outcome (Rosenbaum
and Krieger, 1990). This makes the probabilities of assignment to treatment and
control much less extreme than they possibly could have been: conditional on one
of the two individuals receiving the treatment, the smoker is given a probability of
exp{log(10)0.391}/(exp{log(10)0.391}+exp{log(10).953}}) = 0.22 of being a smoker,
while at Γ = 10 this probability could have been as low as 1/(1 + 10) and as high
as 10/(1 + 10). In minimizing the maximal deviate, the optimization problem deter-
mined that a compromise should be made between the two conflicting desires of the
individual level sensitivity analysis, but that it should favor making 2-naphthol more
significant. Hence, we see that the contribution to the overall expectation of the two
test statistics is larger than what it would have been at no unmeasured confounding
for 2-naphthol (1137 vs 856.5), but is actually smaller for 1-naphthol (571 vs 859.5).

7.2 Sensitivity of Overall and Outcome Specific Effects
As was stated in Section 1.2, the conclusions of either of the individual level tests

on 1- and 2-naphthol were both overturned at Γ = 7.78 when using Holm-Bonferroni.
This is also the maximal level of Γ at which we can claim overall significance of
at least one of these metabolites. The minimax procedure for testing the overall
null hypothesis was able to claim robustness of this same finding up until Γ = 10.22,
representing a substantial increase in robustness. In this application the overall null is
of interest, as both naphthalene metabolites are indicators of naphthalene exposure.
Hence, rejecting the overall null implies that we can suggest that at least one of
our indicators of naphthalene exposure is significantly elevated for smokers relative
to nonsmokers, even if we are not able to identify a particular metabolite that is
significant at that level of unmeasured confounding.

To exploit the potential gains in power for individual tests of 1-naphthol and 2-
naphthol, we use a closed testing procedure. In our example, doing so means that if
we reject the null H1 ∧H2 at level 0.05 through our minimax procedure we can then
test the individual hypotheses H1 and H2 at level 0.05 (rather than 0.025) and still
maintain the proper familywise error rate. Since our test of the overall null rejects
until Γ = 10.22, the closed testing procedure allows us to perform individual tests up
to that level of unmeasured confounding. The individual tests of 1- and 2-naphthol
without a Bonferroni correction (i.e., tested at α = 0.05) were not overturned until
a Γ of 7.83 and 8.20 respectively. As our minimax procedure rejects the overall null
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H1 ∧H2 for all Γ between 7.78 and 8.20, we can declare improved robustness of the
individual level tests. That is, we can reject the null of no effect for 1- and 2-naphthol
at all levels of Γ up to Γ = 7.83 and 8.20, rather than Γ = 7.78.

8 Discussion
In a randomized clinical trial, counfounders not accounted for in the trial’s de-

sign are, on average, balanced through randomized assignment of the intervention.
As such, there is less of a concern that the observed results are driven by a causal
mechanism other than the one under investigation. In observational studies, there is
no such guarantee of balance on the unmeasured confounders between the two groups
under comparison. When testing for a causal effect on multiple outcome variables,
concerns about a loss of power by controlling the familywise error rate both under
the assumption of no unmeasured confounding and within the sensitivity analysis
may arise. We have demonstrated through this work that when dealing with multiple
comparisons in a sensitivity analysis, the loss in power from controlling the familywise
error rate can be attenuated.

As mentioned in Section 5, our method can be used in conjunction with sequen-
tial rejection procedures which proceed by rejecting intersection null hypotheses on
a sequence of subsets of outcomes, {K`}. For certain types of null hypotheses, such
as those for the value of an additive treatment effect with one sided alternatives, our
method could also be used while employing the partitioning principle of familywise
error control (Finner and Strassburger, 2002). One deficiency of our method is that
it does not account for correlation between test statistics, which can greatly improve
power in the presence of dependence (Westfall and Young, 1993; Romano and Wolf,
2005). While the simulation studies of Section 6 reveal marked improvements when
test statistics are independent, these gains are far more modest when the test statistics
are correlated and further improvements are desired. Deriving methods for sensitivity
analyses which exploit correlation between test statistics remains a topic of ongoing
research. Another limitation is that our method can only be used for sensitivity
analyses after matching, as the structure of matched sets returned by matching algo-
rithms allows for a straightforward relationship between the assignment probabilities
and the variances of our test statistics. In unmatched or stratified analyses, while
the logical inconsistencies noted herein are still present, optimizing over the unknown
assignment probabilities can no longer be expressed as a quadratically constrained
linear program.

In our motivating example, we argue that if smoking causes increased naphtha-
lene exposure, it would elevate levels of both 1- and 2-naphthol in the body. Though
related, these metabolites are not affected equally by measured and unmeasured con-
founding variables: for example, there are certain genetic variants that are only be-
lieved to affect the prevalence of particular naphthalene metabolites (Yang et al.,
1999). When focusing on a single outcome variable, the worst-case confounder is
allowed to optimally align itself with the responses in each matched set through se-
lecting the worst-case allocation of treatment assignment probabilities. If we are
instead trying to disprove the overall truth of null hypotheses on multiple outcomes,
the worst-case confounder likely cannot affect the treatment assignment probabilities
in a way that simultaneously yields the worst-case inference for all outcomes. Ex-
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ploiting this fact not only lends higher power to a sensitivity analysis for the overall
null across all outcomes, but also increases power for testing hypotheses on individual
outcomes through the use of certain sequential rejection procedures.

SUPPLEMENTARY MATERIAL

Appendices Appendix A describes the details of the matching performed in our
motivating example on the impact of smoking on naphthalene levels. Appendix
B discusses how our procedure can be extended to test hypotheses with one-
sided alternatives. Appendix C contains a simulation study demonstrating that
our proposed procedure strongly controls the familywise error rate (.pdf file).

R-script multiCompareFunctions.R provides functions for conducting a sensitivity
analysis for any intersection null through the solution of a quadratically con-
strained linear program.

R-script reproduceScript.R provides code for reproducing the results of this paper.

Data set naphthalene.csv provides the data used in this paper.
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APPENDIX

A Additional Details for the Smoking and Naph-
thalene Example

Following Weitzman et al. (2005) and Suwan-ampai et al. (2009), individuals were

classified as active smokers if they stated that they smoke “every day” or “some days”

in response to the question “Do you now smoke cigarettes?,” or if their serum cotinine

(a metabolite of nicotine) levels were above 0.05 ng/mL. Using this definition, there

were 453 smokers and 1253 nonsmokers. The nonsmokers include former smokers and

never smokers, as urinary naphthol is an indicator of recent naphthalene exposure.

We used full matching to control for observed covariates in this study (Rosenbaum,

1991; Hansen, 2004). In this match, we allowed for strata of maximal size 10, meaning

that a matched set could have, at most, either 1 current smoker and 9 nonsmokers;

or 1 nonsmoker and 9 current smokers. We identified 22 pre-treatment covariates

deemed predictive of smoking and naphthalene levels based on those used in Suwan-

ampai et al. (2009); these covariates are listed in Figure 2. Ten covariates contained

missing values, with a maximal percentage of values missing of 10%. To account for

this, we included 10 missingness indicators as additional covariates upon which to

match. As discussed in Rosenbaum and Rubin (1984) and Rosenbaum (2010, Section

9.4), this facilitates balancing the observed covariates and the pattern of missingness.

Rank-based Mahalanobis distance with a propensity score caliper of 0.08 was used,

and propensity scores were estimated using logistic regression (Rosenbaum, 2010,

Section 8.3). Figure 2 shows the standardized differences before and after matching

for observed confounders and demonstrates that before matching there were substan-

tial imbalances between smokers and nonsmokers with respect to many important

variables. It also shows that matching was able to effectively create a well-balanced

comparison between smokers and nonsmokers on the basis of these variables. Details

for calculating standardized differences before and after full matching can be found

in Stuart and Green (2008) and Rosenbaum (2010, Section 9.1).
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Standardized Differences Before and After Matching

Standardized Differences

Charred Meats MISS

Other Fumes MISS

Exhaust Fumes MISS

Organic Dust MISS

Mineral Dust MISS

Any Drinks this Year? MISS

Drinks per Day MISS

Height MISS

Weight MISS

PIR MISS

Other Race

Black

White

Other Hispanic

Mexican American

Charred Meat Consumption

Other Fume Exposure

Exhaust Fume Exposure

Organic Dust Exposure

Mineral Dust Exposure

Urinary Creatine

Any Drinks this Year?

Drinks per Day

Moderate Workplace Exertion

Regular Walking

Recreational Exercise

Height

Weight

Education

Poverty:Income Ratio (PIR)

Gender

Age

−0.4 −0.2 0.0 0.2 0.4
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Figure 2: Covariate Imbalances Before and After Matching. The dotplot (a Love plot) shows
the absolute standardized differences without matching, and after conducting a matching with
a variable number of controls. The vertical dotted line corresponds to a standardized difference
threshold of 0.2, which is often regarded as the maximal allowable absolute standardized difference
(for example, Silber et al., 2001). The largest absolute standardized difference after matching was
0.094.

B A Simple Extension To One-Sided Testing

By taking the square of the deviate in our original formulation, we lose the devi-

ate’s sign. While this does not make a difference for two-sided testing, it does make

a difference when the test is one-sided. For example, if we stipulated a one-sided,

greater than alternative but observed a test statistic markedly smaller than its ex-

pectation under the null we should fail to reject that null, a fact which is lost when

taking the square. To account for this, we introduce a penalty into the constraints

corresponding to one-sided hypotheses that only allow for a rejection to be regis-

tered if the expectation of the test statistic yielded through the sensitivity analysis
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maintains the proper relationship with the observed test statistic given the nature

of the alternative. Let bk be a binary variable for the kth outcome, and let M be a

sufficiently large constant.

Redefine ζk(%) so that

ζk(%) =


(tk − E[tk(Z,Fk);%])2 − χ2

1,1−α/KVar(tk(Z,Fk);%) if two-sided alternative

(tk − E[tk(Z,Fk);%])2 − χ2
1,1−2α/KVar(tk(Z,Fk);%) if one-sided alternative

We then modify our optimization problem as follows:

minimize
y,%ij ,si,bk

y

subject to y ≥ ζk(%)−Mbk ∀k
ni∑
j=1

%ij = 1 ∀i

si ≤ %ij ≤ Γsi ∀i, j

%ij ≥ 0 ∀i, j

bk ∈ {0, 1} ∀k

bk = 0 if Hk two-sided

−M(1− bk) ≤ tk − %Tqk ≤Mbk if Hk one-sided , <

−Mbk ≤ tk − %Tqk ≤M(1− bk) if Hk one-sided , >

The value Mbk added to the k constraints on the auxiliary variable y, in conjunc-

tion with the constraints on the value of the test statistic’s numerator, impose a heavy

negative penalty if the relationship between the test statistic and its mean under a

given allocation of unmeasured confounders do not adhere to the required direction

imposed by the alternative. This makes it such that we will never reject a null at a
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Table 4: Rejection probability for testing true and false nulls through closed testing.
Desired strong familywise error control at 0.05.

True Nulls False Nulls
Gamma Moments H1 H2 H1 ∧H2 H3 H1 ∧H2 ∧H3

Γ = 1
τ ,Σ(1) 0.0260 0.0266 0.0506 0.9884 0.9886
τ ,Σ(2) 0.0267 0.0268 0.0462 0.9881 0.9893

Γ = 1.05
τ ,Σ(1) 0.0102 0.0089 0.0189 0.9748 0.9749
τ ,Σ(2) 0.0096 0.0122 0.0197 0.9732 0.9750

Γ = 1.10
τ ,Σ(1) 0.0035 0.0043 0.0078 0.9462 0.9463
τ ,Σ(2) 0.0053 0.0032 0.0081 0.9441 0.9462

given Γ because a given one-sided test was highly insignificant, which without such a

penalty would be construed as being highly significant.

C Simulation of Type I Error Control

In this simulation study, we demonstrate that, in the presence of true intersection

null hypotheses, our procedure strongly controls the familywise error rate at level

α = 0.05. In each of 6 simulation settings, we simulate 10,000 data sets under no

unmeasured confounding with I = 250 pairs for three outcome variables of interest

and using Huber’s M-statistic, as described in Section 5.1 of the manuscript. For

each of the 2 combinations of treatment effects and covariances, closed testing is used,

with our minimax procedure being used for each intersection null. Tests are run at

Γ = 1, 1.05, and 1.1. The values for the treatment effect vector and the covariances

were as follows:

1. τ = [0, 0, 0.3]

2. Σ(1) = Diag(1); Σ
(2)
ij = 1 if i = j, Σ

(2)
ij = 0.5 otherwise.

We test Fisher’s sharp null on each outcome. In each iteration, we record whether

or not the true null hypotheses H1, H2, and H1 ∧ H2 are rejected. We also record

whether or not the false nulls H3 and H1 ∧ H2 ∧ H3 are rejected. Table 4 shows

the results of this simulation study. As can be seen, our procedure strongly controls
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the type I error rate for all values of Γ tested. The rate of rejection for H1 ∧ H2

reveals that our procedure is conservative when the test statistics are dependent, while

coming very close to attaining the actually desired level under independence. As Γ

increases the Type I error rate decreases for all true nulls, as many spurious rejections

assuming no unmeasured confounding can be explained by moderate departures from

pure randomization.
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