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Abstract
What is the relative importance of structural versus contextual
forces in the birth and death of scientific theories? We describe
a formal dynamic model of the birth, evolution, and death of
scientific paradigms based on Kuhn’sStructure of Scientific
Revolutions. The model represents scientific activity as a chang-
ing set of coupled institutions; a simulated ecology of interact-
ing paradigms in which the creation of new theories is stochas-
tic and endogenous. The model captures the sociological
dynamics of paradigms as they compete against one another for
members, solve puzzles, and recognize anomalies. We use sen-
sitivity tests and regression to examine the role of intrinsic ver-
sus contextual factors in determining paradigm success. We find
that situational factors attending the birth of a paradigm largely
determine its probability of rising to dominance, while the in-
trinsic explanatory power of a paradigm is only weakly related
to the likelihood of success. For those paradigms surviving the
emergence phase, greater explanatory power is significantly re-
lated to longevity. However, the relationship between a para-
digm’s “strength” and the duration of normal science is also
contingent on the competitive environment during the emer-
gence phase. Analysis of the model shows the dynamics of com-
petition and succession among paradigms to be conditioned by
many positive feedback loops. These self-reinforcing processes
amplify intrinsically unobservable microlevel perturbations in
the environment—the local conditions of science, society, and
self faced by the creators of a new theory—until they reach
macroscopic significance. Such path dependent dynamics are
the hallmark of self-organizing evolutionary systems. We con-
sider the implications of these results for the rise and fall of
new ideas in contexts outside the natural sciences such as man-
agement fads.
(Complexity; Simulation; Competition; Sociology of Sci-
ence; Scientific Revolution)

1. Introduction
The late Thomas Kuhn’sStructure of Scientific Revolu-
tions heralded a radically new conception of science. In

the traditional view science applies universally-accepted
norms of logical inquiry, and scientific development is
seen as the cumulative triumph of an ever more truthful
and encompassing understanding of reality. In contrast,
Kuhn (1970, pp. 84–85) argues that new theories replace
old ones rather than building on them, revolutionizing
science’s very image of itself. For Kuhn, scientific de-
velopment is fraught with errors, blind alleys, and intense
competition among competing worldviews, proceeding
“as a succession of tradition-bound periods punctuated by
non-cumulative breaks” (Kuhn 1970, p. 208). Of course,
Kuhn can be situated in a long tradition of scholars who
reacted against realist and positivistic views of science,
perception, and knowledge, including Paul Feyerabend
(1975), and famously, Ludwik Fleck, whose 1935 theory
of the social construction of scientific facts was cited by
Kuhn (1970, p. vii) as “an essay that anticipates many of
my own ideas.” Yet no other formulation captured the
imagination—or generated the ire—thatStructure did.

Indeed, the idea that individual, social, and historic
contingencies play a role in scientific development rival-
ing or exceeding a theory’s intellectual content has elated
many social scientists and historians as much as it has
infuriated many philosophers and scientists. (The litera-
ture is massive. For a representative sample of the debate
over the social construction of science, see e.g., Bijker et
al. 1987, Collins 1985, Cushing 1994, Donovan et al.
1988, Gross and Levitt 1994, Martin 1996, Pickering
1984, 1992, Pinch 1986, and Roth and Barrett 1990). For
many social scientists Kuhn’s theory legitimated resis-
tance to the century-old attempt to make the study of
society, politics, and culture more like Newtonian phys-
ics. For others Kuhn’s attempt to historicize scientific en-
deavor was reckless and heretical. Yet whether as proph-
ecy or apostasy, his ideas continue to stimulate vigorous
debate about the evolution of science (e.g., Hoyningen-
Huene 1993, Lightman and Gingerich 1992).

The controversy over the nature of scientific progress
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parallels the debate in the social sciences over whether
organizational change is gradual and evolutionary or ep-
isodic and revolutionary. Though Kuhn (1970, pp. 208–
210) cautioned against the applicability of his model to
the social sciences, it is nevertheless widely cited by so-
cial scientists as descriptive of organizational behavior
and cognitive shifts in contexts far beyond the natural
sciences. Organization theorists argue that the pattern of
punctuated equilibrium Kuhn finds in the history of sci-
ence also characterizes many instances of organizational
change (see Gersick 1991, Tushman and Anderson 1986,
Sastry 1997). Tushman and Romanelli (1985, p. 171) pro-
pose a model of organizational change in which
“[o]rganizations evolve through convergent periods
punctuated by reorientations . . . which demark and set
bearings for the next convergent period.” Gersick (1991)
shows there are many domains and levels of analysis,
from paleontology (Gould 1990, Eldredge and Gould
1972) to group dynamics, in which change can be char-
acterized by long periods of stasis or gradualism punc-
tuated by sudden upheavals and revolutions. Some argue
that change is often a more continuous and adaptive pro-
cess (e.g., Orlikowski 1996), while still others argue that
organizational adaptation is rare, with selection and evo-
lution occurring at the population level (Hannan and
Freeman 1989; Van de Ven and Poole 1995 provide a
survey of change research).

The similarity between the dynamics of science and of
organizations is not mere coincidence. Scientific activity
is not primarily the work of solitary geniuses, but is em-
bedded in a wide range of organizations, from the small
group level of researchers and graduate students in a lab,
to departments and universities, to the network of funding
agencies, journal boards, and professional societies that
constitute the “invisible colleges” defining a community
of practice (Crane 1972). There are of course differences
between the institutions of science and organizations in
other domains such as business firms. Yet the institutions
of science are among the most influential in our society,
deserving of study in their own right. Additionally, the
dynamics of scientific revolution may shed light on or-
ganizational evolution in general. Why is it that some
scientific paradigms last for centuries while others
quickly wither? How do intellectual, structural, and con-
textual forces interact to shape and constrain the devel-
opment of new paradigms (and organizations)? What de-
termines whether a new theory (or organization) survives
its founding and becomes dominant? Do structural or
contingent forces dominate the dynamics of social sys-
tems?

We address these questions with a formal dynamic
model of paradigm emergence and competition. The

model creates a simulated ecology of interacting para-
digms in which the genesis of new paradigms is stochastic
and endogenous. The model captures the sociological dy-
namics of paradigms as their members formulate and
solve “puzzles,” recognize and react to anomalies, and
alter their beliefs and behavior. Competition for mem-
bership and resources is explicit. The model is used to
investigate the relative importance of structural versus
contextual factors in determining the fate of new ideas.

Although the model is based on Kuhn’s work, we do
not claim to capture his theory fully. Translating the the-
ory from its highly abstract written form into an internally
consistent formal model has involved simplifications and
the introduction of auxiliary hypotheses (for a discussion
and critique see Wittenberg 1992, Sterman 1992,
Radzicki 1992, Barlas 1992). Nonetheless, formalization
has advantages. Most discussions of Kuhn’s theory are
based on ambiguous mental models, and Kuhn’s text it-
self is rich with ambiguity, multiple meanings, and im-
plicit assumptions (Masterman 1970). More importantly,
Kuhn offers no calculus by which one can assess whether
the dynamics he describes can be produced by the causal
factors he postulates. Formalization helps to surface im-
plicit assumptions so they can be debated and tested (see
Gorman 1992, Rappa and Debackere 1993, Sastry 1997,
Stewart 1986, Thagard 1968, and Turner 1987 for ex-
amples). Formalization is complementary to the work of
historians, sociologists, and philosophers of science
working to develop and test theories of scientific change
and institutional upheaval.

Finally, the model applies nonlinear dynamics to social
phenomena and human behavior. Modern theories of
nonlinear, far from equilibrium systems, though emerging
in the physical sciences, have great potential to illuminate
evolutionary behavior in social, economic, and other hu-
man systems (e.g., Anderson et al. 1988; Arthur 1989,
1994; Bruckner et al. 1989, 1990; Ebeling 1991; Lomi
and Larsen 1996). The full potential of these tools in the
social sciences will be realized, we believe, only when
they are used to develop and test formal models. The
merely metaphorical use of concepts from nonlinear dy-
namics, while provocative, is not sufficient, a point also
stressed by Carley and Wallace (1995) and Richardson
(1996, 1991). In addition, useful models will draw on
experimental and field studies of human behavior to spec-
ify the decision rules governing the behavior of the sim-
ulated agents (see Carley 1991, 1995; Cyert and March
1963/1992; Forrester 1961; Hall 1976; Haxholdt et al.
1995; Lant and Mezias 1992; Morecroft 1985; Nelson
and Winter 1982; Radzicki and Sterman 1994; and
Sterman 1988, 1989 for discussion and examples). Here
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we develop a stochastic, nonlinear, disequilibrium, be-
havioral model of the evolution of scientific theories,
grounded in Kuhn’s theory. As will be seen, the dynamics
exhibit self-organization and path dependence, two com-
mon modes of behavior in complex systems.

2. A Theory of Paradigm Evolution and
Succession

We assume familiarity with Kuhn’s work and the many
interpretations and alternatives to it (see Lakatos and
Musgrave 1970 for classic critiques and Hoyningen-
Huene 1993 for a comprehensive survey and bibliogra-
phy). A core concept in Kuhn’s theory is the life cycle of
a paradigm. Kuhn describes a sequence of four stages:
emergence, normal science, crisis, and revolution (fol-
lowed by the emergence of a new paradigm). The emer-
gence phase is characterized by the absence of commonly
accepted beliefs or standards governing scientific activity.
Conflict among paradigm-candidates arises from incom-
patible metaphysical beliefs and logics of inquiry, as
Kuhn (1970, pp. 13–15) illustrates with the state of elec-
trical research before Franklin and his colleagues pro-
vided the field with a paradigm. As a theory attracts
nearly every scientist in the field—thereby becoming the
dominant paradigm—normal science begins. Debate over
fundamental assumptions dwindles, and, convinced their
paradigm is the proper way to characterize reality, sci-
entists proceed to apply it to nature’s puzzles. During
normal science, clashes between theory and data are often
resolved in favor of theory—it is often presumed that any
anomalous observations are wrong, or the calculations
erroneous, so that further puzzle-solving effort will re-
solve the anomaly, a behavior Kuhn (1970, p. 81) illus-
trates by citing anomalies facing Newtonian mechanics
involving the speed of sound, the moon’s perigee, and the
precession of the orbit of Mercury. This is observed today
in the debate over the value of the Hubble constant and
the age of the universe (Chaisson 1997).

Normal science continues until a crisis arises. A para-
digm can enter crisis when enough unsolved puzzles be-
come recognized by practitioners as important anomalies,
persuading them that the theory must, after all, be ques-
tioned. As persistent anomalies accumulate, increasing
numbers of scientists will devote their time to solving
them rather than addressing new puzzles, and some may
propose radical solutions. A revolution occurs when a
new paradigm based on such a radical reconceptualiza-
tion gains wide acceptance, and science is reconstructed
from new fundamentals. Obviously the timing, character,
and context of each stage differ from case to case. A
dominant paradigm in crisis may quickly be replaced, or

crisis may deepen for decades as new theories fail to
sprout or flower. Kuhn provides little guidance into the
forces that cause one new idea to triumph and another to
fail, or the determinants of the longevity of those new
paradigms that survive their founding and become dom-
inant. The central debate has been the relative importance
of intrinsic explanatory power—the “truth” of a new the-
ory—versus contingencies external to science such as the
social, political, and cultural context of emergence, or
even chance factors—the existence of an Einstein, Bohr,
or Keynes—in conditioning which paradigm candidates
flourish and which perish.

3. The Model
We construct a multiparadigm model in which existing
theories compete for membership and resources and in
which the creation of new theories is stochastic and en-
dogenous. The model can be thought of as a set of inter-
acting agents (the communities loyal to a particular the-
ory or paradigm). Like other agent-based models (e.g.,
Holland 1995, Weisbuch 1991), the collective system dy-
namics emerge from the interaction of the individual
agents over time. Unlike some agent-based models, the
number of agents is not fixed; new theories are created
with a probability that varies endogenously as conditions
change. Also unlike some agent-based models, the indi-
vidual paradigms have a rich internal structure represent-
ing the activities of each community, including the belief
structure of the members, recruitment and defection, sci-
entific activity such as puzzle solving and anomaly rec-
ognition, and the flows of people and information that
couple the different paradigms competing against one an-
other at any given time.1 In what follows we provide an
overview of the model; complete documentation is avail-
able from the authors.

The heart of the model is the identification of the meta-
physical and epistemological facets of paradigms with
metaphors, limited representations of reality that generate
anomaly when pushed too far. Four properties of meta-
phor that are also properties of paradigms bear particular
mention. First, metaphor is everywhere. Goodman (1968,
p. 80) argues that “metaphor permeates all discourse, or-
dinary and special, and we should have a hard time find-
ing a purely literal paragraph anywhere.” Turbayne
(1970) goes further, suggesting metaphor permeates our
thought as well as our language. Similarly, Kuhn (1970,
p. 113) stresses the priority of paradigms, suspecting that
“something like a paradigm is prerequisite to perception
itself.” Second, metaphor involves a “transfer of schema”
from one area of experience to another (Goodman 1968,
pp. 71–80). Consider the metaphor “the brain is a com-
puter.” The characteristics of computers are transferred,
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via the metaphor, to our image of the brain. The metaphor
works because the characteristics of computers are well
known and carry a constellation of meanings and exam-
ples that illuminate certain characteristics of the brain.
For Kuhn paradigms operate similarly: scientists are
taught to transfer familiar models to new puzzles, to
“grasp the analogy” (p. 189). Third, metaphors filter re-
ality. Because metaphors are inevitably inexact, as are all
models, they highlight certain relationships and obscure
others. Metaphors focus our attention on particular facts
and relations while others are pushed into the back-
ground. The filtering power of paradigms is central to
Kuhn’s theory as well: “In the absence of a paradigm . . .
all the facts that could possibly pertain to the development
of a given science are likely to seem equally relevant” (p.
15). Finally, metaphors define reality. Max Black (1954–
1955, pp. 284–285) notes that “[i]t would be more illu-
minating in some of these cases to say that the metaphor
creates the similarity than to say that it formulates some
similarity already existing.” Kuhn (1970, p. 111) attrib-
utes the same power to paradigms:

The historian of science may be tempted to exclaim that when
paradigms change, the world itself changes with them. Led by
a new paradigm, scientists adopt new instruments and look in
new places. . . . [They] see new and different things when look-
ing with familiar instruments in places they have looked before.
Insofar as their only recourse to the world is through what they
see and do, we may want to say that after a revolution scientists
are responding to a different world.

Yet metaphors are imperfect models, and if pushed too
hard crack and fail. Consider the brain-as-computer meta-
phor. Applying this metaphor might yield statements that
generate insight, motivate theory, or suggest experiments,
such as “people transfer information from long-term to
working memory with characteristic seek times.” Even-
tually, however, overextension of the metaphor yields ab-
surdities such as “brains run Microsoft Excel” or “brains
are composed of silicon semiconductors.” The accumu-
lation of such anomalous claims undermines the appeal
of a metaphor, and can send it to its grave, disgraced as
falsehood. Kuhn views the life cycle of paradigms in a
similar way. The elaboration and extension of a paradigm
to new domains can lead to the accumulation of anoma-
lies. As an “almost entirely typical” example Kuhn cites
the accumulation of anomalies in Newtonian mechanics,
such as the repeated failure to detect drift through the
ether resulting from the effort to provide a Newtonian
foundation for Maxwell’s theory of electromagnetic ra-
diation. As a result, “Maxwell’s theory, despite its New-
tonian origin, ultimately produced a crisis for the para-
digm from which it had sprung” (p. 74).

Thus the central dynamic hypothesis of the model
draws on the notion that paradigms are extended meta-
phors, and that metaphors are not unlimited in their ap-
plicability to reality. Specifically, we assume that the av-
erage difficulty of the puzzles faced by the practitioners
of a paradigm increases as the cumulative number of puz-
zles they have solved grows. This “paradigm depletion”
represents the idea that each paradigm is a limited model
of reality that may apply well in the domain of phenom-
ena it was originally formulated to explain, but will be
harder and harder to apply as scientists extend it to new
domains. The formalization of this hypothesis is de-
scribed below.

The model creates a simulated ecology of interacting
paradigms, each representing a community of practition-
ers; recruitment and defection from that community; and
the intellectual activities of the members such as formu-
lating and solving puzzles, recognizing and trying to rec-
oncile anomalies, and conceiving new theories. The
model simulates the attitudes and beliefs of the practi-
tioners within each paradigm through constructs such as
“confidence in the paradigm” and the time required to
perceive unexplained phenomena as anomalies which
challenge the theory. The major sectors of the model and
the linkages among paradigms are shown in Figure 1; we
will use causal diagrams to illustrate the feedback pro-
cesses and stock-and-flow structure of the model
(Richardson and Pugh 1981, Sterman 1985, Weick 1979).
Each paradigm has the same internal structure; for clarity
we display only paradigmsi andj.

3.1. Confidence in the Paradigm
The focal point of the model is a construct called “con-
fidence.” Confidence captures the basic beliefs of prac-
titioners regarding the epistemological status of their par-
adigm—is it seen as a provisional model or revealed
truth? Encompassing logical, cultural, and emotional fac-
tors, confidence influences how anomalies are perceived,
how practitioners allocate research effort to different ac-
tivities (puzzle solving versus anomaly resolution, for ex-
ample), and recruitment to and defection from the para-
digm. It is defined from 0 (absolute conviction the
paradigm is false, nonsensical) through 0.5 (maximum
uncertainty as to its truth) to 1 (absolute conviction the
paradigm is truth). Pressures leading confidence to
change arise both from within a paradigm and from com-
parisons with other paradigms (Figure 2). Confidence
rises when puzzle-solving progress is high and when
anomalies are low. The impact of anomalies and progress
is mediated by the level of confidence itself. Extreme lev-
els of confidence hinder rapid changes in confidence be-
cause practitioners, utterly certain of the truth, dismiss
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Figure 1 Overview of Model Structure

Figure 2 Internal and External Determinants of Confidence
in a Paradigm

Figure 3 The Puzzle-Solving Sector

any evidence contrary to their beliefs. Practitioners with
only lukewarm commitment, lacking firm reasons to ac-
cept or reject the paradigm, are far more likely to alter
their beliefs in the face of anomalies.

The external factors affecting confidence encompass
the way in which practitioners in one paradigm view the
accomplishments and claims of other paradigms against
which they may be competing. We distinguish between
the dominant paradigm, defined as the school of thought
that has set the norms of inquiry and commands the al-
legiance of the most practitioners, and alternative para-
digms, the upstart contenders. The confidence of practi-
tioners in a new paradigm tends to increase if its

anomalies are less than those of the dominant paradigm,
or if it has greater explanatory power, as measured by
cumulative solved puzzles. Confidence tends to decrease
if the dominant paradigm has fewer anomalies or more
solved puzzles. Practitioners in alternative paradigms as-
sess their paradigms against one another as well as against
the dominant paradigm. Confidence in an alternative par-
adigm tends to decrease (increase) if it has more (fewer)
anomalies or fewer (more) solved puzzles than the most
successful of its competitors.

3.2. Puzzle Solving
The determinants of puzzle solving are shown in Figure
3. Three categories of puzzles are distinguished. Solved
puzzles are puzzles that have already been integrated into
the corpus of theory and data constituting the paradigm.
Anomalies are unsolved puzzles which have come to be
recognized as serious challenges to the theory. The third
category, puzzles under attack, consists of those puzzles
that are actively under study, but which have neither been
solved nor yet recognized as anomalies. Four flows con-
nect the different categories. Most puzzles, once formu-
lated and attacked, will be solved, adding to the cumu-
lative stockpile of knowledge generated by the paradigm.
Such puzzles flow into the class of solved puzzles via the
puzzle-solving rate. But as the intrinsic difficulty of puz-
zles grows, a growing number will resist solution long
enough to be recognized as anomalies. Anomalies may
sometimes be resolved, adding to the stock of solved puz-
zles via the anomaly resolution rate. The shifting balance
between these flows determines the behavior of the sys-
tem.
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Figure 4 Determinants of the Puzzle-Solving Rate

3.3. Puzzle Formulation and Puzzle-Solving Rates
The rate at which scientists formulate and solve puzzles
depends on the number of puzzles under study, the frac-
tion of practitioners involved in puzzle solving, the frac-
tion of their time devoted to puzzle solving, and the av-
erage difficulty of the puzzles (Figure 4).

The average difficulty of new puzzles depends on how
far the root metaphor defining the paradigm has been ex-
tended. As described above, the average difficulty of puz-
zles is assumed to rise as the paradigm is applied to phe-
nomena increasingly removed from the original domain
for which the paradigm was formulated. Specifically, the
average difficulty of new puzzles to be solved,D, rises
as the number of puzzles the paradigm has solved grows.
We assume

cD � (S/C) , (1)

whereS is the cumulative number of solved puzzles. The
nominal solved puzzle reference,C, represents the intrin-
sic capability of each paradigm, andc is the rate at which
difficulty rises with cumulative progress. Whenc � 1,
the rate at which puzzle difficulty rises with cumulative
progress becomes progressively smaller, whilec � 1 in-
dicates the difficulty of puzzles on the margin rises ever
faster. For parsimony we assumec � 1. Small values of
the reference capabilityC mean a paradigm’s intrinsic
explanatory power is low—the difficulty of new puzzles
rises rapidly as normal science proceeds. Large values
indicate a more powerful paradigm, one that could en-
compass a wider array of phenomena. Note that our for-
mulation differs from that of Masterman (1970), who
viewed paradigms as analogous to nonrenewable re-
sources, arguing that the domain of applicability for any
paradigm is finite, so all attempts to extend it further
would yield only anomaly. Her assumption would mean
puzzle-solving difficulty in the model would become in-

finite when the stock of cumulative solved puzzles
reached some finite value, just as no amount of effort can
bring any diamonds out of a mine once it is played out.
We make the less restrictive assumption that the puzzle-
solving potential of paradigms is infinite, though it rises
continuously on the margin as solved puzzles accumulate.

As the difficulty of puzzles grows, puzzle solving may
slow and more unsolved puzzles may become recognized
as anomalies. If the stock of anomalies grows too large,
the confidence practitioners have in the “truth” or utility
of the paradigm may fall. The collapse of confidence is
self-reinforcing: anomalies erode confidence, and falling
confidence increases the ability and willingness of prac-
titioners to perceive the gaps in the theory.

The majority of practitioners will usually be involved
in puzzle solving, while some will be working to resolve
anomalies and others try to generate alternatives or en-
gage in other activities such as administration or popu-
larization. The distribution of practitioner effort among
these three categories is a function of confidence in the
paradigm. The higher the confidence, the greater the frac-
tion of practitioners involved in normal science. As con-
fidence falls, more practitioners turn their attention to
anomaly resolution or altogether away from the normal
science they increasingly come to doubt.

3.4. Anomaly Recognition Rate
Anomaly recognition is a subtle psychological process
(Lightman and Gingerich 1992). Kuhn notes that anom-
alies are not simply experiments that run counter to ex-
pectation, as there are always disagreements between data
and theory. Rather, a puzzle becomes recognized as an
anomaly when normal science repeatedly fails to resolve
the differences. Kuhn (1970, p. 82) argues that “One
source of the crisis that confronted Copernicus was the
mere length of time during which astronomers had wres-
tled unsuccessfully with the residual discrepancies in
Ptolemy’s system.” Similarly, we assume that the longer
an unsolved puzzle has resisted solution, the greater the
chance it will be recognized as an anomaly. Thus, the
probability a puzzle is recognized as an anomaly rises as
the average difficulty of puzzles rises. However, recog-
nition of anomalies also depends on the degree to which
practitioners are conditioned to see reality as consistent
with their paradigm. Kuhn cites the Bruner-Postman play-
ing card experiments to illustrate how a paradigm con-
ditions perception, concluding “In science, as in the play-
ing card experiment, novelty emerges only with
difficulty, manifested by resistance, against a background
provided by expectation” (1970, p. 62ff). Thus in the
model, the average time required to recognize an unsol-
ved puzzle as an anomaly depends on practitioners’ level
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Figure 6 Internal and External Determinants of Practitioner
Recruitment and Defection

Figure 5 Determinants of the Anomaly Resolution Rate

of confidence in the paradigm. High levels of confidence
slow the recognition of anomalies as practitioners’ ex-
pectations, behaviors, and even perceptions become in-
creasingly conditioned to be consistent with the para-
digm. Decreases in confidence will cause more of the
puzzles under attack to be considered anomalous as prac-
titioners’ skepticism and doubts grow.

3.5. Anomaly Resolution Rate
The rate at which anomalies are resolved depends on the
number of practitioners in sanctioned research, the frac-
tion of those involved in anomaly resolution, and the av-
erage difficulty of anomalies (Figure 5). Anomalies are
assumed to be more difficult to solve than puzzles, and
as the difficulty of puzzles increases, the difficulty of
anomalies rises as well. The fraction of practitioners in-
volved in anomaly resolution depends on the balance be-
tween the number of anomalies and the acceptable num-
ber. The acceptable number of anomalies is the number
that can be tolerated without losing confidence in the par-
adigm. If the number of anomalies increases, additional
practitioners are drawn into anomaly resolution in an at-
tempt to solve the major outstanding problems challeng-
ing the theory. This negative feedback is comparatively
weak, however: Kuhn argues that most practitioners are
reluctant to work on anomalies, preferring instead the
relative safety and professional rewards of puzzle-
solving. The belief that anomaly hunting may be hazard-
ous to your career is widespread among scientists today
and often reinforced in the professional journals. Exam-
ples abound: a 1996 news article inScience reports Nobel
laureate Martin Perl’s efforts to detect free quarks, a phe-
nomenon counter to the predictions of quantum chro-
modynamics, the long-successful theory of the strong
force pioneered by Murray Gell-Mann and George Zweig
in the 1960s. Though Perl asserts “a positive finding

would overturn 30 years of our thinking about strong in-
teractions,” he “as a tenured Nobel laureate, has the ‘lux-
ury’ of continuing the search.” Others caution that “a
younger scientist trying to make a reputation would be
well-advised to avoid this line of work.” (Nadis 1996, pp.
1361–1362).

3.6. Practitioner Population
The population of practitioners committed to each para-
digm is endogenous, increasing with recruitment and de-
creasing with retirement of elder scientists and defection
of others to competing paradigms. Without loss of gen-
erality we assume the total population of scientists is con-
stant: scientists who leave one paradigm enter another;
and entry of young scientists is balanced by retirement of
the old. The assumption of constant total population sim-
plifies the interpretation of the results but is in no way
essential to the main conclusions. Practitioners defect
based on their confidence relative to the confidence of
those in the dominant paradigm (Figure 6). The greater
the (negative) discrepancy between a challenger’s confi-
dence and confidence in the dominant paradigm, the
larger the proportion of the challenger’s practitioners that
will defect. Recruitment is proportional to a paradigm’s
relative attractiveness and its total number of practition-
ers. The greater a paradigm’s attractiveness, the greater
the proportion of defectors from other paradigms it will
recruit. Attractiveness is proportional to the number of
practitioners since large paradigms are assumed to get
more funding, train more students, and have a larger voice
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Figure 7 A Typical Simulation Showing Competition and
Succession among Paradigms: Random Potential
Explanatory Power

7a

7b

in tenure and other peer-career decisions than small par-
adigms. Attractiveness also depends on the confidence of
the paradigm’s practitioners, capturing the competence of
the members, the capability of their tools, and the excite-
ment and enthusiasm flowing from a successful endeavor.

3.7. The Creation of New Paradigms
We model the creation of a new paradigm as a stochastic
event whose probability depends upon the distribution of
practitioner activities in the currently dominant paradigm.
Practitioners may toil in normal science (puzzle solving),
anomaly resolution (the attempt to reconcile anomalies
with the current paradigm), and other activities (described
by Kuhn as including philosophical reconsideration of the
paradigm and other activities not sanctioned by the dom-
inant paradigm). In general, each of these activities may
result in the creation of a new paradigm, but the proba-
bility that a new paradigm is created as a result of a prac-
titioner year of effort devoted to each activity may differ.
Thus:

P(Creation) � p*N , i � {PS, AR, OA}, (2)t � i i,t
i

where
P(Creation)t � probability a new paradigm is created at

time t;
Ni,t � number of practitioners in the dominant

paradigm engaged in activityi at timet;
pi � probability of creating a new paradigm per

practitioner year of effort in activityi;
{PS, AR, OA} � Activities: Puzzle Solving, Anomaly Res-

olution, Other Activities, respectively.

Following Kuhn, we assumepAR � pOA � pPS: Normal
science is unlikely to produce new paradigms, focused as
it is on solving puzzles within the context of the existing
paradigm. Other activities are more likely to produce a
new paradigm, while effort devoted to anomaly resolution
is most likely to result in the creation of radical new the-
ories (the values of these parameters are small enough
that the overall probability of creating a new paradigm in
any given year is low). In the model, the distribution of
effort among these three activities is endogenous. Thus
the probability that a new paradigm will be created in any
time period is endogenous and will vary as practitioner
effort changes in response to the changing health of the
dominant paradigm.

Once a new paradigm is created, we assume it begins
with a small number of practitioners, a confidence level
of 0.5 (neutral), a very small stock of solved puzzles, and
no initial anomalies. The newly launched paradigm must
then compete for members against the dominant para-
digm. During a period of crisis the probability of creating
a new paradigm may rise and remain high long enough

for more than one new paradigm to emerge. In this case
the newly created paradigms will vie for ascendancy not
only against the dominant paradigm but against one an-
other.

4. Exploring the Dynamics of Paradigm
Development

We begin by simulating the model with fully endogenous
competition among paradigms. The initially dominant
theory (Paradigm 1 [P1]) is initialized in the midst of
normal science, and new theories are created stochasti-
cally, with a probability depending upon the vitality of
the dominant paradigm as specified by Equation (2). The
intrinsic capability of each new paradigm is determined
by a host of factors including the richness of the theo-
retical constructs emerging from the paradigm’s root
metaphor and of course the particular genius of the par-
adigm’s creators. Thus, the rate at which puzzle solving
becomes difficult as solved puzzles accumulate (the par-
adigm’s inherent potential,C) is stochastic. Specifically,
C is drawn from a lognormal distribution (truncated such
that C � 800). Otherwise all paradigms have identical
structure and parameters.

Figures 7a and 7b show the first 1400 years of a rep-
resentative simulation. New paradigms are created sto-
chastically, but the probability of creation is endogenous,
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Figure 8 The Rise and Fall of Paradigm 14 (From Figure 7)

as specified in Equation (2). Each new paradigm is en-
dowed with a randomly-selected intrinsic explanatory
power [the parameterC in Equation (1)]. The simulation
yields a succession of dominant paradigms in which the
initial paradigm gives way to challengers, each of which
goes through the typical life cycle as described by Kuhn,
though with variations in length and timing. Because all
paradigms have identical structure and parameters, all dif-
ferences in outcomes are due only to two factors: (1) the
intrinsic capability with which each is endowed; and (2)
the competitive environment (number and state of other
paradigms) at the time of their founding.

What is most interesting is not what the figures display
but what they conceal. Most new theories face early ex-
tinction. As evident in Figure 7a, paradigms 2–4, 7, 9–
12, 15, and 17–18 never become dominant, illustrating
what Kuhn (1970, pp. 136–143) calls the invisibility of
revolutions, where the linear and cumulative character of
normal science portrayed in the textbooks conceals the
contentious character of actual scientific practice. The
simulation replicates the “punctuated equilibrium” pat-
tern described by Kuhn and observed in many other
fields, including organizational theory (Gersick 1991,
Tushman and Anderson 1986).

The endogenous forces underlying a paradigm’s evo-
lution are best illustrated by focusing on the life cycle of
a particular paradigm. Figure 8 enlarges that portion of
Figure 7a portraying the life cycle of P14. Around year
500, paradigm 8 is in the full flower of normal science,
with 100% of the practitioners, a high level of confidence,
and few anomalies. Paradigm candidates 9–12 are, by
chance, created during the period of normal science and
quickly perish. However, the continued success of the
dominant theory P8 leads practitioners to apply it to more
and more phenomena. Anomalies slowly accumulate as
puzzles gradually become more difficult to solve, even-
tually leading to crisis and a drop in confidence. Para-
digms 13 and 14 both arise during the crisis of paradigm
8 (around years 545 and 566, respectively). By chance,
P13 has very low inherent potential. Its rapid rise around

year 580 is matched by an equally rapid drop as its prac-
titioners quickly exhaust the limited potential of its un-
derlying metaphor, making way for paradigm 14. Figure
9 illustrates the details of P14’s life cycle. In the early
period (� years 560 to 610), confidence rises dramati-
cally, since puzzle-solving progress is rapid and anoma-
lies are low. The paradigm, initially untested, proves ca-
pable of solving puzzles, and thus attracts more
practitioners, further boosting confidence.

The simulation illustrates how multiple positive feed-
back processes cause the self-reinforcing rise of a new
theory. Figure 10 shows a causal diagram highlighting
two of the positive feedback loops that cause an initially
unorganized and weakly committed group of practitioners
to coalesce into a highly focused paradigm (for clarity
negative loops are not shown). In causal diagrams, arrows
indicate the direction of causality. Signs (“�” or “ �”)
at arrow heads indicate the polarity of relationships: a
“�” indicates that an increase in the independent variable
causes the dependent variable to increase above what it
would have been, ceteris paribus (and a decrease causes
a decrease). A “�” indicates that an increase in the in-
dependent variable causes the dependent variable to de-
crease below what it would have been. That is,X → �Y
⇒ (�Y/�X) � 0 andX → �Y ⇒ (�Y/�X) � 0. Positive
loop polarity, denoted by (�) in the loop identifier, in-
dicates a self-reinforcing (positive feedback) process.
Negative (�) loop polarity indicates a self-regulating
(negative feedback) process (Richardson and Pugh 1981).
Rising confidence and successful puzzle-solving boost
practitioner confidence, leading to more focused and suc-
cessful effort, articulation and improvement of theory and
technique, and still greater success in puzzle solving, fur-
ther boosting confidence and attracting still more mem-
bers. Rising confidence, skill, and familiarity with the
paradigm increasingly condition practitioner perceptions
and expectations, suppressing the recognition of anoma-
lies; a low level of anomalies further increases practition-
ers’ confidence in and commitment to the theory. These
and other positive feedbacks (shown in Figure 10) boot-
strap paradigm 14 into dominance by around year 625,
its metaphor, method and metaphysics triumphant over
the now-discredited P13.

4.1 Normal Science
During the successful period of normal science (approx-
imately years 620 to 830) practitioners focus their efforts
on puzzle solving and are blinded to potential anomalies
by their faith in the paradigm. The probability a new par-
adigm is created falls [see Equation (2)]. In this fashion,
success suppresses the generation of new competitors
which might challenge the dominant paradigm, leading
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Figure 9 The Life Cycle of Paradigm 14

to further success. Through this self-reinforcing feedback
a successful theory alters its own environment in ways
that provide further advantage. This important dynamic
operates through the training of graduate students, which
reproduces the worldview and prejudices of the dominant
theory and socializes them in the accepted canon of prior
work, through the control of institutions via appointments
and tenure, through resource allocation via peer review
of grant proposals, and through access to journals via con-
trol of editorial boards and the selection of referees. How-
ever, occasionally a new theory does emerge during pe-
riods of normal science, such as Paradigm 15 just before

year 750 (Figure 8). Such challengers usually perish in
the face of competition with the still successful dominant
paradigm. Indeed, P15 vanishes within a few years.

4.2 Crisis
As Paradigm 14 is elaborated and extended beyond the
scope of its root metaphor, puzzles gradually become
more difficult to solve. Anomalies begin to accumulate.
Confidence begins to fall, slowly, around year 780. As
anomalies increase, a few practitioners leave puzzle-
solving, eroding progress and decreasing confidence fur-
ther. Practitioners, increasingly sensitive to the para-
digm’s limitations, become more apt to see difficult
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Figure 10 Some Positive Loops Driving Path-Dependent Be-
havior

Note: Shows two of the positive loops that cause initially uncommitted
and unorganized practitioners to coalesce into a highly focused par-
adigm. (Negative loops are not shown.)

puzzles as anomalies, further increasing anomalies and
decreasing confidence. The positive feedbacks that pre-
viously caused membership to rise now cause accelerat-
ing collapse. By year 850 the paradigm is in crisis.

As the number of practitioners engaged in normal sci-
ence falls, and those seeking to resolve anomalies grows,
the probability that a new paradigm will be created rises.
Around year 855 a new paradigm is in fact created (P16
in Figure 8). Because the new theory emerges during the
crisis of Paradigm 14, it quickly gains adherents while
P14 loses members. Confidence and membership in P16
then accelerate sharply through the same positive feed-
backs which earlier led to the success of P14. The cycle
is completed as Paradigm 14’s confidence and member-
ship eventually fall to 0, while P16 grows to dominate
the field. What was once uncontested “truth” is now seen
as primitive error. Paradigm 17, created around year 870,
is quickly crushed by the now dominant P16.

4.3 Positive Feedback and Path Dependence
The many positive feedbacks described above create the
self-organizing dynamic by which uncommitted and un-
organized practitioners coalesce into a highly focused
paradigm with a productive program of normal science.
Through these feedbacks a successful paradigm alters its
environment by suppressing the creation of competitors
and rapidly starving any that do emerge of the resources
they would need to succeed. The same feedback pro-
cesses operate in the opposite direction during the crisis

period to accelerate the collapse of a paradigm which has
accumulated sufficient anomalies for confidence to begin
falling.

The simulations raise a number of important questions.
Why do some paradigms rise to dominance while others
quickly wither? Does the fate of a new paradigm depend
on its intrinsic capability to explain nature or on situa-
tional contingencies surrounding its birth? Does ‘truth’
eventually triumph as better theories defeat inferior ones,
or is timing everything?

There is evidence for both positions in the results. Sup-
porting the view that intrinsic explanatory power is criti-
cal are examples such as Paradigm candidate 13, which
rapidly exhausts its low intrinsic potential and never
achieves dominance. However, intrinsic capability does
not explain the fate of many others. Consider Paradigms
8 and 9 in Figures 7a and 7b, launched around years 199
and 203, respectively. Although they emerge only about
four years apart, during the crisis of Paradigm 5, P8
comes to dominate the field, while P9 eventually perishes.
Here the contingency of outcomes on situational factors
is decisive. Paradigm 8 does not succeed because of a
head start in attracting practitioners: between years 212
and 215 it actually has the same number as P9. Nor is
Paradigm 8’s success a result of superior explanatory
power: by chance, P9 is endowed with a potential 13%
greater than P8. The difference in their destinies lies in
their levels of confidence. In the year 212 Paradigm 8,
though equal in size to P9, is slightly more attractive be-
cause its adherents, having had a 4-year lead over P9 in
solving puzzles, have been able to articulate their para-
digm more coherently and persuasively than their chief
rivals. The small advantage held by P8 is amplified as
success begets success through the many positive loops
surrounding the emergence process (Figure 10). Para-
digm 8 eventually dominates science, while Paradigm 9
slowly fades into obscurity, to be remembered, if at all,
as a blind alley, foolish error, or curiosity.

The simulations illustrate the subtle interplay between
endogenous feedback processes and contextual, situa-
tional factors in determining the dynamics and succession
of paradigms. The basic life cycle of paradigms is deter-
mined by the recursive, reflexive feedback loop structure
discussed above. Figure 11 shows some of the positive
feedback loops that act to differentiate competing para-
digms even when they are initially quite similar (the many
negative feedbacks are not shown). These positive feed-
backs boost confidence and rapidly generate a focused
community from a promising but unexplored new idea.
They give a paradigm with an initial advantage an edge
in recruitment of new members, leading to still greater
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Figure 11 Some Positive Feedback Loops that Create Path-
Dependent Behavior

advantage, amplifying small fluctuations in local condi-
tions to macroscopic significance, and leading to path de-
pendence. Consider Paradigmi in Figure 11. If the num-
ber of anomalies and solved puzzles in Paradigmi
compare favorably with the accomplishments of compet-
itor paradigms, the confidence of practitioners ini will
rise and the confidence of those in its competitors will
fall. The attractiveness ofi relative to others grows, thus
strengtheningi and weakening its competitors. The net
flow of practitioners into Paradigmi will increase the gap
in solved puzzles betweeni and its competitors, causing
the gap in confidence to widen still further. The self-
reinforcing differentiation continues until one paradigm
emerges dominant and the others become extinct. These
same loops are responsible for the resistance of the dom-
inant paradigms to challenges, as high confidence sup-
presses the creation and retards the progress of new the-
ories. High confidence leads to normal science and low
anomalies, suppressing the type of inquiry likely to lead
to the creation of new paradigms [Equation (2)]. And
should by chance a new theory be created, the high con-
fidence and low anomalies of a dominant paradigm make
it unlikely a new theory can succeed, even if it has high
intrinsic explanatory potential. Note that once a dominant
paradigm begins to experience depletion of its root meta-
phor, these same loops operate as vicious cycles, accel-
erating the collapse.

In the early phase of a competition between two or
more paradigm candidates, when the differences among
the competing theories are small, chance events can per-
turb the system sufficiently to shift the advantage to a

previously weaker rival. Such random events might in-
clude factors related to the theory, such as the announce-
ment of an important experimental result, but can also
include events wholly outside of science, such as the ill-
ness of the candidate’s champion or political upheavals
that disrupt the work of key people. However, as the posi-
tive loops confer greater and greater advantage to one of
the contending theories, the likelihood that particular
events can overcome the advantage of the leader rapidly
diminishes, until the system has effectively “locked in”
to a solution. Once such lock-in has occurred, the domi-
nance of the winning theory is assured (until its own cri-
sis). Yet which particular theory becomes dominant can
be a matter of chance events and small perturbations early
in the emergence phase.

The prevalence of positive feedback processes in the
dynamics means that historical contingencies attending
the creation and early years of a new theory strongly con-
dition their fate. While it is obvious that the creation of
a new theory is intrinsically unpredictable, the simulation
shows clearly that, once created, the likelihood any given
new paradigm survives its founding and grows to domi-
nance is strongly contingent on the environment into
which it is launched—an environment that in turn de-
pends on the history of the paradigms preceding it. The
prevalence of positive feedback processes in paradigm
development means that the evolution of the system as a
whole is strongly path-dependent.

The ability of positive feedback processes to create
path-dependent lock-in to particular equilibria from an
initially undifferentiated choice set has been amply doc-
umented in biological, economic, technological, and
other systems. Examples beyond the familiar QWERTY
keyboard include the universal left-handed chirality of
proteins throughout the plant and animal kingdom, the
choice of technological standards such as the gauge for a
railroad or the shape of electrical plugs, the designation
of Greenwich as the prime meridian, the length of the
standard meter in Paris (or the choice of the metric over
the English system), the dominance of the IBM/Microsoft
Windows architecture for personal computers, and the
growing dominance of the major world languages while
the languages of small indigenous peoples become ex-
tinct.

Even when all choices are equally attractive ex ante as
in the choice of the length of the standard meter or the
shape of electrical plugs, the symmetry is broken by mi-
croscopic noise or external perturbations. The positive
feedbacks then amplify these small initial differences to
macroscopic significance. Once a dominant design has
emerged, the costs of switching become prohibitive, so
the equilibrium is self-enforcing, at least until there is an
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Table 1 Ability of LOGIT Model To Predict a Given
Paradigm’s Rise to Dominance

The model reduces the error rate in predicting dominance by half
compared to chance.

Predicted

Nondominant Dominant Total

Actual Nondominant 641 35 676
Dominant 135 215 350
Total 776 250 1026

kb � 0.51; Proportion correct � 0.83; Sensitivity � 0.86; Specificity
� 0.83

Table 2 LOGIT Regression Comparing Intrinsic and
Contextual Factors in Likelihood of Success

Variables characterizing the competitive environment have a
strong impact on the likelihood of success while the intrinsic
explanatory power of a paradigm (C) has only a weak effect.

Indep. Variable Estimated Coeff. Standard Error t-statistic

Constant 5.44* 0.52 10.42
C 6.86e-4 4.34e-4 1.58
CPdom �7.27* 0.55 �13.19
COMPET1 �1.43* 0.23 �6.17
COMPET2 �4.99* 0.52 �9.54
COMPET3 �13.52 50.00 �0.27
COMPET4 �14.65 147.91 �.099

N � 1026
*P � 0.05

architectural shift that renders the dominant design ob-
solete (Henderson and Clark 1991), as in the replacement
of analog broadcast television by HDTV.

5. Intrinsic Capability or Historical
Contingency?

To test the argument above and quantify the roles of in-
trinsic versus contingent factors, we analyzed the pooled
results of 57 2000-year model runs. The only parameters
varied were the paradigm’s intrinsic explanatory power
and the random number seed affecting the launch of new
paradigms. To eliminate initial transients and end effects,
the first and last five paradigms of each simulation are
eliminated from the analysis. There are 350 dominant par-
adigms and 676 never-dominant paradigms in the sam-
ple.2

We consider a LOGIT model with three explanatory
variables: intrinsic capability (C), the confidence in the
dominant paradigm at the time the new paradigm is
launched (CPdom), and the number of competitor para-
digms (not including the dominant paradigm) each new
paradigm faces when launched. Since the probability of
success need not depend linearly on the number of com-
petitors, we treat the number of competitors as a cate-
gorical variable. Thus, the dummy variableCOMPETi �
1 if the number of competitors equalsi at the time each
paradigm is founded, and zero otherwise, for situations
of up to four competitors:

P (Dom) � 1/(1 � exp(�(b � b Ct 0 1

4
dom� b CP � w COMPET ))), (3)2 t � i i,t

i�1

where the subscriptt indicates that the probability is cal-
culated in the year each new paradigm is created.

Table 1 shows how well the model predicts successes
and failures, where an estimated probability greater than
0.5 is interpreted as a prediction that the paradigm be-
comes dominant and estimated probabilities�0.5 are in-
terpreted as predictions of failure. Overall, 83% of the
cases are predicted correctly. The sensitivity and speci-
ficity of the model are roughly equal (both�0.83), in-
dicating the model’s error rate is about the same for pre-
dictions of dominance when the paradigm in fact fails
versus predictions of failure when the paradigm in fact
succeeds. The statistickb � 1� ((errors|model)/(er-
rors|no model)) measures how much the model improves
prediction success compared to the chance success rate.
In the absence of the model, the best guess is that any
paradigm picked at random fails, since fully two-thirds
of the paradigms in the sample never become dominant.

The model reduces the error rate by half compared to
chance.

The regression results (Table 2) show that all estimated
coefficients have the predicted signs. A new paradigm’s
chances of success rise with greater intrinsic capability,
a weaker dominant paradigm, and a smaller number of
competitors. However, the effect of a paradigm’s intrinsic
explanatory potential,C, on its probability of success is
not significant, while the contextual variables are highly
significant. In particular, the confidence level of the dom-
inant paradigm at the time a new contender is created has
a strong effect on the challenger’s likelihood of success.
Similarly, the chances of success fall precipitously as the
number of competitors rises. The estimated coefficients
illustrate the weak role of intrinsic capability in compar-
ison to the contextual factors in determining whether a
paradigm becomes dominant. Table 3 shows how the
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Table 3 The Influence of Intrinsic and Contextual Factors
on the Probability a New Paradigm Becomes
Dominant

Conditions at Emergence
Probability of Dominance

(with 95% confidence interval)

One Competitor 0.18 � 0.25 � 0.40
Two Competitors 0.004 � 0.01 � 0.05
C � 100, No Competitors 0.44 � 0.53 � 0.65
C � 800, No Competitors 0.52 � 0.63 � 0.79
C � 100, One Competitor 0.15 � 0.22 � 0.38
C � 800, One Competitor 0.21 � 0.31 � 0.57

Figure 12 Logit Model Results
The probability a given paradigm rises to dominance as it depends
on confidence in the dominant paradigm and the number of compet-
itors at the time it is created.

probability that a given paradigm rises to dominance de-
pends on its intrinsic capability compared to the contin-
gent factors. Each row shows the probability a new par-
adigm becomes dominant given the conditions listed and
assuming all other explanatory variables take their mean
values, along with the 95% confidence interval for the
probability.3 The table clearly illustrates the relatively
weak influence of intrinsic capability (C) on the proba-
bility of becoming dominant. On average, a paradigm
launched in the presence of one competitor has only a
25% chance of succeeding. If there are two competitors
the probability drops to only 1%. Even if a new paradigm
is endowed with the maximum amount of intrinsic ca-
pability (C � 800), the consequences for dominance are
still strongly mediated by the contingent factors at emer-
gence. Thus, for example, while the probability a new
paradigm becomes dominant reaches 0.63 if it faces no
competitors, it has only a 0.31 chance of surviving when
it faces one additional competitor. Furthermore, increas-
ing the intrinsic capability of a new paradigm by a factor
of eight boosts the probability of success by only about
ten percentage points. Contingent factors at the time of
emergence far outweigh the influence of intrinsic capa-
bility.

The relative importance of intrinsic capabilityC versus
the contextual factorsCPdom and the number of compet-
itors COMPETi is further illustrated in Figure 12. Each
point in the plot represents the probability of dominance
of a particular paradigm, as predicted by its intrinsic ca-
pability, the number of competitors it faces at birth (ex-
cluding the dominant paradigm), and the confidence of
the dominant paradigm it faces. The smooth curves plot
the predicted probability of dominance asCPdom varies
over the [0,1] interval, for each number of competitors
and assuming intrinsic capability takes on its mean value
Cavg � 371.4; that is:

P (Dom) � 1/(1 � exp(�(5.44 � 0.000686Ct avg

dom� 7.27CP � w ))). (4)i

For new paradigms competing only against the dominant
paradigm, the probability of dominance is given by the
curve in the upper right. Curves are also displayed for
environments with two and three competitors. The curve
for four competitors has probabilities� 0. For all but the
smallest values ofCPdom, the greater the number of com-
petitors, the less likely a new paradigm becomes domi-
nant. Likewise, the greater the value ofCPdom, the less
likely a new paradigm is to become dominant. The re-
gression results and Figure 12 show the number of com-
petitors existing at the time a new paradigm is created
strongly influences its fate. WhenCPdomis between about
0.1 and 0.6, a new paradigm stands a better than even
chance of becoming dominant if it faces a total of two
competitors or less, and will likely fail if there are three
or more competitors. WhenCPdom is between about 0.6
and 0.8, the new paradigm is more likely than not to be-
come dominant if it faces only the dominant paradigm,
likely to fail if it faces two competitors, and almost sure
to die if faces three or more competitors.

Thus the likelihood that a new paradigm will rise to
dominance in the model is overwhelmingly determined
by historical contingencies and only weakly influenced
by its intrinsic explanatory power. The relative impor-
tance of inherently unpredictable situational factors is not
particularly sensitive to the parameters. Rather it is a con-
sequence of the many positive feedbacks by which par-
adigms bootstrap themselves from doubt to normal sci-
ence (Figure 10).

But how do internal and contextual factors interact to
determine the longevity of those paradigms that survive
their founding and go on to dominate their field? Do in-
trinsically powerful paradigms remain dominant longer
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Figure 13 Relationship between Longevity (L) of Successful
Paradigms and Intrinsic Explanatory Power (C)

Note: Paradigms that never become dominant are not shown.

than their weaker counterparts? Here one would expect
that the paradigms with greater explanatory power should
survive longer. Figure 13 shows a paradigm’s longevity
as a function of its intrinsic capability only for those par-
adigms that went on to become dominant. The figure
shows those successful paradigms that emerged when the
dominant paradigm against which they had to compete
was strong (CPdom � 0.75; N � 131) and those that
emerged when the dominant paradigm was weak (CPdom

� 0.25; N � 104).4 As expected, for those paradigms
surviving their founding, longevity is significantly related
to intrinsic capability. In both cases, longevity roughly
follows a power law in capabilityL � �Cb. Such power
law scaling is common in a wide range of dynamical sys-
tems (Schroeder 1991).

However, Figure 13 shows that even for successful par-
adigms, historical contingencies matter greatly to their
longevity. Those paradigms emerging when the dominant
paradigm is very strong (with confidence� 0.75) actually
survive significantlylonger than those emerging when
their principal competitor is weak (confidence� 0.25).
The median longevity for those emerging whenCPdom �
0.75 is more than twice as great than that for those emerg-
ing when CPdom � 0.25. The differences in outcomes
arise from differences in the circumstances attending the
birth of these successful theories. Paradigms emerging
when confidence in the dominant paradigm is relatively
high face strong competition. Most scientists are still sat-
isfied with the dominant paradigm, so the rate of recruit-
ment to the new paradigm is relatively slow. During this
time, however, the few adherents of the new paradigm
are able to solidify the foundations of their theory and
develop skill with their tools and techniques. Anomalies
remain low as practitioners solve the relatively easy puz-
zles for which their paradigm is well suited. Their con-
fidence rises. By the time the crisis of the dominant par-
adigm deepens and its members become disaffected, the
initial adherents of the new theory will have articulated
it well enough to provide an attractive and viable alter-

native. With high confidence, skill, and a productive
agenda to focus research on the puzzle solving of normal
science, the new paradigm is poised to realize its intrinsic
potential. For these paradigms, longevity follows the
power law scaling with intrinsic capability fairly closely
(L � C.78, R2 � .64).

Paradigms emerging when confidence in the dominant
paradigm is low face a competitor in crisis. Thus, as new
and unproven as the new paradigm is, it nonetheless
quickly wins new members. The rapid influx of new prac-
titioners means the rate of effort is high. Rapid growth in
activity means the average difficulty of puzzles rises
quickly, increasing the number of unresolved puzzles
likely to be seen as anomalies. Most important, the influx
of new practitioners occurs when confidence is low,
meaning basic disagreements about methods, data, and
criteria for validity still persist. Without the learning and
skill experience afford, without the acculturation and per-
ceptual filters provided by a well-articulated paradigm,
disagreements and anomalies arise at an alarming rate. If
enough anomalies accumulate, confidence can fall. Fall-
ing confidence causes people to perceive anomalies still
more readily, further decreasing confidence. The new par-
adigm rapidly disintegrates, its high intrinsic potential
largely unrealized. For paradigms emerging when their
principal competitor is weak, longevity scales with in-
trinsic capability only asL � C.66, and the variance of
longevity around the best fit is much greater.

The results show the strong role of contingent, histori-
cal factors even for those paradigms that become domi-
nant. As expected, the probability of surviving the found-
ing period and becoming dominant is negatively related
to the intensity of the competitive environment. However,
counter to what one might expect, the more intense the
competition, thelonger the expected life of the successful
theories. There are two reasons. First, strong selective
pressures during the emergence phase ensure that only
those paradigm candidates with high intrinsic capability
can survive. When selection pressure is weak, some par-
adigm candidates with low intrinsic potential can become
dominant. Second, and even more insidiously, when com-
petition is weak many paradigm candidates with high in-
trinsic potential die young as they grow too rapidly, over-
extending themselves before their members develop
enough skill, understanding, and confidence to prevent
the accumulation of anomalies. Historical contingencies
not only determine which paradigms succeed but also
how long those that succeed may thrive.

6. Discussion: Guru Dynamics and
Management Fads

The dynamics generated by the model resemble the life
cycle of intellectual fads. Often a promising new idea
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rapidly becomes fashionable through excessive optimism,
aggressive marketing, media hype, and popularization by
gurus. Many times the rapid influx of poorly trained prac-
titioners, or the lack of established protocols and methods,
causes expectations to outrun achievements, leading to a
backlash and disaffection. Such fads are commonplace,
especially in (quack) medicine and most particularly in
the world of business, where “new paradigms” are rou-
tinely touted in the pages of popular journals of manage-
ment, only to be displaced in the next issue by what many
business people have cynically come to call the next “fla-
vor of the month” (see Abrahamson 1996). No doubt
many such fads have no intrinsic merit (in our terms,
intrinsic capabilityC is low) so their rapid demise is the
desired and rational outcome (similar to the fate of the
low potential Paradigm 13 in Figure 8). However, too
many of these fads achieve broad acceptance and lead to
large expenditures, only to suffer a backlash when they
fail to live up to their promise.

The theory developed here helps explain how this oc-
curs. Typically, a guru proposes a new theory, tool, or
process promising to address persistent problems facing
businesses (that is, a new paradigm claiming to solve the
anomalies that have undermined the old paradigm.) The
early adopters of the guru’s method spread the word and
initiate some projects. Even in cases where the ideas of
the guru have little merit, the energy and enthusiasm a
team can bring to bear on a problem, coupled with Haw-
thorne and placebo effects and the existence of “low
hanging fruit” will often lead to some successes, both real
and apparent. Proponents rapidly attribute these successes
to the use of the guru’s ideas. Positive word of mouth
then leads to additional adoption of the guru’s ideas. (Of
course, failures are covered up and explained away; as in
science there is the occasional fraud as well.) Media at-
tention further spreads the word about the apparent suc-
cesses, further boosting the credibility and prestige of the
guru and stimulating additional adoption.

As people become increasingly convinced that the
guru’s ideas work, they are less and less likely to seek or
attend to disconfirming evidence. Management gurus and
their followers, like many scientists, develop strong per-
sonal, professional, and financial stakes in the success of
their theories, and are tempted to selectively present fa-
vorable and suppress unfavorable data, just as scientists
grow increasingly unable to recognize anomalies as their
familiarity with and confidence in their paradigm grows.
Positive feedback processes dominate the dynamics, lead-
ing to rapid adoption of those new ideas lucky enough to
gain a sufficient initial following. Hirshleifer (1995) and
Bikhchandani et al. (1992) present similar models of fads
caused by positive feedbacks, and Sastry (1998) and

Sastry and Coen (1998) discuss positive feedbacks in or-
ganizations. Of course formal models of innovation dif-
fusion as a process driven by positive feedback go back
at least to Bass (1969), and conceptual models of such
positive feedback processes can be traced to Myrdal’s
(1944) “principle of cumulative causation,” Merton’s
(1948) theory of the self-fulfilling prophecy, and J. S.
Mill’s (1848) theory of speculative bubbles (see
Richardson 1991 for the history of feedback theories in
the social sciences). More recent work discusses the dif-
ferences between the diffusion of ideas and of technolo-
gies, and the role of social networks and other factors in
conditioning the strength of the positive loops driving
adoption, e.g., Rogers (1995), Valente (1995), and Kaufer
and Carley (1993).

The wide range of positive feedbacks identified above
can lead to the swift and broad diffusion of an idea with
little intrinsic merit because the negative feedbacks that
might reveal that the tools don’t work operate with very
long delays compared to the positive loops generating the
growth. In science there are often long delays between
the initial success of a theory and the execution and in-
terpretation of experiments that can test it. In the world
of social action, the delays are often even longer. Rigor-
ous follow up studies to assess the effectiveness of a new
management tool are notoriously difficult because of the
inability to conduct controlled experiments in social sys-
tems, the essential participation of human beings in the
interventions, and the ambiguity of outcomes. The com-
bination of strong positive feedbacks promoting the
growth of new management ideas and slow, weak nega-
tive feedbacks revealing which are wheat and which chaff
predisposes the world of management to a succession of
highly touted “new paradigms,” each shining brilliantly
for a few brief years only to be discarded once the neg-
ative feedbacks of follow-up evaluation lead to disaffec-
tion and the advent of a new guru with a new, more at-
tractive theory. The same positive feedbacks can also lead
to inflated expectations, insufficient practitioner skill,
overly broad scope of application, and inadequate time to
resolve anomalies, causing some theories with high in-
trinsic capability to be abandoned too soon, as seen in the
simulations.

As discussed, our model shows that the likelihood a
new theory will be created and gain significant popularity
is endogenous, rising as confidence in existing theories
falls. Thus we would predict a higher incidence of man-
agement fads during times of economic and social stress,
when confidence in existing institutions and their moti-
vating ideologies falters. Indeed, the rise of management
fads has coincided with the slow growth, downsizing,
globalization, rapid technical change, and other pressures
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of the past few decades. These stresses constitute the
anomalies eroding confidence in existing organizational
structures and political ideologies. At the same time, our
model predicts that low confidence in existing institutions
increases both the number of new theories lacking intrin-
sic merit that gain significant popularity and the number
of high potential ideas that die young as a result of the
skill dilution and insufficient learning caused by rapid
growth. Though economic stress may stimulate manage-
ment innovation, it also increases the probability busi-
nesses will both embrace useless theoriesand prema-
turely discard potentially useful ones.

The results of our model suggest that the long-term
success of new theories can be enhanced by slowing the
positive feedback processes, such as word of mouth, mar-
keting, media hype, and extravagant claims of efficacy by
which new theories can grow, and strengthening the pro-
cesses of theory articulation and testing, which can en-
hance learning and puzzle-solving capability.

So-called “chaos” or “complexity theory” itself pro-
vides a recent example. The practical value of nonlinear
dynamics has repeatedly been demonstrated in physics
and the life sciences (see Chin et al. 1996, Costantino et
al. 1997, and Sturis et al. 1991 for recent examples).
However, rapid growth, fed by successful popularization
(e.g., Gleick 1987, Waldrop 1992) and ill-advised claims
for the universality of “complexity” as a “new paradigm”
for the reconstruction of the social as well as natural sci-
ences have already led to a backlash (for example,
Horgan 1995). Developing the full potential of complex-
ity theory, especially in the social sciences, requires more
rigorous theory development and fewer popular articles
extolling the virtues of the “new paradigm”, more studies
testing the new theories and fewer anecdotal claims of
efficacy, greater development of tools tailored for partic-
ular contexts, and fewer claims of universality. Without
such rigor, social scientists face the danger that, despite
its high potential, “complexity theory” will soon be dis-
carded, perhaps prematurely, as yet another unfortunate
case of physics envy.

Testing our theory against real-world examples such as
the emergence of complexity theory poses daunting but
not insurmountable challenges. Testing the model empir-
ically requires measuring model constructs such as “con-
fidence,” “anomaly,” and “average difficulty of puzzles.”
Confidence might be measured through surveys or inter-
views with relevant researchers, asking them to rate their
degree of belief in the theory. Content analysis of publi-
cations in the field would also reveal the strength and
universality of the claims made by key practitioners, in-
dicating their confidence level. Content analysis might
also be used to analyze critical reactions to particularly

thorny problems, thus identifying potential anomalies.
Bibliometric techniques could be used to determine how
long a research problem (“puzzle”) has gone unsolved
and gauge the number of researchers working on it, to
yield a measure of the difficulty of puzzles. Donovan et
al. (1988), and Jacobsen and Bronson (1995) discuss the
practical difficulties involved in such empirical tests;
Rappa and Debackere (1993) use survey and bibliometric
tools to shed light on the demographics and attitudes of
scientists in several fields, illustrating how the constructs
in the model might be measured.

7. Conclusion
Before turning to the conclusions, we pause to consider
the limitations of the model. All models (formal or oth-
erwise) are inevitably less than the world their authors
seek to portray. We agree with Cartwright (1983, p. 153)
that models “are a work of fiction.” Of course the model
is not comprehensive, nor does it capture all the subtleties
of Kuhn’s theory. Rather, we seek to demonstrate that it
is both desirable and possible to portray in a formal model
the causal hypotheses embodied in written theories of sci-
entific endeavor and test whether they can generate the
dynamics as those authors see them. The process of for-
malizing such hypotheses helps to identify inconsisten-
cies, implicit assumptions, glosses, and errors in the men-
tal simulations authors necessarily perform to infer the
dynamics of science from their theories of its structure.
Such an endeavor is worthwhile as a complement to his-
torical and sociological studies. Complete documentation
of the model is available; we invite others to replicate,
critique, revise, and extend the model to test views of
scientific development different from ours.

The simulations suggest an important role for situa-
tional contingencies in the evolution of science. We find
that the fate of a particular new theory or paradigm is
strongly conditioned by the circumstances surrounding its
creation, and only weakly influenced by its explanatory
power or logical force (at least for theories above a min-
imum threshold of explanatory power). Environmental
conditions at the time a new theory is created, such as the
morale and confidence of practitioners in the old para-
digm and the number of contending alternative new the-
ories, powerfully determine whether a new theory will
rise to dominance or quickly perish. In particular, the sim-
ulations show new theories with great explanatory power
frequently fail to attract a critical mass of adherents, while
weaker ones often triumph. The frequent eclipse of the
strong by the weak is not a pathological outcome, but
rather a normal consequence of scientific activity as we
have modeled it.
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The interplay between intrinsic explanatory potential
and historical contingency is quite subtle. A paradigm’s
inherent potential—its logical force and power to explain
nature—does influence its future development: of those
paradigms surviving their youth, those with high intrinsic
capability do remain dominant longer, on average, than
those that are weaker. But the impact of intrinsic capa-
bility on the longevity of any given paradigm is mediated
by the competitive conditions in the emergence period.
In particular, weak competitive environments make it
more likely a new paradigm will rise to dominance, but
can condemn even powerful paradigms to early deaths as
they are extended too far and too fast, generating anom-
alies and prematurely destroying confidence. On the other
hand, though competition reduces the likelihood of sur-
vival, competition gives those that do survive time to
bootstrap themselves into normal science, insulating them
against mere disconfirmation, and ensuring they persist
until the anomalies ultimately causing revolution, in
Kuhn’s words, “penetrate existing knowledge to the core”
(Kuhn, 1970, p. 65).

Most important, however, competition doesnot serve
to weed out the weak paradigms so the strong may grow.
On the contrary, competition decimates the strong and
weak alike—we found that intrinsic capability has but a
weak effect on survival. The mortality rate for paradigms
seems to depend almost entirely on the environmental
conditions surrounding their birth. This is a sobering re-
sult, since we can never know the microlevel contingen-
cies of history that can prove decisive; here favoring an
intrinsically weak paradigm, there killing an intrinsically
strong theory.5 These characteristics of the competition
among paradigms are consequences of the powerful posi-
tive feedback processes operating within and among par-
adigms. These positive loops can amplify microscopic
perturbations in the environment—the local conditions of
science, society, and self faced by the creators of a new
theory—until they reach macroscopic significance. Such
dynamics are the hallmark of path dependent evolution-
ary systems.

Contemplating the reflexive feedbacks between people
and the world, Kuhn (1990, p. 7), in “The road since
Structure,” captured the essence of path-dependence in
evolutionary systems, arguing that “scientific develop-
ment must be seen as a process driven from behind, not
pulled from ahead—as evolution from, rather than evo-
lution towards.” Yet while acknowledging the role of the
biological, cognitive, and social in the evolution of sci-
ence, Kuhn (1990, p. 10) argues forcefully that path-
dependence does not mean the course of scientific devel-
opment is entirely arbitrary or reality merely a social
construction:

. . . the world is not invented or constructed. . . . [It] has been
experientially given, in part to the new inhabitants directly, and
in part indirectly, by inheritance, embodying the experience of
their forebears. As such, it is entirely solid: not in the least
respectful of an observer’s wishes and desires; quite capable of
providing decisive evidence against invented hypotheses which
fail to match its behavior. Creatures born into it must take it as
they find it. They can, of course, interact with it, altering both
it and themselves in the process, and the populated world thus
altered is the one that will be found in place by the generation
which follows.

Through these feedbacks the world we inhabit is made;
it is a world of nonlinear, disequilibrium dynamics in
which, as Kuhn (1990, p. 12) says, “small changes . . .
can have large-scale effects.”
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Endnotes
1Sterman (1985) provides a formal model of Kuhn’s theory represent-
ing the life cycle of a single paradigm; full documentation is provided.
In this paper we extend the original model to allow for explicit com-
petition among different theories.
2In most of the simulations, intrinsic capability,C, for each paradigm
was drawn randomly from a lognormal distribution truncated such that
C � 800. In some runs all paradigms had identical intrinsic capabilities,
with C � 200, 300, or 400, to further reduce the variance and isolate
the role of historical contingencies. These restrictions do not affect the
model’s qualitative behavior.
3To compute the 95% confidence intervals we drew 1,000 simulated
parameter estimates from a multivariate normal distribution defined by
the estimated coefficients and variance–covariance matrix, sorted the
resulting estimates of the probability of dominance, and extracted the
probabilities from the 25th and 975th values (see King et al. 1998).
4We omit from Figure 13 those paradigms emerging when the confi-
dence level of the dominant paradigm was between 0.25 and 0.75 to
simplify the presentation; including the full sample does not signifi-
cantly alter the power law scaling or the result that longevity depends
on contingencies including the confidence of the principal competitor.
5See Gould (1990) for a similar view applied to the evolution of life.
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