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CHAPTER I

INTRODUCTION AND SUMMARY

This thesis presents and solves three dynamic mathematical pro-
gramming problems in which the goal is to minimize the long-run average
cost per pericd. In each case we show that the dynamic problem can be
reduced to solving 2 suitable static (one-period) problem, Two of these
problems are infinite-horizon integer programming problems involving
network flows evolving over time, and they form the core of this thesis.
The remaining problem is the dynamic convex programming problem whose
gsolution is an essential sub-result used in solving one of the dynamic

network-flow problems and is also of interest in its own right.

Dynamic Convex Programs

The dynamic convex prograrming problem, discussed in Chapter II,
may be described as follows. A decision vector is to be chosen in each
of an infinite sequence of periocds. There is an associated real or +
valued proper stable convex cost function <¢{+,+) and the cost associated
with period i is c(x, y) when x and y are the decision vectors
chosen in periods i and 1 + 1. The objective is to choose a sequence
of decision vectors that minimizes the long-run average cost per period.
If there are no initial conditions and if we require‘the sequence of
decision vectors to be bounded, then we show that we may restrict atten-
tion to sequences of decision vectors that are stationary, i.e., the
same decision vector is used in each period. The desired common vector

x 1is one that minimizes c(x, x).




Dynamic convex models have applications in variocus fields in-
cluding dynamic linear programming, dynamic programming and economic
long~range planning.

The problem and its solution play an important role in solving
+he minimum convex-cost dynamic network-flow problem of Chapter IV. The
author (1981) has also used the result to solve the dynamic matching
problem, an infinite-horizon dynamic integer programming problem that
generélizes the (non—bipartite) welghted matching problem.

- The results in Chapter II extend earlier work of Gale (1967) and
others who prbved a result that implied the optimality of a stationary
sequence for a restricted class of underlying cost functions. His proof

technigque is extended in Chavpter II to prove the optimality of stationary

sequences for a significantly wider class.

Dynamic Network Flows

Chapters IIT and IV of this thesis are devoted to two related
dynamic network-flow problems. RBoth may be formulated in terms of the
following network structure. Given =z Tinite network, there 1s zsscciated
with each arc a (possibly infinite) integer upper and lower bound on the
flow therein and an integral transit time giving the number of periods

that flow takes to pass through the arc. A feasible dynamic flow is a

sequence of flows that satisfy the upper and lower bounds on the arc
flows and also conservation of flow at each node in each period except
for the first few periods during which time the rflow is initialized.
Because such flows are conserved after the firsgt few periods, the net

flow in transit in each subsequent period remains constant and is called

the throughput.

no




Maximum~Throughput Dynamic Network Flows

In Chapter IIT we consider the maximum- (resp., minimum-)

throughput dynamic network-flow problem of finding a feasible dynamic

flow having maximum (resp., minimum) throughput. To analyze this problem
we assume that there is a2 feasible bounded dynemic flow and define a
"dynamic cut” in such a way that the '"flow across a dynamic cut" is
identically equal to the throughput. We then prove a strong duality
result, viz., the maximum throughput is equal to the minimum "upper
capacity” of a dynamic cut. Furthermore, we show that there is always
an integer stationary dynamic flow that achieves the maximum throughput.
This flow may be determined by repeating an integral ovtimum solution
to the corresgponding static maximum-liinear-profit network-~-flow problem
in which the objective-function cocefficient associated with each arc
flow is its transit time. Also the minimum-upper capacity dynamic cut
may be determined from an optimum solution to the dual cf the static

linear program.

Minimum Convex-Cost Dynamic Network Flows

In Chapter IV we consider the minimum convex-cost dynamic network-

flow problem in which there is zlso associated with each arc a real-valued

convex function of the arc flow between its upper and lcwer bounds with
the function being linear between successive integers. The aim is to
find & bounded feasible dynamic flow with fixed throughput that has
minimum long-run average cost per period.

This problem is a special case of the dynamic convex programming

problem, and the results of Chapter IT show that there is a stationary




optimal dynamic flow. Furthermore, one such dynamic flow may be determinéd
by repeating a solution of the static minimum convex-cost network-flow
problem plus a linear side condition on the arc flows (the fixed~throughput
constraint). We show there is a "fractionally extreme™ optimal static flow
that is the sum of an integer static flow and a flow arcund a cycle of

r/q units for some positive integers r < q and q dividing‘the

absolute transit time of the cycle. This characterization leads to a

fast method for rounding the fractional parts of the optimal stationary
dynamic flow so as to give an integer feasible dynamic flow with pericd

q and having exactly the same throughput and average-cost per period

as the stationary dynamic flow. Hence, this periodic dynamic flow is

an integer optimal and an optimal integer dynamic flow.

Applications

Vehicle Reuting with Periodic Demands

Consider a transportaticn firm, such as an girline, that must
schedule vehicles each day on a specified set of fixed daily repeating
routes., In addition, the firm is allowed to schedule certain optiongl
routes, e.g., deadheading, at a specified ¢ost per route., Dantzig (1962)
formulated the problem of determining a feasibie stationary schedule that
minimizes the number of vehicles needed as a special case of the minimum-
throughout dynamic network flow problem, as described in Chapter IIT,

The problem of defermining a feasible schedule that minimizes the average
daily cost subject to a fixed fleet size is formulated in Chapter IV as
a special case of the minimum convex-cost dynamic netwerk-flow problem.
Previously, Dantzig (1962) considered the above prcblem under the added

restriction that the schedule is staticnary.
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Maximum Finite-Horizon Dynamic Network Ficocws

Ford and Fulkerson (1958).formulated and solved the finite-
horizon dynamic neftwork-flow problem which may be described as follows.
Given a network with nonnegative-integer transit times, zero lower bounds
on arc flows, and integer upper bounds thereon, determine the maximum
flow that may be sent from a source to & sink in a fixed number of
periods. In Chapter III we show that this problem may be transformed
into a special case of the minimum-throughput dynamic network-flow
problem, and our solution technique and duality result for the minimum-
throughput problem induce the solution technique and duallity result

given by Ford and Fulkerson (1958) for the finite-herizon problem.

Cyclic Capacity Scheduling and Cyclic Staffing

The cyclic capacity scheduling problem is to find =z minimum per-

period cost schedule of buying and selling cepacity in blocks of consecu-
ive periods so as to satisfy demands for capacity that repeat periodically

over time. This problem, which is modeled as 2 minimum convex-cost
dynamic network-flow problem in Chapter IV, generalizes the finite-
horizon capacity ;cheduling problem which was reduced by Veinott and
Wagner (1962) to a minimum linear-cost network-flow problem. A
special case of the cyclic capacity scheduling prcblem is the cyclic
staffing problem which is to minimize the dailly cost of staffing a work-
force rcund-the-clock on shifts of consecutive hours so as to satisfy
minimun hourly demands that vary within a day, but repeat daily.

Although the infinite-horizon problem considered above has

apparently received no previous attention in the literature, if we




require the assignment of workers to be the same every day, then the
resulting problem is the l-day cyclic staffing problem which has received
considerable attention. The largest sub-problem of the l-day cyclic
staffing problem to be solved in polynomial time is the case in which
the rows of the constraint matrix have "circular ones"; this sub-class
was solved by Bartholdi, Orlin, and Ratiiff (1980).

The integral solution obtained for the cyclic capacity scheduling
problem, and hence for the cyclic staffing problem, has the property that
it is obtained by rounding an infinite-horizon continucus stationary

solution. For this reason, the number of workers on any specified shift

varies by at most one from day to day. In this sense, it is falmost feasible™

for the l-day problem, and always has a daily cost no greater than the

minimum daily cost for the l-day problem.

Periocdic Production and Transshipment

Consider a firm that must produce and ship goods so as to satisfy
periodically repeating demands, such as for food or petroleum products,
and where the cost of producing and shipping gecods ig convex, The
sroblem of finding a feasible schedule tha®t minimizes the average daily
cost given a fixed fleet of delivery vechicles is modeled in Chapter IV
as a minimum convex-cogt dynamic network-flow problem. Certain assump-
tions are implicit in the model including the following: no storage is
allowed at the demand sites and each vehicle can carry goocds for only
one demand location at a tTime. Relaxing either of these assumptions

makes the problem NP~hard as proved in the appendix of Chapter IV.

[6)




Minimum Cost-to~Time Ratioc Circuits

Dantzig, Blattner, and Rao (1965) fermulated and solved the
"tramp steamer' problem, or equivalently "the minimum cost-to-time ratio
circuit"” problem. The problem may be viewed as that of choosing an
infinite-horizon tour for a tramp steamer that is to travel from port
to pert so as to minimize its daily costs. The tramp steamer may
visit any subset of the ports and in any order, and for any ordered pair
of ports there is an associated per trip cost and transit time.

Various applied problems may be modeled as a minimum cost-to-time
ratio circuit problem as detailed by Fox (1969). The model has recently
been applied by Karp and Orlin (1980) to solve a special case of the
cyeclic staffing problem, and by Graves and Orlin (1980) to solve a
periodic version of the Wagner-Whitin (1958) dynamic economic-lot-size
model.,

Among optimum tours there is always one in which the steamer
travels cyclically in the same order around a subset of ports. We show
that the cycle of ports may be obtained by the rounding technique of
Chapter IV, thus showing that previous solution techniques may be viewed

as a special case of our rounding result.




CHAPTER II

DYNAMIC CONVEX PROGRAMMING

l. INTRODUCTION

We consider herein the dynamic convex programming problem, a
deterministic programming problem in which decisions are to be made in
each of a countably-infinite number of pericds. The cost associated
with each period is a stable, pfoper convex function of not only the
decision vector in that period but also of the decision vectors in the
subsequent q -~ 1 periods for some fixed q > 2. This cost functién
is the same in each period.

The objective is to determine an infinite sequence of decision
vectors so as to minimize the average cost per period over the infinite

horizon. If we are free to choose the first q - 1 decision vectors

(i.e., if we ignore the cost in the first q - 1 periods) and if the

sequence of decision vectors is required to be bounded, then we show

that we may restrict attention to an infinite sequence of decision vectors

in which the decision vector is the same in all periods. Such a
sequence is called stationary. If there is a boundsd sequence with a
finite average cost per period, then there is a stationary sequence
with finite average cost per period. If there is an average cost
optimal sequence, then there is a stationary sequence that is average
cost optimal,

Dynamic convex models have applications in various fields
including large-scale staircase linear programming and control, e.g.,

Brock and Haurie (1976). Dynamic convex programming models have also
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been studied by economists interested in long range planning for pro-
duetion, for example by Gale (1967), Brock (1970) and others. Here

the decision vector in each period is the ordered pair of available
resources in that period and the productlion to be carried out in the
period. The cost depends both on the technologies and the available
resources, which in turn depends on the‘production and available resources
in the previous period. The objective is to determine a plan over an
infinite horizon that minimizes some specified measure of cost, However,
these economic models differ from oursin that (1) they include initial
conditions, (2) their optimality criterion is not, in general, average-
cost optimality, and (3) they include various additional assumptions

and restrictions with economic interpretations.

The theory of dynamic convex programming alsoc has applications
to some infinite-horizon dynamic integer programming problems, in
particular tc the minimum convex-ccst dynamic network-flow problem
as formulated and solved by Orlin (198la) and the dynamic matching
problem formulated and solved by Crlin (1981b). A prelude to solving
both of these problems is to show that a certain stationary continuocus
solution is optimal for the infinite-horizon integer programming problem
with the integrality constraints dropped. Then an optimel integral
solution is determined by rounding these continuocus solutiocns so as
to maintain optimality for the continuous relaxation of the problem.

The results given herein extend earlier work of Gale (1967)
and Brock (1970). Gale proved a lemma which implied the validity of
Theorem 1 below in a case in which the coanvex costs are of a very

special type and Brock (1970) extended it. In this paper a more general




result is proved which includes Gale's lemma and Brock®s extension
as a special case. The proof technigque used here is a natural extension

of that used by Gale,

2. PROBLEM FORMULATION
Let I be either the set of all integers or the set of positive

integers, I, %be the set of 1 ¢ I with fil < t, and fI be the

t
cardinality of I

|

. n
A plan is a sequence X = (xi) of vectors X, € R

‘t.
for all 1 ¢ I. Let g be a positive integer and put

= (X, vee, X,

X34 5 1+q-l)' The cost of x 1in period i is C(Xio)’

where c(-) is a convex, real or + « valued function on an, and

¢ has the additional property that its effective domain, denoted dom c,
is cleosed and there is no directional derivative at a vector x ¢ dom ¢
that is = ., This guarantees that c(+) is "stable" in the sense of
Rockafellar (1967).

A plan x is feasible if C(Xio) is finite for all i e I.

The average cost of x is

a(@) = 1im 1™ £

t = > iel.
+

(5

C(Xiq) .

The dynamic convex programming prcoblem is to determine a feasible plan

in a given class that is (average-cost) optimal in the class, i.e.,

for any other feasible plan y in the class we have a(x) < a(y).

5. OPTIMALITY OF STATIONARY PLANS

A plan x = (x.) 1is called bounded if |x|| is finite, where
5 bounced
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the origin and there is a hyperplane strictly separating U therefrom.
Thus, there is an n-vector p eand a positive real number « (which
exists since U is compact) such that p(v - u) >a for all

(v = u) e U. Substituting X, for u and X1 for v, and summing

over 1 we obtain

t
< E - =
o < 2 p(xi+l Xi) p(x

- < .
ey = %p) S enlpll ¢ fx]
which is impossible for large 1+, completing the proof that there is
a feasible stationary plan.
Let (84,3) be optimal for the convex progran
minimize c?(u,v) ‘
(1)
subject to (v -~ u) = 0.
An optimum exists since there is a feasible stationary plan, dom c!
is compact, and ¢! is continuous on dom c'. We will show that the
staticnary plan y = G@ satisfies the conditions of the theorem.
The progran (1) is stable as there is no directional derivative
with value - for any (u,v) € dom c¢'. Thus there is a Kuhn-Tucker

vector p such that:

c'(W,8) < e'(u,v) + p(v - u) for all (u,v) e R,

) for (u,v), letting £, denote the least

On substituting (Xi’ X )

i+l

element of T and summing we get

t)




-1 A A -1 A A
fIt! .Z (c(3,3) - c(xi, Xi+l)) = fItl _ ‘E (ec?(d,d) - c'(Xi, X
iel, ieTl
t t
-1 a -1 -1
ST 2opley - x) = [T ol - %, ) <2l {7 n
1eIt t

Taking the limit superior proves the claim.

i+l

))

pilll=ll

Finally, we reduce the case gq > 2 +to the case q = 2. Suppose

o(+) is defined on R for q > 2, and let wio= Xy for each

i e I. Let V be the set of gn-vectors such that the last (g - 1

components of the first vector is equal to the first (q - 1l)n

components of the second vector. Let

c(wi) if (wi, w.,.) eV

i+l

o otherwise .

) =

e liys Wipy
Then c¢' 1is stable. To see this note that <¢¥ is coantinuous on
dom c¢' which is closed, and any directicnal derivative of c¢' at

a point (u,v) € dom ¢! in the direction {(u',v') is greater than
or equal to the directional derivative of ¢ at a point u in the
direction wu' and is thus not - », By construction of ¢!, the
plan x = (Xi) is feasible (resp., bounded, stationary) if and only
if that is so of the corresponding plan w = (wi). We have proved

. 2an . . .
that the result is true for e¢' on R *, and hence the result is

true for ¢ on RIT, Ei

COROLIARY 1. There is a feasible stationary plan for the
dynamic convex programming problem if and only if there is a bounded

feasible plan.

n



COROLLARY 2. An optimal stationary plan for the dynamic convex

Programming problem is also an optimal bounded plan.

COROLLARY 3. A stationary plan uOO is an optimal bounded plan
for the dynamic convex programming problem if and only if v = u

minimizes c(v%) and c(u}) is finite.

EXAMPLE 1. (Optimal unbounded plans.) We note that the above
results are not true if the restriction of boundedness is drepped. In

particular, let X; € R for 1=1,2, ..., and let c Dbe defined

on the plane as follows:

u-v if -1 <u=-v<o0

clu,v) = -
0 otherwige .
Each stationary plan has zero average cost per period, whereas the plan
X = (xi) with Xi = 1 for each 1 has an average cost per pericd
of -1, Furthermore, the existence of feasible unbounded plans dces not
imply the existence of feasible bounded plans as can be seen if we use
the following cost function:

0 if v-u=1

clu,v) =
© otherwise .

L. EXTENSIONS AND APPLICATIONS i

Initial Conditions

In many applications, such as those studied by Gale (1967) and

Brock (1970), there are initial conditions on the first decision vector

1h




X, . Adding such conditions makes the problem significantly more difficult

1

and is beyond the range of this work. To appreciate this, observe that
the existence of bounded feasible plans dces not gusrantee the existence

of stationary feasible plans as the following example illustrates.

EXAMPIE 2. (Initial conditions precluding stationary plans.)
Let X, € R for 1i=1,2, ... and let c be defined on the plane
as follows:
O if uw+v =20

clu,v) =
®© otherwise .

If we add the restriction that =x. = -1, then the unigue feasible plan

1

i . . e s .
)7, which is periodic but not stationary.

is given by x; = (-1

Of course, the above example 1s quite eagy to solve; however,
the dynamic convex programming problem appears quite difficult in
general when initial conditions must be satisfied--even when the problem
is specialized to linear programming as below. This author does not
Xnow of any efficient solution technique, and it is an open question
whether the problem is NP-hard.

Having said this, it is also important to recognize that the
imposition of initial conditions will cause no substantial difficulties
in many practical problems. The reason is this. BSupprose we have found
X = ué to be an optimal bounded plan ignoring the initial condition
that x is given. Then, in practice, it is often easy to construct

1

veetors X., ..., X such that x' = (X, Xy eee, X, U, U, ...) 1is
2) ) p ( l) 2J ) p) 2 2

15




a feasible plan for some (small) integer ©p. For example if ¢ 1is
real valued, then the plan x' = (xl, U, U, +..) is feasible. Also
x' has the same average cost as x and so x' 1is an optimal bounded

plan that satisfies the initial condition.

Periodic Cost Functions

The previous analysis considers the case in which the same cost
function c(~) is associated with each period. Suppose instead that
costs are periodic, i.e., there exist p distinct cost functions
Cl(.)) cees CP(.), and Cj is the cost function in period j + kp
for k=0, 1, ... and j=1, ..., p. As before the objective is to
find a sequence with minimum average cost. This is called the periodic
convex programming problem with period p.

The periodic case is easily transformed into the dynamic case

as follows. First, as before, the case q > 2 reduces to the case

q = 2, which we consider here. For a given plan x (xi), form a

(x(i-l)p+l’ cees Xip) for 1i=1,2, ... .

Then define c¢'(+) on S follows. If uy, v, € RY, so

plan (wi) with w, =

n
u = (ul’ vy up), v = (Vl’ cees vp) e R'P,  then put

p-1
% =
ct(u,v) = cp(up, v.) + Z Ci(ui’ o,

) .
* i=1

1

It is easily verified that c'(wl, w2) +oeee + c*(wk, Wk+l) =

+ oo fro 1 t ¥
cl(xl, Xg) + cp(xkp’ ka+l)' It follows from this formula that

if I is the set of positive integers, then the original periodic

convex program with period p i1s equivalent to the stationary convex

—
(0N




program with cost function c¢'., A similar development suffices for
the case that I is the set of all integers.

Observe that there is a one-to-one correspcndence between the
stationary pléns wOO for the transformed problem and the periodic

plans (x,) with period p (i.e., X, = X for all i e I) for

the original problem. Thus Theorem 1 and its Corollaries have obvious
analogs for the periodic problem with period p in which stationary
plans are replaced everywhere by periodic plens with period ». In
particular, if u = (ul, cees up) is chosen so as to minimize c*(u,u),

then the periodic plan x = (Xi) with x, = for all i is

Y4 (mod p)+l

optimal,

Specialization to Linear Programming

If the cost function is piecewise linear in the effective
domain, then the directional derivatives in the effective domain are
not =~ © and the effective domain is closed. Thus the conditions
of Theorem 1 and its ccrollaries apply. In particular, the results
of Theorem 1 apply to tﬂe "dynamic linear programming problem™ (or
infinite staircase linear program), which is the specialization of
the dynamic convex programming problem to the case in which c(*)
is linear on its effective domain and the latter is in turn polyhedral.
It is this specialization which is applied to help solve both the
dynamic network flow problem (Orlin (1981a)) and the dynamic matching
problem (Orlin {1981b)).

Let ¢ ¢ Rn, b € Rm, and let Al’ vy Aq be m Xn real-

valued matrices. A plan X = (xi) for i =1, 2, 3, ... 1s feasgible

17




if for eech 1 =1, 2, ...

Alxi + Agxi + Aqxi+q-l = b and Xi 2 o .

+1 T

The dynamic linear programming problem is to find a feasible plan that

is (average-cost) optimal.
Observe that the dynamic linear programming problem is indeed
a specialization of the dynamic convex programming problem, for given

the former problem,Jwe can choose

if + osee + =
cul i Alul Aquq b
b —
e (ul, cees uq) = and Ups eees Ty >0
0o otherwise .

Theorem 1 and its corollaries show that an optimal stationary
plan for the dynamic linear programming problem is also an optimal

bounded plan. By Corollary 3, an optimal stationary plan may be found

by solving the linear program

minimize cu

subject to (Al+--~ +AJu=b and u>o0.
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CHAPTER IIT

MAXIMUM-THROUGHPUT DYNAMIC NETWORK FLOWS

1. INTRODUCTION

The Model and Problem Formulation

Herein, we present and solve the maximum-throughput dynamic
network-flow problem, an infinite-horizon integer programming problem
that involves flows evolving over time. In a given finite network,
referred to henceforth as the "static network", flow is to be sent
in all of the arcs in each of an infinite number of periocds. Each
arc has an upper and a lower bound on the arc flow and an integral
transit time, which 1s the number of periods that it takes for flow
to pass through the arc. TFor a flow to be feasible it mst satisfy
all upper- and lower-bound constraints, and also satisfy conservation
of flow at each node in each period except for the first few periods
during which the flow is "initialized". For a given feasible dynamic
flow, the throughput in periocd p 1is the net amount of flow in transit
in that period, i.e., flow that has been initiated in some arc in
period p or earlier but has not reached the head of the arc by the
beginning of period p. In Section 2, we demonstrate that because
there is conservation of flow, the throughput is the same for all
pericds except possibly the first few.

The maximum- (resp., minimum-) throughput dynamic netwcrk-flow
problem is to determine a feasible dynamic flow with maximum (resp.,
minimum) throughput. The maximum- and minimum~-throughput problems

are equivalent since each may be reduced to the other by multiplying




the flows and bounds by -1l. While this problem is apparently new, it
has antecedents in the literature. For example, it is related to the
maximum network-flow problem, Both the dynamic max-flow min-cut formula
and the application of dynamic network flows to vehicle sgheduling
stem naturally from the ideas presented by Ford and Fulkerson (1962).
The minimum-throughput dynamic network-flow problem is closely
related to the finite-horizon dynamic maximum-flow problem as presented
and solved by Ford and Fulkerson (1958). As is discussed in detail in

Section 4, the finite-horizon problem may be transformed into a special

case of the minimum-throughput dynamic network-flow problem. Furthermore,

both the maximum capacity cut derived in Section 2 and the cut derived
by Ford and Fulkerson (1958) are induced by optimum dual solutions o
associated static network-flow problems.

Finally, the maximum-throughput dynamic network-flow problem
is a specialization of the minimum convex-cost dynamic network-flow
problem which is presented and solved in Oriin (1981b), The objective
in the latter problem i1s tc find a feasible integral flow with fixed
throughput so as to minimize the long-run (Cesaro) average cost per

period.

Optimality of Stationary Flows and the Max-Throughput Min-Cut Theorem

We show that if there is a feasible bounded dynamic flow, then
the supremunr of the throughputs of all feasible dynamic flows equals
that of all feasible dynamic flows that are statiorary, i.e., the flow
in each arc is the same in all veriods. If we restrict attention to

stationary flows, the maximum-throughput dynamic network-flow problem
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reduces to that of finding a maximum-profit feasible circulation in
the static network with the unit profit of the flow in an arc being
its transit time. A stationary flow is obtained by repeating the static
circulation in each periocd over the infinite horizon, and the throughput
of the dynamic flow is the profit of the static circulation.

The optimality of stationary flows is proved as part of the
main theoretical result in Section 2. Also proved is the Max-Throughput
Min-Cut Theorem, which states that the maximum throughput of a feasible
flow is the minimum capacity of a cut, where a cut is not defined in
terms of the original static network, but rather in terms of an infinite
"dynamic network'; each node of the dynamic network is an ordered pair
representing a node of the static network and a period of time., As
part of the proof we construct a cut and a feasible stationary flow

whose throughput is egqual tc the capacity of the cut.

An Application: Minimizing the Number of Vehicles to Meet a Fixed

Periodic Schedule

Consider a transportation firm (e.g., an airline) that must
schedule vehicles (e.g., airplanes) each day over an infinite horizon
so that certain routes are traveled at the same time each day. In
addition, there are certain other routes that the firm may schedule,
and deadheading is permitted. The objective is to determine a feasible
schedule that minimizes the number of vehicles needed.
Dantzig (1962), in consulting work for United Airlines, con-
sidered the above problem under the added restriction that a schedule is
stationary, and he modeled the problem as the static version of the minimum-

throughput dynamic network-flow problem. By the results of the previous
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section, the induced stationary schedule he found 1s optimal over the
class of all schedules. As Dantzlg and his collaborators cbserved, the
stationary flight schedules induce vehicle schedules that are periodic,

but do not necessarily repeat daily.

2. THE MAXIMUM-THRCOUGHPUT DYMNAMIC NETWORK-FLOW PROBLEM

The Static Network and Problem Formulation

A static network is a quintuple G = (N, A, t, £, u) in which

N=1{1, ..., n} is the node set and A is the arc set of a directed
graph, possibly containing loops (i.e., arcs joining a node to itself)

and multiple arcs between two nodes. Associated with each arc a 1is

a transit time ta’ which is the (possibly negative) integral number
of periods that it takes for flow to travel from the tail of the arc
to its head. Also associated with each arc a are (possibly + «) upper
and (possibly - ®) lower bounds ua and Ea on the flow initiated
therein in each period, with U > 2a. These networks have also been
referred to in the literature as "networks with transit times", for
example by Lawler (1976). If a flow begins in one period in the tail
of an arc with a negative transit time, then the flow arrives at the
arc's head at an earlier period. This somewhet anomalous situation
is interpreted in the vehicle-scheduling problem of Section 3 as
airplarnes that may cross the international date line and arrive the
day before they left. Further interpretation of negative transit
times is given in an application tc cyclic capacity scheduling by
Orlin (1981b).

If the tail and head of arc a are 1 and J

N
A8l




respectively, then we may denote the arc as (i,j) in those cases in
which no ambiguity will result. (There may be several arcs with the

same tail and head.) For each node i ¢ N, let Hi (resp., Ti) be

the set of arcs whose head (resp., tail) is i. Let % = max |t
D aeh
A dynamic flow x = (xa) is feasible if it satisfies the upper-

and lower-bound constraints:
i< X: <u for ach,p=1,2,3, ... (2.1)

and satisfies conservation-of-flow constraints at each node after period

% , 1l.e.,

Conservation of flow is not necessarily satisfied during the first ¢
periods, which we may view ag the initialization periods.
Define the flow in transit in arc a in pericd p with a

feasible dynamic flow x to be

P .
z x2 . (2.3)
jep-t,#1 * |
a

The throughput of x 1is the sum fx of the flows in transit in all
arcs in period tmax'

If ta > 1, then the flow in transit in arc a in period p
is the net amount of flow initiated in arc a in or prior to period

Fal

p but after pericd p - ta. If ta < -1, the flow in transit in

2k




arc a in period p 1is

-t
P & N
- I x (2,3")
j=p+l

which is equal to (2.3) by the conventional method for performing
summations in which the lower index is greater than the upper index.
It ta = 0, there is no flow in transit in arc a 1in each period.

To see that the sum (2.3') is really the appropriate interpre-
tation of (2.3), consider one unit of flow sent from the tail of arc
a 1in period P and reaching the head of a in period p + ta. With
regard to the conservatiocn-of-flow constraints this unit flow is equiv-
alent to sending negative-one unit of flow from the head of a in
period p + ta and reaching the tail of a in pericd p. In fact,
we can replace arc a = {(i,j) with arc <« = (j,i) such that ty, = =ty
Ea = -ua, and U, = -Ea. The definition of flow in transit given in
(2.3') is correct because one unit of flow in arc a should give the

gsame contribution to the flow in transit as negative-one unit of flow

in arc .

LEMMA 1. The sum of the flows in transit in each period

D> tmax of a feasible dynamic flow is equal to its throughput.

PROOF. Lemma 1 is shown later in this section to be a special

case of Lemma L. .

An intuitive proof of the above lemma is as follows.
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In order to preserve conservation of flow, all flow in transit
after period tmax must be sent forward upon arriving at the head of
an arc., Therefore, the total amount of flow in transit is constant
after period tmax'

The maximum- (resp., minimum-) throughput dynamic network-flow

problem is to determine a feasible dynamic flow with maximum (resp.,
minimum) throughput. In this section we show that if there is a feasible
bounded flow, then the supremum of the throughputs of all feasible

flows 1s the same as that of all stationary feasible flows. Moreover,

we define and prove a dynamic analog of the max-flow min-cut theorem

of Ford and Fulkerson (1956).

The Dynamic Network

et G = (N, A, t, £, u) be a static network. In order %o
express flows evolving over time as ordinary network flows expand G

intec an infinite network, called the namic network, and denote it
> 3

o« [se]

by G o= (W, A, £, w) where N = {i¥ : i e ¥ and pe (1,2,3, «..l).

<o
Node ip e N represents node i of N in period p. For each arc

(3}

a=(i,j) €A and for p > max(l = ta’ 1) there is an arc
ap = (ip, jp+ta) € Am, representing the Tact that flow may be sent
from node i in period p through arc a and arrive at ncde J in
period p + ta. Furthermore, the lower and upper bounds for the flow
in arc ap are the same as those for arc a.
Figures 2.1a and 2.1b show a static network and the corresponding

dynamic network. Here and in other diagrams the numbers on arcs refer

to transit times.
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Figure 2,la. A static network. The arc numbers are the transit times.
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Figure 2.1b. The dynamic network derived by expanding the static
network of Figure 2.la.
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The technique of expressing flows over time by expanding the
network is now standard., It was used by Ford and Fulkerson (1958) and

by many others including ILawler (1976).

Iet x = (xi) be a feasible dynamic flow. Let us view Xf

as the flow in arc a? orf Aw. Then constraint (2.2) states that

conservation of flow 1s satisfied at node ip for p> tmax' Thus

a feasible dynamic flow is a circulation in the dynamic network except
that conservation of flow is not necessarily satisfied at arcs 1P

for p < tmax'

Preliminaries: Paths, Copiles, and Cuts

A path in a network (dynamic or not) is an alternating sequence

of nodes and arcs io, a veey 8,5 1 such that for each j =1, ..., k

1’ X’ 7k

either a, has head 1. and tail 1. or else it has head 1.
3 J Jj=1 -1

and tail ij' In the former case the arc is called a forward arc of

the path; in the latter case it is called a backward arc. A path is

called directed if every arc is a forward arc and simple if no node
is repeated.

In a static network the transit time of a path is the sum of

the transit times of the forward arcs of the path minus the sum of the
transit times of the backward arcs.

An example illustrating these concepts is given in Figure 2.2.
The path from node 1 to node 4 has forward arcs (2,3) and (3,4). The
transit time of this path is the sum of the transit times of (2,3) and
(3,4) minus the transit time of (1,2). This value is 1. The path may

also be viewed as a path from node 4 to node 1 with transit time -1,




m O 2O ¢
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Figure 2.2. A path from node 1 to node 4 with unit transit time.
Periods

1 2 3 i 5 6 7 e
<:> e
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Figure 2.3. The dynamic network derived from the sftatic network
1P +o hp+l

-

no

N

=

of Figure 2.2. The path from is the p'* copy of

path in Figure 2.2 for p > 2.
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A cycle is a path in which the initial node is the same as the
final node. A cycle is simple if no node is repeated, except that the
initial node and the final node are the sanme,

A static flowv y = (y,) 1is called feasible if it satisfies
the upper and lower bound constraints (2.4) and is a circulation in the

static network G, i.e., satisfies (2.5).

< < £ 1 -
£, <y, Su Tor a €4 (2.4)
and
I y - X y =0 for ieN. (2.5)
a a
aeHi aeTi

Iet C be a cycle of G. A flow around C of k units is a

static flow y = (ya) such that

k if a is a forward arc of C
- f a is a backward arc of C

L 0 if a dis not an arc of C .

It is easily verified that a flow around C satisfies the conservation-

of-flow constraint (2.5).

b

If a €A and p 2> 1, thenarc a° ¢ Aé will be called the

pth copy of arc a, or simply a copy of a. The pth copy of arc a

. . . .. th
is not defined for p < -tao Similarly i is called the D copy

of ncde i, Let P = io, al, cees Ay ik be a path in G. Then the
pth‘cogz of P is the path P', if one exists, in G-CO with k arcs

such that the initial node is ip and such that the jth arc of PF
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) th

ig that copy of arc a, whose tail is the head of the (j-1 arc
J

of p!'. The definition is illustrated in Figure 2.3, which is the
dynamic network corresponding to the path in Figure 2.2. The path from

+ T,
lp to 1P . is the ptrl copy of the path from node 1 to node L; this

path is not defined for p = 1.

LEMMA 2. Let C be a simple cycle of transit time t > 1 in
the static network. Then the infinite number of copies of C in the

dynamic network comprise t node-disjoint infinite vaths therein.

PROOF. First, ignore the finite number of copiles that are

not defined. Let the kth copy be the first copy that is defined, and

let ik be the first node of this path. For each p >k it is easily

verified that the p* copy of C is a path from iP to 1P7F. 1r

th . L.
we concatenate the coples for p =k, k+ %, X + 2%, k + 3t, ...,
then we obtain the first infinite path. We obtain t - 1 additional
B . s Lk+1 k-1, -
vaths with initial nocdes 1 3 eeey 1 in the same manner. These
c e s . - . . .D
paths are node-disjoint since for # 1, the node ] may appear

in at nmost one of the coplies of C. -

The above lemma is illustrated in Figures 2.4a and 2.4b. The

copies of the cycle in Figure 2.4a partition into two node-disjoint

infinite paths in the dynamic network, as illustrated in Figure 2.4Db.
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Figure 2.ha, A static network that
is a simple cycle of transit time two.
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Figure 2.4b. The dynamic network associlated with the static
network of Figure 2.4a. It has two node disjoint infinite
paths, one of which is boldface in the diagram.
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0
A cut in G-oc is a partition of the nodes of N into disjoint

subsets S, S such that § is finite, and iPes for ien and

p< tmax' This guarantees that conservation-of-flow is satisfied at

each node of S. The nodes of S are called the source nodes while

the nodes of S are called the sink nodes. A cut (S,g) is called
P+l

monotone if if ¢ § implies that i €S forall ie¢N and p> b
Given two disjoint sets S, T of nodes in ﬁm, let A(S,T)

denote the subset of arcs in AOo with tail in S and head in T,
The upper capacity of a cut (S,S) is defined to be

T u - p 2 (2.6a)

P Ty o Pamay
a~eh(s,S) a~eA(S,8)

and may be interpreted as the maximum net Tlow from source nodes to
sink nodes. The lower capacity of cut (S,S) is defined to be

z - z u (2.6b)

aPea(s,d) - aPea(S,8) *
and may be viewed as the minimum net flow from scurce nodes to sink
nodes. The upper (resp., lower) capacity is defined to be + =
(resp.,, = =) whenever (2.6a) (resp., (2.6b)) involve any infinite
numbers.

A cut is illustrated in Figure 2.5. The dynamic network is
the same as in Figure 2.Lb. The upper and lower bounds are given in
Table 2.1, and the nodes of S are the white nodes of Figure 2.5.

The upper capacity of the cut is 2 while the lower capacity is =~k.




Transit Upper Lower

Arc Time Bound Bound
'(1,2) 1 2 0
(1,4) 1 1 1
(2,3) 1 0 -1
(3,4) 1 1 0

Table 2.1. The parameters for the arcs of Figure 2.hka.

Periods

Figure 2.5. A cut in the dynamic network of Figure 2.4,
The white nodes are in S. The boldfaced lines are in either
A(s,S) or A(S,s).




Max=-Throughput Min-Cut and the Optimality of Stationary Flows

[

s called bounded if its supremum

A dynamic flow x = (xs)

+
nerm is finite and stationary if xf = xf 1 for each a € A and
p=1,2,3, ... . A feasible static flow 7 = (ya) induces a sta-
. 3 . . ® i rd T _ _
tionary dynamic flow y = (xa) with x = Vg for p=1, 2, ...

and a € A. In this subsection we prove our main theoretical results.
First, the upper (resp., lower) capacity of any cut provides an upper
(resp., lower) bound on the throughput of a feasible flow. Second, if
there ig a feasible bounded flow, there is a cut whose upper (resp., lower)
capacity equals the supremun (resp., infimum) of the throughputs of. the
statiocnary feasible dynamic flows.

Let x be a feasible flow and let (S,g) be a cut. We define

the flow across (S,S) to be

z X - Z Xp-
P = Dm
a~eA(s,S) a“eA(S,s)

IS o}

LEMMA 4, Let x be a feasible dynamic flow and let (S,9)
be a cut. Then the throughput is equal to the flow across (8,9)
and so is bounded above by the upper capacity of the cut and bounded

below by its lower caracity.

PROOF. It is clear that the flow across (S,S) is bounded
above by the upper capacity and bounded below by the lower capacity.

It remains to show that the flow across (S,g) is the throughput.




Consider first the case that § = {i¥ e N : p < tmax}' Then
the flow across (S,S) is exactly the flow in transit in period b
which is the throughput.

We now prove the result inductively. TLet (S,S) be a cut.
Let S' =8 - {3}, where 3 = i° is any node of S for which > t
Then the flow across (S,S) is equal to the flow across (S',3').
To see this, note that the difference of the flows across the two cuts

is

which is zero by conservation of flow,

The lemma now follows inductively, as we may start with any
cut (S,é-) and progressively move one node at a time from S to 3
without altering the flow across the cut. Eventually we arrive at

[oe]

1 _ (<P .
the set S' = {i e N 'pitmax}' B
PROCF COF IEMMA 1. The net flow in transit in period g is
the flow across (S,S) where § = (P e W :p < a}. Thus, Lemma 1

is a special case of Lemma k4, .

THEOREM 5. If there is a feasible bounded dynamic flow, then

1° (Suff‘icieney of Stationary Flows) the supremum (resp.,
infimum) of the throughputs of all feasible dynamic flows equals that
of all feasible stationary flows, with the last supremun (resp., infimum)

veing attained if it is finite.
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2° (Max-Throughput Min-Cut) Moreover, the supremum (resp.,
infimun) of those throughputs equals the minimum (resp., ma.ximum)
upper (resv., lower) capacity of a c¢cut, and this cut may be taken to
be monotone.

50 (Integrality) If also the upper and lower bounds are integral,

then the stationary flows in 1° may be taken to be integral as well.

PROCF. TFirst suppose that all upper and lower bounds on arc
flows are finite., Consider the problem of finding a feasible static

flow v = (ya) that maximizes

f = I ty (2.7)
T ogen 22
Furthermore, as is easily seen from (2.3) and (2.7), fy =T , il.e.,

y
fy is the throughput of the stationary flow yw induced by the static

flow v. The dual of the zbove static network-flow problem is the

linear program (2.8).

Minimize Z O u - Z B £ (2.82a)
sep B2 L @a
- subject to
xj -h v =B =t forall a-= (i,7) € A (2.8b)
& Ba >0 for a € A . (2.8¢)
Tet % = max (0,x), and x = max (0,-x). Since u, >4

for each a ¢ A, we need consider only those solutions to (2.8) for




+ -
which @ = (t + A, =A.) and B = (t + A. = A.) . These solutions

a a i 3 a a i Ny
are feasible for any choice of A,

Let (A, @, B) be an integer-valued feasible solution to (2.8)

*
and put xm4n = mini Ki. Let p be some integer greater than
et 5= (¥ el <pl. Th 5) 1

tomx = Mmin? 204 le ={i"eN :p-x Sph en (5,8) is
a monotone cut whose upper capacity is equal to the objective wvalue
of (2.8a) for (n, &, B). To see this, suppose a = (i,3), If

* * -
p-X Sp and p-%.j *t,2>p+1, then 2P = (ip,jp+ta-) e A(S,S),

+

and there are aa = (ta + Ki - xj) such copies of arc a. Similarly,
P = . | * *
a® ¢ A(S,s) if p - Ay 2P +1 and p - kj + ta < p, and there
are B, = (ta R Xj)— such arcs. Thus the upper capacity of the
cut is the objective value in (2.8a).

If there is a feasible static flow, then there is an optimal
basic static flow y with objective value 2z and an integral optimal
solution (N, &, B) to (2.8) also with objective value z. The static
flow y induces a feasible stationary flow yoo with throughput
fy = z and solution (A, @, B) induces a monotone cut (S,3) with
upper capacity equal to z. By Lemma L, this stationary flow is optimal.

Consider next the case in which the bounds on scme arcs may
be infinite. If there is a sequence of feasible stationary flows with
throughput unbounded from above, then by Lemma L4 each cut has infinite
upper capacity. Suppose instead that there is no sequence of feasible
stationary flows with throughput unbounded from above. Then since there
is a feasible bounded dynamic flow x = (xﬁ), there is a real number
M that is a strict upper bound for both the absclute arc flows ing

for 211 a and p and also for the absolute arc flows in each basic

static flow (if any exist).
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Consider next the static network G' = (N, 4, t, 2', u') where
2; = max(ﬂa, -M) and u; = min(ua, M). The resulting dual progranm
(2.8) is feasible and its objective value is bounded below by the
throughput fX by Lemma L4 and what was shown above. Hence, there
is a maximum-profit basic static flow ¥y and an optimal dual solutiocn
(n, @, B) for (2.8). By complementary slackness, u! = M implies
a, =0, and 2; = -M implies B = 0. ILet (S,S) Dbe the monotone
cut induced by (N, @, B). Then no arc of A(S,S) (resp., A(S,S))
has an upper (resp., lower) bound equal to M (resp., -M). Hence,
the capacity of the cut is unaltered if each arc bound of + M is
replaced by * =, and the throughput of the stationary flow yOo
induced by y is the upper capacity of (S,8) in G from what
was shown above, completing the proof.

Finally, the result for the minimum-throughput problenm is
immediate from that for the maximum-throughput ovroblem because the

former reduces to the latter on replacing each (xf, Ea, ua) by

b ;
(-Xa, -U.a, —,éa)c -

EXAMPLE. Consider the static network described in Table 2.2.
The corresponding static and dynamic networks are portrayed in Figures
2.6a and 2.6b. A minimum upper~capacity cut is given in Figure 2.0b.
The capacity of this cut is 1. If a flow of 1 i1s sent through the
forward arcs of the infinite path of Figure 2.6c and a flow of -1 is
sent through the backward arcs, the resulting flow is a feasible sta-

tionary flow with a throughout of 1, and is thus optimal.
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Transit Upper Lower
Arc (Tail, Head) Time Bound Bound
3, (1,2) 0 1 -1
2, (1,2) 1 1 0
as (1,4) 1 0 -2
3, (2,3) 0 2 1
a5 (3,4) 0 1 -1
a, (3,4) 1 1 0

Table 2.2.

The parameters for a

static network.

Upper Lower Transit
Arc Bound Bourd Tinme
(1,1) ® 0 1
(2,2) 0 - o 1
(1,2) 1 1 0
Table 2.3




We note in passing that if x 1is a maximum-throughput dynamic
network flow and (8,S) is a minimum upper-cavacity cut, then X: =u
for a¥ e 4£(8,8) and Xs =1, for 2® ¢ A(3,s).

Neither 1° nor 50 of Theorem 5 is true if we drop the restriction
that there is a feagible bounded dynamic flow because there are no feasible
stationary flows in that event. Nevertheless, there may exist unbounded

feasible flows and 2° of Theorem 5 may still hold as the next example

illustrates.

EXAMPLE., (All feasible dynamic flows are unbounded.) Consider
the static network described in Table 2.3 and depicted in Figure 2.7a.
There is no feasible stationary flow, although there is a feasible

dynamic flow x = (X?) given by
(=

(= , as= (1,2)
v
x> ={ p+2z, a=(2,2)

k 5 5. = (1)2) >

where 2 i1s an arbitrary rezl number. Then fX = 2z, so the supremum

(resp., infimum) of the throughputs of these flows is + « (resp., - «)

- and this is the upper (resp., lower) cavacity of each cut.

An Alternate Proof of 1° of Theorem 5 (Sufficiency of Stationary Flows)

An alternate proof of lo of Theorem 5 is obtained by aprplying
a result of Orlin (1981a) to the special dynamic linear program given
below. However, this proof shows only that staticnary flows suffice
in the class of bounded feasible dynamic flows whereas the proof of

Theorem 5 applies in the class of all feasible dynamic flows.
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The static network described in Table 2.2.

A minimum upper-capacity cut in the dynamic network

associated with Figure 2.6a. A(S,S) = {(15,2u),(3u,“5)};
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Figure 2.6b.
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Figure 2.6c.
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An infinite path in the dynamic network of Figure 2.6b.
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Figure 2.7a. The static network of Table 2.3.
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Figure 2.7b. The dynamic network associated with the
static network of Figure 2.7a.
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Iet vp be the throughput of a feasible dynamic flow in period
p. By lLemma 1, vP is constant for all p > tmax' Thus the maximum-

throughput problem can be writfen as that of

-1 P
maximizing lim p R
p=>® j:l
subject to
P p-t
T xf- L x %*=0 for 1el and p>t__,
acH, aer, ° max
i i
D .
-vP+ I Z xi =0 for p>t s
ach j=p-t_+1 rax
and

3, MINIMIZING THE NUMBER OF VEHICLES TC MEET A ¥IXED PERIODIC
TRANSPORTATION SCHEDULE

Here we consider a routing problem that arises in the scheduling
of vehicles for certain transportation industries, such as airlines and
railroads. TFor convenience, we will borrow terminclogy from the airline
industry.

The problem is to minimize the number of aircraft needed to meet
a fixed schedule of daily repeating'flights, each of which is either

required or optional. The required flights must be flown daily, while

the optional flights may be flown on any day at the schedulert®s prerogative.

b




We assume that any plane may fly any route on any day. We do
not make any a priori assumptions on the data, and we even allow the
contingency that a flight may take several days. (This contingency
is of little value in scheduling planes, but might be of value if we
were to schedule trains.) Furthermore, we do not require that a feasible
schedule be periodic, although ocur algorithm will always produce a
periodic schedule.,
Various versions of the above problem have been considered in
the literature. Dantzig and Fulkerson (195&) solved the problem of
minimizing the number of vehicles to meet a fixed finite-horizon schedule.
(It was Fulkerson's first paper on network flows.) The problem of
minimizing the number of vehicles to meet a periodic schedule in which
all routes are required--so deadheading is not allowed--has been solved
by Bartlett (1957) and the problem has been apprlied to railrcad scheduling.
Bartlett was concerned with determining the minimum number of
vehicles. For his case, the operating schedule is itself frivial as
there are no relevant decisions to make. As pointed out by Bartlett,
an obvious necessary condition for optimelity is that at no airvort
is there a plane on the ground for the entire day. DBartlett also
showed that this condition is sufficient for cptimality, and he gave
a simple closed formula for the number of airplanes in such a schedule.
Dantzig (1962) considered various airline scheduling problems
inclgding the above problem of minimizing the number of alrplanes to meet
s fixed pericdic schedule under the added restriction that the final
flight schedule is stationary. His technique, as described by Simpson

(1969), is equivalent to solving the static version of a corresponding
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minimum-chroughput problem. By results of the previous section, the
resulting optimal stationary solution that Dantzig cbtains is optimal
over the class of all feasible (possibly non-stationary) gchedules.

As Dantzig and his collaborators ncted, in order to satisfy the
stationary flight schedule, each airplane flies a periodic schedule, but
the total time for s route for cone airplane may be a number of days. We
repeat Dantzig's technique here both for completeness and so as to illus-
trate the theory of the previocus section.

We formulate the problem as a dynamic flow problem with the

static network G = (N,A,t,ﬂ,u), where each node of N 1is an ordered pair

<i,s> with 1 being a city and s being a time of day. It suffices
to consider only those times s for which there is either a departing
or arriving flight. We incorporate the required holdover times at
airports into the travel times so that we may assume that a plane may
take off immediately upon landing. A flight devarting at time ‘s from
city 1 and arriving 4 days later at time r din city J dis repre-
sented by an arc from (i,s) to (j,r) with transit time d. TIf it
arrives on the same day, then d = 0. If it crosses the international
date line and arrives on *the previous day, then 4 = -1. The upper
bound on the flow in each of these arcs 1s the mumber of flights/that
may be Tlown at this time or + ® 1if no such bound exists while the
lower bound 1s L or O according as the Tlight is required or cptional.
We also have arcs which represent the time that the alrplares stay on
the ground; the transit time of each of these arcs is 1 or O according
as the ground time includes or does not include midnight.

An example of this formulation is given in Tables 3.1 and 3.Z2.
The first table describes the flight schedules, while the second table
describes the static network. The static network is given in Figure 3.1.

Each period of the dynamic network represents a day.

L6
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Devarture Arrival Required Or

Origin = Destination Time Time Optional
City 1 City 2 1 AM 7 AM Required
City 2 City 3 3 AM o AM Optional
City 3 City 1 5 AM 11 AM Opticnal
Table 3.1
Upper Lower Transit
Tail Head. Bound Bound Time
<1, 2,7 1 1 0
<2, 5,9 1 0 0
<3,5> <1,12> 1 0 0
{1,117 <1, oo 0 1
<1, <1,1> % 0 1
2,7 <2,3> ® 0 1
<2,3> £2,3> w 0 1
<3, <3,5> % 0 1
<3,5> <3,5> w0 0 1
Table 3,2

Figure 3.1l. A static network for the airplane scheduling problem.
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The interpretation of the lower-bound constraint (2.1) is that
each required flight be flown, The interpretation of the conservation-
of-flow constraint (2.2) is that airplanes are neither created nor
destroyed once the gchedule is determined. Finally, the net flow in
transit in period 1 is equal to the number of airplanes that are either
on the ground or in the air at midnight of the first day; thus the

. throughput is the number of airplanes.

The Solution

The airplane scheduling problem 1s really an integer programming
problem. However, this causes no difficulties as there is always a
minimum-throﬁghput static flow that is integral, and this static flow
induces a stationary integer dynamic flow that is optimal. Although
this stationary flow does provide a time-table for flighfts and does
minimize the number of airplanes, it does not provide the daily schedule
for any airplane. Such a daily schedule for airplanes may be determined
as follows: let y = (ya) denéte an integral optimal static flow.
Decompose the circulation y dntc a sum of unit flows around directed
cycles. The cycles are directed because any backward arc would have a
flow equal to -1, which is impossible because all Zower bounds are
nonnegative., Furthermore, each cycle corresponds to a finite sequence

of routes that a single plane may travel so as to start and finish at

the same place and at the same time of day, and the transit time of the cycle

is the number of days traveled. ZXach cycle C of transit time +t induces

t infinite-length paths in the dynamic network by Lemma 2, and each
of these paths induces a periocdic schedule that repeats every t days

for an airplane. In this way, we may determine schedules for all planes.
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Tet an instance of a flight refer tc a flight cn a specified
day, €.8., the 9 a.m. flight from Boston to Atlanta on April 19, 1979.
Then the max-throughput min-cut theorem may be interpreted ags follows.
The minimum number of airplanes needed to
meet a fixed periodic schedule is equal to
the maximum number of instances of required
flights, no two of which may be flown by the
same alrplane,
In the example given in Taeble 3.1, the unique optimal tour is
given by flying from city 1 to city 2 to city 3 and returning to city 1.
In the static network the minimum throughput is obteined by sending one
unit of flow around the cycle determined by the node sequence <1,1>,
2,7, £2,3>, £3,9>, £3,5>, <1,11>, £1,2>, Each airplane on this route
takes three days. Three airplanes are needed, as the Tlights from city

1 to city 2 on any three consecutive days must be flown by different

airplanes.

L, FINITE-HORIZON DYNAMIC MAXIMUM FLOW

In this section we consider the g-pericd dynamic maximum-flow
problem which Ford and Fulkerson (1553) formulated and solved., The
objective in this problem, which we shall henceforth call the g-periocd
problem, is to find a maximum flow from a given socurce to a given sink
in ¢ periods where q 1is a given vositive integer. TFord and Fulkerson
showed that there is always an optimal flow (depending on q) “hat is
temporally repeated. Such flows are essentially stationary. This
elegant result unfortunately does not seem to generalize to other finite-

horizon problems. Specifically, if other optimality criteria are
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considered, then an optimal flow will not, in general, be stationary.
For example, neither minirmum-cost flows nor universal flows as defined
by Gale (1959) are generally stationary.

In this section we demonstrate that the ¢-period dynamic maximum
flow problem may be transformed into a special case of the minimum-
throughput dynamic network-flow problem, which we will refer to in this

section as the infinite~horizon problem. In this way, the Ford~Fulkerson

results may be viewed as a specialization of the theory developed in

Section 2 above,

The g-Period Problem

Let G = (N, A, t, 0, u) be a static network in which each arc
has a non-negative transit time, a zero lower bound on its arc flow,
and a positive integer-valued upver bound thereon. Let W = {1, ..., n},
and call node 1 the gource and node n the sink. Denote by Gq =
(Nq, Aq, tq, 0, uq) the g=-period subnetwork of the dynamic network

0

o co co s . .D o .
G =(N,A,t, O,u) induced by the nodes i ¢ N for i e N

and 1< p<g. Flow may be sent in Gq in periods 1, 2, «¢., @ for
— —_ b )

some fixed ¢g. We call x = (xﬁ) a feasible g-~pericd flow in Gq if

it satisfies (%.1), (4.2) and (4.3) below, viz., the upper- and lower-

bound constraints
0< xﬁ <u  for a €h, D=1, eeey 9 , (4.1)

the conservation~of-flow equations




aeTi acH, (k.2)
and the flow prior to pericd 1 is zero, i.e., in the first g periods
and at all nodes except for the source and sink,

xs =0 for ae€hA and p<O. (4.3)

We assume without loss of generality that ta < g for each arc a. The

g-period problem is to determine a feasible g-period flow that maximizes

the amount of flow g, that arrives at the sink where

g = T ¥, (b.4)

Temporally-Repeated Flows

As we have remarked above, Ford and Fulkerson showed that one
maximm g-period flow will be temporally repeated. In order to define
this notion, it is convenient to append to the static network G an

arec O = (l,n) from source %to sink with ?a =g, 4,= =0, and ua = 0,

A

Let Gq = (N,.Aq, t, 2, u) be the g-period augmented static network
with A, =A U {a} and the domain of (%, £, u) extended from A <o
Aq' (Incidentally, appending @ has no effect on the solution to the

g-period problem because t, = G.)

If P is a simple directed path in G from source to sink

with transit time r < g, then Pq =P U (@} is a simple cycle in
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Gq with transit time r - g. Thus by Lemma 2, the copies of Pq in
G: comprise ¢q - r node=disjoint infinite paths and each contains a
unique copy of P that is also in Gq. Thus P has q - r copies
in G2,

If P 1is a simple directed path in G from source to sink
with transit time r < g, then a positive unit flow in each of the

q -r copies of P in Gq is called a temporally-repeated unit flow.

A sum of temporally-repeated unit flows is called a temporally-repeated

flow,

Example

We illustrate these concepts in Figures 4.,1-4.3, In Figure L,1
we gilve a static network G consisting of a simple directed path P
from source to sink with transit time one and the 3-period augmentation
G5 of G comprising 2 simple cycle with (absolute) transit time two.
The two infinite-length paths in G? induced by P5 are poritrayed in
Figure 4.2, and the boldfaced lines in Figures 4.2 and %.3 delineate
the two coples of f in GB.

If there are unit upper bounds on flows in &1l arcs in G, then
the maximum 3-period flow from source to sink is evidently two. This
flow is achieved by the temporally-repeated (unit) flow that sends unit

>

flows along each of the two copies of P in .

The Infinite-Horizon Problem

We are now ready to develop the main result of this section,

viz., that the problem of finding a maximum g-period flow from source
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Figure 4,1, A static network G and its 3-period augmentation GB.

Periods

o]

Fi e 4,2, The dynamic network G5 corresponding to the 3-period

augmented static network of Figure bk.1.

Periods

l,.__l

-

wm ® 0
n

> O

Figure 4.3. The 3-period subnetwork G3 of G corresponding to the
static network of Figure 4.1l1.
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to sink can be reduced to the infinite-horizon problem of finding a

feasible dynamic flow in GZ heving minimun throughput. In order to
motivate this result, let P be a simple directed path in G and let
P* be one of the_infinite paths in Gi induced by Pq. Now a negative
unit flow in P! ‘has positive unit flow in each copy of P in P',

has negative unit flow in each copy of & in P', and conserves flow
at all nodes (including copies of the source and sink) after period q.
Thus a negative unit flow in P¥ sends a positive unit flow from source
to sink in G% (along the unique copy of P in both P' and G%)

and has a negative unit throughput in G:. Thus, in this simple instance
at least, the throughput of a dynamic flow in G: is the negative of
the induced subflow from source to sink in Gq. This suggests that
minimizing throughput in G: will indeed maximize flow from scurce

to sink in GY.

These ideas are illustrated in the example of Figures L.1-k.3
discussed above, The minimum throughput in G? in that example is -2
and 1s achieved by negative unit flows in each of the two infinite
paths in Figure 4.2, That flow induces a subflow from source to sink

3

in @7, wviz., the temporally-repeated (unit) flow discussed above,

and attains the maximum 3-period flow of 2.

THEOREM 6. Let y’oo be 2 stationary integer minimum-throughput
dynamic network flow for the infinite-horizon problem with Gze Then
v ilnduces a temporally-repeated ag-period flow x that has maximum
g-period flow from source to sink. Turthermore, the negative of the

throughput of ym is the g-veriocd flow from source to sink of x.
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PROOF. Consider an integer optimal static flow v = (yé) for
Gq that induces a minimum-throughput stationary flow. The circulation

vy may be written as the sum of unit flows arcund cycles in G Since

q4°
we wish to minimize throughput, the transit time of each cycle must be
negative because we would delete any cycle with a nonnegative transit time
without increasing the throughput of the induced stationary flow. We

may also choose the cycles so that each arc in A appears only as a
forward arc.

Let C be a cycle in the decomposition, and let + Dbe the
transit time of C. Si;ce t < 0, it follows that C consists of arc
¢ plus a directed path P from node 1 to node n of length g + t.
This path P induces a temporally-repeated unit flow with -t units
of flow arriving at the sink. Thus the temporally repeated flow x
induced by these cycles has a flow g, = -fy arriving at the sink,
because fy is the sum of the transit times of the cycles.

To complete the proof we will show that x is optimal for the
g-pericd problem. Let (S,g) be a monotone cut with lower capaclty
fy = -8, as guaranteed by the max-thrcughput min;cut Theorem 5. Choose
p oso trat 1PV, L, 1% s ana 1P, L, 1P 5, whicn is
rossible because the cut (S,g) is nmonotone, No copy of & is in
the set A(S,S) because the lower capacity of the cut (S,S) is
= > 0, Therefore any copy of G with its tail in § must also
have its head in S. Hence, np+l, e np+q € S.

Finally, we translate and truncate the cut (S,g) for G: to

- - -+ —_
form a cut (5',5') for oY defined by 5' = (i¥ :1 <r < q and TR 3

T+
and SY' = {i’ : 1 <r<g and 172 ¢ 8}, Observe that the copies of
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source 1 are in S* and the copies of sink n are in S'. Thus the
maximum flow in Gq from source to sink is at most the sum of the
capacities of all arcs with tail in S' and head in S', and this sum
is bounded above by the negative of the lower capacity of cut (S,g)

in Gz which is -fy = g.- Thus the maximum g~period flow from source

to sink is at most By completing the proof. Il

Consider a maximum dg=-period flcw y. If we restrict the flow
to the first g~1 periods, is it necessarily a maximum (q-1)-period
flow? As shown below, the answer is no. However, Gale (1959) proved
that there always is a maximum qg-period flow that, when restricted +o
the first p periods, is also a maximum Pp-period flow, for all
P=1,2, «ao, Qo He called such a flow a "universal maximum flow."
In fact, such a flow exists even when the arc capacities vary over
time., Gale showed that there does not necessarily exist 2 stationary
wniversal maximum flow. For example, consider the static network
described in Table L.l and portrayed in Figure L.3. If we want a
maximum 3-period flow, then the unique universal maximum flow is given
in Figure L.k, while the unique stationary maxirum 3-veriod flow is
given in Figure L4.5.

Finally, suppose that we wish to find a minimum-cost feasgible
g-periocd flow. Once again we cannot expect an optimal flow to be sta-
tionary. To see this, assign a unit cost of =1 to arc (2,5) oI the
static network of Table 4.1, -2 to arc (1,3) and O to all other arcs.
Then the minimum-cost stationary flow is that of Figure 4.3, and it

has a cost of -4, while the flow in Figure L.4 has a cost of =5.
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Figure 4.3. The static network described in Table k.1.

Figure L, The unique optimal universal flow Tor the
network of Teble k.1 is along the four paths given
above,
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Figure L.,5. The unigue optimal temporally-repeated flow for
the network of Table 4.1 is along the four paths given above,

Upper Lower Transit
Tail Head Bound Bound Time
1 2 1 0 1
1 3 1 0 1
2 b 1 C 1
> L 1 0 1
1 L 0 ~h 3

Table 4,1. The static network portrayed in Figure L.3.

The result contrasts with the optimelity of stationary flows
for the minimum-cost dynamic network-~flow problem as proved by Orlin

(1981b).
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APPENDIX. Everywhere-Conservative Feasible Dynamic Flows

In the maximum-throughput dynamic network-flow problem and
again in the minimum convex-cost dynamic network-flow problem of Orlin
(1981b), a2 feasible dynamic flow need not satisfy conservation of flow
in the first few periods. This may be a significant relaxation of
real-world constraints because conservation of flow usually has a
physical interpretation. An interesting open question is how to "phase
into" an optimal statiocnary flow.

In many special instances i1t is easy to phase into an optimal
stationary flow. In the vehicle scheduling problem of Section 3, it
suffices to have 2ll vehicle travel to their first departing site. 1In
the cyclic capacity scheduling problem discussed in Orlin (1981b), it
is possible to phase into any feasible staticnary schedule within one
day. However, in general, the "phasing problen” is NP-complete, as
is shown in this section.

A feasible dynamic network flow is called everywhere conservative

if conservation of flow is satisfied in all periods including periods

1y ooy tmax - 1. We refer to such flows as conservative flows, for

brevity. In this section we use the terms NP-hard and NP-complete,

The reader unfamiliar with these concepts should refer either fto Karp
(1972) or Garey and Johnson (1979). Informally, a problem X is NP-
hard if there is an NP-complete problem which may be polynomially trans-
formed to X, i.e., transformed in polyncmial time so that it becomes

a special case of X.




THEOREM A.l, Determining whether there 1s a conservative flow

is NP=hard.

PROCF., Consider the following version of the knapsack problem,

which was proved NP-complete (and thus NP-hard) by Karp (1972).

KNAPSACK PROBLEM. Given n distinct positive integers dl’ ceey dy1
and a positive integer b, do there exist non-negative integers

L ] = ?
Wys eeey W such that dlwl + + dnwn b

Consider *the static network G described in Table A.l. To prove
the theorem we show that there is a conservative flow for G 1f and only

if there is a feasible solution for the corresponding xnapsack prcblem,

Arc aq &p see a, o 8 v

Tail 1 1 oee ] 1 2 1

Head 1 1 ese 1 1 2 1

Lower bound 0 C see O -1 -1 1

Upper bound 1 1 see 1 A 1

Transit time dl d2 oo dn 1 b b+l
Table A,L

First, let G' be G with arecs «, B, and 7 deleted. Then

there is a feasible solution for the knapsack problem if and only if




there is a directed path in G' from node 1 to node 1 with transit
time b. We see this as follows: 1f there is a path with transit time
b, let W be the number of occurrences of arc a, in the path.
Then the sum of the transit timesof the ares is Wldl +ooes + Wndn’
which is b. Conversely, suppose w 1is a solution to the knapsack
problem., Consider a path ih G' consisting of w, occurrence of ay
for i =1, ..., n (the arcs taken in any order). The resulting path
is from 1 to 1 and has transit time b,

To complete the proof of the theorem, we show that fthere is a
conservative flow for G 1if and only if there is a directed path in
G?' from node 1 to node 1 with transit time D.

Suppose x 1is a conservative flow. If we restrict x to copies
of &, B, and 7, the resulting feasible dyramic network flow satisfies

conservation of flow at all nodes of the dynamic network except il

R ns . b+l .
which has a deficit of one unit and 1 which has a surplus of one
unit., Since x 1is a conservative flow, if we resitrict x to coples
. . . . 1

of arcs 85 eees By it must consist of a unit flow from 1 to 1

and conserves flow elsewhere. The unit flow is sent along a path that

is a copy of a path in G' from 1 to 1 with transit time b,
Conversely, 17 there is sucn a path in G¥, then there is =2

P . . 1 b+l
copy of the path in the dynamic network from 1 to 1 . A con=
servative flow is created by sending 1 unit of flow a2long this path,

.

1 unit of flow in each copy of & and B, and -1 unit of flow in each

copy of 7. -
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CHAPTER IV

MINIMUM CONVEX-COST DYINAMIC NETWORK FLOWS

1. INTRODUCTION

The Model and Problem Formulation

In the sequel we present and solve the minimum convex-cost dynamic
network-flow problem, an infinite-hcrizon integer programming problem
that involves network flows evolving over time. This work extends the
results of the author (1981b) concerning maximum-throughput dynamic
network flows,. -

We consider a finite network in which there is associated with
each arc a real or + © valued convex cost of flow therein that is
linear between successive integers, and a (possibly negative) integer
transit time that is the number of periods for flow to pass through the
arc,

A dynamic flow is a sequence of flows initisted in each arc in
each period. Such a flow is called feasible 1f it is bounded, has finite
cost in each pericd, satisfies conservation of flow in all except the

' and has zero

first few periods during which the flow is "initialized,'
"throughput.” The throughput is the net flow in transit in each period
and is shown in Orlin (1981b) to be the same in each period after the
first few. The throughput may alsc be viewed as the net amount of flow
circulating in the network, This concept was introduced and studied in
detail in Orlin {1981b).

A dynamic flow 1s called optimal in a given class of such flows

if it is feasible and has minimum long-run average cost per pericd among

all feasible dynamic flows in the class. Thus, for example, we speak
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of optimal integer (resp., continuous, stationary, etc.) dynamic flows,
The class of integer (resp., continuous, stationary) dynamic flows consists
of those for which the flow in each arc in each period is integer (resop.,

unrestricted, the same in each pveriod).

Finding Optimal Integer Dynamic Flows

Our principal interest centers on finding an optimal integer
dynamic flow. OCur method for doing this involves two steps, viz.,
finding a stationary optimal continuous dynamic flow and then rounding
that flow to form an integer periocdic optimal continuous dynamic flow
that is necessarily an optimal integer dynamic flow.

We discuss briefly these two stews. To begin with, it follows
from Orlin (l98la) that the sets of optimal stationary and stationary
optimal continuous dynamic flows coincide. Also these flows coincide
with those induced by repeatedly using an optimal circulation, l.e.,

a circulation in the static network *hat has (finite) minimum cost among
those with zero throughput. The throughput of a circulation (and of

the statiorary dynamic flow it induces) is the sum of the rroducts of
each arc flow and its transit time, and so is linear in the arc flows.
Thus, the optimal-circulation prcblem is a minimum-cost static network-
flow problem with one additional linear (zero-throughput) constraint.
Consequently, optimal circulations are not generally integer. Never-
theless, 1f there is an optimal circulation, there is one that is
"fractionally extreme," i.e., if the integer elements of the circulation
are fixed, the noninteger elements are uniquely determined. Moreover,
the arcs in which flcws are noninteger form a simple cycle, Each arc

flow in a stationary dynamic flow induced by a fractionally-extreme




optimal circulation may be aporopriately rounded to an adjacent integer
so as to yield an optimal integer (and integer optimal) dynamic flow
that repeats every q periods where ¢ 1s the least common denominator

of the fractiocnal parts of the cilirculation.

Applications

The minimum convex-cost dynamic network-flow problem may be
applied to various areas of Opverations Research that invelve deterministic
demands repeating periodically over time. These include the cyclic
capacity scheduling problem, the cyclic staffing problem, the periodic
production and transshipment prcblem, the airline scheduling problem,

and the minimum cost-to-time ratio circuit prcblem, as detailed below.

Cyclic Capacity Scheduling and Cyclic Staffing

The cyclic capacity scheduling problem is to find a minimum
per-period cost schedule of buying and selling capacity in blocks of
consecutive veriods so as to satisfy demands for cavacity that repeat
cyclically over time. This prcblem generalizes the finite-horizon
capacity scheduling problem which was shown by Velnott and Wagner (1962)
to reduce to a minimum-cost network-flow problem. A special case of
the cyclic capacity scheduling problem is the cyclic staffing problem,
which is to minimize the per-day cost of staffing a workforce round-
the-clock on shifts of consecutive hours so as tc satisfy minimum hourly
demsnds that vary within the day, but repeat from day to day.

The infinite-horizon problem congidered above apparently has
not been discussed before. However, if the assigmment of workers is

required to be the same every day, then the resulting problem is the

N
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1l-day cyclic staffing problem which has received conslderable attention,

3

e.g., Baker (197%) and (1976), Bartholdi et al. (1980), Oriin (1977)

e

and Tibrewala et al, (1972). There is no known polyncmial algorithm for
the l-day problem, nor is it known whether the problem is NP-complete.
The integral solution obtained for the cyclic capaclity scheduling
problem and hence for the cyclic staffing problem has the property that
it is obtained by rounding an infinite-horizon continuous-valued
solution that repeats each period., For this reason, the number of
workers on any specified shift varies by at most one from day to day.
Tn this sense, it is "almost feasible' for the l-day problem, and always

has a daily cost as low as the optimal daily cost for the 1-day problem.

Periodic Production and Transshipment

The periodic production and transshipment rroblem is to minimize
the daily cost of producing and shipping goods (such as food or petroleum
products) from city to city so as to satisfy periodically repeating
demands, where unit costs are assumed to repeat periodically. We also
assume that the rumber of trucks (or any other cargo carriers) is limited.
Finally we need the additional assumption that each truck returns to
a production site upon delivery of goods. (If trucks may carry goods
+to more than one demand location without reloading in between, then the
resulting problem is NP-hard.) In Section 6, we model this production
and transshipment vroblem as a special case of the dynamic network-flow

problen.

Airplane Schedulin

Consider an airline whose cbjective is to schedule a fixed mumber




of airplanes to flights so as to maximize its profits (or minimize its
costs). A certain set of flights may be flown on any day at the sched-
uler's prerogative. This problem generslizes that considered by Dantzig
(1962) and Orlin (1981b) of determining the minimum nmumber of aircraft
for which there is a feasible schedule. Dantzig (1962) also considered
the stationary version of the maximum-profit problem. In Section 6,

that airplane scheduling problem is modeled as a dynamic network-flow

Problem,

Minimum Cost-to-Time Ratic Circuits

Dantzig, Blattner, and Rao {1967) formulated and solved the
"tramp steamer problem” or equivalently "the minimum cost-to-time ratio
circuit problem." This is the scheduling problem of choosing an infinite

L

tour for a tramp steamer which is to travel from port to port so as to
minimize its daily costs. The tramp steamer may visit whatever ports
i1t chooses and in any order, and for any pair of ports there is an
associated cost per trip and transit time ver trip.

There is always an optimum tour in which the steamer travels
cyclically in the same order around the ports. The optimal cyclic path
is that cycle which maximizes the ratio of the total cost on the cycle
to the total transit time. Several authors including Fox (1969), Lawler
(1967), and Megiddo (1978) have given efficient algorithms for deter-
mining this optimal cycle. Our contribution to this problem in Section 6
is to show that the rounding technique of Secticn 3 also obtains this
cycle, thus showing that the previous methods for sclving this problen

may be viewed as a special case of rounding.




2. DYIAMIC METWORK FLOWS

The Static Network and the Problem Formulation

A static network is a quadruple G = (N, A, t, ¢) in which

~—d

¥ =1{1, «.., n} is the node set and A 1s the arc set of a directed

graph, possibly containing loops (i.e., arcs joining a node to itgelf)

[
e

and multiple arcs between two nodes. Associated with each arc a = (i,

is a transit time ¢t which is the {(vossibly negative) integer number
a) e o o3

of periods for flow to travel from the tail 1 of a to its head J.
Also associated with arc a is a real- or + @ valued convex function
c (-) that is linear between successive ‘integers.

a

Let Hi and Ti denote +the set of arcs of A with head 1

and tail i respectively., Let £ = max . In the following we
? = max
ach

wish to consider flow emanating along arcs in each ©

t
a

an infinite number

b

of periods. With this in mind, we let xg denote the amount of flow
originating at the tail of arc a 1in pericd P and arriving at the head

of arc a in period p + t_. We refer to an infinite vector X = (Xg)

Py

a
for a €A and p=1, 2, 3, +.. as a dynamic flow., <Call x Dbounded

if its supremum norm is finite, and feasible 1f it also satisfies the

conservation-of-flow constraints

T £ = I x for i e N and p> 1t s (2.1)
a max

the zero-throughput constraint




t
max

by Z X
= - -+
acA p tmax ta 1

0ty

=0, (2.2)

and ca(xg) is finite for a €A and D=1, 2, +u. .

Constraint (2.1) requires that the net amount of flow emangting
from egch node 1 1in each period p > tmax be equal to the net amount
of rlow entering the node in that period, i.e,, there is conservation
of flocw at each node in each period p > tmax' In constraint (2.2),
the quantity on the left-hand side is the net amount of flow "in transit"
in period tmax’ and we refer to this guantity as the throughpt of =x.
Here we regquire the throughput to be zero. However, in Section 4 below
we show that the above formulation is equivalent to one in which the
requirement that the throughput be zero is relaxed and replaced by upper
and lower bounds on throughput, or more generally by a convex cost of
throughput. The zero-throughput constraint implies that the flow in

transit is zero in each period after the first few because of the following

lemma proved by the author (1981b),

IEMMA 1, The sum of the flows in transit in each period p > tmax

of a feasible dynamic flow is equal to its throughput,

We use the standard convention that

r &

=r-t +
p=r ta 1

Thus the above sum is well defined for t < Q.

71



b

A dyrnamic flow X = (Xﬁ) is called integer if X is integer

valued for a € A and D 1, 2, 3, ves » If we wish to emphasize that
a dynamic flow 1s not necessarily integer, we refer to it as being

centinuous.

In the following for fixed p we let

Flx) ==z ca(xi) .

ach

Thus cp(x) is the sum of the costs of flows beginning in the pth

. = -1 or T
period. Let cf(x) = lim e T Zp=l c®(x) be the long-run average-

cost of x. A continuous (resp., ihteger) dynamic flow is called (average-

cost) optimal if it is feasible and minimizes c(*) among all such

flows. The dynamic network-flow problem is to find an (average-cost)

optimal integer dynamic flow.

The Dynamic Network

et G = (N, A, t, ¢c) be a static network. We expand G 1into

o0 <Q [ee] foe]
an infinite network & (T, A, ¢ ), called the dynamic network,

where

oo

N = {ip :1e N and pe {l, 2, 3, el 5

for each arc a = (i, j) and p > max(-ta + 1, 1) there is an arc

D

. . P+ w0 o s . . .
ap = (1p, Jp a) ¢ A s and the cost of a flow x, inarc a in reriod

, D .
? is cg(x;) for all a €A and Pp=1, 2, ... . Node i¥ represents

node of N in periocd p, and it is called the pth copy of node i.

i
e , ‘n s : o . .
Arc a” vrepresents the ability to send flcw from the tail of a in

period p reaching its head in period p + ta and 1t is called the




4

p”h copy of arc a. Figures 2.la and Z.1b show a static network and
the corresponding dynamic network. The numbers on the arcs of Figure
2.la are the transit times.

If x = (xﬁ) is & feasible dynamic flow, then xg

may be
§ . D o2 .
interpreted as the flow in arc a~ of G , and constraint (2.1) repre-
sents conservation of flow at each node ip for 1 e N and p > tmax'
The technique of expressing flows over time by expanding the
network is now standard, and was used by Ford and Fulkerson (1962} in

their classic text.

Preliminarieg: Paths, Copies and Cuts

A path in a network (dynamic or not) is an alternating sequence

of nodes and arcs io, B eeos ak, ik such that for each J =1, ..., k&

either aj has head ij and tail 1 or else it has head ij and

3-1 1

tail 1. In the former case the arc is called a forward arc of the
J

path; in the latter case it is called a backward arc. A directed path

is a path in which every arc is a forward arc.

For a given static network, the transit time of a th is the
J

sum of the transit times of the forward arcs of the path minus the sum
of the transit times of the backward arcs.

An example illustrating these concepts is given in Figure 2.2,
The path from node 1 to node 4 has forward arcs (2, 3) and (3, 4). The
transit time of this path is the sum of the transit times of (2, 3) and
(3, 4) minus the transit time of (1, 2). This value is 1. The path

may also be viewed as a path from ncde 4 to node 1 with transit time -1,

>




Tigure 2.1la. A static network.

1 2 5
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Figure 2.1b.
network of Figure 2.la.

The dynamic network derived

The arc numbers gre the transit times

Periods

4 5 6 7 8
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O ® .

by expanding the static
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Figure 2.2. A path from node 1 to node 4 with unit ftransit time.

Periods
1 2 3 b 5 & 7
1 O
2 O
3 ceo

Figure 2.3, The dynamic network derived iiom the static network
of Figure 2.2. The path from 1P +to 4P is the p"™ copy
of the path in Figure 2.2.
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A cycle is a path in which the initial node is the same as the
£inal node. A cycle is simple if no node 1s repeated, except that the
initial node and the final node are the same.

et C be a cycle of G. A flow around C of k units is a

static flow y = (ya) such that

k if a 1is a forward arc of C
vy =(-k if a 1is a backward arc of C

O if a 4is not an arc of C .

It is easily verified that a flow around C satisfies conservation of

flow at each node.
If ae€lA and p 2> 1, then arc af ¢ A7 will be called the

41

th . . th o

D copy of arc a, or simply a copy of a. The D copy of arc a
. . e s .. R o . th

is not defined for p Sr'ta' Similarly 1 is called the p COY}
of node i, Let P = iO’ Qs eees By ik be a path in G. Then the

pth copy of P is the path P', 1if one exists, in ¢ with k arcs

e as s s . .th
such that the initial nocde is 18 and such that the arc of P!

is the copy of the arc a, whose head or tail is the J - lth node

<
of P%, The definition is illustrated in Figure 2.3, which is the
dynamic network corresponding to the path in Figure 2.2. The path from
1?0 P 5o the pth copy of the vath from node 1 to node b; this

prath 1s not defined for p = 1.

The following result was proved by the author (1981b).

IEMMA 2, Let C Dbe a simple cycle with transit time t > 1 in
the static network. Then the infinite number of covies of € 1in the

dynamic network comprise t node-disjoint infinite paths therein. ll

76




j
(
H
|
{
T
i
!

3. THE SOLUTION TECHNIQUE: ROUNDING COPTIMAL CONTINUOUS STATIONARY
FLOWS

In this section we give algorithms for finding both optimal
continuous and optimal integer dynamic flows. A dynamic flow x = <X§)
is called stationary if xg = x§+l for all a € A and p > 1. The
continuous problem is readily solved using the theory developed in
Orlin (1981a) which demonstrates that if there is an optimal continuous
dynamic flow, then one such flow i1s stationary. To find ar optimal
integer dynamic flow, we round the fractional parts of an optimal con-
tinuous stationary flow so as to maintain Teasibility and the same
average cost per period. This results in an optimal integer dynamic
flow that is periodic and is also an optimal continuous dynamic flow.

The rounding procedure is subtle, and depends not only on the
preliminaries developed in the previous section, but alsc on the char-
acterization of "fractionally extreme” optimal static flows developed
in this section. The raive approach cf rounding the fractional parts

of flows up in some periods and down in other periods will not, in

general, lead to a feasible dynamic flow.

THEOREM 3. (Sufficiency of Centinuous Stationary Flows.) If
there is a feasible (resp., optimal) continuous dynamic flow, then

one such flow is stgtionary,.

PROOF. If we replace the zero-throughput constraint (2.2) by
the equivalent constraint that the sum of the arc flows in transit is

0 for each period (the equivalence following from Lemma 1), then the




the continuous dynamic network-flow problem is a special case of the
dynamic convex programming problem. The result is then a specialization

of Theorem 1 in Orlin (1981a). i}

The requirement that dyramic flows be bounded is crucial in the
above result. An example is given in Orlin (1981b) of a problem for
which there is no bounded dynamic flow satisfying (2.1) and having
finite cost despite the existence of an unbounded dynamic flow having
these properties. Moreover, if we apvend to thal example a node 3,
and an arc (3, 3) with transit time -1 and zerc cost, we may also assume

that there 1s zero throughput.

The Static Network-Flow Problem

Consider the problem of determining an optimal stationary dynamic
flow. Since the flow in each veriod is the same, we may ignore the

. N . 8 . . .
superscripts on the variables Xé' and write the problem as the convex

programming problem (3.1) of minimizing

= ca(xn) (5.1&)
a€h -
subject to
T x - Z x =0 for ieN (3.1b)
a a
acH, aeT
i i
and
Zotx, =0, (3.1c)
ach




We refer to the vector x = (Xa) as a static fliow because any
vector satisfying (3.1b) may be viewed as a circulation in the static
network. Note that each static flow x = (Xa) induces a stationary

. ~ e © . P
dynamic fiow x = (x;) given by X, =X for a €A and p=1,2,3, ...
The value of the left-hand side of (3.1c) is called the throughput of
o0
the static flow x Dbecause it is also the throughput of x . A static

flow x = (xa) is called feasible if (3.la) is finite and if (3.1b)

and (3.1c) hold. A static flow is called fractionally extreme if it is

feasible and its fractional elements are uniquely determined given the
values of its integer elements. A static flow x 1is called optimal
if it minimizes (3.la) over all feasible static flows.

As Ranel Erickson has pointed out to me, the characterization
of fracticnally-extreme flows below is partly implicit in the paper by
Chen and Saigal (1977) concerning network-flow prcblems with linear side
constraints. However, our results on the fractional parts of flows are

new. Furthermore, the proof here is different.

THEOREM U4, (Characterization of Fractionally-Extreme Static
Flows.) A Teasible static flow is fractionally extreme if and only if
either the flow is integer or else it is the sum of an integer static
filow and a flow around a simple cycle of k/t units for some positive

integers k <t with % Y%being the transit time of the cycle.
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PROOF. Let y denote a feasible static flow., We prove the
"if" part first. If y is integer, then it clearly is fractionally
extreme. If y 1s not integer, 1t is the sum of an integer static
flow and a flow of X/t units around a simple cycle C with C <k < ¢
and t the transit time of C. ILet x Dbe ancther feasible static flow
differing from y only on C, Then 2z =y - X 1s a circulation, its
throughput is zero, and z, = 0O 1if a is not on the cycle . Since
z 1s a circulation that takes values only on a simple cycle, in order
to satisfy conservation of flow =z must be a flow of r units arcund
C. But then the throughput is rt and hence r = O, Therefore x =y,
and thus y 1s fractionally extreme.

Tt remains to establish the "only if" part. To that end assume

f.);
l_
D
t
g

that y 1s fractionally extreme an be the subset of arcs of
A corresponding to the fractional elements of y. If A' = 9, the
proof is complete. Thus suppose A' # o, We first note that A' is
a union of cycles. To see this, observe that if there were an arc in
A' not on a cycle, then there would be 2 node 1 with a single arc
a' in A' incident to it., Since the net flow throcugh i is zero,
it follows that the flecw through a' is integral, contrary to the
definition of A",

We next show that there can not be two different cycles in A?l.,
Suppose that C and C' are different cycles with arcs in AY and
with respective transit times £ and 4'. By pcssibly reorienting and

relabeling these cycles, we may assume that 0 < Z < £', Let x bDe

(AN
s

the circulation obtained by adding a flow around C of & units and

a flow around C' of &' units, where & and 3' are numbers chosen
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so that &> 0 and &Z + 8%4°% = 0., Then x is a non-zero circulétion
and its throughput is zero. Furthermore, if &, &' are sufficiently
close to zero, then y + x 1s feasible and differs from y only on A7,
contradicting the fact y 1is fractionally extreme, Therefore, A
consists of a single simple cycle C,

Since v is a circulaticn, the net flow through each node is
zero, and thus the net flow through each ncde as restricted to arcs of
C 1is integral. Therefore the fractional parts of flows in the forward
arcs of C 1is the negative of the fractional parts of the flows in the
backward arcs of (€, and we may write ¥y as an integral flow plus a
flow around C of k/£, with 0 < k < £ having no common factors.
It remains to show that £ divides the transit time t of C. To
this end, let y? be the flow derived from ¥y by subtracting a flow
of k/f wunits around C. Then y' is an integral flow with throughput
t(-k/z). Since an integral flow has inftegral throughput, it follows

that £ divides t. [J§

Rounding and a-periocdic Solutions

A dynamic flow x = (xg) is called g-periodic if xg = x§+q
for a ¢ A and p > 1. The goal of this subsection is to develop a
procedure for transforming a fractionally-extreme optimal static flow
v into a g-periodic optimal integer flow x, where ¢q 1is the least
common dencminator of the fractional parts of the elements ¢of y. The
procedure consists of rounding the fractionsl parts of the elements of
o

v by increasing and decreasing flows along infinite paths in the dynamic

network.
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Let P be an infinite path in the dynamic network Gw. To

increase the flow along P by © 1is to increase the flow in each

forward arc of P by 3 and decrease the flow in each backward arc
by S

Tn the following we will use the expression r(mod p) to denote
the value q in [0, p - 1] such that q = r(mod p). For example,
8(mod 3) = 2, and 9(mod 3) = O,

If w anrd x are dynamic flows, we say x rounds w if x

is integer and the supremum norm of x - w 1is less than one,

THEOREM S. (Optimality of rounding.) If v is a fractionally-
extreme static flow and if ¢ is the least common denominator of the
fractional parts of the elements of y, then there is a feasible a-

3 . - 0
periodic dynamic flow x that rounds y and has the zame average

. .
cost as v . If alsc y 1is an optimal static flow, then x 1is an

cptimal continuocus dynamic flow.

PROCF, If y is integer, then 2 = 1 and the result is trivially

oQ
true on choosing x = y . Thus, suppcse ¥y 1s not integer. By Theorem

Ly v is the sum of an integer static flow and a flow around a simple
cycle C of ¥/t units for some positive inuegers k < t with t
being the transit time ¢f C. Also q divides . Let r = xq/t, so
r/q = k/5. Now by Lemma 2, the coples of C consist of + disjoint
PR . . ~ .th

infinite paths labeled O, ¢.., T - 1 so that the 1 copy of some

given ncde of C belongs to path i(mod £) for all i > 1. ILet x

0
be the integer dynamic flow formed from v by increasing the flow along
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path i by (t - %)/t if i{mod q) < r and decreasing the flow along

path i by k/t otherwise.

Increasing the flow along a path by (t - )/t maintains con-
servation of flow at each ncde of the dynamic network except the first
node of the path, rounds the flocw in each forward (resp., backward)
arc to the next highest (resp., lowest) integer, and increases the
throughput by (+ - k)/t. Decreasing the flow along a path by k/t
also rounds ail flows along tﬁe rath to an adjacent integer and decreases
the throughput by k/t, Thus x rounds yoo.

Since g divides t, the flows along k/t+ paths increase by
(t - k)/t and the flows along (t - k)/t taths decrease by k/t.
Yence x has the same throughput as ym. Since congservation of flow
is also maintained, x is feasible.

. . s . . T
Moreover, x is a-periodic. To see this consider Xé and

jsgael
X
a

D . . . Dt
If arc a~ of the dynamic network is on path 1, then a 4

is on path j = (i + q)(mod t). Therefore, either the flows along paths
. . . na p_ Pra
i and J are both rounded up or both rcunded down, and hence X, =%, .

To complete the proof, it remains to show that the average cost

oo}
of x is the same as that of y , viz., Z""A cp(ya). To see this,
<& =
. . p+t 3 . -
cbserve that for any nonnegative integer D, Zj o+ x, = ty, for
=P+ .L

each arc a € A. BSince ca(°) is linear between successive integers,

s

it follows that

completing the proof. -
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EXAMPILE. Consider the static network illustrated in Figure 3.1,
and suppose that a fractionally-extreme optimal static flow is:

Vi = 1/2, yéj = 1/2, y51 =1/2, Vi1 = -2. The cycle corresponding to
the fractional parts has transit-time four and comprises four infinite-
length paths in the dynamic nefwork, and the paths are labeled O, 1, 2, 3
so that node 1> is on path i (mod 4) for all i > 1. These four
paths are illustrated in Figure 3.2.

The rounding procedure given in the proof of Theorem 5 is %o
round up the flow in paths O and 2 by 1/2 while rounding down the flow
in paths 1 and 3 by 1/2. Note that rounding up the flow in paths 0
and 1 and rounding down the flow in paths 2 and 3 would also give an
integer optimal flow, but the pericd length would be Tour instead of
the least common denominator two of the fractional parts of the elements

of the static flow.

Representing Optimal Periodic Solutions

Let x = (xi) be an integral optimal dynamic flow that is g-

e s )e
periodic. We call the JeA-vector consisting of the values x;

for a €A and 1< p<a a periodic representation of x. This

representation can be easily written on a circular file and is a natural
representation of the solution. This representation is usually efficient
in practice, but unfortunately is not formally efficient because the
value 49 may be as large as n-tmaX

in the number of bits used to express the input string (because tmax
can grow exponentially with |A]).
Below we give ancther representation whose length always is

bounded by a polynomial in the length c¢f the input string, and is easily

8l
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w o Qo

Vi1 = -2

Figure 3.1. A static network with a given
optimal static flow. The fractional flows
lie on a cycle with transit time L.

Periods
1 2 3 L 5 6 7 3 9 v
1
2
3

— — — round up

round down

Figure 3.2. The four paths of the dynamic network of Figure 3.1
corresponding to the arcs with non-integer flow., If the fractional
parts are rounded in the indicated way, the resulting flow 1s an
integer optimal flow.
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calculated starting from a fractionally-extreme o?timum static flow ¥y
with a fractional flow r/q around a cycle C of transit time t.

To this end, label the + paths that comprise the infinite
mumber of copies of C by 0O, 1, +e., T - 1 as in the proof of Thecrem
5. TFor each arc a £ C, let da be chosen so that the dsh copy of
a 1is on path 0, and hence the pth copy of a is on path 1 for
i=(p - da)(mod t). Let F (resp., B) denote the subset of arcs
of A that are forward (resp., backward) arcs of C. Then we can

construct an integer optimal dynamic flow as follows:

4 ya if ae€elA -F - B
X§=< rya* if a e F and (p—da)(mcdq) e [0, v - 1]
or a€B and (p - da)(mod a) € [(r, g - 1]
. if aeF and (p - da)(mod a) € {r, ¢ - 11
k L8 or 2 e¢B and (p - da)(mod q) € [0, v - 11 .

Since a¥ is onpath j for 3 = (p - da)(mod q), the above

[eo]
rounding of ¥y corresponds to rounding up the flow in vath 1 for
i{mod q) € [0, r - 1] and rounding down the flows in the other paths.

We will call the sextuple (y, F, B, d, r, q) a modular representaticn

cof x Tbecause any value xi may be calculated from the sextuple using
only modular arithmetic. The modular representation is a formally
efficient representation even if the period length g is large, but

it has the obvious drawback that more computation must be carried out

before calculating the flows on the arcs.

@]
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L. VARIANTS OF THE MINIMUM CONVEX-COST DYIMAMIC NETWORK-FLCW PROBLEM
Just as there are several equivalent variants of the minimum-
cost network-flow problem, there are several equivalent variants of
the dynamic network-flow problem., In fact, some of the applications
given in Sections 5 and 6 are naturally expressed in terms of these
variants. All of the wvariants below are expressed in terms of convex
costs., However, we note that upper and lower bounds on a variable u
can be written in terms of a convex cost c{*) on u such that
c(u) = » whenever u is less than the given lower bound or greater

than the given upper bound.

Convex Costs on Flow into, out of, and through Nodes

For any node i and period p, the inflow (resp., outflow)
is the sum of all flows entering (resp., leaving) node i in that
period. The throughflow is the outflow minus the inflow. Consider
a network (N, A, t, ¢c) in which there are associated convex costs
f?’ f?’ f§ on the infiow, outflow, and throughflow respectively of

node j € N 1in each period v 2> tmax where the convex costs are real

or + © wvalued gnd are linear between successive integers., Furthermore,

relax the node throughflow constraints (2.1) and assume that the sum
of the throughflows of all nodes in any period is 0. (If the sum of
the throughflows is non-zero, then the throughput will change from
period to period, as is evident from Lemma 1 and its procf in Orlin
(1981v).)

We can reduce this problem to standard form by replacing the
network G with a new network Y = (N*, A', t', c') constructed as

follows. Replace each node J € N by three nodes of G' labeled

~

o




jl, jo, jt, and add an additional node n + 1. For each arc

a=(j, k) € A create an arc (jo, xT) in A", and refer to this arc

i
)

as the copy of (j, k) in G'. The arc (3°, ¥*) has the same transit

time and cost as (j, k). Finally, for each i =1, ..., n, add the

following three arcs each with transit time equal to zero: arc (jl, jt)

with cost f;, arc (jt; jo) t)

with cost fg, and arc {(n + 1, j
with cost f;. This transformation is depicted in Figures 4.la and 4.1b.
We form a 1l:1 correspondence between flows in G and G' as
follows. Let x be a dynamic flow in G (not necessarily satisfying
conservation of flow through nodes). For each arc a ¢ A, let the
flow in the copy a' € A' be the same in each period as the flow in
a&. Let the flow in all cther arcs in periods p > tmax be the unigue
amount of flow required so that conservation of flow is satisfied.
Thus the flow in arc (ji, jt) (resp., (jt, jo)) is the inflow
(resp., outflow) of node j in G, and the flow in arc (n + 1, jt)
is the throughflow of J in G. (Ncte that the throughflow of n + 1
of G' is the sum of the throughflows of the nocdes 1, ..., n of G,
and this sum is O). The abcve correspondence between dynamic flows
of G and feasible dynamic flows of G' is easily invertible and
is 1:1.
From the above, it is easy to see that the average cost of a

feasible dynamic flow in G' is the average cost of the corresponding

dynamic flow in G.

Convex Cost of Throughput

In the dynamic network-flcw problem, the throughput is required

to be fixed at zero. Consider the problem derived by relaxing the
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Figure L,la. A static network. We assume that there are

convex costs on the inflow, outflow, and throughflow,.

Figure L.1b. The static network in Figure L.1b after the
transformation representing convex costs on inflow, outflow
and throughflow,
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throughput constraint and replacing it by a proper convex cost c(+)
on throughput such that the cost 1s linear between successive integers.
(This cost is treated as a long-run average cost). If G = (N, A, £, c)
is the original static network with cost E(‘) on throughput, then we
can transform it into standard form by creating a new network
Gt = (N', A*, ', c) with N' =N U {n + 1} and A' =A U{®} where
¢ =(n+1,n+1) is an arc with ty = -1 and ca(') =c(+)., All
other costs and transit times in G' are the same as the corresponding
values in G.

Let x be a dynamic flow for G satisfying the conservation-
of-flow constraints (2.1) but not necessarily the throughput constraint,
and let f be the throughput of =x. We associate with x a feasible

dynamic flow y of G' as follows:

i)
x for a € A
a
£

Then the average cost per pericd for y is the same gs that for x,
and the throughput of vy dis O.
The above correspondence is also 1i:l. To see this, suppose
that y 1is a feasible dynamic flow for G'. Since conservation of flow
, P +1 .
holds at node n + 1, we must have Yy = xg for p > tmax' Deleting
all instances of arc & leaves the corresponding dynamic flow x of

G with throughput Vo

Periodically Repeating Parameters

In the dynamic network-flow problem, the transit times and costs

repeat from period to period. Consider the generalization of the dynamic
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network-flow problem in which the parameters repeat every k periods,
i.e., for some k > 1 +the transit times and costs of the flow initiated
in arc & in period p are the same as in period p + k for all
a A and p=1, 2, 3, 1oe

et N and A be the nodes and arcs of the original periodic
problem. We reduce the periodic problem to the standard dynamic problem
by expanding the original network into a static network

Gt = (N', A', ', ¢') with

N = (1P : 1 eN and p=1, ..., &} .

The static network G' represents flow in a block of k consecutive
periods which we call an epoch, and ip denotes node i in pericd p
. . ' .T .D
of an epoch. Furthermore, there is an arc & in A frem 1 to J
with transit time @& and cost Q&(o) if there is an arc (i, j) in
the criginal problem such that the transit time in period r is
p -1+ kt!, and its cost is c'.
o o}
The transit time in the k-period expanded netwerk differs from
that in the original static network because transit time in the expanded
network is measured in epochs. A flow in the expanded static network

from i’ to jp with transit time g& epochs correspends to a flow

with transit time p - r + k@& periods in the original static network.
EXAMPLE., Let G be the network depicted in Figure 4.2 and

described in Table k.2, where transit times for arcs (1, 2) and (2,3)

oscillate between the two given values. To represent G as a static
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network with repeating parameters we expand G 1into the Z-period repre-

sentation G' pictured in Figure 4.3 and described in Table 4.3,

Head Tail Transit Time
1 2 lor 2
2 3 3 or 4
3 1 5

Table 4.2. The static network of Figure 4.1.

Head Tall Transit Time
ll 22 0
2| £ :
ot 37 1
22 32 2
3+ 1° 2
5 1t 3

Table 4.3. The 2-period s*atic network of Table 4.2.

5. CYCLIC CAPACITY SCHEDULING

The cyclic capacity scheduling problem is to minimize the per
period cost of buying and selling integral amounts of cgpacity for inter-
vals of time so as to satisfy periodically repeating demands for capacity.
Veinott and Wagner (1962) showed that the finite-horizon version of the
problem is a static finite-horizon network-flow problem.

g2




Figure 4.2, A static network with its parameters
repeating every two periods.

l.....l

Figure 4.3. The 2-period expansion of the
static network in Figure k.2,




The Problem and Parameters

To model the cyclic capacity scheduling problem we first partition
the infinite horizon into an infinite number of epochs, and each epoch
is divided intc n 7periods. Period i of epoch p 1is represented
as ip. The interval stretching from the beginning of period ip to
the beginning of period jr is represented as [ip, jr).

In the problem formulation, we let bi denote the demand for
capacity in pericd ip, independent of p. This demand must be satisfied
exactly. However, the case of excess or deficient capacity is included
as a special case of this problem because the ability to have excess or
deficient capacity in a period is the same as the ability to freely
sell or buy capacity for that period. The oppcrtunities for buying
and selling capacity are periodic in that if capacity may be bought or

gold in interval [ip, jr), then it may also be bought or sold in

P+l e+l
(497, 357,

The Associated Dynamic Network-Flow Problem

In the following model, the conservation-of-flow constraint is
repvlaced with the constraint that the throughflow of node 1 1is exactly
a, (defined below) in period p for p > b oy Ihis variant was shown
to be equivalent to the dynamic network-flow problem in Section L.

et G = (N, A, t, ¢) De a static network in which each node
of N represents a period. If capacity may be bought or scld in the

interval [ip, jr)

, then there is an associated arc (i, j) of A
with transit time r - p epochs. The buying of capacity is represented

by a positive flow in the arc, and the selling of capacity 1s represented




by a negative flow in the arc. There are convex costs of buying and

selling capacity.

The demand on flow thrcugh node 1 is
b, - b for i =1
di _ 1 n
bi—bi—l fOI‘ i=2, 5, se e n

and the throughput is fixed at b = bn’ which may be modeled as in

Section k4.

To interpret the constraints, first observe that the throughflow
of node ip is equal to the net amount of capacity in period ip minus
the amount of capacity in the previcus period. Furthermore, the throughput
in epoch p 1is exactly the amount of capacity in pericd n® because
any flow in transit in epoch p represents capacity bought at a period

r

. . + o .
3 for r <p and sold 1n or after period 1P l. Thus any feasible

flow is such that:

1) the associated capacity in n* is b_ for D > 4
2) the associated capacity in iP i b. for p>t , and

3) the costs are finite.

+
To see that (2) is satisfied, note that the capacity in 1¥ + is the

capacity in nP rlus dl,
. X . oL . . ; . . .
capacity in period 1 for 1 > 1 is the capacity in periocd

which is bn + dl =D Inductively, the

.-
+
(1 - 1) o1us 4, which is b,.

Cyelic Staffing Models

The cyclic capacity scheduling problem may be applied to two
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different cyclic staffing models according as the periods are either
days or hcurs. In both cases, capacity is viewed as the number of
persons working.

Consider first a workforce model in which each person works for
five consecutive days at a time. Demand varies from day to day but
repeats from week to wéek. The objective is to minimize the average
number of excess workers per day. This is mcodeled in Table 5.1 and is
portrayed in Figure 5.1 as a static network in which each ncde of the
static network represents a day of the week., TFor instance, the arc
(1, €) represents the five day workstretch ffom the beginning of Sunday
to the end of Friday (or equivalently the beginning of Saturday); while
a negative flow in arc (1, 2) represents an excess number of workers
on Sunday.

Next consider a staffing problem in which demands vary from
hour to hour but repeat from day to day. Each person works a shift
of consecutive hours, and shifts start at various times within the
day. This mcdel has potential applications in scheduling telephone
overators round the clock. Furthermore, other organizations such as
restgurants, bus companies, taxi-cab companies, and police forces staff
workforces round the clock to meet demands that vary (to a majcr.extenﬁ)

periodically.

1-Day Cyclic Staffing

The cyclic staffing prcblem treated above appears to be a new
model; however, if we add the restriction that a schedule repeats every
epoch, then the resulting problem is the l-day cyclic staffing prcblenm.

Many special cases of this prcblem have been considered in the literature,
¥ 8%
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Lower Upper Transit
Workstretch Tail Head Bound Bound Time
Sunday-Thursday 1 6 0 % o
Monday-Friday 2 7 0 oo O
Tuesday-Saturday 3 1 0 © 1
Wednesday-Sunday L 2 0 o 1
Thursday-Monday 5 3 0 o0 1
Friday-Tuesday 6 4 0 co 1
Saturday-Wednesday 7 5 0 0 1
Table 5.1a
Lower Upper Transit
Capacity Tail Head Bound Bound Time
Sunday 3 2 - 0 0
Monday 2 3 - ® C 0]
Tuesday 3 b - 0 0
Wednesday L 5 - 0 0
Thursday 5 6 -0 0 0
Friday 6 7 - 0 0
Saturday 7 1 - 0 1

Table 5,10
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The static network for the 5-day

Figure 5¢le

morktorce scheduling problem of Table 5.1.




for example, Baker (1974), Bartholdi and Ratliff (1978), Bartholdi
et al. (1980), and Tibrewala et al. (1971). In the problem illustragted
in Figure 5.1, the added restriction would imply, for instance, that
the number of persons on the workstretch from Sunday to Friday is the
sgme each week.

The largest subclass of the l-day cyclic staffing problem to
be solved with a polynomial algorithm is that by Bartholdi, Orlin and
Ratliff (1980), which includes the subclass of cyclic staffing problems
in which all shifts have the same length. There 1s no known polynomisl
algorithm that solves the entire class of l-day cyclic staffing problems;
however, the problem is not yet classified as NP-complete.

Although the cyclic capacity scheduling problem differs from
the 1-day cyclic staffing problem in that sclutions are not required
to repeat each epoch, the solution obtained for the cyeclic capacity
scheduling problem "almost repeats” each epoch. The solution is obtained
with the rounding algorithm in Section 3, and thus the integer solution
varies by at most one from epoch to epoch. In terms of staffing, the

number of persons on any shift varies by at mcst cne from day to day.

6. OTHER APPLICATIONS

In recent years networks have been applied to a variety of
situations including production, transshipment, inventory, and WOrkfbrce
models (see, for example, Glover and Klingman (1977)). When the above
models involve parameters that repeat periodically over time, they may
often be modeled as dynamic network flows. Below, we give a list of
potential applications that is not intended to be complete, but is
offered as a representative sampling.
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The Minimum Cost-tc-Time Ratic Circult Problem

This first application differs from the others in that it is
a previously solved problem. Dantzig, Rlattner, and Rao (1967) introduced
the "tramp steamer problem" which involves a steamer visiting n distinct
ports. Traveling from port 1 to port J takes tij days and earns

a profit of pi dollars, and both the transit time and profit are

.

independent of the starting time for the trip.. The objective is to
determine an infinite-horizcn tour that maximizes the average daily
profit. Although the problem is phrased as a transvortation problem,

it has applications in several areas as detailed in Fox (1969). The
problem is also equivalent to deterministic semi-markov decision chains,
as described by Fox.

The static network has n nodes, cne for each port, and for
each pair i, j of distinct nodes there is an arc (i, j) with transit
time tij and unit cost -pij' The upper and lcwer bounds on arc
flows are 1 and O respectively, and the throughput is fixed at 1, repre-
genting the tramp steamer.

Dantzig, Blattner and Rao formulated the prcblem with the above
static rnetwork. They cobserved that eacn basic solution of the static
network-flow problem is a flow around a circuit, which is a simple

-

directed cycle. Hach circuit induces an infinite horizon tour. Ports
are traveled in the order that they appear on the circuit, and the
average daily cost is the ratio of the ccst of traveling the

circuit to its transit time. Thus an optimal circuit has the mindnum

cost-to-time ratio and induces an optimum tour. This tour is exactly

the same tour determined by the rcunding procedure in Section 3. To

100




see this, note that if t is the transit fime of the circuit C,

then the optimum continuous-valued static solution has a fiow 1/t

on each of the arcs on the circuit and O elsewhere, thus achieving

a throughput equal tc 1. In the dynamic network, the flows on t - 1

of the resulting t infinite-length paths are rounded down while the

flow on the remaining path is rounded up. It is this last path that

gives the optimum tour. Thus the rounding procedure of Section 3 is

a generalization of the method for solving the tramp steamer problem.
Incidentally, the minimum cost-to-time ratio circuit protlem

has excited a failr amount of interest in recent years. Many authors

including Lawler (1967), Riraldi (1975), Megiddo {1978), and Fox (1969)

have attempted to find efficient methods for computing the optimuum

circuit. Iawler gave an O(n5 log(n + tmax)) algorithm, and more

recently Megiddo found an O(nl'L log n) algoritkm. In the special

case in which each transit time is either O or 1, Karp and Oriin (1980)

discovered an O(nB) algorithm. This special case has apvlications

in the area of workforce scheduling (Bartholdi et al. (1980)), and

in cyelic lot sizing (Graves and Orlin (1980)).

Alrvlane Routing

Consider the problem of scheduling a fixed number of aircraft
for a partially fixed periodic schedule of daily repeating flights
between n cities., BFach flight is expressed in terms of (1) i%s
departure site and time, e.g., Boston at 3 PM, (2) its arrival site and
time, (3) its cost (or profit), and (4) whether it is required or optional.
A required flight must be fiown each day, whéreas an ovtional flight may

be flown at the scheduler's prerogative.

I
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The aircraft are considered to be identical in that any aircraft
may fly any route. Furthermore, we do not require that the flight
schedule repeat daily. Indeed, an optimal schedule may repeat only
after a mumber of days.

The problem of minimizing the number of aircraft needed to fly
the schedulé was proposed and solved by Dantzig (1962) and Orlin (1981b).
Rather than repeat the way to model this prchblem, we refer the reader to
(1981b). The difference here is that we associate a cost with each
flight and we require a fixed number of aircraft. Other than that, the
detailed explanation in (1981b) is appropriate for the minimum-cost .
model,

Dantzig (1962) formulated the variant of the above problem in
which the final schedules are constrained to be stationary. His formu-
lation is the static network-flow variant (3.1) of the dynamic network-
flow problem subject to the additional constraint that flows are integer
valued. In general, this integrality requirement will result in a
static solution whose cost 1s greater than that of an optimal dynamic
network flow, M:oreover, there is no xnown polynomial algorithm for
solving this integer programming probler,

Dantzig's heuristic solution technique is to assign a unit price
p (lagrange multiplier) to each airplane and to replace the constraint
on the fixed number f of airplianes by an associated cost in the objective
function. Assuming that there is a feasible schedule with at most ‘f
airplanes, then as the price ©p is varied parametrically from O to <,
the number of airplanes in the resulting schedule decreases monotonically

*
until there 1s a value D for which there are alternative optima with
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' and f£" airplanes respectively with f' < £ < £". In this way,
one can obtain optimal solutions for the problems in which the number
of airplanes is fixed at either ' or ", and Dantzig's heuristic

is to select the "preferred” of the two schedules.

Cyclic Production, Storage and Transshipment

Congider a number of cities with demand for a certain good that
varies periodically over time, e.g., demand for bread cr for petroleum
products. We assume that demand i1s satisfied by shipping goods in a
fixed mumber of trucks from a number of supply/production sites, where
the cost of production is assqmed to be convex. We restrict ocur attention
to the case in which each truck must unload all of its goods at the
demand site upon arriving., (The case in which a single truck can service
many demand sites without reloading is NP-complete, as is proved in the
appendix.) The objective is to determine a producticn schedule and
shipping schedule cver time so as to minimize the daily cost.

Below we consider two cases of the problem for which demands
and costs repeat daily. The periodic problem may be formulated using
the technique in Section 4 for expanding static networks.

The problem 1s formulated as follows:

(1) production site i has a convex cost ci(') of producticn

for i=1, c0a, T3}

(2) demand site i has a demand bi for goods repeating daily

for i=r+ 1, ees, 0

3a) the number of trucks is bounded gbove and below, or
( > or
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(3b) storage is allowed at the production and demand sites

at a convex cost.

Constraints (3a) and (3b) are related in tha®t flow is measured
in goods traveling over time; if storage is allowed, then storage will
be interpreted as throughput as will a truck traveling. Simultaneously
allowing both (3a) and (3b) results in a problem that is NP-complete,
a3 proved in the appendix, even in the case in which there is but cne
truck.

The static network has node set {l, 25 aeay n}. TFor each
production site 1 and storage site J, thére are arcs. (i,3) and
(j,1) with transit times that are the number of days of travel time
between the two sites. Thus the static network is a complete directed

bipartite gravh. For i =r + 1, ..., n there is an additional con-

straint that the flow into 1 1s b, in each period, and for
o<

- -2

i=1, «vs, n the flow out is bcunded above by us and below by ﬁi’
These constraints are modeled via the transTormations given in Section &,
Combined with the conservation-of-flow constraint (2,2), these constraints
guarantee that (1) and (2) are satisfied.

If no out-of-truck storage is allowed (in both models goods may
be stored in the trucks), then the Flow in transit is the mumber of
trucks. Thus upper and lower bound constraints on the number of trucks
may be modeled via upper and lower bound constraints on the throughput
and can be modeled as in Section L, If the number of “rucks is not
restricted, then we may model storage at site 1 by a loop (i,i)

with transit time 1 and an aporopriate convex storage cost.
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We note that if the throughput is not bounded, then the static
flow problem is a circulation problem with no additional side constraints,
and thus each basic solution is integral. In this case, the rounding

cf Section 3 1s not necessary, as the stationary optimal flow is integral.

Appendix. The NP-Hardness of Some Storage and Transshipment Problems.

In this section two of the prcblems described in Section 6 are

shown to be NP-hard. We refer the reader who is unfamiliar with the

concepts of NP-completeness to either Karp (1972) or Garey and Johnson

The first problem Xl that we wish to consider is the problem
of finding a feasible infinite-horizon tour fcr the production/trans-
shipment problem of Section 6 under the additional proviso that a *truck
may service several demand sites before returning vo a supply site.

The second problem X2 that we consider is the production/transShipment
problem in which there is exactly one truck and storage is allowed at

each site. To show that these two problems are NP-hard, we show that

each includes as a special case the hamiltonian circuit problem, which

is to find a simple directed cycle of n arcs in a directed graph. This

problem was proved to be NP-complete by Karp (1972).
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THECREM A.1. Problem Xl is NP-hard.

PROOF. Let G = (N, A) be a directed graph. We ftransform +the
hamiltonian circuit problem on G 1nto a production transshipment
problem as follows:

i) node 1 is the unique supply node with a maximum supply of

n-1 units per pericd;
ii) nodes 2, ..., n are demand nodes with a demand of I unit
egch per period;
iii) the transit time for each arc with head 1 is one; all other
arcs have g transit time of 0;
iv) each arc has an associated unit ccst of 1, which is the
cost of a truck traveling the route; and
v) there is exactly one *ruck and it may carry n-1 unibs

of goods.

We now claim that there is a hamiltonian circuit in G if and cnly
if there is a feasible transshipment schedule with an average cost per
veriod of n.

If there is a hamiltonian circuit, then an optimal schedule
consists of traveling along the route induced by the circuit in each
period, incurring a cost of n. Conversely, any feasible routing with
one truck must consist of the truck picking up and delivering n-1
units of goods in each period. The total cost in some pericd is n
only if the circuit in G induced by the truck's route consits of n

arcs, and is thus a hamiltcnian circuit.




THECREM A.2. TProblem X2 is NP-hard.

PROCF. Tet G = (N, A) be a directed graph. We transform the

I

} 2
as below.
i) W' = {1, 2, ..., n, 1%, 2", ..., n'}, DNode i 1is a supply
node with a supply of one unit per pericd. DNode i? is a
demand ncde with a demand of one unit in periods 2n, kn,
6n, ... and a demand of zero in all other periods.
ii) The arcs of A' are (i, i') for i1 =1, ..., n and
(i, 3) for each arc (i, j) of A, and all lower and
upper bounds are O and 1, respectively.

iii) Storage is allowed at all sites excevt in periods on, bn,

bn, ...

This transformation is portrayed in rigures A.l and A.2. We now claim
that there is a feasible routing for the above prcoblem if and only if

there exists a hamiltonian circuit in G.

.‘ r i .Aai.s_ O i -_.\.— i i 3 i 3 e 0y '_ 1 T ner
If there is a hamiltonian circuilt 1, i, i, in , then

a fTeasible periodic tour is induced by the circuit in GF

i;, cees in’ ié, il' Conversely, if there is a feasible

il’ ii: i2,
tour, then in periods 2n, ..., 4n-1, the truck must visit each of the
sites 1'%, ..., n'. However, this is only possible if there is a
hamiltonian tour in G' and hence a hamiltonian tour in G.

The above transformation was into a periodic version cf XE'

However, using the transformation of Section 4 it is easy to transform

the above in polynomial time to g stationary version of Xg. !l
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Figure A.1l. A static network for a
production and transshipment problem.

Figure A.2. The static network for the diagram
in Figure A.1l after the transformation given in
the proof of Theorem A.Z2.
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