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CHAPTER I

INTRODUCTION ASD SUMPARY

This thesis presents and solves three dynamic mathematical pro-

gramming problems in which the goal is to minimize the long-run average

cost per period. In each case we show that the dynamic problem can be

reduced to solving a suitable static (one-period) problem Two of these

problems are infinite-horizon integer programming problems involving

network flows evolving over time, and they form the core of this thesis.

The remaining problem is the dynamic convex programming problem whose

solution is an essential sub-result used in solving one of the dynamic

network-flow problems and is also of interest in its own right.

Dynamic Convex Programs

The dynamic convex programming problem, discussed in Chapter II,

may be described as follows. A decision vector is to be chosen in each

of an infinite sequence of periods. There is an associated real or + o

valued proper stable convex cost function c(.,.) and the cost associated

with period i is c(x, y) when x and y are the decision vectors

chosen in periods i and i + . The objective is to choose a sequence

of decision vectors that minimizes the long-run average cost per period.

If there are no initial conditions and if we require the sequence of

decision vectors to be bounded, then we show that we may restrict atten-

tion to sequences of decision vectors that are stationary, i.e., the

same decision vector is used in each period. The desired common vector

x is one that minimizes c(x, x).

I
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Dynamic convex models have applications in various fields in-

cluding dynamic linear programming, dynamic programming and economic

long-range planning.

The problem and its solution play an important role in solving

the minimum convex-cost dynamic network-flow problem of Chapter TV. The

author (1981) has also used the result to solve the dynamic matching

problem, an infinite-horizon dynamic integer programming problem that

generalizes the (non-bipartite) weighted matching problem.

The results in Chapter II extend earlier work of Gale (19t7) and

others who proved a result that implied the optimality of a stationary

sequence for a restricted class of underlying cost fnctions. His proof

technique is extended in Chapter II to prove the optimality of stationary

sequences for a significantly wider class0

Trnamic Netwsork Flows

Chapters III and IV of this thesis are devoted to two related

dynamic network-flow problems. Both may be formulated in terms of the

following network structure. Given a finite neJwork, there is associated

with each arc a (possibly infinite) integer upper an- lower bound on the

flow therein and an integral transit time giving the number of periods

that flow takes to pass through the arc. A feasible dynamic fow is a

sequence of flows that satisfy the upper and lower bounds on the arc

flows and also conservation of flow at each node in each eriod except

for the first few periods during which time the flow is initialized.

Because such flows are conserved after the first few periods, the net

flow in transit in each subsequent period remains constant and is called

the throughput.

2
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Maximum-Throughput Dynamic Network Flows

In Chapter III we consider the maximum- (resp., minimumn-)

throughut dynamic network-flow problem of finding a feasible dynamic

flow having maximum (resp., minimum) throughput. To analyze this problem

we assume that there is a feasible bounded dynamic flow and define a

"dynamic cut" in such a way that the "flow across a dynamic cut" is

identically equal to the throughput. We then prove a strong duality

result, viz., the maximum throughput is equal to the minimum "upper

capacity" of a dynamic cut. Furthermore, we show that there is always

an integer stationary dynamic flow that achieves the maximum throughput.

This flow may be determined. by repeating an integral optimum solution

to the corresponding static maximum-linear-profit network-flow problem

in which the objective-function coefficient associated with each arc

flow is ius transit time. Also the minimum-upper capacity dynamic cut

may be determined from an optimum solution to the dual of the static

linear program.

Minimum Convex-Cost namic Nietwork lows

In Chapter IV we consider the minimum convex-cost dynamic network-

flow problem in which there is also associated with each arc a real-valued

convex function of the arc flow between its upper and lower bounds with

the function being linear between successive integers. The aim is to

find a bounded feasible dynamic flow with fixed throughput that has

minimum long-run average cost per period.

This problem is a special case of the dynamic convex programming

problem, and the results of Chapter II show that there is a stationary

3
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optimal dynamic flow. Furthermore, one such dynamic flow may be determined

by repeating a solution of the static minimum convex-cost network-flow

proolem plus a linear side condition on the arc flows (the fixed-throughput

constraint)0 We show there is a "fractionally extreme" optimal static flow

that is the sum of an integer static flow and a flow around a cycle of

r/q units for some positive integers r < q and q dividing the

absolute transit time of the cycle. This characterization leads to a

fast method for rounding the fractional parts of the optimal stationary

dynamic flow so as to give an integer feasible dynamic flow with period

q and having exactly the same throughput and average-cost per period

as the stationary dynamic flow. Hence, this periodic dynamic flow is

an integer optimal and an optimal integer dynamic flow.

Appli cations

Vehicle Routing with Periodic Demands

Consider a transportation firm, such as an airline, that must

schedule vehicles each day on a specified set of fixed daily repeating

routes. In addition, the firm is allowed to schedule certain optional

routes, e.g., deadlieading, at a specified cost per route. Dantzig (1962)

formulated the problem of determining a feasible stationary schedule that

minimizes the number of vehicles needed as a special case of the minimum-

throughput dynamic network flow problem, as described in Chapter II.

The problem of determining a feasible schedule that minimizes the average

daily cost subject to a fixed fleet size is formulated in Chapter IV as

a special case of the minimum convex-cost dynamic network-flow problem.

Previously, Dantzig (1962) considered the above problem under the added

restriction that the schedule is stationary.

4
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MLaximum Finite-Horizon Thjnamic Network Flows

Ford and Fulkerson (1958) formulated and solved the finite-

horizon dynamic network-flow problem which may be described as follows.

Given a network with nonnegative-integer transit times, zero lower bounds

on arc flows, and integer upper bounds thereon, determine the maximum

flow that may be sent from a source to a sink in a fixed number of

periods. In Chapter III we show that this problem may be transformed

into a special case of the minimum-throughput dynamic network-flow

problem, and our solution technique and duality result for the minimum-

throughput problem induce the solution technique and duality result

given by Ford and Fulkerson (1958) for the finite-horizon problem.

Cyclic Capacity Scheduling and Cclic Staffin

The cyclic capacity scheduling problem i s to find minimum per-

period cost schedule of buying and selling capacity in blocks of consecu-

tive periods so as to satisfy demands for capacity that repeat periodically

over time. This problem, which is modeled as a minimum convex-cost

dynamic network-flow problem in Chapter IV, generalizes the finite-

horizon capacity scheduling problem which was reduced by Veinott and

Wagner (1962) to a minimum linear-cost network-f'ow problem. A

special case of the cyclic capacity scheduling problem is the cyclic

staffing problem which is to minimize the daily cost of staffing a work-

force round-the-clock on shifts of consecutive hours so as to satisfy

minimum ourly demands that vary within a day, but repeat daily.

Although the infinite-horizon problem considered above has

apparently received no previous attention in the literature, if we

5
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require the assignment of workers to be the same every day, then the

resulting problem is the -day cyclic staffing problem which has received

considerable attention. The largest sub-problem of the 1-day cyclic

staffing problem to be solved in polynomial time is the case in which

the rows of the constraint matrix have "circular ones"; this sub-class

was solved by Bartholdi, Orlin, and Ratiiff (1980).

The integral solution obtained for the cyclic capacity scheduling

problem, and hence for the cyclic staffing problem, has the property that

it is obtained by rounding an infinite-horizon continuous stationary

solution. For this reason, the number of workers on any specified shift

varies by at most one from day to day. In this sense, it is "almost feasible"

for the -day problem, and always has a daily cost no greater than the

minimum daily cost for the 1-day problem.

Periodic Production and Transshi ment

Consider a firm that must produce and ship goods so as to satisfy

periodically repeating demands, such as for food or petroleum products,

and where the cost of producing and shipping goods is convex. The

problem of finding a feasible schedule that minimizes the average daily

cost given a fixed fleet of delivery vechicles is modeled in Chapter 

as a minimum convex-cost dynamic network-flow problem. Certain assump-

tions are implicit in the model including the following: no storage is

allowed at the demand sites and each vehicle can carry goods for only

one demand location at a time. Relaxing either of these assumptions

makes the problem TIP-hard as proved in the appendix of Chapter IV.

60
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Minimum Cost-to-Time Ratio Circuits

Dantzig, Blattner, and Rao (1965) formulated and solved the

"tramp steamer" problem, or equivalently "the minimum cost-to-time ratio

circuit" problem The problem may be viewed as that of choosing an

infinite-horizon tour for a tramp steamer that is to travel from port

to port so as to minimize its daily costs0 The tramp steamer may

visit any subset of the ports and in any order, and for any ordered pair

of ports there is an associated per trip cost and transit time.

Various applied problems may be modeled as a minimum cost-to-time

ratio circuit problem as detailed by Fox (1969). The model has recently

been applied by Karp and Orlin (1980) to solve a special case of the

cyclic staffing problem, and by Graves and Orlin (1980) to solve a

periodic version of the Wagner-Whitin (958) dynamic economic-lot-size

model.

Among optimum tours there is always one in which the steamer

travels cyclically in the same order around a subset of ports. We show

that the cycle of ports may be obtained by the rounding technique of

Chapter IV, thus showing that previous solution techniques may be viewed

as a special case of our rounding result.

7
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CHAPTER II

DYNAIC CONVEX PROGRAMMIMNG

Io INTRODUCTION

We consider herein the dynamic convex programming problem, a

deterministic programming problem in which decisions are to be made in

each of a countably-infinite number of periods. The cost associated

with each period is a stable, proper convex function of not only the

decision vector in that period but also of the decision vectors in the

subsequent q - 1 periods for some fixed q > 2. This cost function

is the same in each period.

The objective is to determine an infinite sequence of decision

vectors so as to minimize the average cost per period over the infinite

horizon. If we are free to choose the first q - 1 decision vectors

(i.e., if we ignore the cost in the first q - 1 periods) and if the

sequence of decision vectors is required to be bounded, then we show

that we may restrict attention to an infinite sequence of decision vectors

in which the decision vector is the same in all periods. Such a

sequence is called stationary If there is a bounded sequence with a

finite average cost per period, then there is a stationary sequence

with finite average cost per period. If there is an average cost

optimal sequence, then there is a stationary sequence that is average

cost optimal.

Dynamic convex models have applications in various fields

including large-scale staircase linear programming and control, e.g. ,

Brock and Haurie (1976). Dynamic convex programming models have also

8
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been studied by economists interested in long range planning for pro-

duction, for example by Gale (1967), Brock (1970) and others. Here

the decision vector in each period is the ordered pair of available

resources in that period and the production to be carried out in the

period. The cost depends both on the technologies and the available

resources, which in turn depends on the production and available resources

in the previous period. The objective is to determine a plan over an

infinite horizon that minimizes some specified measure of cost. However,

these economic models differ from ours in that (1) they include initial

conditions, (2) their optimality criterion is not, in general, average-

cost optimality, and (3) they include various additional assumptions

and restrictions with economic interpretations.

The theory of dynamic convex programming also has applications

to some infinite-horizon dynamic integer programming problems, in

particular to the minimum convex-cost dynamic network-flow problem

as formulated and solved by Orlin (1981a) and the dynamic matching

problem formulated and solved by Orlin (981b). A prelude to solving

both of these problems is to show that a certain stationary continuous

solution is optimal for the infinite-horizon integer programming problem

with the integrality constraints dropped. Then an optial integral

solution is determined by rounding these continuous solutions so as

to maintain optimality for the continuous relaxation of the problem.

The results given herein extend earlier work of Gale (1967)

and Brock (1970). Gale proved a lemma which implied the validity of

Theorem 1 below in a case in which the convex costs are of a very

special type and Brock (1970) extended it. In this paper a more general

9

I-�-------·I�-�(LP--91 -�C-P---------- �- sl - __



result is proved which includes Gale's lemma and Brock's extension

as a special case0 The proof technique used here is a natural extension

of that used by Gale.

2. PROBLEM FORMUJLATION

Let I be either the set of all integers or the set of positive

integers, It be the set of i I with jil < t, and JIt be the

cardinality of It. A plan is a sequence x = (xi) of vectors x. Rc

for all i I. Let q be a positive integer and put

iq- (x, ... , xq ). The cost of x in period i is c(xi ),

where c(-) is a convex, real or + valued function on R and

c has the additional property that its effective domain, denoted dom c,

is closed and there is no directional derivative at a vector x dom c

that is - co. This guarantees that c( ) is "stable" in the sense of

Rockafellar (1967).

A plan x is feasible if c(xiq) is finite for all i c I

The average cost of x is

a(x) = lim It 1 c(Xi) .

The dynamic convex programming problem is to determine a feasible plan

in a given class that is (average-cost) optimal in the class, i.e.,

for any other feasible plan y in the class we have a(x) < a(y).

3. OPTIMALITY OF STATIONARY PLANS

A plan x = (x.) is called bounded if lxfl is finite, where
.

10
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the origin and there is a hyperplane strictly separating U therefrom.

Thus, there is an n-vector p and a positive real number 0c (which

exists since U is compact) such that p(v - u) > for all

(v - u) E U. Substituting x. for u and xi+ for v, and summing

over i we obtain

t
-< (Xi+l - xi P(x t+ - x ) < 2n1pjl fjxJ

i=1

which is impossible for large t, completing the proof that there is

a feasible stationary plan.

Let (u $u,) be optimal for the convex program

minimize c'(u,v)
(I)

subject to (v - u) = O .

An optimum exists since there is a feasible stationary plan, dom c'

is compact, and c' is continuous on dom c'. We will show that the

^C0
stationary plan y = u satisfies the conditions of the theorem.

The program (1) is stable as there is no directional derivative

with value - co for any (u,v) dom c'. Thus there is a u.hn-Tucker

vector p such that:

C'(u) < c'(u,v) + p(v - u) for all (u,v) .

On substituting (xi, xi+l) for (u,v), letting 2t denote the least

element of It, and summing we get

12
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It z'£
i f

1U1

(c(i,$) - (xi, xi+i)) = I t I

. t

(c (U,) - C'(xi, i+ )))

< II t -1 t P(xi+l
i It

t l p(xt+ - X ) < 21It - nllpl lxl 
t

Taking the limit superior proves the claim.

Finally, we reduce the case q > 2 to

c(-) is defined on Rqn for q > 2, and let

i I. Let V be the set of qn-vectors such

components of the first vector is equal to the

components of the second vector. Let

c(wi)

c'(wi, wi+l) =

the case q = 2. Suppose

w. = x. for each

that the last (q - l)n

first (q - )n

if (wi wi+1) V

otherwise .

Then c' is stable. To see this note that cU is continuous on

dom c which is closed, and any directional derivative of c' at

a point (u,v) dom c' in the direction (u',vf) is greater than

or equal to the directional derivative of c at a point u in the

direction u' and is thus not - By construction of c', the

plan x = (x i ) is feasible (resp., bounded, stationary) if and only

if that is so of the corresponding plan w = (wi). We have proved

that the result is true for c' on R2 n, and hence the result is

true for c on Rn. 

COROLIARY 1. There is a feasible stationary plan for the

dynamic convex programming problem if and only if there is a bounded

feasible plan.

15
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COROLLARY 2. An optimal stationary plan for the dynamic convex

programming problem is also an optimal bounded plan.

COROLLARY 3. A stationary plan u is an optimal bounded plan

for the dynamic convex programming problem if and only if v = u

minimizes c(vq) and c(uq) is finite.

EXAMPIE 1. (Optimal unbounded plans.) We note that the above

results are not true if the restriction of boundedness is dropped. In

particular, let xi R for i = 1, 2, ... , and let c be defined

on the plane as follows:

u - v if -1 < u - v < O
c(u,v) =- 

otherwise

Each stationary plan has zero verage cost per period, whereas the plan

x = (xi) with x. = i for each i has an average cost per period

of -1. Furthermore, the existence of feasible unbounded plans does not

imply the existence of feasible bounded plans as can be seen if we use

the following cost function:

L if v - u = i
C(U'V) = 

c v otherwise

4. EXTENSIONS AND APPLICATIONS

Initial Conditions
. , , . i, 1 , , , _ ,

In many applications, such as those studied by Gale (1967) and

Brock (1970), there are initial conditions on the first decision vector

-�-~1--~"~~"~""~~""~~I--- �'�-` -· --------------- -------�-------- ---- - ---- - I ,,,, �



x1. Adding such conditions makes the problem significantly more difficult

and is beyond the range of this work. To appreciate this, observe that

the existence of bounded feasible plans does not guarantee the existence

of stationary feasible plans as the following example illustrates.

EXAMPLE 2. (Initial conditions precluding stationary plans.)

Let x. R for i = 1 2 ... and let c be defined on the plane
1

as follows:

0 if u+v=0
c(u,v) =

otherwise .

ITf we add the restriction that x = -1, then the urique feasible plan

is given by xi = (-1), which is periodic but not stationary.

Of course, the above example is quite easy to solve; however,

the dynamic convex programming problem appears quite difficult in

general when initial conditions must be satisfied--even when the problem

is specialized to linear programming as below. This author does not

know of any efficient solution technique, and it is an open question

whether the problem is fNP-hard.

Having said this, it is also important to recognize that the

imposition of initial conditions will cause no substantial difficulties

in many practical problems. The reason is this. Suppose we have found
00

x = u to be an optimal bounded plan ignoring the initial condition

that x is given. Then, in practice, it is often easy to construct

vectors x2 , ... , x such that x' = (x1 , . , Xp, u, u, ... ) is

15
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a feasible plan for some (small) integer p. For example if c is

real valued, then the plan x' = (X1, u, u ... ) is feasible. Also

x' has the same average cost as x and so x is an optimal bounded

plan that satisfies the initial condition.

Periodic Cost Functions

The previous analysis considers the case in which the same cost

function c(') is associated with each period. Suppose instead that

costs are periodic, i.e., there exist p distinct cost functions

cl(.), ., p(), and c. is the cost function in period j + kp

for k = 0, 1, ... and j = 1, ... , p. As before the objective is to

find a sequence with minimum average cost. This is called the periodic

convex programming problem with period p.

The periodic case is easily transformed into the dynamic case

as follows. First, as before, the case q > 2 reduces to the case

= 2, which we consider here. For a given plan x = (x i), form a

plan (wi) with w. = (x() ... ) for i = 1(, 2,

Then define c'() on R2n p as follows. If u.,v. E Rn so

u = (u, **..., Up), v = (vl, .. , vp) R p then put

p-l
c(uv)- cp(Up V1) + c.i(ui ui+1 )

i=l

It is easily verified that c'(wl, w2) + + c(wk. wk+!) =

c(x 1 , x2 ) + ... + Cp(xkp, xkp+l). It follows from this formula that

if I is the set of positive integers, then the original periodic

convex program with period p is equivalent to the stationary convex

16
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program with cost function c'. A similar development suffices for

the case that I is the set of all integers.

Observe that there is a one-to-one correspondence between the

00

stationary plans w for the transformed problem and the periodic

plans (xi) with period p (i.e., x = xp for all i I) for
- i i+p

the original problem. Thus Theorem 1 and its Corollaries have obvious

analogs for the periodic problem with period p in which stationary

plans are replaced everywhere by periodic plans with period p. In

particular, if u = (Ul, ... , Up) is chosen so as to minimize ci(u,u),

then the periodic plan x = (x i) with x = u d )+ for all i is
i (mod p)+lf

optimal.

Specialization to Linear Programming

If the cost function is piecewise linear in the effective

domain, then the directional derivatives in the effective domain are

not - co and the effective domain is closed. Thus the conditions

of Theorem and its corollaries apply. In particular, the results

of Theorem 1 apply to the "dynamic linear programming problem" (or

infinite staircase linear program), which is the specialization of

the dynamic convex programming problem to the case in which c(.)

is linear on its effective domain and the latter is in turn polyhedral.

It is this specialization which is applied to help solve both the

dynamic network flow problem (Orlin (1981a)) and the dynamic matching

problem (Orlin (1981b) )

Let c E Rn b R, and let A ..., A be m x n real-

valued matrices. A plan x = (xi) for i = 1, 2, 3, ... is feasible

17
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if for each i = , 2, ...

Ax + Ax + +A 1 b and x. > 
i 2 i+l qi+q-l

The dynamic linear programming problem is to find a feasible plan that

is (average-cost) optimal.

Observe that the dynamic linear programming problem is indeed

a specialization of the dynamic convex programming problem, for given

the former problem, we can choose

cu if AlU1 +..A u = b

c'(ul , ... , u ) = and u, ... , u > 0

C* m otherise .

Theorem 1 and its corollaries show that an optimal stationary

plan for the dynamic linear programming problem is also an optimal

bounded plan. By Corollary 3, an optimal stationary plan may be found

by solving the linear program

minimize cu

subject to (A1 + + A)u b and u >O 
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CHAPTER III

NAXITMUI4-THROUGHPUT DYNAMIC ETWORK FLOWS

1. INTRODUCTION

The Model and Problem Formulation

Herein, we present and solve the maximum-throughput dynamic

network-flow problem, an infinite-horizon integer programming problem

that involves flows evolving over time. In a given finite network,

referred to henceforth as the "static network", flow is to be sent

in all of the arcs in each of an infinite number of periods. Each

arc has an upper and a lower bound on the arc flow and an integral

transit time, which is the number of periods that it takes for flow

to pass through the arc. For a flow to be feasible it must satisfy

all upper- and lower-bound constraints, and also satisfy conservation

of flow at each node in each period except for the first few periods

during which the flow is "initialized". For a given feasible dynamic

flow, the throughput in period p is the net amount of flow in transit

in that period, i.e., flow that has been initiated in some arc in

period p or earlier but has not reached the head of the arc by the

beginning of period p. In Section 2, we delaonstrate that because

there is conservation of flow, the throughput is the same for all

periods except possibly the first few.

The maximum- (resp., minimum-) throughput dynamic netwocrk-flow

problem is to determine a feasible dynamic flow with maximum (resp.,

minimum) throughput. The maximum- and minimum-throughput problems

are equivalent since each may be reduced to the other by multiplying
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the flows and bounds by -1. While this problem is apparently new, it

has antecedents in the literature. For example, it is related to the

maximum network-flow problem. Both the dynamic max-flow min-cut formula

and the application of dynamic network flows to vehicle scheduling

stem naturally from the ideas presented by Ford and Fulkerson (1962)o

The minimum-throughput dynamic network-flow problem is closely

related to the finite-horizon dynamic maximwum-flow problem as presented

and solved by Ford and Fulkerson (1958). As is discussed in detail in

Section 4, the finite-horizon problem may be transformed into a special

case of the minimum-throughput dynamic network-flow problem. Furthermore,

both the maximum capacity cut derived in Section 2 and the cut derived

by Ford and Fulkerson (1958) are induced by optimum dual solutions to

associated static network-flow problems.

Finally, the maximum-throughput dynamic network-flow problem

is a specialization of the minimum convex-cost dynamic network-flow

problem which is presented and solved in Orlin (1981b). The objective

in the latter problem is to find a feasible integral flow with fixed

throughput so as to minimize the long-run (Cesaro) average cost per

period.

Optimality of Stationary Flows and te ~bx-Tbgoughput Min-Cut Theorem

We show that if there is a feasible bounded dynamic flow, then

the supremum of the throughputs of all feasible dynamic flows equals

that of all feasible dynamic flows that are stationary, i.e., the flow

in each arc is the same in all periods. If we restrict attention to

stationary flows, the maximum-throughput dynamic network-flow problem
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reduces to that of finding a maximum-profit feasible circulation in

the static network with the unit profit of the flow in an arc being

its transit time. A stationary flow is obtained by repeating the static

circulation in each period over the infinite horizon, and the throughput

of the dynamic flow is the profit of the static circulation.

The optimality of stationary flows is proved as part of the

main theoretical result in Section 2. Also proved is the Max-Throughput

Min-Cut Theorem, which states that the maximum throughput of a feasible

flow is the minimum capacity of a cut, where a cut is not defined in

terms of the original static network, but rather in terms of an infinite

"dynamic network"; each node of the dynamic network is an ordered pair

representing a node of the static network and a period of time. As

part of the proof we construct a cut and a feasible stationary flow

whose throughput is equal to the capacity of the cut.

An Application: Minimizing the Ilunber of Vehicles to Meet a Fixed

Periodic Schedule

Consider a transportation firm (e.g., an airline) that must

schedule vehicles (e.g., airplanes) each day over an infinite horizon

so that certain routes are traveled at the same time each day. In

addition, there are certain other routes that the firm may schedule,

and deadheading is permitted. The objective is to determine a feasible

schedule that minimizes the number of vehicles needed.

Dantzig (1962), in consulting work for United Airlines, con-

sideredl the above problem under the added restriction that a schedule is

stationary, and he modeled the problem as the static version of the minimum-

throughput dynamic network-flow problem. By the results of the previous
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section, the induced stationary schedule he found is optimal over the

class of all schedules. As Dantzig and his collaborators observed, the

stationary flight schedules induce vehicle schedules that are periodic,

but do not necessarily repeat daily.

2. THE MAXIMURM-THROUGPTT DYN;MIC NlETWORK-FLOW PROBLEM

The Static Network and Problem Formulation

A static network is a quintuple G = (N, A, t, ., u) in which

N = (1, ... , n) is the node set and A is the arc set of a directed

graph, possibly containing loops (i.e., arcs joining a node to itself)

and multiple arcs between two nodes. Associated with each arc a is

a transit time t , which is the (possibly negative) integral nunber
a

of periods that it takes for flow to travel from the tail of the arc

to its head. Also associated with each arc a are (possibly + ) upper

and (possibly - ) lower bounds u and a on the flow initiated

therein in each period, with u > . These networks have also been- a -- a

referred to in the literature as "networks with transit times"t for

example by Lawler (1976). If a flow begins in one period in the tail

of an arc with a negative transit time, then the fow arrives at the

arc's head at an earlier period. This somewhat anomalous situation

is interpreted in the vehicle-scheduling problem of Section 3 as

airplanes that may cross the international date line and arrive the

day before they left. Further interpretation of negative transit

times is given in an application to cyclic capacity scheduling by

Orlin (1981b).

If the tail and head of arc a are i and j
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respectively, then we may denote the arc as (i,j) in those cases in

which no ambiguity will result. (There may be several arcs with the

same tail and head.) For each node i c N, let Hi (resp., T i) be

the set of arcs whose head (resp., tail) is i. Let t = max t t.
aeA

A dynamic flow x = (xP) is feasible if it satisfies the upper-

and lower-bound constraints:

2 < xp < u for a A, p = i, 2, 3, o.. (2.1)
a - a a

and satisfies conservation-of-flow constraints at each node after period

t , i.e.,
max

xP = xP-ta for i N, p > t (2.2)a a maxacT. aEH
i i

Conservation of flow is not necessarily satisfied during the first t

periods, which we may view as the initialization periods.

Define the flow in transit in arc a in period p with a

feasible dynamic flow x to be

P
Z x (2.)

aj=p-ta a

The throughput of x is the sum f of the flows in transit in all

arcs in period t 
max

If t > i, then the flow in transit in arc a in period p
3-

is the net amount of flow initiated in arc a in or prior to period

p but after period p - t . If t < -, the flow in transit ina a-
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arc a in period p is

p-t

- xJ (2o3')
j=p+1

which is equal to (2.3) by the conventional method for performing

summations in which the lower index is greater than the upper index.

If t = O, there is no flow in transit in arc a in each period.

To see that the sum (2.3') is really the appropriate interpre-

tation of (2.3), consider one unit of flow sent from the tail of arc

a in period p and reaching the head of a in period p + ta . Witha

regard to the conservation-of-flow constraints this unit flow is equiv-

alent to sending negative-one unit of flow from the head of a in

period p + ta and reaching the tail of a in period p. n fact,

awe can replace arc a = (i,j) with arc c = (j,i) such that tag = -ta,

2 = -u , and u = . The definition of flow in transit given in
a a a a

(2.3') is correct because one unit of flow in arc a should give the

same contribution to the flow in transit as negative-one unit of flow

in arc a.

LEMMA 1. The sum of the flows in transit in each period

p > tax of a feasible dynamic flow is equal to its throughput.
--mfax

PROOF. Lemma 1 is shown later in this section to be a special

case of Lemma .

An intuitive proof of the above lemma is as follows.
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In order to preserve conservation of flow, all flow in transit

after period t must be sent forward upon arriving at the head of
max

an arc. Therefore, the total amount of flow in transit is constant

after period t m
max

The maximum- (resp., minimum-) throught dynamic network-flow

problem is to determine a feasible dynamic flow with maximum (resp.,

minimum) throughput. In this section we show that if there is a feasible

bounded flow, then the supremum of the throughputs of all feasible

flows is the same as that of all stationary feasible flows. Moreover,

we define and prove a dynamic analog of the max-flow min-cut theorem

of Ford and Fulkerson (1956).

The Dynamic Network

Let G = (N, A, t, , u) be a static network. In order to

express flows evolving over time as ordinary network flows expand G

into an infinite network, called the dynamic network, and denote it

00 00 00 0 "lo co 0

by G = (N A, A ,u ) where N = i e i C and p 1,2,3, ....

Node i p e N represents node i of N in period p. For each arc

a = (i,j) E A and for p > max(l - t , 1) there is an arc

P (iP jPt a) Ac, representing the fact that flow may be sent

from node in period p through arc a and arrive at node j in

period p + t . Furthermore, the lower and upper bounds for the flow
a

in arc a are the same as those for arc a.

Figures 2.la and 2.1b show a static network and the corresponding

dynamic network. Here and in other diagrams the numbers on arcs refer

to transit times.
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Figre 2.1a. A static network. The arc numbers are the transit times.

1 2 3

Periods

4 5 6 7 8

5

6

Figure 2.lb. The dynamic network derived by expanding the static
network of Figure 2.la.
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The technique of expressing flows over time by expanding the

network is now standard. It was used by Ford and Fulkerson (1958) and

by many others including Lawer (1976).

Let x = (xp) be a feasible dynamic flow. Let us view xp
a a

as the flow in arc ap of A . Then constraint (2.2) states that

conservation of flow is satisfied at node i p for p > t . Thus
max

a feasible dynamic flow is a circulation in the dynamic network except

that conservation of flow is not necessarily satisfied at arcs i p

for p < t- max

Preliminaries: Paths, Copies, and Cuts

A path in a network (dynamic or not) is an alternating sequence

of nodes and arcs io, al ... , a ik such that for each j = 1, ..., k

either a. has head i. and tail ij 1 or else it has head i.
3 J-1

and tail i.. La the former case the arc is called a forward arc of

the ath; in the latter case it is called a backward arc. A path is

called directed if every arc is a forward arc and simple if no node

is repeated.

In a static network the transit time of a path is the sum of

the transit times of the forward arcs of the path minus he sum of the

transit times of the backward arcs.

An example illustrating these concepts is given in Figure 2.2.

The path from node 1 to node 4 has forward arcs (2,3) and (3,4)o The

transit time of this path is the sum of the transit times of (2,3) and

(3,4) minus the transit time of (1,2). This value is 1. The path may

also be viewed as a ath from node 4 to node 1 with transit time -1.
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Figure 2.2. A th from node 1 to node 4 with unit transit time.

Periods

4:1 2 3 5 0 7

L

Figure 2.3. The dynamic network derived from the static network

of Figure 2.2. The path from 1P to 4p + is the p h copy of

path in Figure 22 for p > 2.
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A cycle is a path in which the initial node is the same as the

final node0 A cycle is simple if no node is repeated, except that the

initial node and the final node are the same0

A static flow y = (y ) is called feasible if it satisfies

the upper and lower bound constraints (2.4) and is a circulation in the

static network G, i.e., satisfies (2.5).

2 < y < u for a A (2.4)a - a- a

and

Z Ya - y = 0 for i N (2.5)
acH. aET.

1 1

Let C be a cycle of G A flow around C of k units is a

static flow y = (y) such that

: k if a is a forward arc of C

< = -k if a is a baclard arc of C

t0 if a is not an arc of C.

It is easily verified that a flow around C satisfies the conservation-

of-flow constraint (2.5).

00

If a E A and p > , then arc aP C A will be called the

th copy of arc a, or sinply a copy of a. The p copy of arc a

th
is not defined for p < -t Similarly ip is called the p cor

- a L

of node io Let P = i al' *. ak; ik be a path in G. Then the

th co
p copy of P is the path P', if one exists, in G with k arcs

such that the initial node is ip and such that the j arc of PI

30
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Fr

is that copy of arc a whose tail is the head of the (-i) t h arc
.3

of p'. The definition is illustrated in Figure 2.3, wThich is the

dynamic network corresponding to the path in Figure 2.2. The path from

th
iP to 4p+ is the p copy of the path from node 1 to node 4; this

path is not defined for p = 1.

LBMA 2. Let C be a simple cycle of transit time t > in

the static network. Then the infinite number of copies of C in the

dynamic network comprise t node-disjoint infinite paths therein.

PROOF. First, ignore the finite number of copies that are

not defined. Let the k copy be the first copy that is defined, and

let i- be the first node of this ath. For each p > k it is easily

th .p+t
verified that the p copy of C is a path from P to i . If

th
we concatenate the pD copies for p = k, k + t, k + 2t, k + 3t, ...,

then we obtain the first infinite ath. We obtain t - 1 additional

k+l kt-
paths with initial nodes i , ... , i n the same manner. These

paths are node-disjoint since for j f i, the node jP may appear

in at most one of the copies of C. 3

The above lemma is illustrated in Figures 2.4a and 2.4b. The

copies of the cycle in Figure 2.4a artition into two node-disjoint

infinite paths in the dynamic network, as illustrated in Figure 2.4b.
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Ci> *7)

1 -_____>_

1

j
Fi e 24a. A static network that
is a simple cycle of transit time two.

Periods

1 2 3 I 5 0 7

L

Figure 2.4b. The dynamic network associated with the static

network of Figure 2.La. It has two node disjoint infinite

paths, one of which is boldface in the diagram.
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A cut in G is a partition of the nodes of N into disjoint

subsets S, S such that S is finite, and i E S for i N and

p < t . This guarantees that conservation-of-flow is satisfied at:~~~~~ _ I men

each node of S. The nodes of S are called the source nodes while

the nodes of S are called the sink nodes. A cut (S,S) is called

monotone if i p e S implies that i E S for all i c N and p > tax

Given two disjoint sets S, T of nodes in N , let A(S,T)

denote the subset of arcs in A with tail in S and head in T.

The upper capacity of a cut (S,S) is defined to be

2 ua - 2 (206a)

aeA(S,S) aeA®S)a

and may be interpreted as the maximum net flow from source nodes to

sink nodes. The lower capacity of cut (S,S) is defined to be

2 - z u (2.6b)

aPEA(S,S) aPeA(S,S)

and may be viewed as the minimum net flow rom source nodes to sink

nodes. The upper (resp., lower) capacity is defined to be + co

(resp., - oo) whenever (2.6a) (resp., (2. b)) involve any infinite

numbers .

A cut is illustrated in Figure 2.5. The dynamic network is

the same as in Figure 2,4b. The upper and lower bounds are given in

Table 2.1, and the nodes of S are the white nodes of Figtre 2.5.

TIhe upper capacity of the cut is 2 while the lower capacity is -4.
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Arc

Table 2l.
- .. j,

1 2

Transit
Time

Upper
Bound

Lower
Bound

The parameters for the arcs of Figure 2.4 a.

Periods

53J 6 7

Figue 2.5. A cut in the dynamic network of Figure 2.4.
The white nodes are in S. The boldfaced lines are in either
A(S,S) or A(S,S).

(1ii,2) 1 2 0

(1,4) 1 1 1

(2,3) 1 0 -1

(3,1) 1 1 o
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Mvax-Throughut in-Cut and ·the Optimality of Stationary Flows

A dynamic flow x = (xp ) is called bounded if its supremum

norm is finite and stationary if x P = xP+1 for each a E A and
a a

p = 1, 2, 3, ... . A feasible static flow y = (ya) induces a sta-

tionary dynamic flow y = (xP) with x P = y for p= , 2, ...
a a a

and a E A. In this subsection we prove our main theoretical results.

First, the upper (resp., lower) capacity of any cut provides an upper

(resp., lower) bound on the throughput of a feasible flow. Second, if

i -L 1_i r_4 Sf T 

cnere is a easiole ounuae Iutow nere iS a cum wnose upper resp., ±ower}

capacity equals the supremum (resp., infimmun) of the throughputs of- the

stationary feasible dynamic flows.

Let x be a feasible flow and let (S,S) be a cut. We define

the flow across (S,S) to be

xp - xp
a a

aP A(S,S) aPEA(SS)

LE14iA 4. Let x be a feasible dynamic flow and let (,S)

be a cut. Then the throughput is equal to the flow across (S,S)

and so is bounded above by the uper capacity of the cut and bounded

below by its lower capacity.

PROOF. It is clear that the flow across (S,7) is bounded

above by the upper capacity and bounded below by the lower capacity.

It remains to show that the flow across (S,S) is the throughput.
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r

Consider first the case that S = ip c N p < t ]. Then
- max

the flow across (S,S) is exactly the flow in transit in period t,

which is the throughput.

We now prove the result inductively. Let (S,S) be a cut.

Let S' = S - jt), where j = i is any node of S for which r > t
max

Then the flow across (S,S) is equal to the flow across (S'Th).

To see this, note that the difference of the flows across the two cuts

is

p-
a

ap H
0

E xp
a

aPesT.

which is zero by conservation of flow.

The lemma now follows inductively, as we may start with any

cut (S,S) and progressively move one node at a time from S to S

without altering the flow across the cut. Eventually we arrive at

the set S' = iP N : p < t 
-max

PROOF OF LEaIA 1. The net flow in transit in period q is

the flow across (S,S) where S = tip N p < . Thus, Lemma 1

is a special case of Lemma 4.

THEOREM 5. If there is a feasible bounded dynamic flow, then

10 (Sufficiency of Stationary Flows) the supremum (resp.,

infimum) of the throughputs of all feasible dynamic flows equals that

of all feasible stationary flows, with the last supremum (resp., infimum)

being attained if it is finite.
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20 (Max-Throughput Min-Cut) Moreover, the supreraum (resp.,

infimum) of those throughputs equals the minimum (resp., maximum)

upper (resp., lower) capacity of a cut, and this cut may be taken to

be monotone.

3°0 (Integrality) If also the upper and lower bounds are integral,

then the stationary flows in 1 may be taken to be integral as well.

PROOF. First suppose that all upper and lower bounds on arc

flows are finite. Consider the problem of finding a feasible static

flow Y = (Ya) that maximizes

fy = ty (27)
Y aA a (2a7)

Furthermore, as is easily seen from (2.3) and (2.7), f = f , i.e.,

S0 Y
fY is the throughput of the stationary flow y induced by the static

flow y. The dual of the above static network-flow problem is the

linear program (2.8).

Mi nimize Z C u - Z i (2.8a)
a A aa acA

subject to

. - . + a - = ta for all a = (i,j) A (2.8b)j n a a a

az, > 0 for a e A. (2.8c)
a a -

Let x =max (O,x), and x = max (O,-x). Since u > a - a

for each a e A, we need consider only those solutions to (2.8) for
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which O = (t + a -A.) + nd «a = (t + - . These solutions
a a 3. i a a i i

are feasible for any choice of X.

Let (x, a, B) be an integer-valued feasible solution to (2.8)

and put mX mini w.. Let p be some integer greater than
in 1 J

t - and let S = (i E N p P- < p . Then (S, S) is
max mn i-

a monotone cut whose upper capacity is equal to the objective value

of (2.8a) for (x, a, ). To see this, suppose a = (i,j). If

- < p and p - + ta + t > p + then a = (ijpt) A(S,S),

and there are Oa (t + i. - )+ such copies of arc a. Similarly,
a a I )

ap E A(S,S) if P - Xi > P + 1 and p - X. + t < p, and there

are ( = (t + i - .<)- such arcs. Thus the upper capacity of the

cut is the objective value in (2.8a).

If there is a feasible static flow, then there is an optimal

basic static flow y with objective value z and an integral optimal

solution (x, , ) to (2.8) also with objective value z. The static

00

flow y induces a feasible stationary flow y with throughput

fy = z and solution (, , ) induces a monotone cut (S4,) with
Y

upper capacity equal to z. By Lemma 4, this stationary flow is optimal.

Consider next the case in which the bounds on some arcs may

be infinite. If there is a sequence of feasible stationary flows with

throughput unbounded from above, then by Lemma 4 each cut has infinite

upper capacity. Suppose instead that there is no sequence of feasible

stationary flows with throughput unbounded from above. Then since there

is a feasible bounded dynamic flow x = (), there is a real numnber

M that is a strict upper bound for both the absolute arc flows jx9l
' ~~~~~~~~~~~a

for all a and p and also for the absolute arc flows in each basic

static flow (if any exist).
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Consider next the static network G' = (, A, t, 2', ) where

2' = max( , -M) and u' = min(ua , M1). The resulting dual program
a a a a

(2.8) is feasible and its objective value is bounded below by the

throughput f by Lemma 4 and what was shown above. Hence, there
X

is a maximum-profit basic static flow y and an optimal dual solution

(x, c, ) for (2.8). By complementary slackness, u' = M implies
a

= 0, and 2' = -M implies « =O. Let (S,s) be the monotone
a a a

cut induced by (. , ). Then no arc of A(SS) (resp., A(S,S))

has an upper (resp., lower) bound equal to M (resp., -M). Hence,

the capacity of the cut is unaltered if each arc bound of + is

co
replaced by + oA, and the throughput of the stationary flow y

co
induced by y is the upper capacity of (S,S) in G from what

was shown above, completing the proof.

Finally, the result for the minimum-throughput problem is

immediate from that for the maximum-throughput problerr, because the

former reduces to the latter on replacing each (x, a, ua) by

(-a aa a a

EXAfDIPLE. Consider the static network described in Table 2.2.

The corresponding static and dynamic networks are portrayed in Figures

2.6a and 2.6b. A minimum upper-capacity cut is given in Figure 2.6b.

The capacity of this cut is 1. If a flow of 1 is sent through the

forward arcs of the infinite path of Figure 2.6c and a flow of -1 is

sent through the backward arcs, the resulting flow is a feasible sta-

tionary flow with a throughput of 1i, and is thus optimal.
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Arc (Tail, Head)

a1

a 2

a3

a4

a 5

a 6

(1,2)

(1,2)

(1,4)

(2,3)

(3,4)

(3,4)

Table 2.2,.

Arc

(1,1)

(2,2)

(z1>2)

The parameters for a static network.

Upper
Bound

00

1

Lower
Bound

0O

- X

1

Transit
Time

1

1

0

Table 2.3
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Transi t
Time

0

1

I

1

0

0

I

Upper
Bound

I

1

0

2

1I
I

Lower
Bound

-1

O

-2

1

-1
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We note in passing that if x is a maximum-throughput dynaimic

network flow and (S,S) is a minimutm upper-capacity cut, then x = u
a a

for aP A(S,S) and xP = 2 for aP A(S,S).a a

Neither 10 nor of Theorem 5 is true if we drop the restriction

that there is a feasible bounded dynamic flow because there are no feasible

stationary flows in that event. TNevertheless, there may exist unbounded

feasible flows and 2 of Theorem 5 may still hold as the next example

illustrates.

EXAMPLE. (All feasible

the static network described in ¶

There is no feasible stationary

dynamic flow x = (x) given by
a

dynamic flows are unbounded.) Consider

Table 2.3 and depicted in Figure 2.7a.

flow, although there is a feasible

XP + z,
a KI

a = (1,1)

a = (2,2)

a = (1,2) ,

where z is an arbitrary real number. Then f = z.
x

(resp., infimum) of the throughputs of these flows is

and this is the upper (resp., lower) capacity of each

so the supremum

+ co (resp., - C)

cut.

An Alternate Proof of 10 of Theorem 5 (Sufficiency of Stationary Flows)

An alternate proof of 10 of Theorem 5 is obtained by applying

a result of Orlin (1981a) to the special dynamic linear program given

below. However, this proof shows only that stationary flows suffice

in the class of bounded feasible dynamic flows whereas the proof of

Theorem 5 applies in the class of all feasible dynamic flows.
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Figure 2. 6a. The static network described in Table 2.2.

Periods

1 2 3 4 5 6 7

Figure 2. 6b. A minimtm upper-capacity

associated with Figure 2.6a. A(S,S) =

A(S,S) = ((24 3 ) }.

1 2 3

Periods

4

cut in the dynamic network

{(13,2 4 )),(34I 5 )S ;

5 6 7

I

2

3

4

Figure 2.6c. An infinite path in the dynamic network of Figure 2.6b.
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Figure 2.7a. The static network of Table 2.3.

Periods

2 3 4 5 6 7

Figure 2.7b. The dynamic network associated with the
static network of Figure 2.7a.
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Let vp be the throughput of a feasible dynamic flow in period

p. By Lemma i, vP is constant for all p > t . Thus the maximum-
- max

throughput problem can be ritten as that of

maximizing lim p X vJ
p- 0o j=l

subject to

p-t
2 x x a 0 for i ciT and p > t

a max
aaH. 1 aT. aET

P
- vP + x =0 for p > t

aaaA j3=p-t + a

and

£ < xP <u for a A p = 1, 2, ...
a - a

3. IMINIMIZiNG THE NUPER OF VEHICLES TO IEET A FD PERIODIC
TRANSPORTATION SCHEDULE

Here we consider a routing problem that arises in the scheduling

of vehicles for certain transportation industries, such as airlines and

railroads. For convenience, we will borrow terminology from the airline

industry.

The problem is to minimize the number of aircraft needed to meet

a fixed schedule of daily repeating flights, each of which is either

required or optional. The required flights must be flown daily, while

the optional flights may be flown on any day at the scheduler's prerogative0
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We assume that any plane may fly any route on any day. We do

not make any a priori assumptions on the data, and we even allow the

contingency that a flight may take several days. (This contingency

is of little value in scheduling planes, but might be of value if we

were to schedule trains.) Furthermore, we do not require that a feasible

schedule be periodic, although our algorithm will always produce a

periodic schedule.

Various versions of the above problem have been considered in

the literature. Dantzig and Fulkerson (1954) solved the problem of

minimizing the number of vehicles to meet a fixed finite-horizon schedule.

(It was Fulkerson's first paper on network flows.) The problem of

minimizing the number of vehicles to meet a periodic schedule in which

all routes are required--so deadheading is not allowed--has been solved

by Bartlett (1957) and the problem has been applied to railroad scheduling.

Bartlett was concerned with determining the minimum number of

vehicles. For his case, the operating schedule is itself trivial as

there are no relevant decisions to make. As pointed out by Bartlett,

an obvious necessary condition for optimality is that at no airport

is there a plane on the ground for the entire day. Bartlett also

showed that this condition is sufficient for optimality, and he gave

a simple closed formula for the number of airplanes in such a schedule.

Dantzig (1962) considered various airline scheduling problems

including the above problem of minimizing the number of airplanes to meet

a fixed periodic schedule under the added restriction that the final

flight schedule is stationary. His technique, as described by Simpson

(1969), is equivalent to solving the static version of a corresponding

I
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minimum-throughput problem. By results of the previous section, the

resulting optional stationary solution that Dantzig obtains is optimal

over the class of all feasible (possibly non-stationary) schedules.

As Dantzig and his collaborators noted, in order to satisfy the

stationary flight schedule, each airplane flies a periodic schedule, but

the total time for a route for one airplane may be a number of days. We

repeat Dantziggs technique here both for completeness and so as to illus-

trate the theory of the previous section.

We formulate the problem as a dynamic flow problem with the

static network G = (NA,t,2,u), where each node of N is an ordered pair

•i,s> with i being a city and s being a time of day. It suffices

to consider only those times s for which there is either a departing

o -r -i i n -1 - frr -P ;, i TT=C r n n " -n rh-Y " IIi "ns lora I AAm m of " 4 V " - I Iu .- CL. v ..tL . - L .---. .I II . . . ' .U ' ±tU, - UL.trLu IlL vr i.L. . _L . 1mes aS

airports into the travel times so that we may assume that a plane may

take off imediately upon landing. A flight departing at time s from

city i and arriving d days later at time r in city j is repre-

sented by an arc from (i,s) to (j,r) with transit time d. If it

arrives on the same day, then d = O. If it crosses the international

date line and arrives on the previous day, then d = -1. The upper

bound on the flow in each of these arcs is the number of flights that

may be flown at this time or + if no such bound exists while the

lower bound is or 0 according as the flight is required or optional.

We also have arcs which represent the time that the airplanes stay on

the ground; the transit time cf each of these arcs is or 0 according

as the ground time includes or does not include midnight.

An example of this formulation is given in Tables 3.1 and 3.2.

The first table describes the flight schedules, while the second table

describes the static network. The static network is given in Figure 3.1.

Each period of the dynamic network represents a day.
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Origin · Destination

City 1

City 2

City 3

City 2

City 3

City 1

Depoarture
Time

1 AlM

3 M

5 AM

Arrival
Time

7 AM

9 AM

11 AM

Required Or
Optional

Required

Optional

Optional

Table 3. 1

Tail

<1,1>

<3 ,5>

<1,>

<2,7>

<2,5>

<3,9>
<3,5>

Head

<2,7>

<3,9>

<1,1>

<112>

<2,3>

<2,3>

<3,5>
<3,5>

Upper
Bound

1

1

1
co

00

co

co

co

Lower
Bound

Transit
Time

I

0

0

0TOTo
TO0

0

0

0

0

0

0

0

i

11
1

Table 3.2

Figure 3.1. A static network for the airplane scheduling problem.
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The interpretation of the lower-bound constraint (2.1) is that

each required flight be flotwn. The interpretation of the conservation-

of-flow constraint (2.2) is that airplanes are neither created nor

destroyed once the schedule is determined. Finally, the net flow in

transit in period 1 is equal to the number of airplanes that are either

on the ground or in the air at midnight of the first day; thus the

throughput is the number of airplanes.

The Solution

The airplane scheduling problem is really an integer programming

problem. However, this causes no difficulties as there is always a

minimum-throughput static flow that is integral, and this static flow

induces a stationary integer dynamic flow that is optimal. Although

this stationary flow does provide a time-table for flights and does

minimize the number of airplanes, it does not provide the daily schedule

for any airplane. Such a daily schedule for airplanes may be determined

as follows: let y = (ya) denote an integral optimal static flow.

Decompose the circulation y into a sm of unit flows around directed

cycles. The cycles are directed because any backward arc would have a

flow equal to -1, which is impossible because all lower bounds are

nonnegative. Furthermore, each cycle corresponds to a finite sequence

of routes that a single plane may travel so as to start and finish at

the same place and at the same time of day, and the transit time of the cycle

is the number of days traveled. Each cycle C of transit time t induces

t infinite-length paths in the dynamic network by Lemma 2, and each

of these paths induces a periodic schedule that repeats every t days

for an airplane. In this way, we may determine schedules for all planes.
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Let an instance of a flight refer to a flight on a specified

day, e.g , the 9 a.m. flight from Boston to Atlanta on April 19, 1979.

Then the max-throughput min-cut theorem may be interpreted as follows.

The minimum number of airplanes needed to
meet a fixed periodic schedule is equal to
the maximum number of instances of required
flights, no two of which may be flown by the
same airplane.

In the example given in Table 3l, the unique optimal tour is

given by flying from city 1 to city 2 to city 3 and returning to city o

In the static network he minimum throughput is obtained by sending one

unit of flow around the cycle determined by the node sequence <1,>,

<2,7> , <2,3>, <3,9>, <3,5> , <1,1I>, <1,o Each airplane on this route

takes three days. Three airplanes are needed, as the flights from city

1 to city 2 on any three consecutive days must be flown by different

airplanes.

4. FIITE-HORIZON DYiKTv1C 1,XiXTIUM FLOW

In this section we consider the q-period dynamic maximum-flow

problem which Ford and Fulkerson (1958) formulated and solved0 The

objective in this problem, which we shall henceforth call the q-period

problem, is to find a maximum flow from a given source to a given sink

in q periods where q is a given positive integer. Ford and Fulkerson

showed that there is always an optimal flow (depending on q) that is

temporally repeated. Such flows are essentially stationary. This

elegant result unfortunately does not seem to generalize to other finite-

horizon problems. Specifically, if other optimality criteria are
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considered, then an optimal flow will not, in generai, be stationary.

For example, neither minimum-cost flows nor universal flows as defined

by Gale (1959) are generally stationary.

In this section we demonstrate that the q-period dynamic maximum

flow problem may be transformed into a special case of the minium-

throughput dynamic network-flow problem, which we will refer to in this

section as the infinite-horizon roblem. In this way, the Ford-Fulkerson

results may be viewed as a specialization of the theory developed in

Section 2 above.

The q-Period Problem

Let G = (N, A, t, O, u) be a static network in which each arc

has a non-negative transit time, a zero lower bound on its arc flow,

and a positive integer-valued upper bound thereon Let N = (1, .. , ni,

and call node the solurce and node n the sink. Denote by G =

(N4q, A-, t, 0, u) the q-period subnetwork of the dynamic network

00 co X CO cGOc 00
G = (N, A , t , , u ) induced by the nodes i E N for i N

and 1 < p < . Flow may be sent in G4 in periods 1, 2 .. , q for

some fixed q. We call x = () a feasible q-rericd flow in Gq if

it satisfies (4.1), (4.2) and (4.3) below, viz., the upper- and lower-

bound constraints

O < x < u for a A, p = , ... , q , (4.1)
-- a - a

the conservation-of-flow equations
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xP = z x -ta for i = 2, ... , n-l
a a

a cT. ac. t a
and p = 1, ... q(4.2)

and the flow prior to period 1 is zero, i.e., in the first q periods

and at all nodes except for the source and sink,

x p = 0 for a A and p < . (4.3)
a

We assume without loss of generality that ta < q for each arc a. The

q-period problem is to determine a feasible q-period flow that maximizes

the amount of flow gx that arrives at the sink where

q-t

g = z z x8.
aEH p= a

n

TemPora y-Repea ted Flo0ws

As we have remarked above, Ford and Fulkerson showed that one

maximum q-period flow will be temporally repeated. In order to define

this notion, it is convenient to append to the static network G an

arc 0 = (l n) from source to sink with t0c = q, < = -O and u =00

Let G = (N, Aq t, 2, u) be the 4-period augmented static network

with A = A U a) and the domain of (t, , u) extended from A to

A . (Incidentally, appending CY has no effect on the solution to the
q

q-period problem because t = q. )

If P is a simple directed path in G from source to sink

with transit time r < , then P P U a} is a simple cycle inq
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r

G with transit time r - q. Thus by Lemma 2, the copies of P in
q q

G comprise q - r node-disjoint infinite aths and each contains a
q

unique copy of P that is also in G. Thus P has q - r copies

in G

If P is a simple directed path in G from source to sink

with transit time r < q, then a positive unit flow in each of the

q - r copies of P in G4 is called a temporally-repeated unit flow.

A sum of temporally-repeated unit flows is called a temporally-repeated

flow.

Example

We illustrate these concepts in Figures 4.1-4.3. In Figure 4.1

we give a static network G consisting of a simple directed path P

from source to sink with transit time one and the 3-period augmentation

G3 of G comprising a simple cycle with (absolute) transit time two.
cO

The two infinite-length paths in C-3 induced by P3 are portrayed in

Figure 4.2, and the boldfaced lines in Figures 4.2 and .3 delineate

the two copies of P in G

If there are unit upper bounds on flows in all arcs in G, then

the maximum 3-period flow from source to sink is evidently two. This

flow is achieved by the temporally-repeated (unit) flow that sends unit

5flows along each of the two copies of P in G

The nfinite-Horizon Problem

We are now ready to develop the main result of this section,

viz., that the problem of finding a maximum q-period flow from source

52
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0 1

G

Figure 4.1. A static network G and its 3-period augmentation G3.

1 2 3

Periods

4 5 6 7

1

N

d
e
s

2

00
Figure 4. 2. The dynamic network G corresponding to the 3-period

augmented static network of Figure 4.1.

1

Periods

2 3

1

O

A

e

s

2

3

Figure 4.3. The 3-period subnetwork G of G
static network of Figure 41i.

corresponding to the
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to sink can be reduced to the infinite-horizon problem of finding a
co

feasible dynamic flow in Gq having minimum throughput. In order to

motivate this result, let P be a simple directed path in G and let

0

PI be one of the infinite paths in G induced by P . Now a negative
q q

unit flow in P' has positive unit flow in each copy of P in P',

has negative unit flow in each copy of in P', and conserves flow

at all nodes (including copies of the source and sink) after period q.

Thus a negative unit flow in P' sends a positive unit flow from source

to sink in Gq (along the unique copy of P in both P' and Gq)

co
and has a negative unit throughput in G . Thus, in this simple instance

4

at least, the throughput of a dynamnic flow in G is the negative of

the induced subflow from source to sink in Gq This suggests that

minimizing throughput in G will indeed maximize flow from source

to sink in G .

These ideas are illustrated in the example of Figures 4.1-4o3

discussed above. The minimum throughput in G3 in that example is -2

and is achieved by negative unit flows in each of the two infinite

paths in Figure 4.2° That flow induces a subflow from source to sink

in G3 , viz., the temporally-repeated (unit) flow discussed above,

and attains the maximum 3-period flow of 2.

THIOREM 6. Let y be a stationary integer minimum-throughput

co
dynamic network flow for the infinite-horizon problem with G Then

y induces a temporally-repeated q-period flow x that has maximum

q-period flow from source to sink. Furthermore, the negative of the

co
throughput of y is the q-period flow from source to sink of x.
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PROOF° Consider an integer optimal static flow y = (ya) for

G that induces a minimum-throughput stationary flow. The circulation

y may be written as the sun of unit flows around cycles in G Since

we wish to minimize throughput, the transit tme of each cycle must be

negative because we would delete any cycle with a nonnegative transit time

without increasing the throughput of the induced stationary flow. We

may also choose the cycles so that each arc in A appears only as a

forward arc.

Let C be a cycle in the decomposition, and let t be the

transit time of C. Since t < O, it follows that C consists of arc

c plus a directed path P from node 1 to node n of length q + t.

This path P induces a temporally-repeated unit flow with -t units

of flow arriving at the sink. Thus the temporally repeated flow x

induced by these cycles has a flow gx = - f arriving at the sink,
Y

because f is the sum of the transit times of the cycles0Y

To complete the proof we will show that x is optnal for the

q-period problem0 Let (S,S) be a monotone cut with lower capacity

f = - as guaranteed by the max-throughput mi-cut Theorem 5. Choose

p so tt ip -q +i i p p++-p so th at 1pq , . f. S and 1 . S, which is

possible because the cut (S,k) is onotone0 No copy of is in

the set A(S,S) because the lower capacity of the cut (S,S) is

-gx > -°. Therefore any copy of with its tail in S must also

have its head in S. Hence, nP + , ... nP +q S.

Finally, we translate and truncate the cut (S,S) for G to
q

form a cut (S',Ss) for Gq defined by S' = ir : 1 < r < q and ir+P C Sj

and Ss = : 1 < r < q and i r+ E S), Observe that the copies of
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source 1 are in St and the copies of sink n are in S'. Thus the

maximum flow in Gq from source to sink is at most the sum of the

capacities of all arcs with tail in S' and head in S', and this sum

is bounded above by the negative of the lower capacity of cut (S,S)
00

in G which is -f = gx Thus the maximum q-period flow from source

to sink is at most gx, completing the proof. *

Consider a maximum q-period flow y. If we restrict the flow

to the first q-l periods, is it necessarily a rmaximum (q-i)-period

flow? As shown below, the answer is no. However, Gale (1959) proved

that there always is a maximum q-period flow that, when restricted to

the first p periods, is also a raaximum p-period flow, for all

p = 1, 2, ..., q. He called such a flow a "universal maximum flow."

In fact, such a flow exists even when the arc capacities vary over

time. Gale showed that there does not necessarily exist a stationary

universal maximum flow. For example, consider the static network

described in Table 41 and portrayed in Figure 4.3. If we want a

maximum 3-period flow, then the unique universal maximum flow is given

in Figure 4.4, while the unique stationary maximun 3-period flow is

given in Figure 4.5.

Finally, suppose that we wish to find a minimum-cost feasible

q-period flow. Once again we cannot expect an optimal flow to be sta-

tionary. To see this, assign a unit cost or -I to arc (2,3) of the

static network of Table 4.1, -2 to arc (1,3) and 0 to all other arcs0

Then the minimum-cost stationary flow is that of Figure 4.35 and it

has a cost of -4, while the flow in Figure 4 4 has a cost of -5.
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Figure 4.3. The static network described in Table 4.1.

Figure 4.. The unique optimal universal flow for the
network of Table 4.1 is along the four paths given
above.
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Figure 4.5. The unique optimal temporally-repeated flow for
the network of Table 4.1 is along the four paths given above0

Tail

1

I

2

3

1

Head

2

3

4

4

4

Upper
Bound

1

I

1

I

0

Lower
Bound

0

0

0

0-OOTO

_hL

Transit
T ime

1

I

1

I

3

Table 4o 1 The static network portrayed in Figure 4.3

The result contrasts with the optiality of stationary flows

for the inimu-cost dynamic network-flow problem as proved by Orlin

(1981b) .
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APPEN[DIX. Everywhere-Conservative Feasible Dynamic Flows

In the maximum-throughput dynamic network-flow problem and

again in the minimum convex-cost dynamic network-flow problem of Orlin

(1981b), a feasible dynamic flow need not satisfy conservation of flow

in the first few periods. This may be a significant relaxation of

real-world constraints because conservation of flow usually has a

physical interpretation. An interesting open question is how to "phase

into" an optimal stationary flow

In many special instances it is easy to phase into an optimal

stationary flow. In the vehicle scheduling problem of Section 3, it

suffices to have all vehicle travel to their first departing site. In

the cyclic capacity scheduling problem discussed in Orlin (1981b), it

is possible to phase into any feasible stationary schedule within one

day. However, in general, the "phasing problem" is P-complete, as

is shown in this section.

A feasible dynamic network flow is called everywhere conservative

if conservation of flow is satisfied in all periods including periods

i, .. tma - 1. We refer to such flows as conservative flows, for

brevity0 In this section we use the terms !UP-hard and P-completeQ

The reader unfamiliar with these concepts should refer either to Karp

(1972) or Garey and Johnson (1979). Informally, a problem X is UNP-

hard if there is an UP-complete problem which may be polynormially trans-

formed to X, i.e., transformed in polynomial tnme so tat it becomes

a special case of X.
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THEORIM A.l. Determining whether there is a conservative flow

is NP-hard.

PROOF° Consider the following version of the knapsack problem,

which was proved NP-complete (and thus NP-hard) by arp (1972).

KNAPSACK PROBLhEM. Given n distinct positive integers dl, ... , d

and a positive integer b, do there exist non-negative integers

w.? ..*, wn such that dwl + + dn b?

Consider the static network G described in Table A.l. To prove

the theorem we show that there is a conservative flow for G if and only

if there is a feasible solution for the corresponding knapsack problem 0

Table A. 1

First, let G be G with arcs ct, , and Y deleted. Then

there is a feasible solution for the knapsack problem if and only if

co

Arc a ! ar a a C Y

Tail | 1 1 1 2 1

Head 1 1 * 1 2 1

Lower bound 0 C 0 -1 -1 1

Upper bound 1 1 .. 1 -1 -1 1

Transit time d1 62 0' 6 1 b b+l
1 Ln

k ~~~~~~ - - ----- -- -r---- 
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there is a directed path in G from node 1 to node with transit

time b. We see this as follows: if there is a path with transit time

b, let w. be the nmber of occurrences of arc a. in the path0

Then the sum of the transit timesof the arcs is wid! + .* + w d

w'nnch is b. nonverselv. surrose w is a solution to the k-nnksa k

problem. Consider a path in GP consisting of w occurrence of a.
2. 1

for i = I, ..., n (the arcs taken in any order). The resulting path

i c fr om t.n P-nd a .rn n.i. t.n mt b.

To complete the proof of the theorem, we show that there is a

conservative flow for G if and only if there is a directed ath in

GI from node 1 to node with transit time b.

Suppose x is a conservative flow If we restrict x to copies

of C, , and 7, the resulting feasible dyramic network flow satisfies

.- I.-- L

conservation of flow at all nodes o the dynamic network except i-

which has a deficit of one unit and ib + which has a surplus of one

unit. Since x is a conservative flow, if we restrict x to copies

1 b+l
of arcs al, ... , a it must consist of a unit flow from 1 to 1

and conserves flow elsewhere. The unit flow is sent along a path that

is a copy of a poath in G' from 1 to with transit time b.

Conversely, if there is such a path in G', then there is a

I b+1copy of the path in the dynamic network from 1 to 1 l A con-

servative flow is created by sending unit of flow along this path,

1 unit of flow in each copy of and Q, and - unit of flow in each

copy of 7. U
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CGAPTER IV

IJNIMVI COIHlVE-COST DYIAIJC ETWORK FLOWS

1. INTRODUCTION

The Model and Problem Formulation

In the sequel we present and solve the minimum convex-cost dynamic

network-flow problem, an infinite-horizon integer programming problem

that involves network flors evolving over tme. This work extends the

results of the author (981b) concerning maximum-throughput dynamic

network flowso

We consider a finite network in which there is associated with

each arc a real or + valued convex cost of flow therein that is

linear between successive integers, and a (possibly negative) integer

transit time that is the number of periods for flow to pass through the

arc.

A dynamic flow is a sequence of flows initiated in each arc in

each period. Such a flow is called feasible if it is bounded, has finite

cost in each period, satisfies conservation of flow in all except the

first few periods during which the flow is 'initialized" and has zero

"throughput." The throughput is the net flow in transit in each period

and is shown in Orlin (1981b) to be the same in each period after the

first few. The throughput may also be viewed as the net amount of flow

circulating in he net~work. This concept w.as introduced and studied in

detail in Orlin (1981b).

A dynamic flow is called optimal in a given class of such flows

if it is feasible and has inimum long-run average cost per period among

all feasible dynamic flows in the class. Thus, for example, we speak
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of optimal integer (respo, continuous, stationary, etc.) ldynamlic flows0

The class of integer (resp., continuous, stationary) dynamic flows consists

of those for Twhich the flow in each arc in each period is integer (resp.,

unrestricted, the same in each period)0

Finding Optimal .Inteer D namic Flows

Our principal interest centers on finding an optimal integer

dynamic flow. Our method for doing this involves two steps, viz.,

finding a tationary optimal continuous dynamic flow and then rounding

that flow to form an integer periodic optimal continuous dnamic flow

that is necessarily an optimal integer dynamic flowo

We discuss briefly these two steps. To begin with, it follows

I- , \ -

from rlin la) that the sets o optimal stationary and stationary

optimal continuous dynamic flows coincide. Also these flows coincide

with those induced by repeatedly using an optimal circulation, ieo,

a circulation in the static network that has (finite) minimum cost among

those with zero throughput. The throughput of a circulation (and of

the stationary dynamic flow it induces) is the sum of the products of

each arc flow and its transit te, and so is linear in the arc flows0

T Thus, the optimal-circulation problem is a inirmum-cost static network-

flow problem with one additional linear (zero-throughput) constraint.

Consequently, optimal circulations are not generally integer. Never-

theless, if there is an optimal circulation, there is one that is

?th_ .. .... t . .

fractionally extremes" i.e. i' the integer elements oc te circulation

are fixed, the noninteger elements are uniquely determined. Moreover,

the arcs in which flows are noninteger form a simple cycle. Each arc

flow in a stationary dynamic flow induced by a fractionally-extreme
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F

optimal circulation may be appropriately rounded to an acacent integer

so as to yield an optimal integer (and integer ptimal) dynamic flow

that repeats every q periods where q is the least common denominator

of the fractional arts of the circulation.

Applications

The minimum convex-cost dnamic network-flow problem may be

applied to various areas of Operations Research that involve deterministic

demands repeating periodically over time. These include the cyclic

capacity scheduling problem, the cyclic staffing problem, the periodic

production and transshipment problem, the airline scheduling problem,

and the minimum cost-to-time ratio circuit problem, as detailed below.

Cyclic Caacity Scheduling and Cyclic Staffing

The cyclic capacity scheduling problem is to find a iniam

per-period cost schedule of buying and selling capacity in blocks of

consecutive periods so as to satisfy demands for capacity that repeat

cyclically over time. This problem generalizes the finite-horizon

capacity scheduling problem which as shown by Veinott and Wagner (1962)

to reduce to a minimum-cost network-flowr problem A special case of

the cyclic capacity scheduling problem is the cyclic staffing problem,

which is to minimize the per-day cost o staffing a woriforce round-

the-clock on shifts of consecutive hours so as to satisfy minimum hourly

demands that vary within the day, but repeat from day to day.

The infinite-horizon problem considered above apparently has

not been discussed before. Horever, if the assignment of workers is

r-10ciBrerd +tn be I- same errr H.av. t'hsn tinth reltins rQroblem is the

E7
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-day cyclic staffing problem which has received considerable attention,

e.g., Baker (1974) and (1976), Bartholdi et al. (1980), Orlin (1977)

and Tibrewala et alo (1972). There is no knownm polynomial algorithm for

the -day problem, nor is it known whether the problem is NP-complete.

The integral solution obtained for the cyclic capacity scheduling

problem and hence for the cyclic staffing problem has the property that

it is obtained by rounding an infinite-horizon continuous-valued

solution that repeats each period. For this reason, the number of

workers on any specified shift varies by at most one from day to day.

In this sense, it is "almost feasible" for the -day problem, and always

has a daily cost as low as the optimal daily cost for the -day problem.

Periodic Production and ransshipment

The periodic production and transshipment problem is to minimize

the daily cost of producing and shipping goods (such as food or petroleum

products) from city to city so as to satisfy periodically repeating

demands, where unit costs are assumed to repeat periodically. We also

assume that the number of trucks (or amy other cargo carriers) is limited.

Finally we need the additional assumption that each truack returns to

a production site upon delivery of goods. (If trucks may carry goods

to more than one demand location writhout reloading in between, then the

resulting problem is LP-hard.) In Section 6, we model this production

and transshipment problem as a special case of the dynamic network-flow

problem.

Airplane Schedulin

Consider an airline whose objective is to schedule a fixed nuimber
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of airplanes to flights so as to maximize its profits (or minimize its

costs). A certain set of flights may be flown on any day at the sched-

uler's prerogative. This problem generalizes that considered by Dantzig

(1962) and Orlin (1981b) of determining the minimum number of aircraft

for which there is a feasible schedule. Dantzig (1962) also considered

the stationary version of the maximum-profit problem. In Section 6,

thatairplane scheduling problem is modeled as a dynamic network-flow

problem.

Minimum Cost-to-Time Ratio Circuits

Dantzig, Blattner, and Rao (1967) formulated and solved the

"tramp steamer problem" or equivalently "the minimum cost-to-tine ratio

circuit problem." This is the scheduling problem of choosing an infinite

tour for a tramp steamer which is to travel romn port to port so as to

minimize its daily costs. ThIe tramp steamer may visit whatever ports

it chooses and in any order, and for any pair of ports there is an

associated cost per triransit e er trip.

There is always an opttm tour in hich the steamer travels

cyclically in the same order around the ports. The optimal cyclic path

is that cycle which maximizes the ratio of the total cost on the cycle

to the total transit time. Several authors including Fox (1969), Lawler

(1967), and Megiddo (1978) have given efficient algorithms for deter-

mining this optimal cycle. Our contribution to this problem in Section 6

is to show that the rounding technique of Section 3 also obtains this

cycle, thus showing that the previous methods for solving this problem

may be viewed as a special case of roundng.

o9
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2. DYIIEC IZTWORK FLOTWTS

The Static Network and the Problem Formulation

A static network is a quadruple G = (u, A, t, c) in -Wnich

IT = (1, ... ni is the node set and A is the arc set of a directed

/ ~~~~~ ,,,,,~~~~~~,,,~ ..- , 4 r~ ~,-.,.-, -P
graph, possibly containing oops ti.e., arcs jnii iut. Lu ±u ,t:~ 

and multiple arcs between to nodes. Associated with each arc a = (i, j)

is a transit time t, which is the (possibly negative) integer number
a

of periods for flow to travel from the tail i of a to its head j.

Also associated with arc a is a real- or + 0C valued convex function

c (.) that is linear between successive integers.
a

Let H. and T. denote the set of arcs of A with head i

and tail i, respectively. Let t = rnax t In the following we

wish to consider flow emanating along arcs in each of an infinite nruber

of periods0 With this in mind, we let xP denote the esnount of flow

nriginating at the tail of arc a in period P and arriving at the head
->--W ........ t-e -

of arc a in period p + t. We refer to an ininite vector x (9)

for a E A and p = 1, 2, 3, ... as a dynamic f lowo Call x bounded

if its supremum norm is finite, and feasible if it also satisfies the

conservation-of-flow ons traints

p-

£ xp = x a for i E N and p> t (2.1)
aT.a aH a max

i i

the zero-throughput ccrnstraint
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t
max
E £ x~ = 0, (2 2)

acA p=t -t +1max a

and c (x2) is finite for a E A and p = 1, 2,...

Constraint (2.1) requires that the net amount of flow emanating

from each node i in each period p > t be equal to the net amountmax

of flow entering the node in that period, i.e. there is conservation

of flcow at each node in each period p > t . In constraint (22),

the quantity on the left-hand side is the net amount of flow "in transit"

in period tmax; and we refer to this quantity as the throughpuIt of xo

Here we require the throughput to be zero. However, in Section 4 below

we show that the above formulation is equivalent to one in which the

requirement that the throughput be zero is relaxed and replaced by upper

and lower bounds on throughput, or more generally by a convex cost of

throughput. The zero-throughput constraint implies that the flow in

transit is zero in each period after the first few because of the following

lemma proved by the author (1981b).

EI~ThA 1. The smu of the f1OvtTs in transit in each eriod p > t
- max

of a feasible dynamic flow is equal to its throughput.

We use the standard convention that

r-t
r a
g xp g x" o

p=r-t +1 p=r+l
a

Thus the above sum is well defined for t < 0.a-
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A dynamic flow x = (P) is called integer if xP is integera a

valued for a E A and p = 1) 2, 3 ... o If we -wish to emphasize that

a dynamic flow is not necessarily integer, we refer to it as being

continuous .

In the following for fxed p we let

C(X) C (xP) 
aA

Thus cP(x) is the sum of the costs of flows beginning in the p

period0 Let c(x) lim r p cp(x) be the long-run average-
----r --,C p=l

cost of x. A continuous (resp., iteger) dynamic flow is called (average-

cost) optLmal if it is feasible and minimizes c(-) among all such

flows. The dynamic network-f!ow problem is to find an (average-cost)

optimal integer dynamic flow0

The Dynamic etwork

Let G = (N, A, t, c) be a static network0 We expand G into

00 c 00 x

an infinite network G = (i , A , c ), called the dynamic network,

where

N = ip :i E N and p [(1 2, 3, ..o 

for each arc a = (i, j) and p > max(-t + , 1) there is an arc

= (i, j ta) A, and the cost of a flow xp in arc a in period
a

p is cp (P) for all a E A and p = 1, 2, N... ode iP representsa a
thnode i of N in period p, and it is called the p copy of node io

Arc a represents the ability to send flow from the tail of a in

period p reaching its head in period p + t and it is called the
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p c co of arc a. Figures 2.1a and 2.lb show a static network and

the corresponding dynamic network. The numbers on the arcs of Figure

2.la are the transit times.

If x = (xp ) is a feasible dynamic flow, then xP may be
a a

interpreted as the flowr in arc a- of G , and constraint (2o1) repre-

sents conservation of flow at each node ip for i N and p > t .
max

The technique of expressing flows over time by expanding the

network is now standard, and was used by Ford and Fulkerson (1962) in

their classic text.

Preliminaries: Paths, Copies and Cuts

A path in a network (dynamic or not) is an alternating sequence

of nodes and arcs io, al, .. o, ak, ik such that for each j = 1, .oo, k

either a. has head i. and tail i: 1 or else it has head i. 1 and

tail i.. In the former case the arc is called a forward arc of the

path; in the latter case it is called a baclkbard arc. A directed path

is a path in which every arc is a forward arc.

For a given static network, the transit time of a path is the

sum of the transit tines of the for;,ard arcs of the ath minus the sum

of the transit times of the backward arcs.

An example illustrating these concepts is given in Figure 2.2.

The path from node 1 to node 4 has forward arcs (2, 3) and (3, 4)° The

transit time of this path is the sum of the transit times of (2, 3) and

(3, 4) minus the transit time of (1, 2). This value is 1. The path

may also be viewed as a ath from node 4 to node 1 with transit time -1o
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The arc numbers are the transit tines

Periods

1 2 3 IL 5 0-0 7 8

I

2

N
0

d
e
s

4

5

Figure 2.1b. The dynamic network derived by expanding the static

network of Figure 2. a.

74

--·---rr�··l-�ll--·*-·�·) ~ --s ___l___- -- ---- _____-IIC-· -�--m�--C -- �---- �-�-----�- �------------ -- -- ------·--ri._l ·.

V,.·

F i e 2.1a, A static net-sork.

a 0 

* 0 

0 0 

0 0 



1 1
1 2 5N S2f

Figue 2.2. A path from node 1 to node 4 with unit transit time.

Periods

1 2 3 6 7R

4

Figure 2.3. The dynsmic network derived fi om the static network
of Figure 2.2. The th from 1Y to bR is the pth copy
of the path in Figure 2.2.
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A cycle is a path in which the initial node is the same as the

final node. A cycle is simple if no node is repeated, except that the

initial node and the final node are the same.

Let C be a cycle of G. A flow around C of k units is a

static flow y = (y ) such that

a if a is a forward arc of C
Pa ~ 4 -Rif a is a backward ar: of C

0O if a is not an arc of C .

It is easily verified that a flow around C satisfies conservation of

flow at each node.

? Co
If a A and p > 1, then arc a E A will be called the

th th
p copy of arc a, or simply a copy of a The p copy of arc a

a i~ is called the th
is not defined for p < -t Similarly ip is called the pt Copy

of node i. Let P = i, al, ... , ak, ik be a path in G. Then the

th c
_p copy of P is the path P', if one exists, in G with k arcs

and such tht t .th
such that the itia node is i and such that the initial node is arc of P

th
is the copy of the arc a. whose head or tail is the j - 1 node

of P'. The definition is illustrated in Figure 23, which is the

dynamic network corresponding to the path in Figure 2.2. The path from

1 to 4 + is the p copy of the ath from node 1 to node 4; this

path is not defined for p = 8

The following result was proved by the author (1981b).

TLEVTA 2 Let C be a simple cycle with transit time t > 1 in

the static network. Then the infinite number of copies of C in the

dynamic network comprise t node-disjoint infinite paths therein. *
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3. THE SOLUTION TECHINIQUE: ROUSDING OPTD/AL CONTINUOUS STATIONARY

FLOWS

In this section we give algorithms for finding both optimal

continuous and optimal integer dynamic flows, A dyramic flow x = (xp)

is called stationary if xP = xp+I for all a A and p > 1. The
a a

continuous problem is readily solved using the theory developed in

Orlin (981a) which demonstrates that if there is an optimal continuous

dynamic flow, then one such flow is stationary. To find an optimal

integer dynamic flow, we round the fractional parts of an optimal con-

tinuous stationary flow so as to maintain feasibility and the same

average cost per period. This results in an optimal integer dynamic

flow that is periodic and is also an optimal continuous dynamic flow.

The rounding procedure is subtle, and depends not only on the

preliminaries developed in the previous section, but also on the char-

acterization of "fractionally extreme" otimal static flows developed

in this section. The naive approach of rounding the fractional parts

of flows up in some periods and down in other periods wil. not, in

general, lead to a feasible dynamic flow.

THEOREM 3. (Sufficiency of Continuous Stationary Flows.) If

there is a feasible (resp., optimal) continuous dynamic flow, then

one such flow is stationary.

PROOF. If we replace the zero-throughput constraint (2.2) by

the equivalent constraint that the sum of the arc flows in transit is

O for each period (the equivalence following from Lemma 1), then the

77

-I-�"�%s�"4sLlepar]�llllll�%�der*sl�l- .. -Il^ll�··RI�·�·ll�-s/31�_11sll C----9·1C �-�I -�-·-- �_ -�qsg� _ _ 1 -



the continuous dynamic network-flow problem is a special case of the

dynamic convex programming problem. The result is then a specialization

of Theorem 1 in Orlin (981a). 3

The requirement that dynamic flows be bounded is crucial in the

above result. An example is given in Orlin (1981b) of a problem for

which there is no bounded dynamic flow satisfying (2.1) and having

finite cost despite the existence of an unbounded dynamic fow having

these properties. Moreover, if we append to that example a node 3,

and an arc (3, 3) with transit time -1 and zero cost, we may also assume

that there is zero throughput.

The Static Network-Flow Problem

Consider the problem of determining an optimal stationary dynamic

flow. Since the flow in each period is the same, we may ignore the

superscripts on the variables x- and write the problem as the convex

programming problem (3.1) of minimizing

2 c (x) (3. a)
acA a

subject to

Z x - Z x = 0 for i £ N (3.lb)

ac H. acT.
i i

and

Z t x = 0 . (3.c)
aeA a a
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We refer to the vector x = (a) as a static flow because any

vector satisfying (3lb) may be viewed as a circulation in the static

network. N-ote that each static flow x = (xa) induces a stationary

dynamic flow x = (x) given by x- = x for a E A and = 1,2,3, ,.
a a a

The value of the left-hand side of (3.c) is called the throughput of

00
the static flow x because it is also the throughput of x A static

flow x = (xa) is called feasible if (301a) is finite and if (3.lb)

and (lc) hold. A static flow is called fractionally extreme if it is

feasible and its fractional elements are uniquely determined given the

values of its integer elementso A static flow x is called optimal

if it minimizes (3.la) over all feasible static flows.

As Ranel Erickson has pointed out to me, the characterization

of fractionaily-extreme flows below is partly imlicit in the paper by

Chen and Saigal (1977) concerning network-flow problems with linear side

constraints. However, our results on the fractional parts of flows are

new. Furthermore, the proof here is different.

TIEREM 4. (Characterization of Fractionally-Extreme Static

Flows.) A feasible static flow is fractionally extreme if and only if

either the flow is integer or else it is the sum of an integer static

flow and a flow around a simple cycle of k/t units for some positive

integers k < t with t being the transit time of the cycle.
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PROOF. Let y denote a feasible static flow. We rove the

"if" part first. If y is integer, then it clearly is fractionally

extreme. IP y is not integer, it is the sum of an integer static

flow and a flow of k/t units around a simple cycle C with 0 < k < t

and t the transit time of C. Let x be another feasible static flow

differing from y only on C. Then z = y - x is a circulation, its

throughput is zero, and z = 0 if a is not on the cycle C. Since

z is a circulation that takes values only on a simple cycle, in order

to satisfy conservation of flow z must be a flow of r urnits around

C. But then the throughput is rt and hence r = 0. Therefore x = y

and thus y is fractionally extreme.

It remains to establish the only if" part. To that end assume

that y is fractionally extreme and let A' be the subset of arcs of

A corresponding to the fractional elements of y. f A' = , the

proof is complete. Thus suppose A' A . We first note that A is

a union of cycles. To see this, observe that if there were an arc in

A' not on a cycle, then there wfou7ld be node i with a single arc

a' in A' incident to it. Since the net flow through i is zero,

it follows that the floCT through a' is integral, contrary to the

definition of A'.

We next show that there can not be two different cycles in A'.

Suppose that C and C' are different cycles with arcs in A and

with respective transit times 2 and i'. By possibly reorienting and

relabeling these cycles, we may assume that 0 < 2 ' 2'. Let x be

the circlation obtained by adding a flow around C of 8 units and

a flow around C' of 6' units, where 6 and 6' are numbers chosen

80

I-�-^·^r�-aarraarra�·ra�s�bra.r�-a*----�- _I
--�-I- -----Cllq·*I�JIILIIIIlllllllllllb�rr_____ ----�- -�1�1 �--�-L �-----LI-i __�



so that > 0 and 6 + bi2 = 0. Then x is a non-zero circulation

and its throughput is zero. Furthermore, if 5, 5' are sufficiently

close to zero, then y + x is feasible and differs from y only on A,

contradicting the fact y is fractional-ly extreme. Therefore A'

consists of a single simple cycle C.

Since y is a circulationcr the net flow through each node is

zero, and thus the net flow through each node as restricted to arcs of

C is integral0 Therefore the fractional parts of flows in the forward

arcs of C is the negative of the fractional parts of the flows in the

backward arcs of C, and we may ·Trite y as an integral flow plus a

flow around C of k/f, with 0 < k < 2 having no common factors.

It remains to show that 2 divides the transit time t of C. To

this end, let y be the flow derived from y by subtracting a flow

of k/i units around C. Then y' is an integral flow with throughput

t(-k/2). Since an integral flow has integral throughput, it follows

that 2 divides t.

Rounding and q-periodic Solutions

A dynamic flow x = (xP) is called q-eriodic if x = x +
a a a

for a A and p > i. The goal of this subsection is to develop a

procedure for transforming a fractionally-extreme optimal static flow

y into a q-periodic optimal integer flow x, where q is the least

common denominator of the fractional parts of the elements of y0 The

procedure consists of rounding the fractional parts of the elements of

00

y by increasing and decreasing flows along infinite paths in the dynamic

network.
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Let P be an infinite path in the dynamic network G . To

increase the flow along P by 5 is to increase the flow in each

forward arc of P by 5 and decrease the flow in each backward arc

by 5.

In the following we will use the expression r(mod p) to denote

the value q in [O, p - 1] such that q r(mod p). For example,

8(mod 3) = 2, and 9(mod 3) = O.

If w and x are dynamic flows, we say x rounds w if x

is integer and the supremum norm of x - w is less than one.

THEOREM 5. (Optimality of rounding. ) If y is a fractionally-

extreme static flow and if a is the least conmnon denominator of the

fractional parts of the elements of y, then there is a feasible q-

00

periodic dynamic flow x that rounds y and has the same average

cost as y . If also y is an optimal static flow, then x is an

optimal continuous dynamic fl ow.

PROOF. If y is integer, then . = 1 and the result is trivially

true on choosing x = y . Thus, suppose y is not integer. y nheorem

4, y is the sum of an integer static flow and a flow around a simple

cycle C of k/t units for some positive n-meers k < t with t

being the transit time of C. Also q divides t. Let r = kq/t, so

r/ = k/t. Now by Lemma 2, the copies of C consist of t dis.joint

th
infinite paths labeled O, o., t - 1 so that the i copy of some

given node of C belongs to path i(mod t) for all i > I. Let x

00

be the integer dynamic flow formed from y by increasing he flow along
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path i by (t - k)/t if i(mod ) < r and decreasing the flow along

path i by k/t otherwise.

Increasing the flow along a path by (t - k)/t maintains con-

servation of flow at each node of the dynamic network except the first

node of the path, rounds the flow in each forward (resp., backward)

arc to the next highest (resp., lowest) integer, and increases the

throughput by (t - k)/t. Decreasing the flow along a path by k/t

also rounds all flows along the path to an adjacent integer and decreases

the throughput by k/t. Thus x rounds y

Since q divides t, the flows along k/t paths increase by

(t - k)/t and the flows along (t - k)/t -aths decrease by k/t.

00

Hence x has the same throughput as y . Since conservation of flow

is also maintained, x is feasible.

Moreover, x is q-periodic. To see this consider x and

a

is on path j = (i + q)(mod t). Therefore, either the flows along paths

i and j are both rounded up or both rounded down, and hence xP = xaPo
a a

To complete the proof, it remains to show that the average cost

oT

of x is the same as that of y , viz , Z ca(y). To see this,
acA a a

observe that for any nonnegative integer p, xa =tay for
j=p+l a a

each arc a e A. Since c ( ) is linear between successive integers,
a

it follows that

lim 2Z c (xp ) I
p;l cp l C ) '

u a proof. a
u -' O p=l P=l

completing the proof.
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EXAPTPLE. Consider the static network illustrated in Figure 3.1,

and suppose that a fractionally-extreme optimal static flow is:

Y 1/2, = 1/2, Y = 1/2, Y = -2. The cycle corresponding to

the fractional parts has transit-time four and comprises four infinite-

length aths in the dynamic network, and the paths are labeled 0, 1, 2, 3

so that node 1 is on path i (mod 4) for all i > . These four

paths are illustrated in Figure 3.2.

The rounding procedure given in the proof of Theorem 5 is to

round up the flow in paths 0 and 2 by 1/2 while rounding down the flow

in paths 1 and 3 by 1/2. Note that rounding up the flow in paths 0

and 1 and rounding down the flow in paths 2 and 3 would also give an

integer optimal flow, but the period length would be four instead of

the least common denominator two of the fractional parts of the elements

of the static flow.

Representing Optimal Periodic Solutions

Let x = (x) be an integral optimal dynamic flow that is q-

periodic. We call the q.A-vector consisting of the values xP

for a A and < p < a periodic representation of x. This

representation can be easily written on a circular file and is a natural

representation of the solution. This representation is usually efficient

in practice, but unfortunately is not formally efficient because the

value q may be as large as n.t

in the number of bits used to express the input string (because t
max

can grow exponentially with Al ).

Below we give another representation whose length always is

bounded by a polynomial in the length of the input string, and is easily
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1

y = -2

Figure 3.1. A
opti:nal static
lie on a cycle

1 2 3 4

static network with a given
flow. The fractional flows
ewith transit time 4.

Periods

5 6 7 8 9

3

- - - round up

round down

Fige 3.2. The four paths of the dyranic network of Figure 3 
corresponding to the arcs with non-integer flow. If the fractional
parts are rounded in the indicated way, the resulting flow is an
integer optimal flow.
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calculated starting from a fractionally-extreme optimum satic flow y

with a fractional flow r/q around a cycle C of transit time t.

To this end, label the t paths that comprise the infinite

number of copies of C by 0, 1, ... , t - I as in the proof of Theorem

5. For each arc a C, let d be chosen so that the dth copy of
a a

th
a is on path 0, and hence the p copy of a is on ath i for

i = (p - d )(mod t). Let F (resp., B) denote the subset of arcs

of A that are forward (resp., backward) arcs of C. Then we can

construct an integer optimal dynamic flow as follows:

p =
a

y if aeA-F- B
Ya

ry 1 if a F and ( - da)(mcd ) [, r - ]

or a E B and (p - da)(mod a) c [r, q - 11

aif if aE F and (p - da)(modq) e[ r, q -

ULaJ or a E B and (p - da)(mod q) [, r - 1]

Since ap is on path j for = ( - d )(mod q), the above
a

00

rounding of y corresponds to rounding up the flow in ath i for

i(mod q) e [0, r - 1] and rounding down the flows in the other paths.

We will call the sextuple (y, F, B, d, r, q) a modular representation

of x because any value may be calculated from the sextuple using
a

only modular arithmetic. The modular representation is a formally

efficient representation even if the period length q is large, but

it has the obvious drawback that more computation must be carried out

before calculating the flows on the arcs.
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4. VARIANTS OF THE MILJ7ItI CO\EX-COST DYNAMIC NiETORK-FLC O PROBLEM

Just as there are several equivalent variants of Ihe minimum-

cost network-flow problem, there are several equivalent variants of

the dynamic network-flow problem. In fact, some of the applications

given in Sections 5 and 6 are naturally expressed in terms of these

variants. All of the variants below are expressed in terms of convex

costs. However, we note that upper and lower bounds on a variable u

can be written in terms of a convex cost c() on u such that

c(u) = whenever u is less than the given lower bound or greater

than the given upper bound.

Convex Costs on Flow into, out of and through Nodes

For any node i and period p, the inflow (respo, outflow)

is the sum of all flows entering (resp., leaving) node i in that

period. The throughflow is the outflow minus the inflow. Consider

a network (N, A, t, c) in which there are associated convex costs

i O t
fJ, ft on the inf ow, outflow, and throughflow respectively of

node j E N in each period > t where the convex costs are real
- max

or + 0 valued and are linear between successive integers. Furthermore,

relax the node throughflow constraints (2.1) and assume that the sum

of the throughflows of all nodes in any period is O. (If the sum of

the throughflows is non-zero, then the throughput will change from

period to period, as is evident from Lemma 1 and its proof in Orlin

( g98b). )

We can reduce this problem to standard form by replacing the

network G with a new network G' = (N', A, t, c') constructed as

follows. Replace each node j N by three nodes of G labeled
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.i .0 .t
j, , I j and add an additional node n + lo For each arc

a = (j, k) E A create an arc (jO, k in A and refer to this arc

as the copy of (j, k) in G The arc (j , k) has the same transit

time and cost as (5, k) Finally, for each i = i, o o , n, add the

following three arcs each with transit time equal to zero: arc (ji it)

with cost f arc (t, j) with cost f and arc (n + 1, j )

with cost f.. This transformation is depicted in Figures 4.1a and 4.1b.
3

We form a 1:1 correspondence between flows in G and G as

follows. Let x be a dynamic flow in G (not necessarily satisfying

conservation of flow through nodes)o For each arc a e A, let the

flow in the copy a' A be the same in each period as the flow in

a. Let the flow in all other arcs in periods p > t be the unique

amount of flow required so that conservation of flow is satisfied.

Thus the flow in arc (j, j) (resp., jCI is the inflow

(resp., outflow) of node j in G, and the flow in arc (n + , t)

is the throughflow of j in G (Note that the tbhroughflow of n + 1

of G is the sum of the throughflows of the nodes I, .o, n of G,

and this sum is O). The above correspondence between dynamic flows

of G and feasible dynamic flows of GI is easily invertible and

is 1:1.

From the above, it is easy to see that the average cost of a

feasible dynamic flow in G' is the average cost of the corresponding

dynamic flow in Go

Convex Cost of Throughput

In the dynamic network-flcw problem, the throughput is required

to be fixed at zero. Consider the problem derived by relaxing the
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Fiire 4.la. A static network. We assume that there are
convex costs on the inflow, outflow, and troughflow.

Figure L.lb. The static network in Figure .lb after the
transformation representing convex costs on inflow, outflow
and throughflow 
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throughput constraint and replacing it by a proper convex cost c( )

on throughput such that the cost is linear between successive integers.

(This cost is treated as a long-run average cost). If G = (N, A, t, c)

is the original static network with cost c(.) on throughput, then we

can transform it into standard form by creating a new network

Gs= (N', A, t', c) with N' = N U (n + 1 and A = A U a} where

a = (n + 1, n + I) is an arc with t' = - and c(.) = c(*). All

other costs and transit times in G' are the same as the corresponding

values in G.

Let x be a dynamic flow for G satisfying the conservation-

of-flow constraints (2.1) but not necessarily the throughput constraint,

and let f be the throughput of x. We associate with x a feasible

dynamic flow y of G' as follows:

yP alfa

a 

for

for

a e A

a = a .

Then the average cost per period for

and the throughout > of y is 0.

The above correspondence is

that y is a feasible dynamic flow

holds at node n + I, we must have

all instances of arc a leaves the

G with throughput ye.

is the same as that for

also i :o To see this, suppose

for G'. Since conservation of flow

yp = + 1 for p > t . Deleting
corres&ondin a na max

corresponding dyna.ic flow x of

Periodically Repeating Parameters

In the dynamic network-flow problem, the transit times and costs

repeat from period to period. Consider the generalization of the dynamic

90o

�-� ···--��1P-----^�-,aar�-----l----r�-----� �i-- -- · · - I ----�- '



network-flow problem in which the parameters repeat every k periods,

i.e., for some k > 1 the transit times and costs of the flow initiated

in arc a in period p are the same as in period p + k for all

a A and p = 1, 2, 3, ..

Let N and A be the nodes and arcs of the original periodic

problem. We reduce the periodic problem to the standard dynamic problem

by expanding the original network into a static network

G'= (N', A', t', c') with

N' = ip : i E N and p = 1, ... , k .

The static network G' represents flow in a block of k consecutive

periods which we call an epoch, and if denotes node i in period p

of an epoch. Furthermore, there is an arc a in A' from ir to jP

with transit time t and cost C'(o) if there is an arc (i, .j) ina6

the original problem such that the transit time in period r is

p - r + kt, and its cost is ca.

The transit time in the k-period expanded network differs from

that in the original static network because transit time in the expanded

network is measured in epochs. A flow in the expanded static network

from ir to j with transit time t' eochs corresponds to a flow

with transit time p - r + t' periods in the original static network.

~E~v2LE. Let G be the network depicted in Figure tr.2 and

described in Table 4.2, where transit times for arcs (, 2) and (2,3)

oscillate between the two given values. To represent G as a static
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network with repeating arameters we expand G into the 2-period repre-

sentation G' pictured in Figure 43 and described in Table 4.3.

Head Tail Transit Time

Table 4.2. The static network of Figure 4.1.

Head

1

21

22

31

32

Tail Transit Time

22

22

2

32

12

i
12

O

22 ~I

1

2

2

3

Table 4.3. The 2-period static network of Table 4.2.

5. CYCLIC CAPACITY SETEDULING

The cyclic capacity scheduling problem is to minimize the per

period cost of bying and selling integral amounts of capacity for inter-

vals of time so as to satisfy periodically repeating demands for capacity.

Veinott and Wagner (1962) showed that the finite-horizon version of the

problem is a static finite-horizon network-flow problem.
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I or 2 3 or 4

Figure 4.2. A static network with its parameters
repeating every two periods.

0 2

2

1

1

Figure 43. The 2-period expansion of the
static network in Figure Lh.20
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The Problem and Parameters

To model the cyclic capacity scheduling problem we first partition

the infinite horizon into an infinite number of epochs, and each epoch

is divided into n periods. Period i of epoch p is represented

as ip. The interval stretching from the beginning of period ip to

the beginning of period jr is represented as Ji

In the problem formulation, we let b denote the demand for
1

capacity in period ip, independent of p. This demand must be satisfied

exactly. However, the case of excess or deficient capacity is included

as a special case of this problem because the ability to have excess or

deficient capacity in a period is the same as the ability to freely

sell or buy capacity for that period. The opportunities for buying

and selling capacity are periodic in that if capacity may be bought or

sold in interval [ip, 5 r), then it may also be bought or sold in

p+l r+
Li , j ).

The Associated Dynamic etwork-Flow Problem

In the following model, the conservation-of-flow constraint is

replaced with the constraint that the th;roughflow of node i is exactly

d. (defined below) in period p for p > t . This variant was sho-m

to be equivalent to the dynamic network-flow problem in Section 4.

Let G = (N, A, t, c) be a static network in which each node

of N represents a period. If capacity ray be bought or sold in the

interval [ip, jr), then there is an associated arc (i, j) of A

with transit time r - p epochs. The buying of capacity is represented

by a positive flow in the arc, and the selling of capacity is represented
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-N

by a negative flow in the arc. There are convex costs of buying and

selling capacity.

The demand on flow through node i is

tbz - bn
d. =

i1

for i = 1

for i = 2, 3, ... , n

and the throughput is fixed at b = b which may be modeled as in

Section 4.

To interpret the constraints, first observe that the throughflow

of node ip is equal to the net amount of capacity in period ip minus

the amount of capacity in the previous period. Furthermore, the throughut

in epoch p is exactly the amount of capacity in period nP because

any flow in transit in epoch p represents capacity bought at a period

.rj for r < p and sold in or after period 1P+. Thus any feasible

flow is such that:

i) the associated capacity in n-

2) the associated capacity in ip

3) the costs are finite.

To see that

capacity in

capacity in

(i - 1) -

is b
n

is b.
I~

for

for

p> tax
- rmax

P > t , and
max

(2) is satisfied, note that the capacity in I P is the

nP plus dl, which is bn + d = b inductively, the

p+l
period ip f or i > 1 is the capacity in period

plus d.) which is b..
1 1

The cyclic capacity scheduling problem may be applied to two
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different cyclic staffing models according as the periods are either

days or hours. In both cases, capacity is viewed as the number of

persons working.

Consider first a workforce model in which each person works for

five consecutive days at a time. Demand varies from day to day but

repeats from week to week. The objective is to minimize the average

number of excess workers per day. This is modeled in Table 5.1 and is

portrayed in Figure 5.1 as a static network in which each node of the

static network represents a day of the week. For instance, the arc

(1, 6) represents the five day workstretch from the beginning of Sunday

to the end of Friday (or equivalently the beginning of Saturday), while

a negative flow in arc (1, 2) represents an excess number of workers

on Sunday.

Next consider a staffing problem in which demands vary from

hour to hour but repeat from day to day. Each person works a shift

of consecutive hours, and shifts start at various times within the

day. This model has potential applications in scheduling telephone

operators round the clock. Furthermcre, other organizations such as

restaurants, bus companies, taxi-cab companies, and olice forces staff

workforces round the clock to meet demands that vary (to a ma.jcr extent)

periodically.

I-Bay Cyclic Staffing

The cyclic staffing problem treated above appears to be a new

model; however, if we add the restriction that a schedule repeats every

epoch, then the resulting problem is the -day cyclic staffing problem.

4any special cases of this problem have been considered in the literature,
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Trans it

Table 5.la

Capacity

Sunday

Monday

Tues day

Wedne sday

Thurs day

Friday

Saturday

Tail

I

2

3

4

5

6

7

Head

2

3

5

6

7

I

Lower
Bound

_ 0

_ 00

_ O

_ 00

_ X0

_ 0

Upper
Bound

Transit
Time

0

O

O

O

0

O

O

Table 5.lb
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i

Figure 5.1. The static network for the 5-day

or kforce scheduling problem of Table 5.1.

.4~ ~ ~ ~ ~ wok rbe o al )l
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I

for example, Baker (1974), Bartholdi and Ratliff (1978), Bartholdi

et al. (1980), and Tibrewala et al. (971). In the problem illustrated

in Figure 5.1, the added restriction would imply, for instance, that

the number of persons on the workstretch from Sunday to Friday is the

same each week.

The largest subclass of the -day cyclic staffing problem to

be solved with a polynomial algorithm is that by Bartholdi, Orlin and

Ratliff (1980), which includes the subclass of cyclic staffing problems

in which all shifts have the same lernth. There is no known polynomial

algorithm that solves the entire class of 1-day cyclic staffing problems;

however, the problem is not yet classified as NP-complete.

Although the cyclic capacity scheduling problem differs from

the -day cyclic staffing problem in that solutions are not required

to repeat each epoch, the solution obtained for the cyclic capacity

scheduling problem "almost repeats" each epoch. The solution is obtained

with the rounding algorithm in Section 3, and thus the integer solution

varies by at most one from epoch to epoch. In terms of staffing, the

number of persons on any shift varies by at most one from day to day.

6. OTHER APPLICATIONS

In recent years networks have been applied to a variety of

situations including production, transshipment, inventory, and workforce

models (see, for example, Glover and Klingman (1977))o W-hen the above

models involve parameters that repeat periodically over time, they may

often be modeled as dynamic network flows. Below, we give a list of

potential applications that is not intended to be complete, but is

offered as a representative sampling.
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The Minimum Cost-to-Time Ratio Circuit Problem

This first application differs from the others in that it is

a previously solved problem. Dantzig, Blattner, and Rao (1967) introduced

the "tramp steamer problem" which involves a steamer visiting n distinct

ports. Traveling from port i to port j takes t.. days and earns

a profit of p.. dollars, and both the transit time and profit are

independent of the starting time for the trip. The obective is to

determine an infinite-horizon tour that maximizes the average daily

profit. Although the problem is phrased as a transportation problem,

it has applications in several areas as detailed in Fox (1969). The

problem is also equivalent to deterministic semi-markov decision chains,

as described by Fox.

The static network has n nodes, one for each port, and for

each pair i, of distinct nodes there is an arc (i, j) with transit

time tij and unit cost -Pij. The upper and lower bounds on arc

flows are and 0 respectively, and the throughput is fixed at 1, repre-

senting the tramp steamer.

Dantzig, Blattner and Rao formulated the problem with the above

static network. They observed that each basic solution of the static

network-flow problem is a flow around a circuit, which is a simple

directed cycle. Each circuit induces an infinite horizon tour. Ports

are traveled in the order that they appear on the circuit, and the

average daily cost is the ratio of the cost of traveling the

circuit to its transit time. Thus an optimal circuit has the minimum

cost-to-time ratio and induces an optimum tour. This tour is exactly

the same tour determined by the rounding procedure in Section . To
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see this, note that if t is the transit time of the circui C,

then the optimum continuous-valued static solution has a flow l/t

on each of the arcs on the circuit and 0 elsewhere, thus achieving

a throughput equal to i. Ir the dynamic network, the flows on t - 1

of the resulting t infinite-length paths are rounded down while the

flow on the remaining path is rounded up. It is this last path that

gives the optimum tour. Thaus the rounding procedure of Section 3 is

a generalization of the method for solving the tranmp steamer problem.

Incidentally, the minimum cost-to-time ratio circuit problem

has excited a fair amount qf interest in recent years. Many authors

including Lawler (1967), Rinaldi (975), Megiddo (1978), and Fox (1969)

have attempted to find efficient methods for computing the optimum

circuit. Lawler gave an 0(n3 log(n + t x)) algorithn, and more

recently Megiddo found an O(n log n) algorithm. In the special

case in which each transit tinme is either 0 or , Karp and Orlin (1980)

discovered an (n3) algorithm. This special case has applications

in the area of workforce scheduling (Bartholdi et al. (1980)), and

in cyclic lot sizing (Graves and Orlin (1980)).

Airpolane Routing

Consider the problem of scheduling a fixed number of aircraft

for a partially fixed periodic schedule of daily repeating flights

between n cities. Each flight is expressed in terms of (1) its

departure site and time, e.g., Boston at 3 PM, (2) its arrival site and

time, (3) its cost (or profit), and (4) whether it is required or optional.

A required flight must be flown each day, whereas an optional flight may

be flown at the scheduler's prerogative.
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The aircraft are considered to be identical in that any aircraft

may fly any route. Furthermore, we do not require that the flight

schedule repeat daily. Indeed, an optLmal schedule may repeat only

after a number of days.

The problem o minimizing the number of aircraft needed to fly

the schedule was proposed and solved by Dantzig (1962) and Orlin (1981b)o

Rather than repeat the xay to model this problem, we refer the reader to

(I981b). The difference here is that e associate a cost with each

flight and we require a fixed number of aircraft. Other than that, the

detailed explanation in (981b) is appropriate for the minimum-cost

model.

Dantzig (1962) formulated the variant of the above problem in

which the final schedules are constrained to be stationary. His formu-

lation is the static net work-flow variant (3.1) of the yrnamic network-

flow problem subject to the additional constraint that flows are integer

valued. In general, this integrality requirement Twill result in a

static solution whose cost is greater than that of an optimal tynamic

network flow. M-reover there is no knImown polyomial algorithm for

solving this integer progranming problem.

Dantzig t s heuristic solution technique is to assign a unit price

p (Lagrange multiplier) to each airplane and to replace the constraint

on the fixed number f of airplanes by an associated cost in the objective

function. Assuming that there is a feasible schedule with at most f

airplanes, then as the price p is varied parametrically from 0 to ,

the number of airplanes in the resulting schedule decreases monotonically

until there is a value p for which there are alternative optima with
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f' and f" airplanes respectively with f' f < f f". In this way,

one can obtain optimal solutions for the problems in which the number

of airplanes is fixed at either f' or N7 , and Dantzig's heuristic

is to select the "preferred" of the to schedules.

Cyclic Production, Storage and Transshipment

Consider a number of cities with demand for a certain good that

varies periodically over time, e.g.,, demand for bread or for petroleum

products. We assume that demand is satisfied by shipping goods in a

fixed mmber of trucks from a number of supply/production sites, where

the cost of production is assumed to be convex. We restrict our attention

to the case in which each truck must unload all of its goods at the

demand site upon arriving. (The case in which a single truck can service

many demand sites without reloading is IP-comeplete, as is proved in the

appendix.) The objective is to determine a production schetale and

shipping schedule over time so as to minimize the daily cost.

Below we consider two cases of the problem for which demands

and costs repeat daily. Thne periodic problem may be formulated using

the technique in Section 4 for expanding static networks.

The problem is formulated as follows:

(1) production site i has a convex cost c.(-) of producticn

for i = , ... , r;

(2) demand site i has a demand b for goods repeating daily

for i = r + , ... , n

(3a) the number of trucks is bounded above and below, or
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(3b) storage is allowed at the production and demand sites

at a convex cost.

Constraints (3a) and (3b) are related in that flow is measured

in goods traveling over time; if storage is allowed, then storage will

be interpreted as throughput as will a truck traveling. Simultaneously

allowing both (3a) and (3b) results in a problem that is NP-complete,

as proved in the appendix, even in the case in which there is but one

truck.

The static network has node set (1, 2, ..., n. For each

production site i and storage site j, there are arcs (i,j) and

(j,i) with transit times that are the number of days of travel time

between the to sizes. Thus the static network is a complete directed

bipartite graph. For i = r + ... , n there is an additional con-

straint that the flowr into i is b. in each period, and for

- =1 '..., n the flow out is bourded above by u. and below by i.

These constraints are modeled via the transformations given in Section 4.

Combined with the conservation-o-"'low constraint (2o2), these constraints

guarantee that (1) and (2) are satisfied.

If no out-of-truck storage is allowed (in both models goods rmay

be stored. in the trucks), then the flowr in transit is the number of

trucks. Thus upper and lower bound constraints on the number of trucks

may be modeled via upper and lower bound constraints on the throughput

and can be modeled as in Section 4. If the number of trucks is not

restricted, then wve may model storage at site i by a loop (i,i)

with transit time and an appropriate convex storage cost.
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We note that if the throughput is not bounded, then the static

flow problem is a circulation problem with no additional side constraints,

and thus each basic solution is integral. In this case, the rounding

of Section 3 is not necessary, as the stationary optimal flow is integral.

Appendix. The P-Hardness of Some Storage and Transshipment Problems.

In this section two of the problems described in Section 6 are

shown to be NP-hard. We refer the reader who is unfamiliar with the

concepts of NP-completeness to either Karp (1972) or Garey and Johnson

(1979).

The first problem X 1 that we wish to consider is the problem

of finding a feasible infinite-horizon tour for the production/trans-

shipment problem of Section 6 under the additional proviso that a truck

may service several demand sites before returning to a supply site.

The second problem X2 that we consider is the production/transshipment
2

problem in which there is exactly one truck and storage is allowed at

each site. To show that these two problems are P-hard, we show that

each includes as a special case the hamiltonian circuit problem, which

is to find a simple directed cycle of n arcs in a directed graph. This

problem was prov-ed to be NP-complete by Karp (1972).
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THIEOREM A.1. Problem X1 is >P-hard.

PROOF. Let G = (N, A) be a directed graph. We transform the

hamiltonian circuit problem on G into a production transshipment

problem as follows:

i) node 1 is the unique supply node with a maximum supply of

n-1 units per period;

ii) nodes 2, ... , n are demand nodes with a emand of unit

each per period;

iii) the transit time for each arc with head 1 is one; all other

arcs have a transit time of O;

iv) each arc has an associated unit CGSt of 1, which is the

cost of a truck traveling the route; and

v) there is exactly one truck and it may carry n-i units

of goods.

We now claim that there is a hamiltonian circuit in G if and only

if there is a feasible transshipment schedule with an average cost per

period of n.

If there is a hamiltonian circuit, then an optimal schedule

consists of traveling along the route induced by the circuit in each

period, incurring a cost of n. Conversely, any feasible routing with

one truck must consist of the truck picking up and delivering n-l

units of goods in each period. The total cost in some period is n

only if the circuit in G induced by the truck's route consits of n

arcs, and is thus a hamiltonian circuit.
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ThEOREM A.2. Problem X2 is NP-hard.

PROOF. Let G = (N, A) be a directed graph. WVe transform the

hamiltonian circuit problem into X2 as follows. Construct G = (N', A)

as below.

i) N' = {1, 2, *.. n 1' 2 n'}. Node i is a supply

node with a supply of one unit per period. Node i' is a

demand node with a demand of one unit in periods 2n, 4n,

6n, ... and a demand of zero in all other periods.

ii) The arcs of A are (i, i') for i = 1, ... , n and

(i', j) for each arc (i, j) of A, and all lower and

upper bounds are 0 and , respectively.

iii) Storage is allowed at all sites except in periods 2n, 4n,

This transformation is portrayed in Figures A.i and A.2. We now claim

that there is a feasible routing for the above roblem if and only if

there exists a hamiltonian circuit in G.

If there is a hamiltonian circuit il, i2 , ... i in G, then

a feasible periodic tour is induced by the circuit in G'

i1, i{, *i.., i i, iI. Conversely, if there is a feasible

tour, then in periods 2n, ... , 4n-l, the truck must visit each of the

sites 1', . .. n . However, this is only possible if there is a

hamiltonian tour in G and hence a hamiltonian tour in Go

The above transformation was into a periodic version of X.

However, using the transformation of Section 4 it is easy to transform

the above in polynomial time to a stationary version of X2. 3
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Figure A.!. A static network for a
production and transshipment problem.

Figure A.2. The static network for the diagram
in Figure A.1 after the transformation given in
the proof of Theorem A.2.
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