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ABSTRACT 

The notion of capability is widely invoked to explain differences in organizational performance and research 

shows that strategically relevant capabilities can be both built and lost.  However, while capability 

development is widely studied, capability erosion has not been integrated into our understanding of 

performance heterogeneity.  To understand erosion, we study two software development organizations that 

experienced diverging capability trajectories despite similar organizational and technological settings.  

Building a simulation-based theory, we identify the adaptation trap, a mechanism through which managerial 

learning can lead to capability erosion: well-intentioned efforts by managers to search locally for the optimal 

workload balance lead them to systematically overload their organization and, thereby, cause capabilities to 

erode.  The analysis of our model informs when capability erosion is likely and strategically relevant.  
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final form at http://doi.org/10.1002/smj.2354. This article may be used for non-commercial purposes in accordance 
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INTRODUCTION 

Explaining performance and productivity variations across firms in similar markets is a major concern of 

strategy scholars and economists (Gibbons and Henderson 2010; Grant 2010; Syverson 2011). To explain 

this observation several papers invoke the notion of capability, a set of routines that enable a firm to 

produce a particular output given a set of inputs and targets (e.g., develop new products) (Winter 2003).  

This perspective holds that variations in performance across firms in the same industry can be explained by 

differences in their underlying capabilities (Nelson and Winter 1973; Hoopes and Madsen 2008; Leiblein 

2011).  Capabilities in this view manifest as a configuration of organizational routines and processes that 

combine to create a complex (Denrell, Fang and Winter 2003), nonlinear performance landscape (Levinthal 

1997; Levinthal 2000). The processes of imitation and adaptation on this landscape can lead to the 

emergence of different capability configurations (Rivkin 2001; Rivkin and Siggelkow 2003) even in the 

presence of competition (Lenox, Rockart and Lewin 2006; Lenox, Rockart and Lewin 2010), and thus the 

observed heterogeneity.   

One of the earliest articulations of the role of capabilities in determining competitive outcomes, Dierickx 

and Cool (1989), recognized that capabilities tend to behave like “stock” or “level” variables, meaning that 

they take time to both accumulate and erode.  Subsequent research, however, has focused almost 

exclusively on the processes governing the accumulation of capabilities, implicitly assuming that once a 

particular configuration is achieved, the firm can continue to profit from any associated performance 

benefits until environmental change renders one or more capabilities obsolete and the corresponding 

configuration inferior. While turnover and forgetting may lead to the loss of some skills and minor disruption 

to routines, local adaptation allows the firm to rebuild the capability and systematic erosion of capabilities is 

not likely. Explaining heterogeneous performance outcomes using this perspective thus requires 

understanding the mechanisms through which capabilities accumulate and how that accumulation might 

differ across firms.   

Despite the lack of attention given to it, erosion may play a significant role in determining competitive 

outcomes.  Consider two hypothetical cases: a) a population of firms in which it is very hard to find high-

performing configurations but easy to keep them, and where environmental changes gradually render high-

performing configurations ineffective; b) a population in which the high performing configurations are easy 

to find but also likely to be lost. In both cases we would observe significant performance and capability 



heterogeneity, but the underlying mechanisms would be very different. Leaving aside imitation effects, 

differential capability acquisition rates will be the key mechanism in one, while the other will depend on 

differences in capability erosion rates. As first suggested by Dierickx and Cool (1989), the possibility of 

erosion could thus prove critical in explaining the distribution of firms’ performance. Occupying the high-

performing configurations in the strategic landscape might thus depend not only on the entry rate of firms to 

those configurations, but also on the (undesired) exit rates from these configurations, i.e. due to capability 

erosion.  

Consider an empirical example.  Several decades into the life of the software industry the basic 

routines constituting effective software development capability are well known and stable (Cusumano and 

Selby 1995; Jones 2000).  Yet we do not find firms in this market uniformly mastering this capability and 

many software projects continue to be significantly challenged. Figure 1 shows historical data on the 

fraction of software projects falling in the Standish surveys’ successful, challenged, and failed categories. 

While the category definitions and quality of such surveys could be debated, the basic finding that 

performance patterns show little convergence over time is informative. Assuming firms do not need 

decades to develop a capability (the elements of which are well-known), then performance heterogeneity 

may better be explained by firms’ inability to sustain this capability, i.e. capability erosion.  

<Insert  Figure 1 here> 

We begin by positioning capability erosion within the broader literature, including studies outside of strategy 

research that document cases of organizational downfall. Next we draw on two case studies to describe the 

processes underlying capability erosion and how it can be the unintended outcome of organizational 

adaptation processes. Building on these cases we develop a simulation model to capture the mechanisms 

that regulate the capability erosion dynamics we observe and the role of managerial action in these 

dynamics. Analyzing the model allows us to identify the settings under which capability erosion dynamics 

would be relevant. We use our findings to build a theory that connects capability erosion to strategy and 

discuss the implications for research and practice.  

 

Capability development and erosion 

Explaining persistent performance differences across similarly positioned organizations has motivated 

several recent studies in both strategy and economics (Gibbons et al. 2010; Grant 2010; Syverson 2011).  



Large sample studies have shown that a substantial portion of the variation in firm performance arises from 

differences in internal practices and capabilities even after controlling for industry and year effects (e.g., 

Rumelt 1991; Mauri and Michaels 1998; Spanos and Lioukas 2001; Bloom and Van Reenen 2007).  

Studies performed at a more micro level reach similar conclusions.  In situations ranging from heavy 

manufacturing—pig iron (Salter 1960), steel (Ichniowski, Shaw and Prennushi 1997) and ship building 

(Argote, Beckman and Epple 1990)— to cooking meals for commercial aircraft (Chew, Bresnahan and 

Clark 1990) and human resource practices (Ichniowski and Shaw 2003), in-depth inquiries repeatedly find 

significant differences in both the conduct and the outcomes of similar tasks. Large scale organizational 

experiments have confirmed the significant performance impact of adopting alternative firm-level practices 

(Bloom, Eifert, Mahajan et al. 2013). This line of research suggests both that internal practices and 

capabilities matter, and that differences in those capabilities are not quickly eliminated by imitation 

(Henderson and Cockburn 1994; Roberts and Dowling 2002; Syverson 2011).   

For capabilities to have real explanatory power, they need to be understood and measured 

independently of the performance outcomes ascribed to them (Williamson 1999; Priem and Butler 2001).  

Therefore there has been increasing interest in the mechanisms through which capabilities are built, 

developed, and matured (Helfat 2000; Helfat and Peteraf 2003).  Building on Nelson and Winter (1982), 

several theorists have advanced the notion that capabilities result from the repeated execution of specific 

actions and experiential learning (Zollo and Winter 2002; Parmigiani and Howard-Grenville 2011). Early 

studies emphasized the routine-driven and less mindful aspects of capability dynamics (Schreyoegg and 

Kliesch-Eberl 2007). More recently, the cognitive and hierarchical foundations of capabilities have received 

more attention (Gavetti 2005; Levinthal and Rerup 2006; Felin, Foss, Heimeriks et al. 2012; Foss, 

Heimeriks, Winter et al. 2012) and several studies have focused on the dynamic capabilities that modify 

operational capabilities and other organizational resources (Teece, Pisano and Shuen 1997; Eisenhardt 

and Martin 2000; Winter 2003; Teece 2007).  

Given the large and growing body of research on capability dynamics, it is curious that capability 

erosion, defined as systematic loss of effective capabilities already established in an organization, has 

received such little attention. If variations in capability levels are central to variations in firm performance, it 

is conceivable that variations in capability erosion can be part of the explanatory mechanisms for 

performance heterogeneity. Dierickx and Cool’s classic paper underlines the potential relevance of 



resource erosion dynamics to performance heterogeneity (Dierickx et al. 1989), but subsequent research 

on capability dynamics and economic research on productivity variation have largely excluded erosion as a 

noteworthy possibility.  Some formal models have considered the existence of organizational forgetting or 

erosion (Hodgson and Knudsen 2004; Rahmandad 2012) due to turnover or insufficient organizational 

memory systems (Argote 2012), but the phenomenon has not been considered as strategically relevant, 

potentially because forgetting rates are seen as too small (Thompson 2007) or not systematically different 

across competing firms. Overall, an existing capability is seen as subject to obsolescence, but the 

underlying routines are perceived as robust and persistent once established (Helfat et al. 2003).  

Two different bodies of literature motivate a more serious look at erosion. First, research on learning 

curves suggests that organizations often forget at significant rates, empirically estimated to be as high as 

40% per year, in settings from pizza franchises to aircraft production (Darr, Argote and Epple 1995; 

Benkard 2000). Moreover these rates vary significantly across studies (Darr et al. 1995; Benkard 2000; 

Thompson 2007). However, these studies do not delve into the mechanisms of capability erosion and the 

sources of heterogeneity in forgetting rates. 

Second, several case studies suggest that capability erosion can play a significant role in organization 

failure (e.g., Hall 1976).  Klein and Sorra (1996), Sterman et al. (1997), Easton and Jarrell (1998), Pfeffer 

and Sutton (2000), and Repenning and Sterman (2002) all document cases in which firms had access to 

valuable capabilities and resources but failed to capitalize fully on them or lost them over time.  Carroll and 

colleagues (Carroll, Sterman and Markus 1997) and Zuashkiani et al (Zuashkiani, Rahmandad and Jardine 

2011) underline the potential for the loss of maintenance capability due to the reinforcing feedbacks that 

promote reactive maintenance.  Repenning (Repenning 2000; Repenning 2001) documents dynamics that 

tip product development practices into an inefficient firefighting mode  causing firms to lose their ability to 

produce high quality products. Imbalanced growth and goal adjustment have been shown to erode service 

capability and undermine a firm’s success in settings ranging from the airline industry (Morecroft 1997) to 

banking (Oliva and Sterman 2001).  Furthermore, the theory of normal accident posits that tightly coupled 

systems always include inherent failure modes due to dysfunctional interactions among system 

components that can compromise performance and safety of the large systems (Sagan 1993; Perrow 1999; 

Rudolph and Repenning 2002).  



While these studies provide examples of capability erosion, their impact on strategy research has been 

limited. To be strategically significant, organizational pathologies need to be more than infrequent cases of 

failure; they should reveal common mechanisms that could impact the heterogeneity of performance in a 

population of firms.  Not all maintenance organizations fall into the reactive mode, rates of “normal 

accidents” vary significantly across industries, and forgetting rates are highly variable across different 

organizations and it is exactly this variation that makes capability erosion an interesting mechanism to 

study. Why are capabilities subject to erosion in some settings and resilient in others? Studying the 

organizational characteristics, task structures, and feedback mechanisms that regulate capability erosion 

rates might allow us to identify both the settings in which capability erosion matters for understanding 

performance heterogeneity and the role of managers in moderating those dynamics. By connecting the two 

disparate literatures, an explicit theory of capability erosion offers the possibility of new explanatory 

mechanisms to understand firm heterogeneity and an enhanced understanding of organizational demise.  

 

DATA AND METHODS 

Our study of capability erosion is grounded in data from multiple-release software development.  Product 

Development (PD) is one of the major capabilities that influence firms’ performance (Eisenhardt et al. 2000; 

Winter 2003) and an important empirical setting for studying capabilities (Chao, Kavadias and Gaimon 

2009).  Moreover, the software industry displays significant heterogeneity in PD performance (Moløkken 

and Jørgensen 2003) despite the large literature on best practices (Jones 2000). While there is a rich 

literature looking at PD in general (see (Brown and Eisenhardt 1995) and (Krishnan and Ulrich 2001) for 

reviews), and single project dynamics (Abdel-Hamid and Madnick 1991; Ford and Sterman 1998; Lyneis 

and Ford 2007), research on the dynamics of multiple-release product development processes has been 

more limited.  

Our method for building theory about capability erosion is the model-based case study (e.g. Perlow and 

Repenning 2009). Our study proceeds in three steps, generating a different flavor of “theory” at each 

juncture (Sutton and Staw 1995).   In the first step we report an inductive study of two software 

development projects within a single firm that displayed persistent and growing differences in performance, 

despite sharing many similar features and repeated attempts to improve the performance of the lower 

performing product.  In the second step, we use both the case and existing theory to induce a simple 



dynamic model that elaborates on the mechanisms that underlie capability erosion in our setting and yields 

a logically consistent, formal theory of the phenomenon.  Analyzing the model yields internally valid 

inferences, well-defined boundary conditions for those inferences, and testable propositions (Harrison, Lin, 

Carroll et al. 2007).  In the final phase, we build on the insights from the formal model to outline a more 

general, text-based theory of capability erosion and its implications.  Our results are afflicted by the usual 

limitations of theories inspired by small samples, but our use of multiple methods should enhance internal 

consistency and better position future researchers to test the explanatory power of our theory. 

The cases motivating the modeling work were selected inside Sigma, a global telecommunication firm, 

using an intra-firm polar type research design (Yin 2009). With Sigma’s support, we identified Alpha and 

Beta, two multiple release software products that showed significant differences in development outcomes 

despite comparable technical complexity, resource loading, and incentive structures.  We selected cases in 

technologically stable markets to avoid confounding of exogenous technological shocks with capability 

erosion. The comparison of these two product teams and their practices provided an opportunity to model 

how differing approaches to sustaining PD capability could yield different performance levels, despite 

similar exogenous conditions and the absence of technological shocks.   

Data collection 

At the study’s outset (summer 2004), the first author spent three months on site at Sigma conducting 48 

semi-structured interviews, each lasting between 30 and 90 minutes.  The interviews included members of 

all the areas involved in product development within each product team: services, sales, architects and 

systems engineers, developers, testers, customer service staff, sales support, marketing personnel, and 

senior managers.  Much of the initial effort focused on clearly delineating what was actually done to 

develop new products (routines constituting the PD capability) and how that had changed over time.  To 

that end, the first author also travelled to two other sites, attended team meetings, and reviewed the 

available archival data, mostly from Alpha’s case, including planning and review files for different releases 

of the product, internal assessments conducted at the end of major releases, and quantitative data on code 

development and bug fixing, human resources, and problems reported by customers.  Additional interviews 

were later conducted (until spring 2005) to evaluate and expand emerging model constructs and 

relationships.  These efforts included 22 additional interviews and a group session that elicited ideas from 

26 experienced members of the firm.     



Analysis 

We analyzed the data in two phases.  First, following standard practice for qualitative research (e.g. Glaser 

and Strauss 1967) we focused on identifying emerging categories and causal relationships that informed 

the development of the simulation model. In each interview we searched for PD practices, how they 

changed over time, and how they related to major performance metrics (quality, cost, and schedule) and 

looked for corroborations or disagreements across interviews.  Based on these practices and the 

observations on the site, we generated several hypotheses to explain observed differences in performance 

outcomes across multiple releases of Alpha and Beta.  Some of the identified processes confirmed the 

existence of dynamics identified in prior research on firefighting (Repenning 2001), others however 

revealed new mechanisms. The complete set of these dynamic hypotheses appears in the online technical 

appendix. We then narrowed the list of hypotheses based on the most prominent themes found in the 

interviews and product histories and focused our analysis on the mechanisms that extended beyond those 

in prior research. 

In the second phase, we integrated the hypotheses that emerged from the first phase into a single 

cohesive theory via the development of a system dynamics simulation model (Forrester 1961; Sterman 

2000; Gary 2005).  The modeling process entailed first building a detailed model of software development 

in Alpha and Beta, validated by the historical performance data, and then extracting the main dynamics in a 

simpler, more stylized model that captured the essential elements of our emerging theory. This generic 

model is discussed in detail in this paper (see (Rahmandad 2005) for a full report of the detailed model and 

(Rahmandad and Weiss 2009) for an intermediate-size model focusing on concurrent software 

development).  Model formulations were developed based on case data and the relevant modeling 

literature (Abdel-Hamid et al. 1991; Ford et al. 1998). We used the archival data and expert judgment to 

parameterize and validate the detailed model. The parsimony of the generic model, however, comes at the 

cost of simplified formulations and lack of calibration to numerical data. While we conceptually separate the 

two phases of inductive research and modeling, in practice the modeling and fieldwork informed each other 

in a continuous dialogue. 

The simulation model served three purposes in our study.  First, by flagging missing and inconsistent 

components in our initial set of hypotheses, the formal model enforced the internal consistency of our 

theory. Second, the use of simulation offset the cognitive limitations normally associated with drawing 



inferences from dynamics theories (See Sterman 1994 for a summary of these limitations).  Finally, via 

extensive simulation experiments, the model enabled the derivation of testable predictions that extend our 

theory beyond the context of the case studies in which it is developed. 

 

VARIANCE IN SOFTWARE DEVELOPMENT AT SIGMA 

The espoused development process at sigma 

We first outline Sigma’s prescribed software development process, which all product teams were supposed 

to follow, and then elaborate on the differing performance of the two projects we studied.  Software is 

typically developed in three phases (design, development, testing), which can be followed serially (e.g. 

waterfall) or iteratively (e.g. spiral). Sigma’s development process was largely waterfall with the occasional 

iterative element. The practices that constitute an effective software development capability are now well-

established (Jones 2000), and Sigma’s prescribed process closely followed accepted best practice for 

waterfall development.  In the concept design phase, the main features to be added to the next release are 

chosen, the product architecture is designed, and general requirements for developing different pieces of 

code are established.  Subsequently, a more detailed outline of the requirements is developed that 

describes the inputs, outputs, and performance requirements for the new or modified code.  Next, software 

engineers (developers) develop the code based on these requirements.  The quality of the development 

depends on several factors, including the developers’ skills, complexity of the software, adherence to good 

practice (e.g., writing detailed requirements and doing code reviews), the quality of the code being built 

upon, and the quality of the software architecture (MacCormack, Kemerer, Cusumano et al. 2003).  

Preliminary tests (unit tests) are often run in this stage to insure the quality of the new chunks of code 

before they are integrated together and sent to the quality assurance stage. Quality assurance entails 

testing the code to find problems that stop the software from functioning as desired.  Often these tests 

reveal problems in the code that are referred back to developers for rework.  This rework cycle continues 

until the software passes the tests and is released.  Due to the multitude of ways a product can be used in 

the field, not all possible errors are discovered during testing.  Therefore, there are always some bugs in 

the released software. 

Customers (typically large businesses in Sigma’s case) buy and install the software and require service 

from the company.  The service department follows up on problems reported by customers and refers bugs 



to the development organization.  Bugs, if they significantly detract from customer satisfaction, are fixed at 

the customer site through an activity known as Current Engineering (CE).  Non-critical bugs are fixed in a 

subsequent release of the software, an activity known as Bug-fixing.   

The development, launch, and service activities discussed above focus on a single release (version) of 

the software, but there are typically multiple releases under development, resulting in two key 

interconnections across the different releases.  First, subsequent versions of the software build on their 

predecessors and hence carry over problems in code and architecture if those problems are not remedied.  

Second, because they draw off a common resource pool of developers, resources must be shared among 

new development, fixing the architecture, bug-fixing and CE.  Therefore, by influencing the level of CE and 

bug-fixing, the quality of past releases impacts the resources available for new development. 

Overview of two cases 

The modeling was inspired by case studies of two projects, Alpha and Beta. Alpha is a Customer 

Relationship Management (CRM) software for call centers.   While initially produced by a small start-up 

firm, Alpha was acquired by Sigma in 1996 and the team working on it has fluctuated around 120 full-time 

employees.  We focused our data-gathering effort on Alpha’s history post year 2000.  Product Beta is part 

of a telecommunication switch that is developed largely independently of its parent product, but is tested, 

launched, and sold together with that parent.  The majority of Beta’s over-80-person R&D team focuses on 

developing software.   

Over the study period, Beta’s development capability conforms to the above prescription, emphasizing 

early review, root-cause analysis, and extensive automation of testing.  As a result it often faces fewer 

defects than many other products.  When a field problem appears, the team does a root-cause analysis to 

determine its sources, thus identifying and eliminating a potential failure mode in the underlying process. 

While in other teams it is not unusual for thirty percent of the development resources to be engaged in 

current engineering activities, in Beta this number has always remained under ten percent.  Beta has also 

delivered most of its releases on time.   In two cases, Beta had to delay a release to remain in sync with its 

parent product, which was delayed.   

Alpha’s capability has been changing significantly over time. Whereas early releases were seen to 

follow the best practices outlined above, over time Alpha’s development process lost its rigor. As a result, 

while initial releases of Alpha met with significant success, led the market, and made the product a strategic 



asset for Sigma, since 2003, due to increasing delays in delivery and low quality, Alpha has ceded its 

leadership position.  Alpha’s performance deteriorated in each of the three categories in which software 

development is typically measured: schedule, quality, and productivity.  Measured either in absolute terms 

or as a percent of the original schedule, Alpha’s timeliness worsened or did not improve over the six 

releases we studied (Figure 2-a).  Quality, typically defined by customer’s experience of the software, is 

measured by the number of serious bugs reported per customer in the first few months of installation of the 

software.  As shown in Figure 2-b, the number of bugs in Alpha grew on average over the period of study.  

Finally, the productivity of the team can be measured by the number of lines of code developed per 

individual involved with the R&D process.  As shown in Figure 2-c, Alpha’s productivity declined 

significantly over the second half of the study period (2000-2005).  

<Insert Figure 2 about here> 

Although Alpha and Beta shared many attributes, including size, resources and organizational and 

incentive structures, and both had access to similar knowledge bases, their product development practices 

and results diverged. The commonalities across the cases helped us in developing a generic model of the 

contributors to PD capability dynamics; the variations assisted modeling work by providing insights into 

different modes of operation which the common structure could generate. Next, we discuss the simulation 

model, how it relates to the two cases, and how its analysis informs the role of managers in managing PD 

capability.  

 

MODEL AND ANALYSIS 

We develop our theory in two steps.  First, we focus on explaining the decline observed in the Alpha PD 

process across multiple releases.  Building on a representation of the “physics” of developing software, we 

show how Alpha’s management approach, while intendedly rational, created a phenomenon that we call 

the adaptation trap—a set of dynamics that trapped the development team in a vicious cycle of declining 

productivity and increasing demands, and eroded the PD capability.  Second, we show how Beta’s 

managers successfully avoided the adaptation trap and why Alpha was unable to learn from Beta’s 

success. 



The rise and fall of Alpha: the Adaptation Trap 

In contrast to Beta, Alpha’s use of best practice has eroded with time.  Over the period we studied, the level 

of requirement review declined, code review and unit testing increasingly suffered, and documentation of 

the code became increasingly incomplete.  One experienced developer commented:  

‘What I have seen is years and years of degradation — getting worse and worse over time.’ 

In two steps, we explain how a strategically important capability managed by well-intentioned managers 

could reach such a state. We begin by showing how the basic physical structure of any work process, when 

coupled with the effects of work pressure on productivity, creates a system with a tipping threshold, a level 

of activity that once exceeded causes a sustained decline in performance. We then extend the model to 

capture how the dynamics change when the work process in question creates an installed base of products 

that can require additional attention (e.g., bugs that need to be fixed).  The result is a system in which it is 

easy for managers to learn the wrong lessons concerning the appropriate level of resource loading, thereby 

inadvertently eroding the capability that they depend on.  

Work Pressure and Tipping. Figure 3 shows the stock and flow structure and basic feedback 

mechanisms of our initial formulation.  The stocks (boxes) represent the integration of different flows (thick 

valves and arrows) and help distinguish between a particular action or activity (flow) and its accumulated 

impact (stocks).  Stock and flow networks lie at the foundation of any dynamic system (Sterman 2000).  

The variable Demand for New Features1 represents the flow of requests for additions to the product.  In 

both Alpha and Beta, new features were proposed by sales, services, and marketing groups and were 

largely controlled by higher managers rather than R&D staff (see Figure 3).  

Newly proposed features accumulate in the stock of Features Under Development, remaining in this 

stock until they are developed, tested, and released in the market to become part of the Features in the 

Current Release.  The flow Feature Release captures the speed at which the PD organization develops 

and releases new features.   

<Insert Figure 3 about here> 

PD capability manifests in this setting as the ability to transform requests into defect-free features. This 

capability consists of a large number of individual and small group routines such as early emphasis on a 

                                                           

1 The names of variables that appear in the model diagrams are italicized when they are first introduced.   



robust architecture, detailed requirements, code reviews, automated and unit testing, and root cause 

analysis of errors.  Companies that successfully build and maintain this capability will sustain higher rates 

of feature release for a given resource base and, therefore, potentially achieve competitive advantage 

through some combination of more features, faster release times, higher product quality, and lower cost.   

Given this representation of the system’s “physics,” we now turn to how the PD capability is impacted by 

management’s decisions.  While individual and team processes such as gaining experience and learning 

from peers are important early in the capability evolution process, our study period starts when the Alpha 

team had developed plenty of experience and had a well-functioning PD capability.  In this period 

managers’ actions, and specifically the speed of work they required from their team (e.g. by increasing 

demand for new features), had a profound impact on the daily routines of Alpha. In tracing how that speed 

was set, our informants pointed to schedule pressure as a key driver (which we call Resource Ratio): the 

ratio of Resource Demand for Development given the current stock of Features Under Development and 

the Available Resources (Figure 3).  In principal, instead of requiring higher work speed, managers can add 

resources or cut the number of desired features to bring the demand for features in line with the team’s 

ability to deliver them.   

Alpha’s options appeared to be more limited.  Headcount additions could be counterproductive due to 

the associated learning curve and were not easily granted by senior management in a timely fashion.  

Similarly, feature requests were rarely eliminated, both due to the dictates of the Sigma’s leadership and 

Alpha’s own desire to satisfy its customers.  One of the managers explains the rationale behind the team’s 

philosophy of attempting to respond to the majority of customer requests: 

 ‘[The] customer is the one who is out there, and that’s what you are focused on…  if some customer 
comes, and I see I can sell to this customer if we do this thing, and there will be 7 million dollars of revenue, 
you would say yes.’ 

Given these constraints on team size and feature requests, Alpha’s PD team reacted to increases in its 

workload largely through changes in its speed of work.  Thus when Alpha experienced a growing Resource 

Ratio, the team reacted by increasing Work Speed.  The increased work speed would, in turn, lead to an 

increase in the Feature Release Rate.  Taken together these links create the balancing Get the Work Done 

loop; as the demand for new features grows, engineers work faster, release more, and, thereby, balance 

the surplus in the requested number of features.  This loop gives the team a significant measure of 

flexibility in managing the inevitable variations in its workload.  Work speed can be adjusted quickly, thus 



enabling the team to accommodate variations in its workload without constantly changing the delivery 

schedule. 

Regulating variations in demand through work-speed does have a potential downside.  The increased 

speed often comes through shortcuts and less attention to detail, leading to inadequate requirement 

development, incomplete documentation, lack of code review, and poor unit testing (e.g. MacCormack et al. 

2003).  Moreover, stress induced by sustained pressure can reduce individual productivity and increase 

absenteeism and turnover, further limiting output.  If sustained over time, such changes in daily activities 

turn into changes in individual routines, and then group routines and organizational culture regarding quality 

standards. Thus, a sustained, high, resource ratio can erode PD capability and hurt performance.  In the 

words of a technical manager in Alpha: 

‘There is … a lot of pressure put on people to say how can you do this as fast as you can, and people 
fall back on the ways that they used to do it, so instead of going through all this process stuff [they would 
say] ‘I know what to code, I can just code it up.’’ 

In our model, as the resource ratio (i.e. work pressure) grows, the error rate (broadly defined to include 

anything that limits net productivity) increases, thereby slowing the net completion rate.  As the completion 

rate slows, the stock of pending features grows (assuming a constant inflow of feature requests) thus 

feeding back to create even more work pressure.  This new feedback, the Make More Mistakes loop, is 

reinforcing and amplifies any given disturbance.  When working in the downward direction— a growing 

error rate, declining net output, and mounting resource ratio—the “Make More Mistakes” loop acts as a 

vicious cycle.  

The interplay of these two processes dictates how the net rate of Feature Release evolves with changes 

in the Resource Ratio and thus represents a key assumption in our formulation.  Consistent with 

psychological research (Mandler 1984), and previous research in product development (Taylor and Ford 

2006) and software development (Abdel-Hamid et al. 1991), our discussions with study participants pointed 

to an inverted U-shape relationship between the resource ratio and the net output.  At modest levels, a 

growing resource ratio improves net productivity as the positive effect, resulting from working faster offsets 

any increase in the error rate.  However, with increased pressure, the diseconomies of speeding-up 

(Dierickx et al. 1989) dominate, causing the net effect to become negative. 

Building on these formulations, Figure 4-a shows a characterization of the system’s dynamics.  We 

begin with the inverted U-shape curve that relates the resource ratio to the rate of feature release and 



shows both the system’s equilibria (steady states) and the dynamics around those equilibria. The system 

has two equilibria, each of which occurs at the intersection of the rate of feature demand and the inverted-

U.  These equilibria represent the points at which the resource ratio induces just enough work effort to meet 

the current level of feature demand.  Once the system reaches either of these points, it will be in steady 

state (i.e. equilibrium) with the rate of feature release equaling the rate of feature demand.  Although both 

points represent equilibria, the dynamics around them are very different.  The equilibrium that appears on 

the upwardly-sloping portion of the inverted-U is stable, meaning that small perturbations from it are offset 

by the system’s dynamics.  For example, a small increase in the resource ratio (perhaps due to a 

temporary increase by management in feature demand) would cause the feature completion rate to 

increase above the steady-state feature demand rate. That would be manifesting as a temporary excursion 

off the stable equilibrium and up the inverted U. Thus, the stock of features pending will reduce, bringing 

the system back into balance, and into using the high-quality practices.  Formally, in this region, the 

balancing Getting Work Done loop dominates the system’s dynamics and functions exactly as managers 

desire, constantly working to bring the level of outstanding work and the available resources into balance.   

 <Insert Figure 4 about here> 

In contrast, the equilibrium that occurs in the downwardly sloping portion of the inverted U is unstable, 

implying that any deviation off that equilibrium, rather than being offset, will be reinforced.  As indicated by 

the arrows on the inverted-U, the system is unlikely to ever settle at this point since even the smallest 

perturbation will push the system on to a new trajectory, away from the unstable equilibrium.  Due to these 

dynamics, the unstable equilibrium is often called a tipping point, capturing the idea that once an unstable 

equilibrium is crossed, the system’s dynamics can change significantly.   

Consistent with this intuition, the tipping point plays a key role in determining the dynamics of the 

system we study.  Figure 5 shows an experiment in which the Feature Demand rate has been temporarily 

increased, e.g. due to requests of customers or the management.  In the first experiment (Figure 5-a), the 

shock is not sufficient to push the system over the tipping threshold and, consequently, the system is able 

to absorb the shock and return to its initial performance level (as measured by the feature release rate).  In 

the second experiment (Figure 5-b), in contrast, the increase is large enough to push the system over its 

tipping threshold.  Here, rather than returning to the initial equilibrium, the system gets stuck in a vicious 

cycle of growing feature demand, mounting resource ratio and a declining rate of feature release as the 



organization increasingly moves away from good (long term) practices.  As the experiment indicates, when 

the system crosses its tipping threshold, performance declines significantly and does not recover. 

Importantly, the decline in performance is due to changes in day-to-day PD processes that compromise 

long-term quality and productivity, gradually changing PD team’s routines, and in short, eroding the PD 

capability. 

<Insert Figure 5 about here> 

Three key features emerge from analysis of the model so far.  First, due to the existence of the tipping 

threshold, the organization’s response to temporary shocks is non-linear.  Shocks that do not push the 

system over the tipping threshold are offset and only require a temporary departure from good development 

practice; absent an additional intervention, shocks that do exceed that limit cause a permanent decline in 

performance and capability.  Second, the size of the shock required to push the system over the tipping 

threshold is determined by the distance between the stable equilibrium and the tipping point. When the 

distance is large, the system can absorb a substantial shock; when it is small, a modest perturbation can 

push performance over the edge.  Third, the distance between the two equilibria is a function of the steady 

state rate of feature demand.  As shown in Figure 4-b, as the rate of feature demand (horizontal line) 

requested by customers or management rises, the two equilibria move up the inverted-U and the distance 

between them shrinks.  At very high feature demand rates, both equilibria disappear and the system’s 

dynamics are dominated by a downward capability eroding spiral.  Thus, managers in this system face a 

clear trade-off between performance and robustness: As they demand more features, performance 

continues to improve (as long as they stay within the inverted-U).  However, as feature demand rises, the 

size of the shock required to push the system over its tipping threshold declines.  This is a general result 

that holds as long as mounting work pressure eventually leads to a decline in productivity. 

Alpha’s performance clearly declined over the period of study, and a vicious cycle of accumulating 

outstanding work, mounting work pressure and declining performance was a major factor—one team 

member described it as: ‘Ever increasing pressure to deliver higher quality in shorter intervals with fewer 

resources — it seems never good enough.’  Moreover, the interviews strongly suggest that the declining 

performance resulted from changes in the way the work was executed.  Several developers noted that, due 

to schedule pressure, the Alpha team increasingly abandoned the elements of good software practice such 

as documentation in favor of getting the work done more quickly.  One developer reported: 



‘Code review is not formal here… in my view it should be formal… that would be great, but honestly I 
can’t imagine doing that here because it takes too much time… I would love to do it, because that is an 
obvious way to improve the quality, but the time it would take to do it’ 

The effect on the team’s morale was predictable: 

‘…people are frustrated…everybody is under pressure, and specially as it gets closer and closer, we get 
upper management say I want you to work weekends, I want you to work seventy hours a week, and I want 
everybody to work from home till it is dawn, I don’t want to come any hour of the day and find the place 
empty, and people say gee I am working my ass off and I am not getting the raise, they cancelled my 
vacation, what do I get out of it, when it is done there is another release right behind it, and I have to go 
through the same thing again. You end up in survival instinct, so it is like hang out and survive…. all this 
would definitely affect the quality.’ 

Alpha’s capability clearly suffered the consequences of this increasingly ad hoc and high pressure mode 

of execution.  While it started well, Alpha’s quality declined significantly and later releases were plagued 

with bugs requiring additional resources for remediation. One might have expected the Alpha team to 

recognize that they were tipping into a vicious cycle and to have reduced the emphasis on speed 

accordingly.  Our interviews pointed to two complementary reasons for why such response was not 

adopted by Alpha. At one level, the management’s mental frame for analyzing and responding to schedule 

pressure assumed a positive, albeit diminishing, relationship between required speed and actual output. 

The simple decision rule of asking for more to get more was intuitive and easy to act upon, which partly 

explains its persistence. A second mechanism for persistence of this heuristic relates to how the managers 

learn in such settings, which we elaborate on under adaptation trap. 

The Adaptation Trap.  The impact of errors in development goes beyond the immediate rework they 

require when discovered. Some errors escaped the quality assurance process and remained in the 

software shipped to customers.  When discovered by customers, these errors would be referred back to the 

R&D department.   If the problem interfered with an important customer need, R&D would assign engineers 

to fix the problem, usually through quick, customized patches at the customer site. Such current 

engineering (CE) could take a significant share of R&D resources:  Alpha allocated 30-50 percent of 

development resources to CE work; Beta, in contrast, kept this number below 10 percent.   

Current engineering introduces two important wrinkles to our analysis.  First, CE requires additional 

resources.  Second, those resource requirements can only be known with a significant delay.  Customers 

must buy, install and use the new release before CE resource needs are revealed.  In this section, we show 



how these two features make the challenge of learning to appropriately balance resources and demands 

far more difficult, and thus the capability erosion dynamics more likely. 

<Insert Figure 6 about here> 

Figure 6 shows the structure of our expanded model2.  The flow of Feature Release now accumulates in 

a stock of Features in the Current Release, representing the installed base of code released to Sigma’s 

customers.  A new flow, Defect Introduction, now runs in parallel to Feature Release, and captures the 

stream of defects in new features that are not identified by in-house testing.  The defect flow accumulates 

in the stock of Defects in the Current Release, representing the stock of defects in software currently being 

used by customers. 

Defects in the field are eventually discovered and create additional demand for PD resources via current 

engineering. The demand for CE increases the schedule pressure and thus the Error Rate.  These new 

links add an additional reinforcing feedback to the model, the Current Engineering loop.  As the stock of 

defects grows and customers request additional Current Engineering, developers face even more demands 

on their time and must work faster to meet their delivery targets.  As we discussed in the previous section, 

the increased work speed can result in an even greater error rate, causing the stock of defects in the field 

to grow further.  Note that the strength (or gain) of this loop is potentially high as current engineering is 

often extremely costly relative to fixing problems before they are released (Boehm 1981) and is usually 

resolving the problem of a single customer.  As one developer reported: ‘When somebody goes to fix a 

defect, they can write just as much code [as new development].’  

While Alpha’s PD team had little impact on feature demand rate (thus treating feature demand as 

exogenous in Figure 3), regulating this demand rate (as well as project deadline and resources) was the 

main lever managers had at their disposal for getting the best possible result from the PD organization. The 

addition of current engineering and the delays associated with perceiving its full impact increases the 

challenge facing those managers for two reasons.  First, CE requires additional resources and thus 

reduces the capacity of the organization to develop new features.  This shifts the inverse U-shape graph in 

Figure 4 down.  Accounting for the magnitude of the shift creates a second challenge.  Consider the 
                                                           

2 Detailed model equations, consistent with model reporting guidelines (Rahmandad and Sterman 2012) 

are available in an online appendix. 



decision to increase the rate of feature demand: Due to the delay in perceiving the increased CE demand, 

in the short run, the system behaves as though no additional errors (from the additional features) make it to 

the customer sites.  Therefore, the delay increases the apparent capacity of the system.  In fact, as the 

fraction of errors that goes undiscovered grows, so too does the apparent capacity of the system to do 

additional work (since resources do not appear to be needed for rework) (see Figure 7).  In other words, in 

the short-run, the system will behave as though it has more capacity than is actually available. 

<Insert Figure 7 about here> 

This feature of the system—that its short-term behavior differs significantly from the long run 

performance—makes learning difficult.  Recall the distance between the stable equilibrium and the tipping 

threshold is determined by the feature demand.  Increasing the rate of feature demand makes the system 

more susceptible to a descent into destructive firefighting.  Thus, the task facing managers is to trade-off 

the higher level of performance that comes with a higher feature demand against the decline in the 

system’s robustness to temporary shocks.   

Such a decision is not particularly amenable to formal analysis.  The organization’s true capacity is 

difficult to estimate as is the workload associated with a given set of features.  Managers are thus likely to 

engage in local search, progressively increasing the workload through more feature demand or tighter 

deadlines, and monitoring the performance of the system to determine whether the increases yield a higher 

rate of feature release.  Such local search processes are central to how organizational routines adapt and 

create better performance (Nelson et al. 1982). Tightening the schedule to get the maximum feasible 

performance was a common strategy in Sigma.  A program manager comments:  

‘The thinking that [a higher manager] had, and we think we agree with this, is that if your target is X and 
everybody is marching for that target, you fill the time for that target.  If you are ahead of the game, people 
are probably going to relax a little bit: because we are ahead of the game, we don't need to work so hard, 
we can take a longer lunch, we can do whatever; and guess what? Murphy's law says you now won't make 
that target.  So […] you shoot for X minus something, you drive for X minus something so that you build in 
on Murphy’s law to a point.’ 

Localized search coupled with a system that displays different short and long run dynamics leads to the 

notion of the Adaptation Trap.  Consider Figure 7 and imagine a manager attempting to set the appropriate 

balance of work and resources by incrementally increasing the rate of feature demand.   In the short-run, 

the system will behave as described by the upper inverted-U (which we label the apparent system).  Such 

local search will lead to a level of loading somewhere near the peak of the apparent curve.  However, if the 



true, long-run, behavior of the system is described by the lower curve, then the adaptation process will 

have expanded feature demand beyond the sustainable capacity of the PD organization.  When the 

additional CE work does eventually start to appear, the PD organization will find itself past its tipping 

threshold and on the slippery slope of firefighting.  The tight schedule and high feature demand, which 

initially seemed so effective, will cause the rate of feature release to fall below feature demand. That leads 

to continued growth in the stock of features to be developed and, thereby, ensures that pressure stays high 

and that the organization remains in the firefighting mode.  Thus, in contrast to early experiments in which 

an exogenous shock was required to push the system over the edge (and previous analyses of tipping 

behavior in organizations such as (Repenning 2002) and (Rudolph et al. 2002)), the Adaptation Trap notion 

suggests that such a decline can occur endogenously, resulting from the well-intentioned efforts of 

managers to optimize their system. Due to delays inherent in getting feedback, managers do not receive 

complete information about the results of their experiments, leading them to systematically overload their 

development teams. 

The existence of the adaptation trap depends on managers not fully accounting for the delays in the 

system.  Were they to fully account for delays in assessing the consequence of each incremental increase, 

they would be less likely to overshoot.  At Sigma, the calculation of expected resource needs for CE was 

far less complicated: development teams were expected to dedicate no more than 10% of their resources 

to CE activities. This rule was integral to resource allocation across projects. We found the application of 

this heuristic was not challenged in the presence of contrary data, let alone be modified in recognition of 

delays involved in perceiving CE needs. Experimental research, in which subjects have repeatedly been 

shown to both underestimate time delays and fail to properly account for their impact on a system’s 

dynamics (e.g. Sterman 1989; Diehl and Sterman 1995), further supports the core adaptation trap 

mechanism.  

Beta’s success in avoiding capability erosion 

The previous discussion identifies the cognitive heuristics and consequent dynamics that can result in 

capability erosion, thus raising the question of why Beta did not fall prey to the dynamics that were so 

damaging to Alpha. The first order answer is simple; in contrast to Alpha’s emphasis on flexibility and 

immediate efficiency, Beta was not willing to adjust its PD routines when the demand for new features 

exceeded its ability to deliver them; the new features simply had to wait.  A manager explains: 



‘In [Beta]… we have lots and lots of huge pressures… [but] we don’t skip process, because that is the 
tone we set… I have had people who skip process and I have had them fired, that it is not a platitude, I 
insist.’ 

 Interestingly, though, we heard similar statements from managers of the Alpha team and they 

made repeated attempts to improve their use of best practice.  Yet, despite their best intentions, the Alpha 

team appeared incapable of making the difficult decisions necessary to manage their resources effectively.  

Comparing the two projects suggests that whereas both projects “talked a good game”, only Beta was able 

to translate the desire to match resources to demand into specific, operational practices. Three such 

practices appeared to be critical in avoiding the adaptation trap dynamics that proved so damaging to 

Alpha. 

First, in contrast to Alpha, Beta dedicated a separate team, comprising about 10% of its developers, to 

current engineering.  The fungibility of resources among the different phases of development is a key 

source of the dynamics we study.  The positive feedback at the heart of our analysis becomes dominant 

when scarce development resources are pulled away from high productivity early-phase development work 

and dedicated to low productivity current engineering work.  Beta’s policy of fixing the allocation of 

resources to low productivity CE work greatly weakened this feedback and made their system far less 

prone to tipping.  Note, however, that this policy restricted Beta’s flexibility and short-term effectiveness.  If 

CE demand exceeded 10%, then limiting the allocation of resources to CE could result in numerous 

unresolved customer complaints and negatively affect demand for the product; if CE demand was less than 

10%, valuable engineering resources would be wasted. 

 Second, the Beta leadership enforced a “No-Late-Feature” rule. While the Alpha team frequently 

accepted changes in requirements far into the design phase—thus necessitating rework and further 

process shortcuts—Beta’s managers resisted the pressure to add features once design started.  The ability 

to match demands with resources allowed Beta to execute most of its work following best practice (i.e. few 

shortcuts) resulting in a low error rate and a small amount of CE.  Again, note that this policy restricted 

Beta’s ability to respond to its market.  If a valued customer made a late feature request, Beta was not able 

to meet it until the next release. 

Finally, Beta’s approach to learning differed significantly from that employed by Alpha.  Beta often 

capitalized on the learning opportunity provided by the defects it did discover.  Whereas Alpha reacted to a 

new field problem by trying to fix it quickly so that they could get back to their backlog of new features, the 



Beta team frequently took the time to trace an error back to a flaw in their development process and then 

adjusted that process accordingly.  Results of those analyses could impact personnel review and 

incentives, particularly if developers were found to have departed from best practice, thus strongly 

communicating the behaviors that Beta valued from its members.  While the Alpha team members were 

often implicitly rewarded for getting things done quickly, the Beta members were explicitly penalized for 

such (apparently) time saving departures. 

Each of Beta’s interventions appear, at least ex post, to be smart but also somewhat obvious ways to 

insure that the development team continued to maintain its capability. The relative simplicity of Beta’s 

practices and the consequent results—Beta was regarded as one of the best managed projects in Sigma— 

raises the question of why did Alpha not follow suit?  The first part of the answer is simply that it probably 

wasn’t as simple as it looked after the fact.  A long line of experimental and theoretical research highlights 

the challenges of learning in dynamically complex settings (Brehmer 1992; Repenning et al. 2002; 

Rahmandad 2008); and the dynamic complexity arising from the tipping point and the adaptation trap would 

make it hard for any manager to learn the right lessons from their experience and avoid capability erosion.  

But, the dynamic complexity of software development notwithstanding, Beta managed to figure it out, and 

Alpha did not. 

Beta’s success in avoiding erosion appears to turn on a combination of luck and a willingness to learn 

from experience. By chance, some of the key managers in Beta had prior experience with capability 

erosion dynamics. These managers report that those experiences significantly influenced their belief in the 

utility of adhering to good practice.  In contrast, members of the Alpha team reported few such formative 

experiences. One of the Beta managers recalled: 

‘Early in my career… when I was in an organization that did wireless… we were under tremendous 
market pressure to get the product out…and you just do anything you can to get anything out, not one 
comment was put in a lot of code, not one thing was inspected, not one thing was documented, you know, 
it was classic, and it never worked, and still to this date it is in the field, and it has problems… and that’s 
where I really cut my teeth and learned my lesson’ 

Beta was also lucky in another way. Two times during the history we studied, Beta’s parent product 

experienced a significant delay even though the Beta team was on track to hit the original schedule. Those 

delays provided the Beta team with time to reflect, improve their processes, and prepare for the next 

releases. These delays pulled Beta farther below its tipping threshold, allowing them to increase the 



effectiveness of their work.  One of the Beta managers reflected on how this externally imposed delay 

allowed the team to reinforce its capability: 

‘How we got here? The answer is in investing in [the] future. And from the [Beta’s] perspective we got 
lucky. If I go back to the first release [of Beta],… they [the parent product] were running into many more 
schedule problems than we were … this allowed us to go back and actually do a lot of things that we would 
have preferred to have done at the beginning but we never got the time to do... So we benefited by that 
additional time to really add a lot of foundational components.’ 

The delays not only helped Beta place more focus on the high-productivity front end of the development 

process, but the success of those efforts further reinforced the linkage between good practices and good 

performance.   

In contrast to Beta’s ability to learn from the experience of its members and capitalize on its good 

fortune, three factors likely conspired to prevent Alpha from learning a similar lesson.  First, the project was 

staffed by a younger, less experienced team, many of whom had never been associated with a major 

failure.  Second, the project was initially quite successful, thus reinforcing the team’s belief that they were 

on the right track and did not need to revisit their approach to developing software.  Finally, note how the 

system’s dynamics caused the cost of adopting Beta’s practice to rise over time.  Beta dedicated a fixed 

team to current engineering, about 10% of its resources, but as Alpha’s performance declined its CE 

demand often fluctuated to as high as 50% of its total activity.  Creating a dedicated CE team would have 

dramatically reduced the team’s ability to generate new features and threatened the viability of the project.  

Similarly, the growing number of quality problems eroded Alpha’s bargaining position with customers, 

making enforcing a “no late feature” rule increasingly infeasible.  Finally, with hundreds of errors reported 

from the field, conducting root-cause analysis was increasingly costly, undermining incentives for high 

quality work.  Thus, even if Alpha did eventually come to realize the wisdom of Beta’s approach, as the 

project continued, capitalizing on those insights became increasingly infeasible. 

 

CAPABILITY EROSION AND STRATEGY 

Explaining the existence of persistent performance differentials in similarly positioned firms remains a 

challenge facing strategy scholars (Gibbons et al. 2010).  A growing body of literature tackles this question 

by detailing the difficulties that organizations face in finding their way to the optimal configuration of 

resources and capabilities required by their chosen context.  Research by Levinthal (Levinthal 1997), Rivkin 



(Rivkin 2001) and others shows that performance landscapes can be quite “rugged”, complicating the 

discovery of optimal configurations. Moreover, from low exploration (March 1991) to hot stove effect 

(Denrell and March 2001), and dominance of local search resulting in competency traps (Levitt and March 

1988), existing research documents multiple mechanisms through which learning can be inefficient in 

exploring these rugged landscapes.  While powerful in many situations, this paradigm is less well suited to 

explaining cases in which key elements of the optimal configuration are well-documented and easily 

accessible but somehow remain unused.  In many industries, the practices associated with success are 

both well understood and well established, and a growing line of research shows that adding even simple 

capabilities can lead to substantial improvements in performance (Bloom et al. 2013).  In the language of 

rugged landscapes, these studies suggest that there is visibly higher ground in close proximity and yet 

many firms are not successful in their efforts to maintain those positions.  

Following the seminal work of Dierickx and Cool (1989), reintroducing erosion offers the possibility 

of a more complete theory of differential performance rooted in different capability trajectories. The first 

contribution of our study is to show that capabilities can erode on a strategically relevant time scale.  Alpha 

was a highly successful product and initially viewed as central to Sigma’s future growth and success; less 

than a decade later it was put on hold due to poor performance.  Capitalizing on the observation that 

erosion can influence competitive outcomes requires a theory that details both the conditions under which it 

is likely and what separates those firms that avoid it from those that do not.  While we are far from a 

complete account, the second contribution of our study is to both identify a potential erosion mechanism 

and a set of testable conditions under which that mechanism is likely to exist.  

The erosion mechanism emerging from our study starts with the notion of capability as a locally 

stable configuration of interaction patterns among organizational members that accomplishes certain tasks. 

These patterns are embedded in individual memories, organizational routines, and the physical structure of 

tasks.  Capability erosion is then understood as a set of endogenous dynamics that take an organization 

from an efficient capability configuration to an inferior one.  Prior theory acknowledges that organizations 

will often temporarily deviate from such configurations due to environmental shocks, turnover, or inefficient 

organizational memory systems (Argote 2012).  Existing theory implicitly assumes, however, that with time 



such departures will be offset and therefore have little competitive significance.  Our study indicates that 

under the competitive pressures firms commonly face, three features can combine to create a system in 

which such minor departures, rather than being offset, are amplified, and thus have the potential to yield a 

competitively inferior position. 

The first requirement is the existence of an unfavorable temporal trade-off when departing from the 

optimal configuration. In the setting we study, software engineers could improve short-run productivity by 

skimping on review, testing, and documentation but this decision caused subsequent quality problems.  

This type of trade-off has been identified in a variety of situations, including maintenance (Carroll et al. 

1997; Zuashkiani et al. 2011), manufacturing (Repenning et al. 2002), new product development 

(Repenning 2001), and financial services (Oliva et al. 2001), but its strength is likely to vary widely across 

settings.  In the case we study the trade-off was acute.  Good software practice dictates a variety of 

activities that can easily be skipped in favor of “… just writing the code.”  However, code written without 

attention to the overall architecture, continuous review and testing, or clear documentation often contains a 

large number of bugs, which must eventually be fixed.  A variety of studies clearly show that, in the long 

run, it is far more efficient to do it right the first time (Boehm 1981).  

Not every configuration, however, may be subject to the same trade-off.  For example, while 

studies suggest that preventive maintenance is useful for many types of sophisticated manufacturing 

equipment (and thus subject to an unfavorable temporal trade-off), the trade-off is often non-existent for 

easily replaced parts like light bulbs—it’s optimal to just replace them when they burn out.  When there is 

no possibility of boosting current throughput at an implicitly unfavorable cost, then the erosion mechanism 

we study does not exist. Thus, our first proposition is that, all else being equal, the stronger the unfavorable 

temporal trade-off, the more likely that erosion will play a role in determining competitive outcomes.   

The second requirement is resource fungiblity, meaning that the same resources are used to 

address both sides of the temporal trade-off.  In the Alpha project, resource fungibility was high as 

engineers could move easily from new work to fixing bugs.  The combination of the unfavorable temporal 

trade-off and fungibility creates the self-reinforcing feedback process at the heart of our analysis.  In the 

Alpha project, when engineers skimped on good development practice, thus departing from the optimal 

capability configuration, they created bugs they themselves eventually had to fix; as the resources required 

for bug fixing grew, the engineers had even less time to work on new features, thus necessitating further 



departures from good practice and pushing the organization further from the optimal capability 

configuration.   Much like the first proposition, software development is a strong case in point: resources 

are often perfectly fungible, with development teams working on everything from developing new features 

to fixing issues at specific customer sites.   

Fungibility may be less present in other contexts and thus make the dynamics we discussed less 

likely.  For example, heavy manufacturing, such as car production, probably represents an intermediate 

point on the fungibility continuum.  When problems appear in the field, engineers need to develop a fix and 

insure that the underlying defect is eliminated in future production.  In contrast to Alpha and Beta, however, 

engineers in this context rarely go fix individual automobiles.  Even further along the fungibility continuum, 

many development environments do not offer the possibility of rectifying past mistakes and thus present no 

trade-off.  Fashion goods, for example, often miss the mark and do not sell well, but once a product is 

released, designers (unlike software engineers) cannot issue “updates” or “bug fixes” to rectify their earlier 

missteps.  We would not expect to see the erosion mechanism we study in this setting. Our second 

proposition is thus: all else being equal, as the fungibility of resources across the unfavorable temporal 

trade-off increases, erosion will play a more significant role in determining competitive position. 

The final condition concerns the delay between the “better” and the “worse” part of the temporal 

trade-off.  Organizational research at a variety of levels highlights time delays as a critical variable. At the 

micro level, delays between action and outcome have been shown to hamper learning (Denrell, Fang and 

Levinthal 2004; Rahmandad 2008; Rahmandad, Repenning and Sterman 2009) and both their duration and 

impact are often underestimated (Sterman 1989).   At the organizational level, delays have been implicated 

in a variety of pathologies (Hall 1976; Perlow, Okhuysen and Repenning 2002; Repenning et al. 2002; 

Azoulay, Repenning and Zuckerman 2010).  In the setting we study, the delay between departing from an 

optimal configuration (abandoning good development practice) and realizing its full consequence (bugs 

reported in the field) greatly increases the complexity of the manager’s task.  They must both trade off an 

immediate benefit (more code) against a future cost that will not be revealed for weeks or even months, 

and anticipate any additional resources that the initial departure might eventually require.  The adaptation 

trap results because managers search for the optimum resource utilization faster than they receive 

feedback about their past decisions.  As the delay between the “better” and the “worse” parts increases, so 



too does the self-reinforcing process that erodes capability and drives the organization away from the 

optimal configuration. 

Sigma probably represents an intermediate case on the length of possible delays between better 

and worse behaviors.  Development managers at Sigma were able to see the quality of their teams’ work 

over the course of six to twelve months.  The delays are much longer in other industries.  In the auto 

industry, for example, it can take several years to develop a new vehicle and then at least one more year 

before the true quality of that vehicle has been revealed (consider Toyota’s turn of fortune in 2009, likely 

the result of product development problems many years before).  On the other side of the continuum, 

website developers can often get feedback on their work in a matter of days or even hours.  The 

mechanism we study is thus likely to be more relevant in explaining differential performance in the auto 

industry than in website development.  Our third proposition is that, all else being equal, as the delay 

between “better” and “worse” grows, erosion plays a more significant role in explaining outcomes. 

Our analysis thus suggests that the influence of capability erosion on competitive outcomes is 

contingent upon the nature of the configurations that the industry in question requires.  For configurations 

characterized by unfavorable temporal trade-offs, highly fungible resources, and long delays in realizing the 

consequences of departures from optimality, rates of capability erosion can be high and therefore 

contribute to differential competitive outcomes.  In contrast, for configurations that are not characterized by 

strong trade-offs, where resources are not fungible, and/or where managers received rapid and complete 

feedback on the costs and benefits of departures, the erosion mechanisms identified in our study are less 

likely to play a significant role.  

Implications 

Beyond positioning future researchers to test the impact of erosion on competitive performance, our study 

offers three additional implications for the ongoing search on the sources of differential performance.  First, 

the existing literature recognizes that a capability can eventually become a liability.  Established capabilities 

focus managers’ attention on a limited set of cues and may blind them to disruptive changes in the 

environment (Porac, Thomas and Badenfuller 1989; Tripsas 2009). Firms not locked into those capabilities 

may find it easier to identify the need for change and adjust their orientation towards the distant, more 

fruitful, capability bundles required by the new environment. In a similar vein, some capability configurations 



may be more difficult to maintain and therefore more prone to erosion than others.  Existing theory is 

largely silent on the relative fragility of different capability configurations, but there is good reason to believe 

that they are not all created equally. Vastly different forgetting rates across different production processes, 

(Darr et al. 1995; Benkard 2000; Thompson 2007), and variation in safety incident rates across 

organizations (Roberts 1990; Sagan 1993; Perrow 1999; Weick, Sutcliffe and Obstfeld 1999), could be 

manifestations of different capability erosion rates and not empirical anomalies.  

This conceptualization opens several avenues for future inquiry.  For example, several scholars have 

documented the benefits of the so-called High Commitment Work Practices (Berg, Kalleberg and 

Appelbaum 2003; Ichniowski et al. 2003; Gittell, Seidner and Wimbush 2010), a suite of practices that 

sometimes combine to produce exemplary performance.  These gains are driven in part by the willingness 

of employees to go beyond the “letter of the contract” in return for above-average wages, and/or job 

security. Simple game theoretic models, however, suggest that deviations by management from such 

“relational contracts” could cause that configuration to unravel.  Consistent with this prediction, there are 

several examples of firms that struggled to maintain this configuration (Rubinstein and Kochan 2001). 

Similarly, scholars have amply documented how the choice of technology shapes the organizational 

processes that surround it (e.g., Barley 1986; Black, Carlile and Repenning 2004) and technology choices 

clearly influence the optimal capability configuration.  Future research may be profitably focused on the 

question of whether some choices are more stable than others.  For example, automating production tasks 

might initially be seen as removing the human element and therefore yielding a configuration less prone to 

erosion.  However, sophisticated automation often requires more sophisticated maintenance and thus 

strengthens the unfavorable temporal trade-offs discussed above.  Therefore the net outcome is unclear: is 

erosion more, or less, likely in high technology settings? A more nuanced understanding of erosion 

dynamics is needed to shed light on the role of capability resiliency in determining competitive outcomes as 

technology mediates the transformation of different industries. Studying erosion dynamics may also inform 

related phenomena. For example, safety researchers continue to debate whether tightly coupled systems 

will always be prone to failure due to unforeseen interactions among system components (Sagan 1993; 

Perrow 1999), or can such modes be mitigated by collective mindfulness that allows early detection of 

failure modes (Roberts 1990; Weick et al. 1999). A systems perspective for understanding safety structures 

in organizations, the vicious loops potentially embedded in them, the dynamics that erode those safety 



capabilities, and the management’s role in controlling these systems, could be essential for bridging the 

different perspectives on organizational safety (Leveson, Dulac, Marais et al. 2009). 

Our second implication concerns the role of managers in offsetting erosion.  Managers play an 

increasingly central role in the current accounts of organizational strategy and a growing body of research 

focuses on the role of managerial cognition in perceiving and reacting to environmental change through the 

investment in and deployment of alternative capabilities (Nadkarni and Barr 2008; Eggers and Kaplan 

2009).  Existing capabilities are often implicated in the failure to make such adjustments as past success 

narrows the search for new configurations and creates inertia.  While strategic change and renewal 

(Agarwal and Helfat 2009) are essential for understanding firm heterogeneity, erosion may also place a 

premium on managerial ability.  The situation we study is dynamically complex (i.e. characterized by 

multiple interacting components, significant non-linearities, and appreciable time delays) and much 

experimental research demonstrates the inability of many human subjects to understand and control such 

environment (for summaries see Sterman 1994; Sterman 2000; Cronin, Gonzalez and Sterman 2009).  

There is thus good reason to believe that even without a significant environmental shock managers may 

differ in their ability to avoid erosion.  Beta’s management did so quite successfully, Alpha’s did not. 

Focusing the attention on the ability (or lack thereof) to manage the dynamics of erosion opens a new 

path for pursuing the question of persistent performance differentials in seemingly similar enterprises: What 

separates those managers who avoid erosion from those who do not?  It may be that the ability to manage 

such dynamics is an innate character trait.  Alternatively, experience and training may offer more 

explanatory power. On this score, the Beta project offers a tantalizing prospect. Learning in complex 

dynamic systems is often most effective when managers have experienced relevant cause and effect 

relationships in extreme, far from the equilibrium conditions (Sterman 2000).   When queried as to the 

sources of their ongoing success, Beta’s leader referenced experience with a project that failed 

spectacularly and the necessity of learning the value of good practice “… the hard way” (i.e. through 

failure).  Alpha’s managers, in contrast, because they were younger and started outside the company, had 

fewer such experiences.  Thus, a significant past failure, because it clearly revealed the links between 

departing from the optimal configuration and the subsequent performance decline, may have been central 

to the Beta manager’s current success. Recent research supports this view, suggesting that the transfer of 



experience across similar situations is critical in understanding complex dynamics (Gary, Wood and 

Pillinger 2012).   

Note, however, that most organizations will actively select against managers who have been associated 

with such extreme failures.  Certainly, as was the case with Beta, some will survive and their hard-won 

skills will eventually allow them to thrive.  However, this is likely to be the exception rather than the rule.  

The utility of “performance management”—a current euphemism for selecting out lower performers— has 

become an almost unchallengeable assumption in modern management practice (e.g., Spence 1976; 

Welch and Welch 2005).  And, while such selection may insure that the remaining managers have a high 

propensity for effort, our analysis suggests that it is less clear whether the survivors have the best 

understanding of the systems that they are managing. Future research could thus be profitably directed at 

testing the hypothesis that past experience with significant erosion may actually equip managers to avoid it 

in the future.  If this hypothesis is borne out, then the ability to avoid capability erosion is likely to be a 

competency that is both valuable and rare since those with the experiences that create such competency 

will often be selected out of the population.   

The final implication of our work is methodological.  Whereas the formal models in the strategy literature 

are often inherited from economics or biology (e.g., NK models) and are thus quite abstract, in this study 

we build a formal dynamic model grounded in the field observations of capability dynamics.  Our approach 

offers several benefits. We are both able to connect elements of our theory directly to the challenges faced 

by real managers and the characterization of the system’s dynamics provided by our model enables us to 

map the results of experimental studies of cognition in dynamic systems into actual organizational practice. 

In doing so, we generate hypotheses concerning which capabilities will be difficult to sustain. Formal 

models grounded in case data help capture how important features of the technology setting interact with 

managerial cognition and learning to create strategically relevant mechanisms such as tipping and 

adaptation trap.  Simulation further enables formal analysis of the resulting temporal complexity, something 

that would not be feasible using qualitative methods (March 2001). This approach allows us to uncover 

capability erosion as a relevant theoretical construct that has been absent from the previous research and 

may offer a promising venue for deepening our understanding of the sources of competitive advantage 

(Gary, Kunc, Morecroft et al. 2008).  Both abstract models and rich case-specific analyses have contributed 



to our understanding of individual and firm-level behavior.  By providing a more rigorous link between these 

two approaches, our method offers the possibility of a more unified account of strategic behavior. 

Limitations and future research  

Our findings come with the usual caveats associated with inductive studies and there are two particularly 

significant threats to the validity of our findings.  First, though Alpha and Beta were similar on many 

dimensions, we cannot rule out every alternative explanation for the differences we observed.  Differences 

in the underlying technology and the capabilities of the supporting engineering teams may have 

contributed.  Retrospective bias may have also influenced how informants recalled past experiences in the 

two cases. Second, studying a single firm restricts the generalizability of any finding, particularly in our case 

as we use an intra-firm comparison to theorize about inter-firm differentials. We address some of these 

problems by using dynamic modeling to organize the structures and causal mechanisms observed in the 

field into an internally consistent model that captures the behaviors we observed.  More importantly, using a 

formal model to organize our findings allows us to derive precise and testable predictions and thereby 

enables future scholars to evaluate the utility of our theory in explaining observed differences in competitive 

performance. The model developed in this study is very simple and does not include potentially relevant 

factors such as changes in development resources, schedule modification, feature cancellation, product 

architecture, and market response to quality and timeliness. More detailed models should be used to 

provide operational advice. Another fruitful extension is to capture interaction between capability erosion 

and market competition. For example, firms with eroding capabilities often lose market share, which may 

reduce future demand pressure and allow for their recovery. On the other hand, they may also lose critical 

resources and face further downward pressure (Rahmandad 2012). Finally, this research is also limited by 

focusing on a single capability, product development. Identifying key dynamics that can erode different 

capabilities in different contexts can lead to a productive research program with both theoretical and 

managerial implications.  
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Figure 1– The fraction of IT projects surveyed by Standish group over years that fall into categories of 

successful (on time and budget), challenged (failing to meet time and budget goals), and failed (had to 

be abandoned).  Source: http://www.standishgroup.com/ 
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Figure 2– Alpha’s performance on a) Percentage delay from original schedule (left) and absolute delay 

(right).  b and c) Quality in bugs reported in first 3 month of installation (both axes are zero based, scale 

hidden for confidentiality reasons), and d) Alpha’s productivity; in new lines of code per person per 

week 

 

 

Figure 3– The basic stock and flow structure for multiple–release product development. Also included 

are the balancing (Get the Work Done) and reinforcing (Make More Mistakes) loops. 
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Figure 4– a) Inverse–U shape curve of Feature Release as a function of Resource Ratio.  b) Increasing Feature 

Demand increases feature release (up to maximum capacity); it also reduces robustness (the distance between 

stable equilibrium and tipping point). 
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Figure 5– The reaction of simulated PD system to two slightly different demand shocks a) The system recovers 

through the balancing “Get the Work Done” loop. b) Tipping point is crossed and the reinforcing “Make More 

Mistakes” loop dominates, thus performance deteriorates. 
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Figure 6– The structure of the model with the addition of products in the field.  The new structures are 

highlighted through darker variable names and thick causal links. 
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Figure 7–  The curves for apparent (solid) and true 

(dotted) Feature Release vs.  Resource Ratio.  In 

the apparent curve, the demand for CE is kept at its 

short term value despite adaptive increase in 

feature demand.  The sustainable path comes from 

the same experience, where the CE resource 

demand is given based on the long term level of 

Error Rate and feature release. 
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