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We consider the problem of selecting a portfolio of entries of fixed cardinality for a winner take all contest such that the

probability of at least one entry winning is maximized. This framework is very general and can be used to model a variety

of problems, such as movie studios selecting movies to produce, drug companies choosing drugs to develop, or venture

capital firms picking start-up companies in which to invest. We model this as a combinatorial optimization problem with

a submodular objective function, which is the probability of winning. We then show that the objective function can be

approximated using only pairwise marginal probabilities of the entries winning when there is a certain structure on their

joint distribution. We consider a model where the entries are jointly Gaussian random variables and present a closed form

approximation to the objective function. We then consider a model where the entries are given by sums of constrained

resources and present a greedy integer programming formulation to construct the entries. Our formulation uses three

principles to construct entries: maximize the expected score of an entry, lower bound its variance, and upper bound

its correlation with previously constructed entries. To demonstrate the effectiveness of our greedy integer programming

formulation, we apply it to daily fantasy sports contests that have top heavy payoff structures (i.e. most of the winnings

go to the top ranked entries). We find that the entries produced by our approach perform well in practice and are even able

to come in first place in contests with thousands of entries. Our approach can easily be extended to other problems with

a winner take all type of payoff structure.
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History:

1. Introduction
Imagine one must select a portfolio of entries for a winner-take-all type of contest where all or nearly all

of the winnings go to the top performing entry. Because of the top-heavy payoff structure, one natural

strategy is to select the entries in such a way that maximizes the probability that at least one of them

has exceptional performance and wins the contest. We refer to this as the picking winners problem. This

framework can be used to model a variety of problems which have a winner-take-all payoff structure. For
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instance, pharmaceutical companies want to select a set of drugs in which they invest research resources

such that the probability at least one of the drugs is a major success is maximized. Or consider the challenge

faced by a venture capital fund. It will invest in a set of start-up companies and if one of the companies

becomes a huge success, the fund will earn a huge return. For another example, consider a movie studio

that has to select a set of movies to produce and success is achieved if one of the movies is a blockbuster

hit. This framework can also model daily fantasy sports contests where people enter lineups of players in

a sport (such as hockey or baseball) into daily contests where the top scoring entry wins a huge amount

of money. All of these examples require one to select a set of entries (drugs, start-up companies, movies,

lineups of players) to maximize the probability that at least one of them has exceptional performance and

wins.

To select the entries one requires some predictive model of how well the entries will perform. However,

this information alone will not be sufficient to select a good set of entries. The goal is to maximize the

probability that at least one entry wins. One may select entries which have a high probability of individually

winning. However, if these entries have a high positive correlation, then the probability that at least one of

them wins may not be as large as for a set of entries with slightly lower winning probabilities but also lower

correlation so they cover more possible outcomes. Therefore, choosing a good set of entries would require

information on their joint distribution in addition to their marginal probabilities of winning. Intuitively, a

good set of entries will each have a high probability of winning, but also not be too positively correlated in

order to diversify the set of entries. What one needs to do is understand the tradeoff between the winning

probability of the entries and their correlations in order to select a good set on entries.

There can also be scenarios where the entries are not simply chosen from some fixed set. Instead, they

must be constructed from a set of constrained resources. For instance, a movie studio must hire actors for

each movie it wishes to produce, and the salary of the actors cannot exceed the movie’s budget. Or the

studio may want certain types of actors for the movie (a child actor, an older male actor, etc). As another

example, in daily fantasy sports contests, one must select players for a lineup, but the players must satisfy

budget constraints and position constraints imposed by the company running the contests. For instance, in

hockey contests, a lineup can only have one goalie. In these types of situations one must develop a method

to construct the entries in a manner which respects the constraints but still maximizes the probability of

winning.

The problem of picking winners is very similar to a variety of covering problems. One can view our

objective as choosing M entries to a contest so that we cover the most likely winners. We show that in fact

under a certain probability distribution on the entries, picking winners reduces to the well known maximum

coverage problem where the goal is to pickM subsets of an underlying set such that the union of the subsets

has maximum coverage of the underlying set. Because of this fact, a variety of other covering problems are

very similar to the picking winners problem. There is the problem of placing a fixed number of sensors in a
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region to detect some signal as fast as possible. This has been studied for water networks (Leskovec et al.

2007) and general spatial regions (Guestrin et al. 2005). There is also a problem in information retrieval of

selecting a set of documents from a large corpus to cover a topic of interest (Agrawal et al. 2009, Chen and

Karger 2006, El-Arini et al. 2009, Swaminathan et al. 2009). Another related problem is selecting a set of

users in a social network to seed with a piece of information in order to maximize how many people the

message reaches under a social diffusion process (Kempe et al. 2003). Another way to view this problem is

that one wants the message to reach a certain target user in the network, but one does not know precisely who

this user is, so one tries to cover as much of the network as possible. One can view the sensors, documents,

or seed users as entries to the winner-take-all contest. From this perspective, winning means one of the

sensors detects the signal, one of the documents covers the relevant topic, or one of the seed users is able to

spread the message to the unknown target user.

The similarity between picking winners and these covering problems has important implications. The

objective functions in these covering problems are submodular and maximizing them is known to be NP-

hard (Karp 1975). The same holds for the picking winners problem. The submodular property is important

because it means that one has a lower bound on the performance of a greedy solution (Nemhauser et al.

1978). This fact, plus the simplicity with which one can calculate greedy solutions, motivates us to use

a greedy approach to pick winning entries. The similarities between picking winners and these covering

problems suggest that we could directly use a greedy solution to pick the entries. However there are some

key differences between the problems which complicate this approach. In the covering problems, at each

iteration of the greedy approach one simply chooses the entry (a subset, sensor, document, or seed user)

from a ground set which maximizes the marginal gain in the objective function. However, we will focus on

the situation where the entries must be constructed from constrained resources and cannot simply be chosen

from a ground set. Our problem is closely related to the problem of maximizing a stochastic monotone

submodular function with respect to a matroid constraint (Asadpour and Nazerzadeh 2015). However in our

case the objective function is the probability of at least one entry winning, which many times lacks a closed

form expression. Therefore, we cannot even evaluate the exact objective function for a set of entries, which

will prevent us from directly applying the greedy approach.

To overcome these challenges, we develop a greedy integer programming formulation for constructing

entries from constrained resources for winner-take-all type contests. Our approach is fairly general and can

be applied to a variety of problems. To demonstrate the effectiveness of our greedy integer programming

formulation, we use it to construct entries for daily fantasy sports competitions. We were able to perform

exceptionally well in these contests using our greedy integer programming formulation across multiple

sports. To provide more context for our results, we next present a brief overview of the structure of daily

fantasy sports contests.
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1.1. Daily Fantasy Sports Contests

Daily fantasy sports have recently become a huge industry. For instance, DraftKings, the leading company

in this area, reported $30 million in revenues and $304 million in entry fees in 2014 (Heitner 2015). While

there is ongoing legal debate as to whether or not daily fantasy sports contests are gambling (Board 2015),

there is a strong element of skill required to continuously win contests as evidenced by the fact that the top

one percent of players pay 40 percent of the entry fees and gain 91 percent of the profits (Harwell 2015).

This space is very competitive, with many users employing advanced analytics to pick winning lineups.

Several sites such as Rotogrinders have been created which solely focus on daily fantasy sports analytics

(Rotogrinders 2015). Other sites such as Daily Fantasy Nerd even offer to provide optimized contest lineups

for a fee (DailyFantasyNerd 2015).

There are a variety of contests in daily fantasy sports with different payoff structures. Some contests

distribute all the entry fees equally among all lineups that score above the median score of the contest.

These are known as double-up or 50/50 contests. They are relatively easy to win, but do not pay out very

much. Other contests give a disproportionately high fraction of the entry fees to the top scoring lineups.

We refer to these as top heavy contests. Winning a top heavy contest is much more difficult than winning a

double-up or a 50/50 contest, but the payoff is also much greater. Typical entry fees range from $3 to $30,

while the potential winnings range from thousands to a million dollars (DraftKings 2015). These contests

occur nearly everyday and have a near winner-take-all payoff structure. For these reasons, daily fantasy

sports provide a great opportunity for us to test our approach to picking winners.

The entry to a daily fantasy sports contest is called a lineup and consists of a set of players in the given

sport. One can view the lineups, which are the entries, as being constructed from a set of resources, which

are the players. An added complication is the fact that there are constraints on the resources used to build

a lineup. A daily fantasy sports company sets a price (in virtual dollars) for each player in a sport. These

prices vary day to day and are based upon past and predicted performance (Steinberg 2015). Lineups must

then be constructed within a fixed budget. For instance, in DraftKings hockey contests, there is a $50,000

budget for each lineup. There are further constraints on the maximum number of each type of player allowed

and the number of different teams represented in a lineup. Finding an optimal lineup is challenging because

the performance of each player is unknown and there are hundreds of players to choose from. However,

predictions for player points can be found on a host of sites such as Rotogrinders (Rotogrinders 2015) or

Daily Fantasy Nerd (DailyFantasyNerd 2015) which are fairly accurate, and many fantasy sports players

have a good sense about how players will perform. This suggests that the main challenge is not in predicting

player performance, but in using predictions and other information to construct the lineups. In a previous

study (Becker and Sun 2014) a mixed integer program is presented which optimizes draft selection and

weekly lineup selection for season long fantasy football. This illustrates that optimization can be a useful

tool for constructing lineups in fantasy sports. However, that study focuses on season long fantasy contests,
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which does not necessarily coincide with the problem of picking winners in daily fantasy contests which

we study in this work.

1.2. Our Contributions

Integer programming is a natural tool to use to construct entries because of the different constraints. The

challenge comes in understanding how to formulate the integer program to maximize the probability of

winning. In this work we present a greedy integer programming formulation that attempts to do this. We

begin by finding a tractable approximation for the objective function (the probability of winning) and show

that the error of this approximation is small when the underlying distribution of the entries satisfies certain

natural properties. From this approximation we are able to extract a set of heuristic principles for construct-

ing entries. First, the entries’ scores should have a large expected value and variance. This increases the

marginal probability of an entry winning. Second, the entries should also have low correlation with each

other to make sure they cover a large number of possible outcomes. These principles form the foundation

of our greedy integer programming formulation which sequentially constructs entries with maximal mean

subject to constraints on their variance and correlation with previously constructed lineups.

We applied our approach to top heavy hockey and baseball contests in DraftKings. The contests we

focused on had thousands of entrants and top payoffs of several thousand dollars. The entries constructed

with our greedy integer programming formulation were able to rank in the top ten in these contests multiple

times, which is a non-trivial achievement given the large size of the contests. Our performance in hockey

contests was especially strong. During the period when this work was conducted, DraftKings allowed a

single user to enter 200 lineups into a hockey contest. We began competing with our integer programming

approach and performed very well several days in a row. We even placed third or higher in three consecutive

contests. We show screenshots of our performance with 200 lineups in Figure 1. A week after we began

winning with our integer programming approach, DraftKings reduced the number of multiple entries to

100 in order to make the contests more fair for all participants. This demonstrates the power of our greedy

integer programming formulation.

The remainder of the paper is structured as follows. In Section 2 we present the picking winners problem

and develop a greedy integer programming formulation for the problem. We present an empirical analysis

of hockey data and develop predictive models of player performance in Section 3 for use in our integer

programming formulation. In Section 4 we specialize our integer programming formulation for daily fantasy

sports contests, with a focus on hockey. We evaluate the performance of our approach in actual fantasy

hockey and baseball contests in Sections 5 and 6, respectively. We conclude in Section 7. All proofs can be

found in the appendix.
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Figure 1 Screenshots of the performance of our top integer programming lineups in real DraftKings hockey

contests with 200 linueps entered.

2. Problem Formulation
We consider a set of events E = {Ei}Ni=1 defined on a probability space (Ω,F ,P), with sample space Ω,

σ-algebra F , and probability measure P. Each event Ei corresponds to an entry in a contest winning. The

aim is to select a subset of events S ⊆ E of size M such that we maximize the probability that at least one

event occurs. For notational convenience, we will denote U(S) = P
(⋃

Ei∈S
Ei

)
as the probability that at

least one event occurs, i.e. at least one entry wins. The optimization problem we want to solve is

max
S⊆E,|S|=M

U(S) (2.1)

In general, solving this optimization problem can be difficult. In fact, we have the following result.

Theorem 2.1 Maximizing U(S) is NP-hard.

Despite the computational complexity in maximizing U(S), the objective function possesses some nice

properties which we can use to obtain good solutions efficiently, which are given by the following theorem.

Theorem 2.2 The function U(S) is non-negative, non-decreasing and submodular.

Monotonically non-decreasing submodular functions have an important property which is that one can

bound the sub-optimality of a greedy solution. Such a solution is obtained by sequentially adding elements

to the set S such that each new addition results in the largest marginal increase in the objective function.

Formally, let Sg = (F1,F2, ...,FM) be the greedy solution of the optimization problem. The greedy solu-

tion is an ordered set, with element Fi being added on the ith step of the greedy optimization. Let Sig =
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(F1,F2, ...,Fi) be the solution obtained after the ith element is added to Sg, with S0
g = ∅. Then the ith event

added to Sg is given by

Fi = arg max
F∈E/Si−1

g

U
(
Si−1g

⋃
F
)
−U

(
Sig
)
, 1≤ i≤M. (2.2)

For submodular functions, we have the following well known result.

Theorem 2.3 (Nemhauser et al. (1978)) Let U(S) be a non-decreasing submodular function. Let Sg be

the greedy maximizer of U(S) and let S∗ be the maximizer of U(S) . Then

U(Sg)
U(S∗)

≥ 1− e−1. (2.3)

Therefore, greedy solutions have performance guarantees for submodular maximization problems. In addi-

tion, many times they can be computed very quickly, which is important as time can be a limiting factor in

many applications. For these reasons, we will use a greedy approach for the picking winners problem.

2.1. Independent Events

We first consider the simplest case where all Ei are independent and let pi = P (Ei). Let Ec
i denote the

complement of Ei. Because of the independence of the events, we can rewrite the objective function as

U(S) = 1−P

( ⋂
Ei∈S

Ec
i

)
= 1−

∏
Ei∈S

(1− pi). (2.4)

The optimization problem can then be written as

max
S⊆E,|S|=K

U(S) = min
S⊆E,|S|=K

∏
Ei∈S

(1− pi). (2.5)

The form of the objective function for independent events leads to a simple solution, given by the following

theorem.

Theorem 2.4 For a set of independent events E = {E1,E2, ...,EN} let pi = P(Ei) and without loss of

generality assume that p1 ≥ p2 ≥ ... ≥ pN . Let the M element subset S∗ ⊂ E maximize U(S). Then S∗

consists of the M most likely events, i.e. S∗ = {E1,E2, ...,EM}.

The proof of this result is obvious from the form of U(S) in equation (2.4). From Theorem 2.4 we see

that if the events are independent, then one simply chooses the most likely events in order to maximize the

probability that at least one event occurs. This simple solution relies crucially upon the independence of the

events. Another useful property when the events are independent concerns the greedy solution.
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Lemma 1 For a set of independent events E = {E1,E2, ...,EN}, let the M element greedy maximizer of

U(S) be Sg. Then S∗ = Sg.

In this case we have that the greedy solution is also an optimal solution. Indeed, independent events is

an almost trivial case to solve. This also suggests when the events have low dependence, greedy solutions

should perform well.

2.2. Dependent Events

When events are not independent, a simple, exact solution is generally not achievable. In fact, it can be non-

trivial to even evaluate the objective function for dependent events. In this section we provide a tractable

approximation to the objective function when the events are dependent and characterize the quality of the

approximation as a function of properties of the underlying distribution. We will see that when the events

are not too dependent upon each other, our approximation will have low error.

We start with an approximation for the objective function. Recall that our objective function is defined as

U(S) = P
(⋃

E∈S E
)
. The difficulty of optimizing this objective function comes from the lack of indepen-

dence in the events which require us to understand their entire joint distribution. Many times this distribution

will not be available to us, or if it is, evaluating the required probability will be difficult. To obtain something

more tractable, we define the following objective function which only utilizes pairwise correlations:

U2(S) =
∑
E∈S

P (E)− 1

2

∑
E,F∈S,E 6=F

P
(
E
⋂
F
)
. (2.6)

This objective function is obtained by expanding U(S) using the inclusion-exclusion principle and then

only keeping terms which involve the intersection of two or fewer events. The benefit of U2(S) is that it

only requires us to know the probability of intersections of pairs of events, which is many times much easier

to calculate than probabilities of higher order intersections. In order for this objective function to act as a

good surrogate for U(S), we must show that the difference U(S)− U2(S) is small. If we impose certain

conditions on the joint density of the events, we can bound the difference. To do this we define a few new

terms.

We assume we have chosen a subset S of the events. Let p0(S) = P(
⋂
E∈S E

c) be the probability that

no event in S occurs. For 1 ≤ l ≤ M , let Sl be the set of all l-element subsets of S. For instance, if

S = {a, b, c} then S1 = {{a} ,{b} ,{c}} and S2 = {{a, b} ,{a, c} ,{b, c}}. For an element T ∈ Sl, let p′T =

P
((⋂

E∈T E
)⋂(⋂

F∈S/T F
c
))

be the probability that all events in T occur but no other events in S occur.

We then have the following result regarding the difference between U(S) and U2(S).

Theorem 2.5 Let E be a set of events on a probability space and assume |E|=N . Assume there are con-

stants 0 < p < 1, δ > 0, and c1 > 0 such that for any S ⊂ E with |S| = M < N , p0(S) = (1 − p)M ,

pM <N−δ < 1/3, and for any 1≤ l≤M and T ∈ Sl, p′T ≤ c1pl. Then

U(S)−U2(S)

U(S)
≤ 24c1N

−δ. (2.7)
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This result imposes two conditions on the joint distribution of the events. First, if N is large, the probability

of no event in S occurring is large. This is not an unreasonable condition because we are typically dealing

with a large set of events, each of which we expect to have a low probability of occurring. Second, there is

an upper bound on the dependence between all events. For instance, if the events are independent and have

the same probability of occurring, then the condition is satisfied with c1 = 1. More generally, the condition

says that the joint probability of l events must decay exponentially in l. This limits the joint dependence of

the events. Under these two conditions, U2(S) will be a good approximation to U(S). We will use U2(S)

instead of U(S) in the remainder of this work because U2(S) is much easier to work with than U(S), and

it is a good approximation to U(S).

2.3. Multivariate Gaussian Random Variables

We now consider a probability model that captures a fairly general class of events. Let {Xi}Ni=1 be jointly

normal random variables with mean vector µ and covariance matrix Σ. We define the events Ei = {Xi ≥ t}

for some constant t. If we imagine each Xi as the return of a company we invest in, then the event says

that company i has a return greater than t. For fantasy sports competitions, Xi can be the points of lineup i

and Ei corresponds to the lineup exceeding t points. We further assume that t >max1≤i≤N µi because we

are interested in the unlikely event that one of the Xi exceed their mean by a large amount. For instance,

in daily fantasy hockey contests, the maximum mean of a lineup is around 30 points, while the winning

threshold t is near 60 points.

We want to choose a set of events S ⊆ E to maximize U2(S). To do this, we must first calculate the

marginal and joint probabilities of the events. Since no closed form expression exists for these probabilities

for multivariate Gaussian random variables, we instead resort to approximations. We have the following

result.

Theorem 2.6 Let {Xi}Ni=1 be jointly normal random variables. Let the marginal mean and variance of Xi

be µi and σ2
i and let the correlation coefficient of Xi and Xj be ρij . Also, let zi = (t− µi)/σi. Define the

function U l
2(S) as

U l
2(S) =

∑
i:Ei∈S

1

zi + 1/zi
exp

(
−z

2
i

2

)

− 1

2

∑
i,j:Ei,Ej∈S,i6=j

exp

− (2t−µi−µj)2

2
(
σ2
i +σ2

j +
√

(σ2
i −σ2

j )
2 + 4ρijσ2

i σ
2
j

)
 . (2.8)

Then U2(S)≥U l
2(S).

The function U l
2(S) is a lower bound on U2(S) and has a closed form expression. We use this function

to gain insights on good entries. From the expression for U l
2(S) we observe three important features that
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characterize a subset S which will have a high chance of winning. We assume that zi ≥ 1 which can be

done by having t be large enough. In this case, the contribution of the first summation to U(S) increases for

large µi and large σi. The contribution of the second summation increases for small ρij . There is an intuitive

explanation for how µi, σi, and ρij impact the objective function. First, the means of the chosen entries

should be large so that there is a greater probability that they exceed t. Second, the variance of the entries

should be large as well. This is less obvious, but the intuition here is that all one cares about is having some

entry’s score exceed t. If entries with large variances are chosen, this increases the probability of exceeding

t. While this also increases the probability that some of the entries will have a very low value, this is not

a concern as the goal is to have at least one exceed t. Third, the correlation between each pair of entries

should be small. What this does is diversify the selected entries so there is a better chance that one of them

exceeds t. In short, one would like S to consist of entries with high means and high variance which have

low correlation with each other.

2.4. Picking Winners with Constrained Resources

We now consider a case where entries are constructed from a set of resources {Yk}Pk=1 which are jointly

Gaussian random variables. We define the mean and standard deviation of Yk as µ′k and σ′k, respectively.

We define the correlation coefficient of Yk and Yl as ρ′kl. Each entry is given by the sum of K resources. Let

us define xik as variables which are one if resource k is in entry i and zero otherwise. Then we can write

Xi =
∑P

k=1 Ykxik. We assume that there are certain constraints on the resources such that not every possible

subset of K resources is a feasible entry. In this scenario, we want to construct M feasible entries from the

given resources to maximize the probability of winning. To do this we will develop an integer programming

formulation which builds upon the intuitions gained in Section 2.3. The three insights we saw there for

constructing a set of winning entries were to make sure each entry had a high mean, a high variance, and

low correlation with other entries. We can write the mean of Xi as

µi =
P∑
k=1

µ′kxik. (2.9)

The variance of Xi is

σ2
i =

P∑
k=1

(σ′k)
2xik +

P∑
k=1

P∑
l=1,l 6=k

ρ′klσ
′
kσ
′
lxikxil, (2.10)

and the covariance of Xi and Xj is

Cov(Xi,Xj) =
P∑
k=1

(σ′k)
2xikxjk +

P∑
k=1

P∑
l=1,l 6=k

ρ′klσ
′
kσ
′
lxikxjl, (2.11)

With these expressions we want to understand how to construct a set of entries that will have a high probabil-

ity of winning. To achieve a high mean, each entry should be chosen to maximize the sum of its resources’
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means. This insight is fairly obvious and very natural. The more interesting insights come from the vari-

ances and covariances of the entries. To obtain a more intuitive understanding of what entries have good

properties with respect to their variance and covariance, we set the variance of each resource equal to one

and constrain the correlation coefficient to be either zero, δ, or−δ for some δ > 0. We can then characterize

the variance of an entry by the number of pairs of resources that have a positive or negative correlation

and the covariance of a pair of entries by the number of their shared resources and the number of pairs of

resources with positive and negative correlations. Let us define for Xi the number of positively and nega-

tively pairs of correlated resources as n+
i and n−i . Let us also define for Xi and Xj the number of positively

and negatively pairs of correlated resources as n+
ij and n−ij and the number of shared resources as nij . We

will also refer to nij as the overlap of entries Xi and Xj because this is the number of resources they have

in common. With this notation, the variances and covariances can be written as

σ2
i =K + δ

(
n+
i −n−i

)
(2.12)

Cov(Xi,Xj) = nij + δ
(
n+
ij −n−ij

)
(2.13)

From these expressions we gain some key insights concerning the variances and covariances. A high vari-

ance can be achieved if the entry has a large n+
i and a small n−i . That is, the entry’s resources should be

chosen so many of them are positively correlated and few of them are negatively correlated. By avoiding

negative correlations, we are making it more likely that either the resources all have a high value or all have

a low value. The covariance of a pair of entries can be reduced in two ways. First, reduce the overlap nij .

If the entries share fewer resources, they will be clearly be less correlated. Second, increase the number of

pairs of resources between the lineups that have a negative correlation and decrease the number of pairs of

resources with positive correlation. Limiting the number of positively correlated resources between lineups

reduces their covariance and subsequent correlation coefficient.

2.5. Greedy Integer Programming Formulation with Constrained Resources

Constructing a set of entries that optimizes the U l
2(S) is highly non-trivial. The function is non-linear and

non-convex. Therefore, we will not directly maximize U l
2(S). Instead, we will use the three properties dis-

cussed about U l
2(S) to guide the development of a greedy integer programming formulation for constructing

a set of entries from constrained resources which have a high probability of winning. We choose a greedy

approach for three important reasons. First, from the submodular property of the original objective function

we have a lower bound on the performance of a greedy solution. The objective function we will use in our

integer programming formulation is different from the original objective function, but shares some of its key

properties, so we assume the loss in optimality with our greedy approach will not be significant. Second, the

greedy integer programming formulation is linear and can be solved very quickly, which will be important

in applications we consider later. Third, and most importantly, we will show in Sections 5 and 6 that this



Hunter, Vielma, and Zaman: Winning
12

greedy integer programming formulation performs very well on actual data. In particular, we will see that

with this approach we are able to consistently perform well daily fantasy sports contests.

We consider the situation described in Section 2.4 where we want to construct M entries consisting of

K resources each from a set of P resources. As previously stated, our decision variable is xik which is

1 if resource k is in entry i. Let {x∗ik}
P

k=1 correspond to the ith greedy entry. This is the solution to our

greedy integer programming formulation in the ith iteration. We will construct the entries sequentially in the

following manner. We choose a set of positive constants {εi}Mi=1 and {γij}Mi,j=1
. Assume we have obtained

the first i− 1 entries. We then construct the ith entry to maximize its mean subject to its variance being

larger than εi and its covariance with entry j being less than γij for 1≤ j ≤ i−1. For 2≤ i≤M , our greedy

integer programming formulation for the ith entry is

maximize
x

P∑
k=1

µ′kxik

subject to
P∑
k=1

(σ′k)
2xik +

P∑
k=1

P∑
l=1,l 6=k

ρ′klσ
′
kσ
′
lxikxil ≥ εi

P∑
k=1

(σ′k)
2xikx

∗
jk +

P∑
k=1

P∑
l=1,l 6=k

ρ′klσ
′
kσ
′
lxikx

∗
jl ≤ γij, 1≤ j ≤ i− 1

P∑
k=1

xik =K

(2.14)

For the first entry we do not have the covariance constraint and our greedy integer programming formulation

is simply

maximize
x

P∑
k=1

µ′kx1k

subject to
P∑
k=1

(σ′k)
2x1k +

P∑
k=1

P∑
l=1,l 6=k

ρ′klσ
′
kσ
′
lx1kx

∗
1l ≥ ε1

P∑
k=1

x1k =K

(2.15)

The greedy approach only constrains the covariance of a lineup with the previous lineups, whereas a non-

greedy approach would limit all pairwise covariances. By only constraining the covariance with previous

lineups, the number of overlap constraints is linear in the number of previous entries. The variance con-

straints are non-linear in this formulation. We can introduce auxiliary variables to make this formulation

linear as is standard in many integer programming formulations. However, we take a different approach

when we apply this approach to fantasy sports contests. We will make certain assumptions on the underlying

distribution of the resources which allow us to makes these constraints linear. We will see that this allows

the integer program to be solved very quickly and still perform well in real applications.
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Our greedy integer programming formulation gives one the flexibility to choose the parameters εi and

γij . We may want the first few entries’ covariances to be lower in order to force exploration of the space

of entries, while for later entries this constraint can be relaxed to avoid excluding entries with large means.

However, we will see that using a single value for γij and for εi works well in several applications. In

addition, we will also see that the choice of the value for γij depends upon the size of the space of resources.

3. Hockey Data Analysis
To demonstrate the effectiveness of our greedy integer programming formulation for picking winners, we

apply it to top heavy daily fantasy sports hockey contests as described in Section 1. The entries into these

contests are known as lineups and consist of resources which are players in the National Hockey League

(NHL), which is the main hockey league in North America. The daily fantasy contests we focus on are from

the site DraftKings. We begin by describing the basic elements of hockey and hockey daily fantasy sports

contests. To apply our greedy integer programming formulation, we need to know the mean and correlation

of the resources, which are the hockey players. In this section we present models and analysis for these

inputs. Section 3.2 presents predictive models for players points using publicly available data and Section

3.3 studies the structural correlations between hockey players. While our analysis focuses on DraftKings,

we note that other daily fantasy sports sites have very similar contests and point scoring systems. All data

in this section was collected between October 21, 2015 and December 31, 2015.

3.1. Hockey Basics

A hockey team consists of six players: one center, two wingers, two defensemen, and a goalie. The centers,

wingers, and defensemen are known as skaters because they are free to skate on the ice rink, whereas the

goalie primarily stays in front of the goal. In hockey the aim is for a team to shoot a puck into the goal of

the opposing team and the goalie’s task is to protect the goal from any opponent scores.

In daily fantasy sports hockey contests there are constraints on the types of players that must be present

in a lineup. For DraftKings, each lineup must consist of two centers, three wingers, two defensemen, one

goalie, and one utility player which is any skater, resulting in a lineup of nine players. We show a screenshot

of one possible DraftKings lineup in Figure 2. The figure also shows a column labeled FPPG, which stands

for fantasy points per game. This is the average number of fantasy points per game the player has earned

throughout the current NHL season. DraftKings provides this information to help users construct their

lineups. The total fantasy points for a lineup is the sum of each player’s fantasy points. The lineup shown

has 34.4 fantasy points per game. This score is in the typical range of NHL lineups in DraftKings and gives

a sense of the value of different scoring actions. In a daily fantasy sports contest, there is a specific way in

which players score fantasy points. Because we test our approach in DraftKings, we will focus on its points

scoring system1. We summarize the details of the DraftKings scoring system in Table 1. In Figure 2 we

1 Full scoring rules can be found at www.draftkings.com/rules.
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Figure 2 (top left) Mean and standard deviation of fantasy points per game (FPPG) and average player cost

in DraftKings for each hockey position. (bottom left) Mean absolute error of NHL player FPPG

predictions of Daily Fantasy Nerd and Rotogrinders for each hockey position. (top right) Mean

FFPG of offensive skaters in different types of lines. (bottom right) Screenhsot of an NHL lineup

from DraftKings.

show the basic statistics of points per game for each position averaged over all NHL players. We also show

the average DraftKings cost per player in the figure. As can be seen, on average goalies tend to score almost

twice as many points as all other players and also cost twice as much. Also, the standard deviation of each

position’s points per game is roughly the same size as the average value.

The centers and wingers are known as offensive players. In the NHL each hockey team plays its offensive

players in fixed sets known as lines. This means that if one player from the line, such as the center, is on

the ice, then so are the other two players from the line. Each team has four standard lines and two power

play lines, which only play when there is a power play as a result of a penalty. We show the average points

per game for players based upon their line in Figure 2. The rank of the line typically suggests how well it

performs. As can be seen, line one is generally the highest scoring line.

The points system of DraftKings is very similar to most daily fantasy hockey points systems. It gives

more points for players that perform better, but it also has some important properties which we use to

construct our lineups. The first property concerns assists, which is passing the puck to a player who either
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Score type Points
Goal 3
Assist 2
Shot on Goal 0.5
Blocked Shot 0.5
Short Handed Point Bonus (Goal/Assist) 1
Shootout Goal 0.2
Hat Trick Bonus 1.5
Win (goalie only) 3
Save (goalie only) 0.2
Goal allowed (goalie only) -1
Shutout Bonus (goalie only) 2

Table 1 Points system for NHL contests in DraftKings.

scores or who passes the puck to the player that scores. Each assist is worth two points and DraftKings

awards points for up to two assists per goal. This is an important aspect of the scoring system because it

means that for each goal scored, it is possible for a single lineup to receive seven points (three points for the

goal, and four points for the two assists that led to the goal). However, such a situation can only occur if all

players involved are on a single lineup. This suggests that to score many points, a lineup should contain all

players from a single line. By putting all players from a single line in a lineup, we are essentially increasing

the variance of the lineup. This is a popular fantasy sports tactic known as stacking. Many expert daily

fantasy sports players use stacking to win in a variety of sports contests (Drewby 2015), (Bales 2015b),

(Bales 2015a). The second property of the points system concerns goalies. If a goalie’s team wins the game,

an additional three points is awarded to the goalie. This is important because as we will see, it is possible

to predict who will win an NHL hockey game with relatively good accuracy, so by choosing goalies on

winning teams, an extra three points can be obtained, which is a significant amount in hockey contests given

that lineups average between 30 to 40 points.

3.2. Player Point Predictions

Many fantasy sports players devote a substantial amount of effort in developing elaborate prediction mod-

els for players’ performance. Their advantage comes mainly from the power of their predictive models.

However, we do not have the domain knowledge required to improve upon the prediction models of the top

fantasy players. Therefore, we take a different approach. Publicly available player point predictions are pro-

vided by the websites Rotogrinders (Rotogrinders 2015) and Daily Fantasy Nerd (DailyFantasyNerd 2015).

We find the predictions from these sites to be relatively accurate, but the accuracy varies by position. We

plot in Figure 2 the mean absolute error in points of the two sites’ predictions for different hockey positions

using our data from the 2015 NHL season. We see that the prediction errors of both sites are very similar.

Therefore, it does not seem that either one has a superior prediction model.

We build a predictive model for the fantasy points for each player in the NHL using these prediction sites.

For a player k, let fk1 and fk2 be the predictions by Rotogrinders and Daily Fantasy Nerd, respectively. For
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(1) (2) (3) (4) (5) (6)
Skater points Goalie points Goalie points Goalie points Goalie points Goalie points

β1 0.634∗∗∗ 0.628∗∗∗ 0.203 0.203
(Rotogrinders) (0.0203) (0.0864) (0.144) (0.144)

β2 0.282∗∗∗ -0.0173 -0.0309 -0.0301
(Daily Fantasy Nerd) (0.0242) (0.106) (0.113) (0.113)

β3 4.310∗ 5.304∗∗ 4.176∗ 5.172∗∗

(Win probability) (2.123) (2.005) (2.064) (1.941)

β0 1.334 1.686
(0.0314) (0.549) (1.032) (1.003) (1.013) (0.983)

R2 0.238 0.0858 0.0179 0.0140 0.0178 0.0139
Samples 10825 565 506 506 506 506
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2 Regression coefficients, R squared, and sample count for different prediction models of skater and

goalie points.

skaters, we perform a linear regression on the player’s points using these predictions as features. We denote

µk as the predicted points of player k using our model. For skater k our prediction is

µk = β0 +β1f1k +β2f2k. (3.1)

For goalies, we must also factor in the outcome of the game since there is a three point bonus for victory.

Daily Fantasy Nerd provides win probabilities for each goalie, and we have found these estimates to be

relatively accurate. We perform a linear regression on the goalie points using as predictor variables the

predictions of Rotogrinders, Daily Fantasy Nerd, and the win probability of the goalie’s team. For a goalie

k, let this win probability by pk. Then the prediction for goalie k is

µk = β0 +β1f1k +β2f2k +β3pk. (3.2)

We compare different prediction models in Table 2. For skaters, both Rotogrinders and Daily Fantasy Nerd

predictions are significant. For the skaters, Rotogrinders and Daily Fantasy Nerd predictions are both sig-

nificant. For goalies, something different occurs. When we do not include the win probability we find that

only Rotogrinders is significant. When the win probability is included, it is the only significant feature. We

will test these different models on real hockey contests in Section 5.

3.3. Player Correlations

To create high variance lineups we must first understand the correlations between players. There are two

important correlations we look at. The first concerns players in lines. The second concerns offensive players

and goalies.
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Figure 3 (left) Average correlation coefficient of FPPG for offensive players in the same and different lines.

(right) Average correlation coefficient of FPPG for goalies and skaters in the same and opposing

teams.

We first begin by examining the correlations of FPPG between players in the same line versus those in

different lines. We calculate the Pearson correlation coefficient between the FPPG for every pair of NHL

offensive players (centers and wingers) in the same line and in the same team but different line. We plot

the resulting average correlation coefficients for each group in Figure 3. We see that the players on the

same line have a much higher correlation than players on different lines. This is not surprising given the

way fantasy points are awarded. This correlation is most likely due to the assist/goal combinations that give

points to multiple players who are simultaneously on the ice. This correlation should be included in a lineup

to increase the variance.

We next look at the correlation between goalies and skaters in the same game. We consider the correlation

of FPPG for offensive players and defensemen with goalies on the same and opposing team in a game.

We plot the resulting average Pearson correlation coefficient of the FPPG for these groups in Figure 3.

We find that the correlation is negative for goalies and skaters on opposing teams. For the same team the

correlation is near zero. The negative correlation is due to the fact that if a skater scores fantasy points, it

is typically because a goal was scored, which gives negative fantasy points to the goalie. On the same team

the only structural condition that would correlate skaters and goalies is the win bonus and points for scoring

goals. However, this is much weaker than the negative correlation of goalies opposing skaters. The negative

correlation is something we want to avoid within a lineup as it would reduce the overall variance. Therefore,

to increase lineup variance, we will avoid putting goalies and skaters on opposing teams in a single lineup.

4. Fantasy Hockey Greedy Integer Programming Formulations
We now present our greedy integer programming approach for selecting multiple lineups for hockey con-

tests. The integer programming is based upon the formulation in Section 2.5. For the mean points of a player
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we user our predictive regression models. We do not explicitly use the correlations and variances of the

player’s points. Instead we assume that the players all have the same variance and that the magnitude of

the covariance is much smaller than the variance. This will lead to simple constraints for the variance and

covariance. We will construct M lineups from a set of P NHL players and we let the variable xik equal

one if player k is selected for lineup i and zero otherwise. Each player k is predicted to achieve µk fantasy

points from our predictive model.

4.1. Feasibility Constraints

We begin by formulating the basic feasibility constraints of a lineup. Daily fantasy sports contests all impose

a budgetB constraint on a lineup. For DraftKings, this budget isB = 50,000 fantasy dollars. There is also a

constraint on the number of players of each type of position. In DraftKings, a hockey lineup consists of nine

players: two centers, three wingers, two defensemen, a goalie, and a utility player who can be any skater

type. We let the cost of player k be ck. There are NT NHL teams playing in a contest, and we denote the set

of players on team l by Tl. Also, we denote the set of players who are centers, wingers, defenseman, and

goalies by C, W , D, and G, respectively. The DraftKings position constraints for the ith lineup are given

by
2≤

∑
k∈C

xik ≤ 3,

3≤
∑
k∈W

xik ≤ 4,

2≤
∑
k∈D

xik ≤ 3,∑
k∈G

xik = 1,

(4.1)

DraftKings also requires each lineup to have players that come from at least three different NHL teams. The

team constraints for lineup i are
til ≤

∑
k∈Tl

xik, 1≤ l≤NT

NT∑
l=1

til ≥ 3,

til ∈ {0, 1} , 1≤ l≤NT .

(4.2)

We put these constraints together to obtain the feasibility constraints for a lineup:
P∑
k=1

ckxik ≤B, (budget constraint)

P∑
k=1

xik = 9, (lineup size constraint)

Equations (4.1), (position constraint)

Equations (4.2), (team constraint)

xik ∈ {0,1} , 1≤ k≤ P.

(4.3)
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4.2. Stacking Lineups Using Structural Correlations

We now present the integer programming constraints on the lineup variance. The constraints we use are

simpler than the general form in equation (2.14). Rather than force the variance of the lineup to be larger than

a lower bound, we constrain the structure of the lineup to ensure that its variance will be large. We assume

equal variance of all players and covariances that are much smaller in magnitude than the variances. This

allows us to approximate the variance of a lineup using only the number of pairs of positively and negatively

correlated players. The constraints we present next, which we refer to as different types of stacking, exclude

any negatively correlated players and try to have a large number of positively correlated players.

Goalie Stacking. As discussed in Section 3.3, goalies are negatively correlated with the skaters that they

are opposing. Therefore, to increase the variance of a lineup, we would like to avoid having this negative

correlation by making sure all of the lineup’s skaters are not opposing its goalie. We will refer to this

constraint as goalie stacking. To model this constraint in our integer programming formulation, we denote

the set of skaters who are opposing goalie k by Ok. Due to the team constraint given by (4.2), the maximum

number of players we can have in one lineup from a given NHL team is six. For lineup i and goalie k, the

goalie stacking constraint is

6xik +
∑
l∈Ok

xil ≤ 6, ∀k ∈G. (4.4)

This constraint will force the goalie variable xik to be zero if the lineup has any skater opposing goalie k.

Line Stacking. Additionally, in Section 3.3 we found that players on the same line are positively cor-

related. Therefore, to increase the lineup variance, we would like to impose additional constraints on our

formulation that will create lineups with players on the same line. We will refer to this as line stacking.

There are eight possible skaters on a team and a line consists of three skaters. Therefore, the maximum

number of lines we can include in a lineup is two. To include as much positive correlation as possible

amongst the players, we can make a lineup to have one complete line of three players, and two partial lines

with at least two players each. To formulate the line stacking constraints, we introduce some notation. Let

NL denote the total number of lines, and let Ll denote the set of players on line l. With this notation we can

formulate the constraint of having at least one complete line in lineup i as

3vil ≤
∑
k∈Ll

xik, 1≤ l≤NL

NL∑
l=1

vil ≥ 1

vil ∈ {0,1} , 1≤ l≤NL.

(4.5)
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Under these constraints vil is one if lineup i has all three players from line l, and zero otherwise, and we

require at least one of the vil to be one. To formulate the constraint of having at least two players from two

distinct lines, we use the following constraints:

2wil ≤
∑
k∈Ll

xik, 1≤ l≤NL

NL∑
l=1

wil ≥ 2

wil ∈ {0,1} , 1≤ l≤NL.

(4.6)

Similar to the complete line constraints, this constraint sets wil to one if at least two out of three players of

line l are in lineup i, and there must be at least two wil equal to one.

Defensemen Stacking. Lastly, we have found that defensemen that are on the first power play line score

substantially higher than defensemen that are not. Therefore, to increase a lineup’s average points, one

could choose defensemen that are on the first power play line. We will refer to this as defensemen stacking.

To model this constraint, let PD denote the set of defensemen that are on any team’s first power play line.

Then, to use only these defensemen in lineup i we add the following constraints to our integer programming

formulation:

xik = 0 ∀k ∈D \PD. (4.7)

This constraint makes sure that any defenseman that is chosen for the lineup is also in the first power play

line of some team.

There are many other constraints that could be added to the model, such as forcing a lineup to have every

player on a team’s first power play, imposing constraints to have seven players from one game, etc. We

did not investigate all the possible types of stacking, but they can all be naturally incorporated into our

integer programming formulation. In this work we focus on the constraints presented because they capture

the major structural correlations in hockey.

4.3. Overlap Constraints

Our greedy integer programming formulation in Section 2.5 had a lower bound on the covariance of lineup

i with the previous i− 1 lineups. We assume that the player variance is much larger in magnitude than the

player correlations. Using this assumption, we approximate the correlation of lineups i and j as simply the

overlap of the two lineups. We can then add constraints which lower bound this overlap with all previous

i− 1 lineups. We will refer to these as overlap constraints. We let x∗lk be the optimal value of the variable

for player k in lineup l. We define the overlap constraints for lineup i as

P∑
k=1

x∗lkxik ≤ γ, l= 1, . . . , i− 1. (4.8)
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These constraints make sure that lineup i will have no more than γ players in common with any previously

constructed lineup. We refer to γ as the maximum lineup overlap. Decreasing γ forces the lineups to be

more diverse, whereas for larger γ the lineups will share more players. We will see in Section 5 how the

choice of γ is impacted by the number of NHL games being played on a given night.

4.4. Complete Greedy Integer Programming Formulation

We now present the final greedy integer programming formulation for constructing M lineups. We obtain

lineup i (1≤ i≤M ) by solving

maximize
x

N∑
j=1

µjxij

subject to Equation (4.3) (feasibility constraints)

Equation (4.8) (multiple lineup constraints)

Any subset of equations (4.4), (4.5), (4.6), (4.7) (stacking constraints).

(4.9)

By solving this integer programming formulation iteratively M times, each time updating the multiple

lineup constraints with the previously found solutions, one obtains the M greedy lineups. This formulation

allows flexibility in the choice of stacking constraints, prediction model, maximum lineup overlap, and

number of linueps constructed. We will see next how to select the best settings using data from real fantasy

hockey contests.

5. Performance
We now evaluate the performance of our greedy integer programming formulation on real daily fantasy

sports hockey contests. To obtain data on the performance of the population lineups in several actual DraftK-

ings hockey contests we needed to enter the contests. As entrants, we are able to download the lineups and

points of every lineup in the contest. In total we have data for 38 different top heavy contests which contain

several thousand entrants. We evaluate how much profit our lineups would have made in each contest com-

peting against the actual population lineups. We investigate a variety of settings, including the number of

lineups, type of stacking, prediction model, and maximum overlap.

We combine the different constraints from Section 4.2 to create six different types of stacking which

are summarized in Table 3. The first type is no stacking, which only uses the basic constraints and none

of the stacking constraints. All the other types of stacking use goalie stacking (equation (4.4)) as this is

a very natural negative correlation we wish to avoid. Also, all the other types of stacking require at least

one complete line (equation (4.5)), and at least two partial lines (equation (4.6)). Only two defensemen

are allowed in Type 2, the logic being that the utility player should be an offensive skater that will score

more points, as was seen in Figure 2. Types 3 and 4 use defensemen stacking (equation (4.7)). Types 4 and

5 require exactly three different teams to be represented on a lineup. This constraint increases the lineup

variance by having more players on the same team in the lineup.
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No stacking Type 1 Type 2 Type 3 Type 4 Type 5
Ck Ck

Equations (4.4)
Equations (4.5)
Equations (4.6)

Ck
Equations (4.4)
Equations (4.5)
Equations (4.6)∑

j∈D

xij = 2

Ck
Equations (4.4)
Equations (4.5)
Equations (4.6)
Equations (4.7)

Ck
Equations (4.4)
Equations (4.5)
Equations (4.6)
Equations (4.7)

NT∑
k=1

tik = 3∑
k∈Tl

xik ≤ 6til,

1≤ l≤NT

Ck
Equations (4.4)
Equations (4.5)
Equations (4.6)

NT∑
k=1

tik = 3∑
k∈Tl

xik ≤ 6til,

1≤ l≤NT

Table 3 Summary of the constraints for different types of stacking in our integer programming formulation

for constructing hockey lineups.
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Figure 4 Plot of the mean profit margin in DraftKings hockey contests versus the number of integer pro-

gramming lineups. The plots are for different types of stacking constraints. The maximum lineup

overlap allowed is seven.

5.1. Impact of Stacking and Number of Lineups

We begin by investigating the performance of each type of stacking versus the number of lineups entered.

We create different numbers of lineups for each type of stacking with a maximum lineup overlap of seven

and calculate the mean profit margin across all contests. We plot the results in Figure 4. We observe that the

lowest profit margin is achieved by no stacking. This shows the importance of stacking lineups to increase

lineup variance. Type 4 stacking achieves the highest profit margin for 100 and 200 lineups. For one lineup,

Type 3 stacking has a higher mean profit margin due to a single contest where the profit margin is 124%.

Excluding this single outlier, Type 4 stacking has the highest mean profit margin for one lineup. Recall that

Type 4 stacking includes goalie stacking, line stacking (complete and partial), defensemen stacking, and at

most three different teams. It has more stacking than all other types, which we expect to give its lineups
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Figure 5 Boxplot of the profit margin in DraftKings hockey contests versus the number of integer program-

ming lineups. The lineups use Type 4 stacking and a maximum lineup overlap of seven.

more variance. We see from the data that this maximizing variance strategy is effective for winning top

heavy contests.

It seems from Figure 4 that the mean profit margin is largest for one lineup. However, this is a deceiving

statistic because the mean is dictated essentially by a single outlier for these top heavy contests. A more

accurate picture is provided by the boxplot in Figure 5. Here we show the profit margin for Type 4 stacking

with a maximum lineup overlap of seven. We see that with one lineup, the median profit margin is -100%.

However, with more lineups, the median profit margin becomes larger. In addition, the 75th percentile is

larger for 200 lineups than for 100 lineups. This shows that with more lineups the distribution of the profit

margin is shifted upward and given a slightly fatter tail. Therefore, to win more money consistently, it is

advantageous to use more lineups.

5.2. Impact of Prediction Models

We next investigate the impact of different prediction models on our performance. We consider Type 4

stacking, a maximum lineup overlap of seven, and 200 lineups. The prediction models we consider use

Rotogrinders predictions, Daily Fantasy Nerd predictions, both sites’ predictions, and both sites plus the

win probability. We show in Figure 6 the mean profit margin of different prediction models for different

numbers of integer programming lineups. We see here that the model with all three features does the best

or near the best for each number of lineups. The reason here may be that by including the win probability,

the integer programming lineups are more biased towards goalies expected to win the games, resulting in a

better chance of obtaining the game win bonus of three points.

5.3. Impact of Maximum Lineup Overlap

One parameter we can adjust in our model is the maximum lineup overlap. By decreasing the allowed

overlap, we force the lineups to be more diverse. We find that the degree of diversity we want depends
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Figure 6 Plot of the mean profit margin of our integer programming approach in DraftKings hockey contests

with different prediction models. The models considered are Daily Fantasy Nerd predictions (DFN),

Rotogrinders predictions, DFN and Rotogrinders predictions, and DFN and Rotogrinders predic-

tions with Vegas odds. The maximum lineup overlap allowed is seven and constraint type four is

used for the integer programming lineups.
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Figure 7 Plot of the mean profit margin 200 integer programming lineups with Type 4 stacking in DraftKings

hockey contests versus maximum lineup overlap for different number of NHL hockey games being

played.

upon how large the space of lineups is. The size of the lineup space on a given night is larger if there are

more NHL games being played. We plot the mean profit margin for 200 integer programming lineups as

a function of the number of games played in a night for different values of the maximum lineup overlap
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in Figure 7. These lineups were created using Type 4 stacking. For nights with less than four games, a

maximum lineup overlap of seven does best. For a larger number of games, it seems that decreasing the

maximum lineup overlap improves performance. For instance, for nights with more than nine games, an

overlap of four does best. The reason for this is that when there are few games being played, the lineup

space is smaller and probably has fewer good lineups. By reducing the maximum lineup overlap, we end

up not selecting these good lineups and instead choose many poor lineups. However, on nights with many

games, there is a huge lineup space that has several different good lineups. A smaller maximum lineup

overlap causes the integer program to choose several of these good lineups, increasing the chance that one

of them will achieve a high rank. For maximum lineup overlaps smaller than four we found that it becomes

difficult to obtain 200 feasible lineups. Maximum lineup overlaps larger than seven produce lineups that are

too similar and do not provide enough diversity. Therefore, the maximum lineup overlap should be tuned

between four and seven depending on how many games are being played on a given night.

5.4. Lineup Creation Order Versus Lineup Performance Rank

The greedy integer programming formulation is solved iteratively to create multiple lineups. One question

to ask is do the lineups which are created earlier perform better? To investigate this, we set the integer pro-

gramming approach to create 200 linueps with Type 4 stacking and a maximum overlap of seven. We then

evaluate their performance rank relative to each other in the contests. This allows us to look at several statis-

tics relating the creation rank and the performance rank of the lineups. We first investigate the Spearman

rank correlation coefficient between these two rankings. We find that the average value of the correlation

coefficient across the different contests is 0.09 with a standard deviation of 0.1. This suggests that there is

very little correlation between the creation rank and performance rank of the lineups. To dive deeper into

the analysis, we plot in Figure 8 two different sets of data. First, we show a boxplot of the creation rank of

the best performing lineup. Second, we show the performance rank of the first created lineup. We see that

the median performance rank of the first created lineup is 74.5. This shows that the first created lineup has

a slightly, but not substantially improved performance. For the best performing lineup, the median creation

rank is 124.5. Therefore, while the first created lineup is slightly better, the winning lineup is generally one

of the later created lineups. This supports our finding of a very low correlation between the creation and

performance rank of the lineups.

5.5. Mean and Standard Deviation of Lineup Points Versus Profit Margin

One way to characterize the lineups produced by our greedy integer programming formulation is by the

mean and standard deviation of their points. We can compare these with the mean and standard deviation of

the points of all lineups in a contest. Let us define the mean and standard deviation of our optimized lineups

as µ1 and σ1 and of the population lineups as µ0 and σ0. We will look at the difference in these parameters

for our lineups and the population lineups for each contest. We use 200 integer programming lineups with
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Figure 8 Plot of the performance rank of the first created lineup and the creation rank of the best performing

lineup. There were 200 integer programming lineups created with Type 4 stacking and a maximum

overlap of seven.

Type 4 stacking and a maximum overlap of seven and plot the profit margin versus the difference in the

mean and standard deviation in Figure 9. One can see that there is a substantial variation in mean difference,

which ranges from -10 to 20 points. When it is below zero, no profit is made, but when it is above zero, a

substantial profit is made. This is a result of the fact that the lineups must satisfy the stacking constraints

which increase their individual variance. The result is that when the actual points are realized, we are either

far above or far below the population mean. The standard deviation of the integer programming lineups is

generally below the population standard deviation. This is because we are choosing lineups that have some

correlation because they are designed to maximize points, even though the individual lineups are designed

to have a high variance. From Figure 9 one can see that we are equally likely to be either above or below

the population mean. However, because the contest payoff structure is so asymmetric, with a maximum loss

of 100%, but a maximum gain which is at least an order of magnitude larger, our linueps end up being

profitable.

5.6. Implementation and Runtime

All formulations were constructed using the JuMP algebraic modeling language (Dunning et al. 2015,

Lubin and Dunning 2015), which is written in the Julia programming language (Bezanson et al. 2012).

This allowed us to test the runtime of our approach for various integer programming solvers. In practice,

we must wait for information about which goalies are being played to be posted before we construct our

lineups. Goalies do not play every night, so if we do not wait for this information, we may put goalies

in lineups who are not playing and receive zero points for them. This goalie information is generally

posted on public websites about 30 minutes before the games begin. We must be able to solve the greedy

integer programming formulation in this time to be able to enter the contest. We show in Figure 10 the
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Figure 9 Plot of profit margin versus µ1 − µ0 and σ1 − σ0 for DraftKings hockey contests with 200 integer

programming lineups created using Type 4 stacking and a maximum overlap of seven. The profit

margin for each contest is indicated through the color and size of the markers and also listed next

to the marker. The x markers indicate contests where the profit margin is not positive.

time needed to solve the greedy integer programming formulation for 100 lineups in each of our con-

tests using different integer programming solvers. We consider the free solvers CBC (COIN-OR 2016) and

GLPK (GNU 2016) and the commercial solver Gurobi (Gurobi Optimization 2016). All computations were

done using a Intel Core i5-4570 3.20GHz with 8GB of RAM. We find that all solvers are able to solve

the integer programming formulations in under four minutes, giving sufficient time to enter the lineups

into the contest. The complete software used to construct the integer programming lineups is available at

https://github.com/dscotthunter/Fantasy-Hockey-IP-Code.

6. Baseball
Having demonstrated the success of our greedy integer programming formulation in hockey contests, our

next goal was to see how much our approach generalizes. To do this, we applied our approach to top

heavy daily fantasy baseball contests in DraftKings. We have less data for baseball than we did for hockey

because the season had just begun. Also, the structure of baseball contests is similar to hockey contests.

Therefore, we will present here a brief summary of our baseball greedy integer programming formulation

and its performance on real contest data. In short, we have found that in our limited number of baseball

contests, the method does indeed perform very well and is able to place in the top ten in contests with tens

of thousands of entrants multiple times.

We begin with a brief overview of how baseball is played and how fantasy points are scored. A baseball

team consists of pitchers and hitters. The goal is for the hitters to hit the ball pitched by the opposing pitcher

https://github.com/dscotthunter/Fantasy-Hockey-IP-Code
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Figure 10 The runtime of our algorithm for generating 100 lineups with different integer programming soft-

ware.

and then run to four bases to score runs. In fantasy sports contests a pitcher scores points for striking out

batters, pitching for more innings in the game, and winning the game. A hitter scores points by hitting the

pitch, scoring a run by reaching home base, or having other hitters score a run as a result of his hit, also

known as a run batted in or RBI.

There is a great deal of similarity between the structure of hockey and baseball lineups, so we are able

to almost directly use the hockey integer programming formulation with some slight modifications. We do

not go through the details of the baseball formulation here, but instead present the basic constraints. First,

our objective is to maximize the expected fantasy points of the lineups. Here we simply use the projections

from Daily Fantasy Nerd for the expected players’ points. Second, there are feasibility constraints related

to the players’ position, team, and salary. A baseball lineup consists of ten players: two pitchers and eight

hitters (catcher, first baseman, second baseman, third baseman, shortstop, and three outfielders). The lineup

must have players from at least two different baseball games and the budget for a lineup is 50,000 fantasy

dollars, just as in hockey. Finally, a lineup cannot have more than five hitters from one team.

We have stacking and overlap constraints for baseball. As in hockey, we want to stack the baseaball line-

ups to increase their variance. We do this by adding constraints which remove negative correlations and

increase positive correlations within a lineup. We use two different stacking types to do this. First, similar

to goalie stacking in hockey, we do not have a pitcher and any opposing players on the same lineup. Pitch-

ers and opponents have negatively correlated points, just as in hockey with goalies and opposing skaters.

Second, similar to line stacking in hockey, we use consecutive hitters on a lineup. Consecutive hitters have

positively correlated points because of the structure of baseball. For instance, if the first three batters can
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Date Best Rank Total Number of Entries
5/25/2016 1 47,916
5/26/2016 3 38,333
5/27/2016 1,342 57,500
5/29/2016 7 38,333
5/30/2016 213 38,333
5/31/2016 146 47,916
6/1/2016 400 47,916
6/2/2016 17 46,000
6/3/2016 376 53,666
6/5/2016 2 38,333

Table 4 The date, our top ranked lineup, and number on entries in DraftKings top heavy baseball contests.

get on base and the fourth batter hits a home run, then the first three batters get points for runs and the

fourth batter gets points for his hit plus the three RBIs. In our formulation, we use five consecutive batters in

each lineup, allowing for cyclic orders such as batters in positions (8,9,1,2,3). We choose five consecutive

batters because this is the maximum allowed by DraftKings. The overlap constraint has the same structure

for both baseball and hockey except that we set the maximum overlap parameter γ to six for baseball.

Baseball contests allow 200 entries per person, but are typically larger than hockey contests, which makes

them more difficult to win. While top heavy hockey contests never have more than 24,000 entrants, top

heavy baseball contests always have more than 38,000 entrants. Nonetheless, our approach has proven

successful . We show the rank achieved by our best lineup (out of 200) in historic DraftKings daily fantasy

baseball competitions and the number of entrants in the competitions in Table 4. As can be seen, our greedy

integer programming heuristic is able to place in the top ten in four competitions, and even comes in first

place in one of the competitions. This success in baseball is significant because we use the same general

principles presented in Section 2.5 which were used for hockey. This suggests that our approach to picking

winners is very general and has applicability to a variety of domains.

7. Conclusion
We have presented here a greedy integer programming formulation for constructing entries from a set of

constrained resources which have a large probability of winning winner-take-all contests. Our approach is

developed from insights gained from analyzing properties of the probability of winning, which is many

times an intractable function. We have shown that our approach can consistently win top heavy daily fantasy

hockey and baseball contests. While we applied our approach to one application domain, it is very general

and can be applied in many other settings. At a high level, our approach can be summarized as follows.

1. Build simple prediction models for the resources’ means and understand their pairwise correlations.

2. Formulate an integer program that constructs entries with maximal mean while lower bounding their

variance and upper bounding their correlation with previously constructed entries.

3. Solve the integer programs to sequentially generate entries in a greedy manner.
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The success we were able to achieve for both hockey and baseball given the relative simplicity of our

approach shows its power. We do not use the actual value of any correlations, just a basic understanding of

their sign. Our predictions can even be noisy. It is the manner in which the entries are constructed which

allows us to pick winners despite noise in the prediction models.

An interesting question is how easily can this approach be ported over to other domains? We expect

our approach to work in winner-take-all contests where one can obtain predictions for the entries and also

where one understands the basic correlation structure of the entries. Such situations can include movie

studios trying to select films to produce, pharmaceutical companies trying to select drugs to develop, or

a venture capital fund trying to select start-up companies in which to invest. In these situations experts

will have some predictions for success of different entries, whether they be movies, drugs, or companies.

Also, correlations may be understood because of similarities between the entries. For instance, the success

of companies developing similar products may be correlated. Therefore, one should be able to apply our

approach to picking winners in these and many other similar situations.

8. Proofs
8.1. Proof of Theorem 2.1

We show that maximizing U(S) is NP-hard by reducing it to the maximum coverage problem. In the

maximum coverage problem one is given a set U of n elements and a collection E = {Ei}Ni=1 ofN subsets of

U such that
⋃
E∈E E = U . The goal is to selectM sets from E such that their union has maximum cardinality.

This is known to be an NP-hard optimization problem. To show that this is an instance of maximizing U(S)

we assume that the sample space Ω is countable and finite with R elements. We also assume that each

element ω ∈Ω has equal probability, i.e. P(ω) =R−1. Let F be the σ-algebra of Ω. For any set S ∈F , we

can write U(S) =R−1|
⋃
ω∈S ω|. Then we have

max
S⊆E,|S|=M

U(S) = max
S⊆E,|S|=M

R−1

∣∣∣∣∣⋃
ω∈S

ω

∣∣∣∣∣
= max
S⊆E,|S|=M

∣∣∣∣∣⋃
ω∈S

ω

∣∣∣∣∣ .
Therefore, maximizing U(S) is equivalent to the maximum coverage problem.

8.2. Proof of Theorem 2.2

The function U(S) is non-negative and non-decreasing because it is the probability of a set of events. We

must show that it is also submodular. A submodular function f satisfies

f
(
S
⋃
v
)
− f

(
S
⋃
v
)
≥ f

(
T
⋃
v
)
− f

(
T
⋃
v
)

(8.1)

for all elements v and pairs of sets S and T such that S ⊆ T . We show that the function U(S) is submodular

as follows. We let the σ-algebra of the probability space be F . Consider sets S,T , v ∈F such that S ⊆ T .
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We can write v = vS
⋃
vT
⋃
v0 where we define vS = v

⋂
S, vT = v

⋂
T
⋂
Sc, and v0 = v

⋂
T c. Then we

have

U
(
T
⋃
v
)
−U (T ) =P (v0)

and

U
(
S
⋃
v
)
−U (S) =P

(
vT
⋃
v0

)
≥P (v0)

≥U
(
T
⋃
v
)
−U (T ) ,

thus showing that U(S) satisfies the submodularity condition.

8.3. Proof of Theorem 2.5

The proof of Theorem 2.5 relies upon the following lemma.

LEMMA 1. For a set of events S, let M = |S|. Then

U2(S) =
1

2

M∑
l=1

l(3− l)
∑
T∈Sl

p′T . (8.2)

With this lemma we can rewrite U2(S) as

U2(S) = 1− p0− (1− p0) +
1

2

M∑
l=1

l(3− l)
∑
T∈Sl

p′T

=U(S)−
M∑
l=1

∑
T∈Sl

p′T +
1

2

M∑
l=1

l(3− l)
∑
T∈Sl

p′T

=U(S) +
1

2

M∑
l=1

(−l2 + 3l− 2)
∑
T∈Sl

p′T

=U(S) +
1

2

M∑
l=3

(−l2 + 3l− 2)
∑
T∈Sl

p′T .

Above we have used the fact that 1− p0 =
∑M

l=1

∑
T∈Sl

p′T . We also adjusted the limits of the final sum

using the fact that the terms −l2 + 3l − 2 are zero for l = 1,2. We will next upper bound the difference

U(S)−U2(S) and lower bound U(S) in order to upper bound (U(S)−U2(S))/U(S). We first consider

U(S). We have that p0 = (1− p)M and pM <N−δ < 1/4 for some δ > 0. Using this we obtain

U(S) = 1− p0

= 1− (1− p)M (8.3)
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To obtain a lower bound, we must upper bound (1− p)M . This is done as follows.

(1− p)M =
M∑
i=0

(
M

i

)
(−p)i

≤ 1−Mp+
(Mp)2

2
+

M∑
i=3

(Mp)i

≤ 1−Mp+
(Mp)2

2
+

(Mp)3

1−Mp

≤ 1−Mp+ (Mp)2.

Above we have used the fact that Mp< 1/3. With this bound we have

U(S)≥ 1− (1−Mp+ (Mp)2)

≥Mp(1−Mp)

≥ 2Mp

3
.

We next upper bound the difference U(S)−U2(S). Recall that we assumed for any 1≤ l≤M and any

T ∈ Sl that pT ≤ c1pl. With this assumption we have

U(S)−U2(S) =
1

2

M∑
l=3

(l2− 3l+ 2)
∑
T∈Sl

pT

≤ c1
2

M∑
l=3

(l2 + 2)

(
M

l

)
pl

≤ c1
2

M∑
l=3

(l2 + 2)(Mp)l

≤ c1
2

∞∑
l=3

l2(Mp)l + c1(Mp)3
∞∑
l=0

(Mp)l

≤ c1
2

(
Mp(1 +Mp)

(1−Mp)3
−Mp− 4(Mp)2

)
+
c1(Mp)3

1−Mp

≤ c1
2

13(Mp)3

(1−Mp)3
+
c1(Mp)3

1−Mp

≤ 8c1(Mp)2
(

Mp

(1−Mp)3
+

Mp

1−Mp

)
≤ 16c1(Mp)2.

Combining the two bounds we obtain

U(S)−U2(S)

U(S)
≤ 16c1(Mp)2

2Mp/3

≤ 24c1Mp

≤ 24c1N
−δ.
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8.4. Prof of Lemma 1

We assume without loss of generality that S = {Ei}Mi=1. Then we can write U2(S) as

U2(S) =
M∑
i=1

M∑
l=1

∑
T∈Sl,Ei∈T

p′T −
1

2

M∑
i,j=1,j 6=i

M∑
l=2

∑
T∈Sl,Ei,Ej∈T

p′T

=
M∑
l=1

(
l

1

)∑
T∈Sl

p′T −
M∑
l=2

(
l

2

)∑
T∈Sl

p′T

=
1

2

M∑
l=1

l(3− l)
∑
T∈Sl

p′T .

Above we have used the convention
(
l
k

)
= 0 for l < k and the relation(
l

1

)
−
(
l

2

)
=
l(3− l)

2
.

8.5. Proof of Theorem 2.6

We define the marginal mean and variance ofXi as µi and σ2
i and we define the correlation coefficient ofXi

and Xj as ρij . We define pi =P(Ei) and pij =P(Ei
⋂
Ej). We will use the following bounds for Gaussian

random variables.

LEMMA 2. (Gordon 1941) Let X be a Gaussian random variable with mean µ and positive standard

deviation σ. For any value t > µ let z = (t−µ)/σ. Then we have

exp (−z2/2)√
2πσ(z+ 1/z)

≤P(X ≥ t)≤ exp (−z2/2)√
2πσz

. (8.4)

We will also use the following lemma to obtain an upper bound on the joint probability pij .

LEMMA 3. Let (X1,X2) be a pair of jointly Gaussian random variables with means µ1, µ2, positive

standard deviations σ1, σ2, and correlation coefficient ρ. For any value t >max(µ1, µ2), we have

P(min(X1,X2)> t)≤ exp

− (2t−µ1−µ2)
2

2
(
σ2
1 +σ2

2 +
√

(σ2
1 −σ2

2)2 + 4ρσ2
1σ

2
2

)
 . (8.5)

With these bounds for the relevant probabilities, we can obtain a lower bound on the objective function. Let

zi = (t−µi)/σi. Then using Lemmas 2 and 3 we have

U2(S) =
∑
i:Ei∈S

pi−
1

2

∑
i,j:i:Ei,Ej∈S,i6=j

pij

≥
∑
i:Ei∈S

1

zi + 1/zi
exp

(
−z

2
i

2

)

− 1

2

∑
i,j:i:Ei,Ej∈S,i6=j

exp

− (2t−µi−µj)2

2
(
σ2
i +σ2

j +
√

(σ2
i −σ2

j )
2 + 4ρijσ2

i σ
2
j

)


=U l
2(S).
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8.6. Proof of Lemma 3

We define the two dimensional vectors t = [t, t], µ= [µ1, µ2], and 1 = [1,1] and we define the covariance

matrix of X1 and X2 as

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (8.6)

To obtain the upper bound on the probability of interest we use a careful application of the Chernoff bound.

For any θ > 0, we can upper bound the probability of interest as

P(min(X1,X2)> t) =

∫ ∞
t

∫ ∞
t

|Σ|−1/2

2π
exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
dx1dx2

≤
∫ ∞
−∞

∫ ∞
−∞

|Σ|−1/2

2π
exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
exp

(
θ1T (x− t)

)
dx1dx2.

To perform the integral above, we transform to a basis where Σ is diagonal. Let the eigenvalues of Σ be λ1

and λ2 with λ1 ≥ λ2 > 0. It can be shown that these eigenvalues are

λ1 =
σ2
1 +σ2

2

2
+

√
(σ2

1 −σ2
2)

2
+ 4ρσ2

1σ
2
2

2
(8.7)

λ2 =
σ2
1 +σ2

2

2
−

√
(σ2

1 −σ2
2)

2
+ 4ρσ2

1σ
2
2

2
(8.8)

We can write Σ = V −1ΛV where V is an orthonormal matrix and Λ is a diagonal matrix with elements

λ1 and λ2 along its diagonal. We perform a coordinate transformation in the integral to the variables u =

V −1(x−µ). Using this change of variables we obtain

P(min(X1,X2)> t)≤
∫ ∞
−∞

∫ ∞
−∞

|Σ|−1/2

2π
exp

(
−1

2
(x−µ)TV Λ−1V −1(x−µ)

)
exp

(
θ1T (x− t)

)
dx1dx2

≤ exp (−θ(2t−µ1−µ2))
2∏
i=1

∫ ∞
−∞

1√
2πλi

exp

(
− u2

i

2λi
+ θui

2∑
j=1

Vij

)
dui

≤ exp

−θ(2t−µ1−µ2) +
θ2

2

2∑
i=1

λi

(
2∑
j=1

Vij

)2


We choose θ to minimize the upper bound. Let the value of θ which achieves this minimum be θ∗. It can

easily be shown that

θ∗ =
2t−µ1−µ2∑2

i=1 λi

(∑2

j=1 Vij

)2 .

Using this value for θ∗ we obtain the tightest upper bound
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P(min(X1,X2)> t)≤ exp

−θ∗(2t−µ1−µ2) +
(θ∗)2

2

2∑
i=1

λi

(
2∑
j=1

Vij

)2


≤ exp

− (2t−µ1−µ2)
2

2
∑2

i=1 λi

(∑2

j=1 Vij

)2

 .

Finally, we note that since V is an orthonormal two by two matrix, we have that Vij =−Vij for i 6= j and

the inner product of any two distinct rows is zero. Using this we obtain the following useful property.

2∑
i=1

(
2∑
j=1

Vij

)2

=
2∑
i=1

2∑
j=1

V 2
ij +

2∑
i=1

2∑
j,k=1,j 6=k

VijVik

=
2∑
i=1

1 +
2∑
i=1

2∑
j,k=1,j 6=k

VjiVki

= 2.

Using this plus the expression for λ1, we obtain

P(min(X1,X2)> t)≤ exp

(
− (2t−µ1−µ2)

2

2
∑2

i=1 λi(
∑2

j=1 Vij)
2

)

≤ exp

(
− (2t−µ1−µ2)

2

2λ1

∑2

i=1(
∑2

j=1 Vij)
2

)

≤ exp

(
−(2t−µ1−µ2)

2

4λ1

)

≤ exp

− (2t−µ1−µ2)
2

2

(
σ2
1 +σ2

2 +
√

(σ2
1 −σ2

2)
2

+ 4ρσ2
1σ

2
2

)
 .
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