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Mere observation of others’ choices can be informative about product quality. This paper develops an
individual-level dynamic model of observational learning and applies it to a novel data set from the U.S.

kidney market, where transplant candidates on a waiting list sequentially decide whether to accept a kidney
offer. We find strong evidence of observational learning: patients draw negative quality inferences from earlier
refusals in the queue, thus becoming more inclined towards refusal themselves. This self-reinforcing chain of
inferences leads to poor kidney utilization despite the continual shortage in kidney supply. Counterfactual pol-
icy simulations show that patients would have made more efficient use of kidneys had the concerns behind
earlier refusals been shared. This study yields a set of marketing implications. In particular, we show that
observational learning and information sharing shape consumer choices in markedly different ways. Optimal
marketing strategies should take into account how consumers learn from others.
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1. Introduction
Maciej Lampe declared for the National Basketball
Association (NBA) draft at the perfect time. He was
the rarest commodity in an NBA draft—a tall, young,
European big man with a sweet shooting stroke. He
was seen as raw but full of potential, which made
him a top-ten pick in most experts’ projections, and
as high as number five overall (Lago 2003). Unfortu-
nately, on draft day, the Miami Heat passed on Lampe
at number five, and the bad news started to snowball.
Teams grossly overestimated the risks in investing a
first-round pick on Lampe, allowing him to slip all the
way to the second round, at number 30 overall. Sub-
sequently playing in BC Khimki in Moscow, Lampe
was awarded the MVP in the Russian Cup final in
February 2008.
Maciej Lampe is not alone. In labor markets, an

episode of unemployment is known to dampen the
success of a job search beyond what is justified by
the job candidate’s qualifications. In housing markets,
skepticism accumulates around the value of a prop-
erty as its “time on market” increases, forcing some
sellers to relist their properties to break this chain
of negative inferences. In general, people frequently
engage in “observational learning,” drawing qual-
ity inferences from mere observation of peer choices:
restaurants that maintain a sizable waiting list are
often perceived to be of high quality, book buyers

pursue bestsellers, and Internet surfers swarm high
click-volume contents. Marketers too have woken up
to the prevalence of observational learning and have
created innovative promotional tactics to harness its
magic. For example, to introduce the T68i phones to
the United States in 2002, Sony Ericsson sent trained
actresses to bars and lounges with the phones in
hopes that onlookers would notice and believe that
they stumbled onto a hot new product (Vranica 2002).
The goal of this paper is to empirically model obser-
vational learning behavior and its impact on choices.
It is challenging, however, to empirically identify

the existence and isolate the impact of observational
learning. First, observation of choices often coex-
ists with other sources of quality information such
as word-of-mouth communication (e.g., Ellison and
Fudenberg 1995, Godes and Mayzlin 2004, Mayzlin
2006), payoff experiences (e.g., Nelson 1970; Erdem
and Keane 1996; Camerer and Ho 1999; Villas-Boas
2004, 2006; Hitsch 2006; Narayanan et al. 2007), and
the supplier’s selection of marketing mix variables
(e.g., Moorthy and Srinivasan 1995, Wernerfelt 1995,
Desai 2000, Anderson and Simester 2001, Guo and
Zhao 2009). Second, even in markets where obser-
vational learning plays a dominant role, the choice
dynamics are often complex. For example, a poten-
tial restaurant patron may not know whether those
waiting in line had all independently chosen this
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restaurant, or some had been attracted by the line
itself. Depending on the construction of the choice
sequence, the quality inference can be vastly different.
This paper meets these challenges by study-

ing observational learning in perhaps its cleanest
environment—the U.S. market of transplant kidneys.
When a deceased-donor kidney is procured, compat-
ible transplant candidates are sorted into a queue
following a nationally implemented priority system.
The kidney travels down the queue until a patient
is willing to accept it for transplantation. It is ideal
to study observational learning in this kidney market
for the following reasons. First, decisions are sequen-
tial, and the sequence is constructed through a com-
monly known process. Second, privacy concerns and
the limited decision time minimize the chance for
between-patient communication. Meanwhile, obser-
vational learning is fully enabled in that all previ-
ous decisions are observable—the fact that a patient
is offered a kidney unambiguously implies that all
preceding patients on the queue have turned down
this kidney. Third, the kidney market is unlikely to be
influenced by other primary mechanisms behind uni-
form social behavior, such as sanctions of deviants,
preference for social identification (e.g., Kuksov 2007),
and network effects (e.g., Yang and Allenby 2003, Nair
et al. 2004, Sun et al. 2004). In particular, kidneys do
not contain the “public appearance value” that partly
explains the urge to have the right cell phone, choose
the right restaurant, or sport the right fashion gear.
This paper adopts a structural Bayesian approach to

modeling observational learning. Whereas all patients
in a queue observe the objective kidney quality mea-
sures (e.g., donor age), each patient also receives a
private quality signal (e.g., her physician’s recommen-
dation). If a kidney is passed on to the second patient,
she knows that the first patient’s private signal must
have failed to reach a threshold determined by the
first patient’s utility function. The second patient can
then apply Bayes’ rule to update her quality per-
ception of this kidney. All things being equal, the
first patient’s rejection decision lowers the second
patient’s perception of the kidney’s quality and hence
her propensity to accept. The second patient’s likely
refusal in turn lowers the quality perception for sub-
sequent patients, triggering a herd of refusals down
the queue. As a result, a kidney’s chance of accep-
tance critically depends on its choice history as well
as its intrinsic quality.
In the observational learning literature, the pio-

neering works of Banerjee (1992) and Bikhchandani
et al. (1992) theoretically prove that observational
learning may lead to informational cascades and herd
behavior, where individuals rationally ignore their
private information and repeat their predecessors’

actions. Empirically documenting observational learn-
ing therefore often relies on seeking evidence of
convergence in actions or experimental manipula-
tion (e.g., Anderson and Holt 1997, Çelen and Kariv
2004).1 The source of identification in this paper is
the variation in a patient’s queue position, which
determines the amount of observational learning the
patient is exposed to. As a result, this paper does
not require action convergence to identify obser-
vational learning. In fact, by embedding sequen-
tial Bayesian updating in an individual-level choice
model, we are able to quantify the impact of observa-
tional learning with the continuous changes in poste-
rior valuation, which captures the nuanced nonlinear
pace of repeated observational learning. Furthermore,
this individual-level approach allows us to explicitly
model how observational learning of common values
(such as kidney quality) is moderated by private val-
ues (such as patient-donor tissue match). Finally, the
structural framework enables a set of policy exper-
iments, especially counterfactual comparison of an
array of learning mechanisms.2

The most common reason for patients to reject a
kidney offer is that the kidney is believed to be of
marginal quality and that patients choose to wait
for better kidneys (United Network for Organ Shar-
ing (UNOS) 2002). That is, kidney adoption decisions
involve a dynamic trade-off. For example, even if kid-
neys are believed to be of poor quality when they
reach the back of the queue, patients at the back of
the queue are also less likely to receive good kidneys
in the future. To model this intertemporal trade-off,
we cast quality learning in a dynamic choice set-
ting where forward-looking patients seek to maxi-
mize their expected discounted present value. This
dynamic model allows us to capture how patients’
decisions depend on the progression of their health
conditions, their chance of getting kidney offers in the
future, and the quality of these future kidney offers,
which in turn depends on other patients’ decision
rules.
We find significant evidence of observational learn-

ing. At first glance, even identical kidneys from the
same donor are received much differently. Whereas
some kidneys are accepted early on in the queue, their
identical counterparts have to go far down the line
to find a transplant recipient. In other words, early
rejections seem to considerably influence subsequent
decisions. After further controlling for patient-donor
match, deterioration of kidney quality when traveling
down the line, patients’ option value of waiting, and

1 Please see Bikhchandani et al. (1998) for a review of the observa-
tional learning literature.
2 Please see Chintagunta et al. (2006) for a discussion of the devel-
opment and application of structural models in marketing.
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patients’ risk attitudes, model estimation confirms the
significant impact of observational learning—on aver-
age, the further a kidney travels down the queue,
the lower its perceived quality. A competing explana-
tion is that negative information about kidney quality,
although unobservable to the researcher, lowers the
acceptance propensity of all patients. This explanation
is modeled, estimated, and ruled out.
Another primary learning mechanism in social

contexts is information sharing. Policy permitting,
a patient could have obtained private quality signals
from her predecessors who have evaluated and re-
jected the kidney. Observational learning and informa-
tion sharing have distinct choice implications. To see
this, suppose a patient receives a favorable signal but
decides to reject the kidney because of her higher stan-
dards. A unique prediction of observational learning is
that a rejection always (weakly) decreases subsequent
patients’ quality perception. However, if this favorable
private signal is shared with subsequent patients, it
may help them evaluate the kidney positively despite
the rejection decision. If the average of private sig-
nals reveals the true underlying value of a kidney,
when more signals aggregate, choices will converge
to an efficient level. Indeed, policy experiments show
that patients would have made much more efficient
decisions were they able to communicate the reasons
behind rejection decisions. This finding may help the
U.S. organ allocation system alleviate the urgent inef-
ficiency problem, where most of the refused kidneys
are of acceptable clinical value despite the significant
shortage of transplant kidney supply (UNOS 2002).
An important message to marketers in general is

that a product’s market performance is more than
a simple sum of sales. A small number of choices
can be critical in determining product success, espe-
cially in categories with highly visible choices but lim-
ited information sharing. Early adopters and marginal
consumers are likely to be such pivotal influencers.
Optimal marketing strategies should take into account
whether and how consumers learn from others.
The rest of the paper is organized as follows. Sec-

tion 2 overviews the U.S. kidney transplant market
and presents the data. Section 3 models three learning
mechanisms—no social learning, information shar-
ing, and observational learning—and embeds these
learning mechanisms into a dynamic choice model
of forward-looking patients. These models are esti-
mated in §4, where we find that the observational
learning model explains the data best. A compet-
ing model of public (i.e., available to all patients)
quality information is ruled out. Section 5 simulates
and compares patient decisions under different learn-
ing mechanisms. Section 6 discusses how the insights
would apply to general markets. Section 7 concludes
the paper and suggests directions for future research.

2. The U.S. Kidney Market and Data
2.1. Overview of the U.S. Kidney Market
Each year more than 40,000 people in the United
States develop end-stage renal diseases. The two
major treatments are dialysis and kidney transplan-
tation. Dialysis requires at least 9 to 12 hours of
treatment at a dialysis center each week. Transplanta-
tion frees patients from the inconveniences of dialysis
and, if successful, offers a quality of life compara-
ble to one without kidney disease. Transplant kidneys
come from either living donors or deceased donors.
Although the former source is superior, the supply is
limited in the United States. As a result, more than
half of donated kidneys are procured from deceased
donors.
Patients waiting for deceased-donor kidneys are

placed on a waiting list administered by the UNOS.
When a kidney is procured, blood type-compatible
patients within the same organ procurement orga-
nization (OPO) are sorted into a queue based on a
UNOS point system. The appendix provides details
on the queuing scheme, which is largely first-come,
first-serve with local perturbations caused by tissue
match, high peak panel reactive antibody (PRA) mea-
sures, and juvenility. The kidney is offered sequen-
tially to patients in the queue until someone accepts it
for transplantation. During the search for transplant
recipients, kidneys are kept frozen and accumulate
cold ischemia time. A long cold ischemia time may
lead to inferior transplant outcomes. Therefore, kid-
neys are normally discarded if not accepted within
48 hours.
There has been an acute shortage of deceased-

donor kidneys in the United States. According to
the 2006 Annual Report of the Organ Procurement
and Transplantation Network (OPTN), an organi-
zation administered by UNOS under contract with
the U.S. Department of Health and Human Services,
32,381 new end-stage renal diseases patients in the
United States joined the transplant waiting list in
2006, while only 10,659 deceased-donor kidneys were
transplanted in that year. Between 1992 and 2006,
the number of people on the national kidney wait-
ing list grew from 22,063 to 65,199. Despite the short
supply, more than 10% of deceased-donor kidneys
are discarded after being repeatedly refused by trans-
plant candidates. OPTN has identified the low kidney
acceptance rate as a major challenge to kidney alloca-
tion efficiency.
The alarming inefficiency of the current kidney

allocation system has attracted substantial attention
in academia. Studies suggest a number of solu-
tions including paired kidney exchange (e.g., Roth
et al. 2004) and restructuring the queuing mechanism
(e.g., Su and Zenios 2004). These studies have focused
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on system optimization from the policy-maker’s per-
spective and have left underexplored the micro-level
patient decision processes. Although the most com-
mon reason for kidney refusal is that the current offer
is believed to be of marginal quality such that patients
choose to wait for a better kidney (UNOS 2002),
it remains unknown how patients form this qual-
ity perception. In fact, OPTN laments the fact that
medical measures alone are insufficient in predicting
patient decisions (OPTN/SRTR 2006, pp. VII–1):

Although the effects of donor and recipient character-
istics on kidney graft survival have been documented,
the relationship of these characteristics and center-
specific practices on organ acceptance rates is not well
understood. We hypothesized that variation in accep-
tance rates, beyond that which can be explained by
recipient and donor characteristics, exists among trans-
plant programs, and that metrics could be developed
to quantify these behaviors.

In this study, we investigate the underlying drivers
of patient decisions, identify observational learning as
an important factor behind the “variation in accep-
tance rates,” and suggest policy changes to promote
efficient kidney usage.

2.2. Data
The data set for this study combines the national
waiting list data from the UNOS 2002 annual report
and the transplant detail data from the United States
Renal Data System 2001 annual report. All anal-
yses focus on the TXGC OPO, a major OPO in
Texas and one of the largest OPOs in the United
States. Kidneys of different blood types normally
enlist different queues of patients because of blood
type compatibility screening. This paper presents the
statistics for blood type A kidneys. The resulting sam-
ple includes 338 patients and 275 accepted kidneys.
Kidneys arrive at the OPO at an average rate of one
per six days, which does not vary significantly over
time (p = 0�141). An observation is defined as one
decision occasion where a patient is presented with
the choice of whether to accept a kidney. The sample
contains 9,384 observations.
Table 1 presents the summary statistics of three

classes of variables in the data. Patient-specific vari-
ables include patient age, gender, race, employment
status, income, PRA measure, and number of years
on dialysis. Kidney-specific variables include donor
age, gender, race, and queue information (e.g., queue
position of the accepting patient).3 The most impor-
tant patient–kidney-interactive variables are the tissue

3 Other clinical measures include patient body surface area, dial-
ysis modality, comorbidities, donor body surface area, and cause
of death. Inclusion of these clinical measures does not significantly
alter the estimation results.

Table 1 Summary Statistics

Variable Mean Std. dev. Min Max

Patient-specific variables �N = 338�
Patient age 47�059 14�342 4 79
Patient age≤ 11∗ 0�018 0�132 0 1
11< Patient age≤ 18∗ 0�018 0�132 0 1
Patient_female∗ 0�340 0�474 0 1
Patient_Caucasian∗ 0�790 0�408 0 1
Patient_unemployed∗ 0�559 0�497 0 1
Income ($1,000) 30�733 11�789 6.399 86.254
PRA> 80%∗ 0�018 0�132 0 1
No. of years on dialysis 1�649 2�025 0 13

Kidney-specific variables �N = 275�
Donor age 32�186 15�483 0 73
Donor_female∗ 0�447 0�498 0 1
Donor_Caucasian∗ 0�895 0�308 0 1
Accepting patient: Position in queue 34�124 19�406 1 77
Accepting patient: No. of previous 15�455 23�994 0 166

offers
Accepting patient: No. of days waiting 209�440 206�311 1 1�272

Patient–kidney-interactive variables �N = 9�384�
0 mismatch∗ 0�004 0�059 0 1
0 mismatch at DR∗ 0�038 0�190 0 1
1 mismatch at DR∗ 0�406 0�491 0 1
Cold time 8�877 7�034 0.016 43
Accept∗ 0�029 0�169 0 1

∗Dummy variable, which equals 1 if the statement in the variable name is
true, 0 otherwise.

match measures. The dummy variables “0 mismatch,”
“0 mismatch at DR,” and “1 mismatch at DR” indicate
perfect, second- and third-best tissue match, respec-
tively (see the appendix for details), where perfect
tissue match occurs only 0.4% of the time. Another
important patient–kidney-interactive factor is the cold
ischemia time a kidney has accumulated when offered
to a patient. The quality of a kidney may deteriorate
as its cold time increases.
Notably, only 2.9% of kidney offers are accepted.

In this sample, a kidney can be accepted by as late
as the 77th patient in the queue. On average, a kid-
ney is accepted by the 34th patient, who has already
turned down 15 previous offers and has waited 209
days at the time of acceptance. Figure 1 shows kid-
ney acceptance rates across positions in the queue.
Approximately 10% of patients at the top of the queue
accept the kidney offer. Subsequent analyses reveal
that this acceptance rate is largely explained by per-
fect tissue match, which advances a patient to the
top of the queue. Patients from position 2 to posi-
tion 13 almost always reject the offer. The acceptance
rate then increases moderately, remains flat for most
of the queue, and rises sharply at the end. The larger
variance near the end of the queue results from a
smaller number of observations falling in that range:
only 0.35% of observations fall beyond position 70.
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Figure 1 Kidney Acceptance Rates Across Queue Positions
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2.3. A First Evidence of Observational Learning:
Acceptance of Same-Donor Kidneys

A special feature of deceased-donor kidney dona-
tion is that sometimes both kidneys can be retrieved
from the same donor. Out of 275 kidneys in the sam-
ple, there are 58 pairs of same-donor kidneys, each
pair containing identical kidney-specific clinical mea-
sures and therefore enlisting the same pool of eligible
patients. If acceptance decisions are mainly driven by
these observable kidney and patient characteristics,
same-donor kidneys should exhibit close acceptance
patterns.
To see if this is true, we separate the same-donor

kidneys into two groups: group 1 contains the 58 kid-
neys that are accepted earlier in the queue, and
group 2 contains their 58 identical counterparts. Fig-
ure 2 illustrates the divergence in acceptance pat-
terns between same-donor kidneys. The 58 pairs of
same-donor kidneys are listed along the horizontal

Figure 2 Divergence in Acceptance for Same-Donor Kidneys
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axis, each pair adjacently placed. The vertical axis
is the queue position of the accepting patient for
each kidney. Even kidneys with identical clinical mea-
sures seem to fare differently in their search for trans-
plant recipients. On average, kidneys in group 1 are
accepted by the 30th patient, whereas those in group 2
are accepted by the 45th patient. The difference in the
queue position of the accepting patient is significant
(t =−4�212, p = 0�000).
The distinct acceptance paths for same-donor kid-

neys suggest that patient decisions may be system-
atically influenced by a force other than observable
kidney and patient characteristics. The data pattern is
particularly suited to an observational learning expla-
nation: if patients infer inferior kidney quality from
a rejection decision, refusals will be self-reinforcing
and will delay acceptance even further. This can be
true even if a patient turned down the kidney only
because of momentary unavailability (which can be
modeled as an idiosyncratic utility shock). As an ini-
tial test of whether rejections are self-reinforcing, we
estimate a logit model where the dependent variable
is whether each patient accepts a kidney offer, and the
independent variables include the number of times
the kidney has been rejected so far, as well as all
observable patient and kidney characteristics (includ-
ing the kidney’s cold time). Consistent with the obser-
vational learning hypothesis, the coefficient for the
number of previous rejections is negative (−0�0138)
and significant (p = 0�000).4
In fact, an ideal way to identify observational learn-

ing in the field is to compare the adoption paths
of two identical products and test for path depen-
dence. Same-donor kidneys represent one of the few
commodities that satisfy this identicalness condition
in naturally occurring markets, and their diverg-
ing acceptance paths serve as a first evidence of
observational learning. In the following sections, we
model observational learning, identify its existence,
and quantify its impact on choices.

3. A Dynamic Choice Model
This section develops a choice model where patients
engage in observational learning, and compares it
with two other learning mechanisms: learning from
private signals (no social learning) and learning
through information sharing. These learning models
are cast in a dynamic setting where patients make an
optimal trade-off between accepting the current kid-
ney and waiting for future kidneys, given a forecast
of their future states of being.

4 Although identical kidneys typically have an identical set of eligi-
ble patients, those who accept one kidney drop out of the queue for
its identical counterpart that arrives later. The logit model includ-
ing all observable attributes helps to control for such changes in
queue composition.
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3.1. Patients’ Dynamic Optimization Problem
Consider a discrete-time infinite-horizon dynamic
optimization problem where a patient chooses
whether to accept a kidney offer to maximize her
expected present discounted value.5 Let i index
patients and t = 1� � � � �� index the kidney arrival
time. We consider the Markov perfect equilibrium
where patients’ decisions only rely on payoff-relevant
state variables. Let Sit be a vector of all these state
variables that are payoff-relevant to patient i at time t,
and let dit be the decision variable that equals 1 if
patient i accepts kidney t and 0 if she rejects this
kidney offer.
Once she accepts a kidney, a patient moves to

the absorbing state of transplantation and receives
an expected utility of EU
Sit�, which captures her
expected present discounted posttransplant payoffs.
If she turns down the kidney, she incurs one period’s
cost of waiting C
Sit�. Let  denote the discount fac-
tor, let V 
Sit� denote a patient’s maximum expected
present discounted value given her current state Sit ,
and let �
Si� t+1 � Sit� dit = 0� denote the transition
probability of patient i’s state from time t to t + 1
given she rejects kidney t. The Bellman equation for
patient i’s dynamic optimization problem at time t is

V 
Sit� = max
{
EU
Sit��−C
Sit�+ 

∫
Si� t+1

V 
Si� t+1�

·�
Si� t+1 � Sit� dit = 0� dSi� t+1

}
� (1)

3.2. Utility Function and Quality Inference

3.2.1. Patients’ Utility Function. In this section,
we specify the state variables contained in Sit and for-
mulate EU
Sit�, the expected payoff from accepting a
kidney offer. Let Uit
Sit� denote the utility for patient i
to accept the kidney arriving at time t:

Uit
Sit�=Xit�+��t −���2t + �it� (2)

Xit is observable to both patient i and the econome-
trician, and contains a constant term, the characteris-
tics of patient i at time t, the attributes of kidney t,
and the patient–kidney match measures. � consists
of the utility weight parameters associated with Xit .6

Observable characteristics may not capture the kid-
ney quality completely. Let �t represent any unob-
servable (to both the patient and the econometrician)

5 Practically, either the patient or the doctor can make the accep-
tance decision. This distinction, however, does not conceptually
alter the model. Throughout the paper, we refer to the decision
maker as the patient.
6 To keep the model computationally tractable, we do not
estimate “parameter heterogeneity” among patients but rely
on the individual-level data to capture observable “attribute
heterogeneity.”

quality component of kidney t, and let � be the associ-
ated utility weight. Note that because tissue match is
the only clinically significant “horizontal” match fac-
tor after blood-type compatibility screening (Su et al.
2004), �t is conceptualized as a “vertical” quality com-
ponent that is of common interest to patients. Patients
are allowed to be risk-averse towards quality uncer-
tainty. Following Erdem and Keane (1996), we intro-
duce the quadratic term ���2t to capture patients’ risk
attitudes, where the risk coefficient � is positive if
and only if the patient is risk-averse. For example,
if � is positive, a patient’s utility function will be
concave in unobservable kidney quality. Her utility
derived from the mean value of unobservable kid-
ney quality is thus greater than the mean of the utili-
ties derived from all possible values of unobservable
kidney quality. Finally, �it denotes the idiosyncratic
utility shock encountered by patient i when evaluat-
ing kidney t. For example, a patient may experience
momentary inconveniences such as unfavorable phys-
iological conditions which prevent her from accepting
an instant transplant. Privately observed by patient
i, �it is assumed to follow an independent and iden-
tically distributed (i.i.d.) Gumbel distribution across
patients and across kidneys.
We assume that patients know the distribution of �t

across kidneys, which is assumed to be i.i.d. normal
with mean � and variance �2

� :

�t ∼N
���2
� �� (3)

In addition, patient i receives a private signal sit of the
unobservable quality �t . One example of such a pri-
vate signal could be the physician’s quality judgment
drawing on her expertise. Indeed, although organ-
sharing societies in the United States have published
certain policies guiding the kidney allocation process,
they have also stated that this policy, however, does
not nullify the physician’s responsibility to use appro-
priate medical judgment (UNOS 2002). Without actual
data on the signal content, we assume the private sig-
nals to follow a conditional i.i.d� normal distribution
around �t , although the model can be extended to
incorporate alternative signal distributions.7 In other

7 The assumption that private signals are continuous allows for the
possibility that physicians communicate a fine gradation of quality
judgment. For example, physician recommendations may convey
various levels of preferences. Alternatively, physicians may recom-
mend patients to either accept a kidney or reject it. Such binary
signals can be modeled as a discrete manifestation of the physi-
cians’ latent evaluation of the kidney. Correspondingly, in the learn-
ing models presented in this paper, the conditional probability of
continuous signals given kidney quality is replaced by the condi-
tional tail probability that a physician’s latent evaluation exceeds
or falls below her recommendation threshold given kidney quality.
The essence of Bayesian inferences underlying the learning models
remains the same.
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words, although private signals vary across individu-
als, a large-sample average of these signals would be
an unbiased indicator of the true quality8:

sit � �t ∼N
�t��2
s �� (4)

As will be discussed later, �, ��, and �s cannot all be
identified. However, we will keep the notation sepa-
rate throughout to trace the different role each param-
eter plays in the learning process.
A patient’s inferred value of �t varies with the infor-

mation accessible to her. In the rest of this section,
we model and compare this quality inference pro-
cess corresponding to three representative informa-
tion structures: (1) no social learning, where a patient
updates her quality perception based on her knowl-
edge of the prior distribution of �t and her private
signal sit ; (2) social learning through information shar-
ing, where in addition to the prior distribution and
her own signal, a patient also acquires other patients’
private signals through, for example, truthful word-of-
mouth communication; and (3) observational learning,
where besides the prior distribution and the patient’s
private signal, others’ choice decisions contain infor-
mation about the unobservable quality. Let Iit be the
set of aforementioned information that helps patient i
infer the value of �t . Let Oit be a dummy variable that
equals 1 if patient i is offered a kidney at time t and
0 otherwise. Last, let Zit denote patient characteristics
that affect their cost of waiting. Zit will be operational-
ized in §3.4. Patient i’s state variables at time t are
therefore decomposed as follows:

Sit = �Oit�Xit�Zit� Iit� �it�� (5)

The expected payoff for patient i to accept kid-
ney t is

EU
Sit� = E
Uit � Sit�

= Xit�+�E
�t � Iit�−��E
�2t � Iit�+ �it�

if Oit = 1� (6)

8 The variance of the private signals � 2
s may in theory change

across kidney episodes. For example, by evaluating kidneys repeat-
edly, a doctor’s precision in judgment may improve over time.
To explore this possibility, we stratify the sample into two sub-
samples based on a median split of the number of previous offers
a patient has received until her current decision. We estimate the
model allowing the signal variance for “experienced” patients (� 2

se)
and “inexperienced” patients (� 2

si) to be different. The likelihood-
ratio test fails to reject the null hypothesis that �se = �si (�2
1� =
0�398� p = 0�528). In addition, it is possible that unobservable qual-
ity and, therefore, private signals are correlated across identical
kidneys from the same donor. In the estimation we report, unob-
servable quality and private signals are treated as independent
across identical kidneys. A robustness check restricting unobserv-
able quality and private signals to be the same for identical kidneys
yields close estimation results.

where E
�2t � Iit� can be decomposed as E
�t � Iit�
2 +

E 
�t − E
�t � Iit��
2 � Iit!. Therefore, calculating EU
Sit�

boils down to inferring the posterior distribution of
�t given Iit , which will be modeled in the rest of this
section. To complete the utility specification, we nor-
malize the deterministic part of patient i’s expected
payoff to 0 when she does not receive a kidney offer.
That is,

EU
Sit�= �it� if Oit = 0� (7)

3.2.2. Quality Inference Without Social Learning.
A patient’s expected value of the unobservable qual-
ity �t is equal to the prior mean � if all she knows
is the prior distribution of �t . However, she can fine-
tune her quality perception if she also receives a
private signal. By Bayes’ rule (DeGroot 1970), the
posterior expectation of �t is a weighted average of
the prior mean � and the private signal:

E
�t � Iit�=
�2

� sit +�2
s �

�2
� +�2

s

� Iit = �sit�� (8)

Intuitively, the less accurate the private signal is,
the more weight is assigned to the prior quality
perception.

3.2.3. Quality Inference Through Information
Sharing. A patient can further update her quality
perception when she engages in social learning and
obtains private signals from other decision makers.9

Let rit denote patient i’s position in the queue for kid-
ney t. For simplicity of presentation, we drop the sub-
script it. Suppose a patient acquires private signals
from all her r − 1 predecessors, the posterior expecta-
tion of �t is a weighted average of the prior mean �
and the sample average of these r signals:

E
�t � Iit�=
�2

�

∑r
j=1 sjt +�2

s �

r ·�2
� +�2

s

� Iit = �s1t� � � � � srt�� (9)

The weight given to the prior decreases in r . That is,
the more doctors a patient consults, the more likely
it is for her to trust the consensus. An analogy in
new product diffusion is that while innovators rely
more on their prior quality knowledge, imitators
may pay more attention to product reviews. When
r approaches infinity, the posterior expectation of �t

equals the average of all observed signals, which, by
the law of large numbers, approaches the true value
of �t . This convergence property is consistent with the
common notion of “the wisdom of crowds.”
Note that although patients can also share other

information such as decisions, in this setup only pri-
vate signals matter to subsequent patients. Once a

9 We assume truthful sharing of signals. However, this model can
be extended to capture untruthful communication if we can specify
a structure for any signal distortion.
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patient shares her signal, her actual choice does not
add information about the quality of this particular
kidney. It is possible, though, that a patient learns
more about her predecessors by watching their deci-
sions, in which case previous decisions should be part
of the information set. Such dynamics are interesting
to model in future research.

3.2.4. Information Sharing vs. Observational
Learning. When communication is costly and oth-
ers’ private signals unaccessible, mere observations
of others’ actual choices can be informative too.
Before presenting the observational learning model,
we first intuitively describe two key differences
between (truthful) information sharing and observa-
tional learning.
First, with information sharing, a rejection does not

always lower expected quality perceived by subse-
quent decision makers. To see this, suppose the sec-
ond patient is offered a kidney. If the first patient does
receive a good signal but rejects the kidney because of
poor tissue match, information sharing may actually
increase the second patient’s inferred quality. With
observational learning, however, the second patient’s
inferred quality can only be lowered by the first
patient’s rejection. This is because the first patient is
more likely to reject the kidney with worse private
signals, which are more likely to occur with worse
kidneys. The second patient would therefore assign
higher probabilities to low kidney qualities by Bayes’
rule. Property 3 in the next section states this result
formally.
Second, with information sharing, previous sig-

nals enter a patient’s quality evaluation continuously
(Equation (9)). Therefore, extreme values of private
signals are diluted in a large sample, eliminating the
existence of “pivotal” patients. In contrast, marginal
patients can be crucial in shaping subsequent choices
with observational learning. This is because a patient’s
quality inference is discontinuous in her predeces-
sors’ signals under observational learning because
of the discrete nature of choices. To see this, sup-
pose patient 1 is on the margin but chooses accep-
tance over rejection. Patient 2 would then infer that
patient one’s private signal must have been “favorable
enough.” Suppose alternatively that patient 1 receives
an infinitesimal negative perturbation in her private
signal and therefore marginally prefers rejection. This
new decision only changes patient 1’s own utility
infinitesimally. However, patient 2’s inferred region of
the first signal now becomes the lower tail of the dis-
tribution, which decreases patient 2’s quality expecta-
tion discontinuously. If patient 2 in turn switches to
rejection, patient 1’s marginal decrease in private sig-
nals can be amplified into a chain of rejections down
the queue.

These fundamental differences lead to the predic-
tion that choices are ultimately driven by quality with
information sharing, but are sensitive to initial choices
and marginal choices with observational learning.
In the kidney market, the queue ends whenever the
kidney is accepted. Therefore, observational learning
is asymmetrical in the sense that only observations of
rejections influence subsequent patients. Such a mar-
ket is likely to generate excessive rejections. In the fol-
lowing sections we model observational learning and
explore whether it indeed triggers excessive rejections
of kidneys. In §6 we discuss a set of aggregate predic-
tions that distinguishes between information sharing
and observational learning in general markets.

3.2.5. Quality Inference Through Observational
Learning. In this section, we formally model quality
inferences when a patient observes all her predeces-
sors’ decisions but does not know the precise reason
behind each decision. The information set for patient
in position r becomes Iit = �d1t� � � � � dr−1� t� srt�. In the
kidney market, the fact that the patient in position r is
offered the kidney implies that �d1t = · · · = dr−1� t = 0}.
However, the model below can be extended to accom-
modate a generic permutation of acceptance or rejec-
tion decisions in the sequence, and applied to other
markets where a product can be accepted by multiple
consumers.

The First Patient. The first patient decides whether
to accept kidney t based on her own signal s1t . Her
posterior expectation of �t is

E
�t � s1t�=
�2

� s1t +�2
s �

�2
� +�2

s

�

Note that the expected utility from accepting the kid-
ney increases with the private signal s1t . At the same
time, a patient’s current private signal does not affect
the utility she can derive from accepting a future kid-
ney offer. This is because private signals are drawn
independently around the true unobservable quality
(by Assumption 4), which in turn is drawn from an
independent pool (by Assumption 3). Therefore, the
first patient accepts kidney t if and only if s1t ≥ B1t ,
where B1t is the cutoff signal that solves the indiffer-
ence condition:

EU
S1t�=−C
S1t�+ 
∫
S1� t+1

V 
S1� t+1�

·�
S1� t+1 � S1t� d1t = 0� dS1� t+1�

with EU
S1t� given by Equation (6).

The Second Patient. The second patient infers �t

based on two pieces of information: the rejection deci-
sion of the first person d1t = 0, and her private sig-
nal s2t . By Bayes’ rule, the posterior density of �t is
proportional to the product of the conditional (on �t)
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density of the observed data and the prior density
of �t :

p
�t � d1t = 0� s2t� ∝ p
d1t = 0� s2t � �t� · p
�t��

The first patient’s cutoff B1t determines the informa-
tiveness of her decision. However, B1t is not directly
observed by the second patient. For example, she
does not observe whether the first patient has turned
down the kidney because of a poor tissue match or
despite a good match, even though the quality impli-
cations are vastly different. Fortunately, the nation-
ally publicized queuing policies provide patients with
“distributional” knowledge of the queue. In fact, a
patient is often on a queue with the same set of peer
patients. For instance, patients would know that the
top of the queue tends to be associated with a bet-
ter tissue match and longer waiting time. Therefore,
we assume the second and all subsequent patients
know the distribution of B1t , denoted as G
B1t�. One
sufficient condition for this assumption to hold is
common knowledge of the distribution of patient and
kidney attributes among the first patients in the line,
of the distribution of patients’ idiosyncratic utility,
and of the transition probability �
· � ·�. It follows that

p
d1t = 0� s2t � �t�=
∫

p
s1t < B1t� s2t � �t� dG
B1t��

Because the private signals s1t and s2t are condition-
ally (on �t) independent, the conditional probability
of the joint event that the first signal is below B1t and
the second event equals s2t is the product of the con-
ditional probabilities of these two events:

p
s1t < B1t� s2t � �t� = p
s1t < B1t � �t�p
s2t � �t�

= '

(
B1t − �t

�s

)
(

(
s2t − �t

�s

)
�

where '
·� and (
·� are the cumulative distribu-
tion function (c.d.f.) and probability density function
(p.d.f.) of the standard normal distribution, respec-
tively. Consequently, the posterior density of �t can be
written as

p
�t � d1t = 0� s2t� ∝ (

(
s2t − �t

�s

)
(

(
�t −�

��

)

·
∫

'

(
B1t − �t

�s

)
dG
B1t�� (10)

The second patient’s posterior expectation of qual-
ity �t is

E
�t � d1t = 0� s2t�=
∫

p
�t � d1t = 0� s2t��t d�t∫
p
�t � d1t = 0� s2t� d�t

�

where the denominator serves as a normalizing factor
to ensure that the posterior density of �t integrates
to one.

Other things being equal, the higher s2t , and the
lower G
B1t� in the sense of first-order stochastic dom-
inance, the higher the second patient’s expected qual-
ity of kidney t. This can be seen from Equation (10):
both a larger B1t and a larger s2t shift more weight to
�t values towards the upper tail of its posterior dis-
tribution. The intuition is that the second patient will
infer higher kidney quality when she receives a more
favorable private signal, and when she knows that the
first patient rejected the kidney only because of her
high standards. Since E
�t � d1t = 0� s2t� increases in s2t ,
the second patient’s decision rule can also be charac-
terized by a cutoff strategy. She accepts the kidney if
and only if s2t ≥ B2t , where B2t is the private signal
value that makes her just indifferent between accep-
tance and rejection:

EU
S2t�=−C
S2t�+ 
∫
S2� t+1

V 
S2� t+1�

·�
S2� t+1 � S2t� d2t = 0� dS2� t+1�

A Generic Patient. The third patient draws qual-
ity inference in the same way as the second patient,
knowing that the second patient’s rejection decision
had been partially triggered by the first patient’s
rejection. In general, after observing r − 1 previous
rejection decisions and her own signal, patient r ’s
posterior expected value of �t is

E
�t � d1t = · · · = dr−1� t = 0� srt�

=
∫

p
�t � d1t = · · · = dr−1� t = 0� srt��t d�t∫
p
�t � d1t = · · · = dr−1� t = 0� srt� d�t

� (11)

where

p
�t � d1t = · · · = dr−1� t = 0� srt�

=(

(
srt − �t

�s

)
(

(
�t −�

��

)

·
∫

· · ·
∫ r−1∏

j=1
'

(
Bjt − �t

�s

)
dG
B1t� � � � � Br−1� t�� (12)

The patient in position r accepts kidney t if and
only if srt ≥ Brt , where Brt solves the indifference
condition

EU
Srt�=−C
Srt�+ 
∫
Sr� t+1

V 
Sr� t+1�

·�
Sr� t+1 � Srt� drt = 0� dSr� t+1� (13)

The posterior expected quality has a set of clean
properties. For simplicity of presentation, let hrt =
E
�t � d1t = · · · = dr−1� t = 0� srt� represent the posterior
expected quality from observational learning.

Property 1. The higher a patient’s private signal, the
higher her expected quality: *hrt/*srt > 0.
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Property 2. The higher the previous patients’ accep-
tance standard, the higher the expected quality. Let G and
G′ be any two cumulative distribution functions of previ-
ous patients’ acceptance standards. hrt
G� > hrt
G

′� if G
first-order stochastically dominates G′.

Property 3. Other things being equal, a rejection
decision always (weakly) decreases subsequent patients’
expected quality. If srt = sr+1� t , then drt = 0⇒ hr+1� t ≤ hrt .

Properties 1 and 2 can be shown in the same way as
for the second patient. To see why Property 3 holds,
notice from Equation (12) that when srt=sr+1� t� p
�t � d1t
= · · · = dr� t = 0� sr+1� t� differs from p
�t � d1t = · · · =
dr−1� t = 0� srt� in the integrand by '

Brt − �t�/�s�,
which gives more weight to lower values of �t for
any Brt < �. Therefore, hr+1� t is lower than or equal
to hrt when patient r rejects kidney t. Intuitively, if
both patients have witnessed the r − 1 previous deci-
sions, the additional rejection decision seen by patient
r + 1 can only (weakly) decrease her expected qual-
ity of the kidney unless she receives a sufficiently
favorable private signal. It can be similarly shown
that, other things being equal, an acceptance deci-
sion always (weakly) increases subsequent decision-
makers’ expected quality.
Note that Property 3 pertains to contexts such as the

kidney market where match-related attributes (in par-
ticular, tissue type) are observable to patients. Prop-
erty 3 may not hold if choices are driven by match
and if match attributes are yet to be learned. For
example, suppose two decision makers are known to
have opposite taste preferences. One person’s rejec-
tion signals that the product is more likely to match
the other person’s tastes. In those scenarios, rejection
may subsequently spur more acceptance.
It can be seen from the derivation so far that

patients’ intertemporal trade-off affects kidney adop-
tion in at least two ways. A patient’s option value
of waiting depends on her chance of receiving future
kidney offers and the quality of these kidneys. Mean-
while, the same patient’s quality perception of the
current kidney offer depends on the acceptance stan-
dards of her predecessors, which in turn depend on
their forecast of the future. To precisely model the
dynamics, we next develop the transition probability
of patients’ dynamic optimization problem.

3.3. Transition Probability
The overall transition probability of patients’ dynamic
optimization problem is decomposed as

�
Si�t+1 �Sit�dit =0� = �
(
Oi�t+1�Xi�t+1�Zi�t+1�Ii�t+1��i�t+1

∣∣
Oit�Xit�Zit�Iit��it�dit =0

)
�

The following three features of the state space help
simplify this transition probability.

First, because the idiosyncratic utility �it is i.i.d.
across both patients and time, it is exogenous to the
choice variable and orthogonal to all other state vari-
ables. Therefore, its transition is independent of the
transition of all other state variables:

�
Si� t+1 � Sit� dit = 0�
=�
�i� t+1� ·�

(
Oi� t+1�Xi� t+1�Zi� t+1� Ii� t+1 �

Oit�Xit�Zit� Iit� dit = 0
)
�

Second, because private signals are drawn from
an i.i.d. distribution around �t , which in turn is
distributed independently over time, private signals
are uncorrelated over time. Therefore, without social
learning, Ii� t+1 is independent of Iit . With information
sharing, Iit contains rit private signals. With observa-
tional learning, Iit contains rit − 1 rejections and one
private signal. Therefore, for both information sharing
and observational learning, given Oi� t+1, the statisti-
cal dependence between Ii� t+1 and Iit is transmitted
entirely through the statistical dependence between
ri� t+1 and rit . The rest of this subsection focuses on
the case of observational learning (the transition pos-
sibilities without social learning and with information
sharing can be similarly developed):

�
(
Oi� t+1�Xi� t+1�Zi� t+1� Ii� t+1 �Oit�Xit�Zit� Iit� dit = 0

)
=�

(
Oi� t+1�Xi� t+1�Zi� t+1� si� t+1� ri� t+1 �

Oit�Xit�Zit� rit� dit = 0
)
�

Third, the current offer status Oit and the current
decision dit do not affect Xi� t+1 or Zi� t+1, which con-
tain exogenous variables. Neither do they affect si� t+1,
which will be independently redrawn in period t + 1.
In addition, because the UNOS priority system does
not punish kidney refusals, future queue position
ri� t+1 does not depend on Oit or dit . Finally, the chance
for patient i to receive a kidney offer in period t + 1
is sufficiently determined by Xi� t+1, Zi� t+1, and ri� t+1,
and does not directly rely on her state or decision at
time t. Altogether,

�
(
Oi�t+1�Xi�t+1�Zi�t+1�si�t+1�ri�t+1 �Oit�Xit�Zit�rit�dit =0

)
=�

(
Oi� t+1� si� t+1 �Xi� t+1�Zi� t+1� ri� t+1

)
·�(

Xi� t+1�Zi� t+1� ri� t+1 �Xit�Zit� rit

)
�

In combination, the overall transition probability of
the state space can be written as

�
Si� t+1 � Sit� dit = 0�
=�

(
�i� t+1

) ·�(
Oi� t+1� si� t+1 �Xi� t+1�Zi� t+1� ri� t+1

)
·�(

Xi� t+1�Zi� t+1� ri� t+1 �Xit�Zit� rit

)
� (14)

The first component �
�i� t+1� is simply the p.d.f.
of the Gumbel distribution. The second component
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depends on individual equilibrium choice proba-
bilities, which will be developed in §3.4. The last
component can be estimated from the data (see
the electronic companion to this paper, available as
part of the online version that can be found at
http://mktsci.pubs.informs.org, for details).

3.4. Choice Probabilities
Assume a patient’s cost of waiting is determined by
her current state and an idiosyncratic utility shock �iot .
That is,

C
Sit�=Zit. + �iot� Zit ⊆ Sit� (15)

where Zit contains patient i’s number of years on dial-
ysis, income, and employment status. These variables
may affect the patient’s health status and well-being
while waiting, and capture her opportunity cost of
time.10

Given the i.i.d. Gumbel assumption of the idiosyn-
cratic utility shocks, the probability of patient i accept-
ing kidney t given her current state is

Pr
dit = 1 � Sit�

= eEU
Sit �

eEU
Sit � + e−C
Sit �+
∫

V 
Si� t+1��
Si� t+1 �Sit � dit=0� dSi� t+1
� (16)

Data on patients’ private signals, such as the physi-
cian’s recommendations, would be ideal to have but
are often unavailable to the researcher. To circum-
vent this problem, the private signals are integrated
out to evaluate the acceptance probabilities of a kid-
ney. Given quality �t , signals about kidney t are con-
ditionally independent, as are patients’ acceptance
probabilities for kidney t. Denote as Pr
Rt � �t� the
conditional probability that kidney t of true unob-
servable quality �t is accepted by the patient in posi-
tion Rt :

Pr
Rt � �t�

=
Rt−1∏
i=1

∫
Pr
dit = 0 � Sit�(

(
sit − �t

�s

)
dsit

·
∫
Pr
dRt� t = 1 � SRt� t�(

(
sRt� t − �t

�s

)
dsRt� t� (17)

where Pr
dit = 0 � Sit�= 1−Pr
dit = 1 � Sit�.
Meanwhile, neither the patients nor the researcher

knows the true unobservable quality �t . Therefore, the
unconditional probability of kidney t being accepted
at position Rt is

Pr
Rt�=
∫
Pr
Rt � �t�(

(
�t −�

��

)
d�t� (18)

10 Inclusion of other patient characteristics as waiting-cost determi-
nants does not change the estimation results qualitatively.

It remains to develop the second probability com-
ponent on the right-hand side of Equation (14).
Assume patients have rational expectations so that
�
Oit� sit �Xit�Zit� rit� equals the equilibrium joint
probability for the patient in position rit to reach an
offer status Oit and to receive a private signal sit .
Significantly, the chance of being offered a kidney
and the chance of receiving signal sit are correlated
through the unobservable quality �t :

�
Oit = 1� sit �Xit�Zit� rit�

=
∫ [ rit−1∏

j=1

∫
Pr
djt = 0 � Sjt�(

(
sjt − �t

�s

)
dsjt

]

·(
(

sit − �t

�s

)
(

(
�t −�

��

)
d�t� (19)

Also, the higher the unobservable quality of the kid-
ney, the less likely that the kidney will reach a patient
far down the queue. This idea is captured by a
patient’s probability of not receiving a kidney offer:

�
Oit = 0 �Xit�Zit� rit�

=
∫ [

1−
rit−1∏
j=1

∫
Pr
djt = 0 � Sjt�(

(
sjt − �t

�s

)
dsjt

]

·(
(

�t −�

��

)
d�t� (20)

4. Model Estimation
4.1. Estimation Procedure
The dynamic choice model is estimated using the
nested fixed-point algorithm (Rust 1987). For each set
of parameter values, an “inner” algorithm computes
the value function and evaluates the likelihood func-
tion. An “outer” algorithm then searches for the set
of parameters that maximize the likelihood function.

4.1.1. Computing the Value Function. Let EV 
Sit�
denote the total future discounted value patient i
expects to receive when she turns down kidney t.
That is,

EV 
Sit�=
∫
Si�t+1

V 
Si�t+1��
Si�t+1 �Sit�dit =0�dSi�t+1� (21)

The Bellman’s equation becomes

V 
Sit�=max
{
EU
Sit��−C
Sit�+ EV 
Sit�

}
accordingly. Given the i.i.d. Gumbel assumption of
the idiosyncratic utility shocks, EV 
Sit� can be rewrit-
ten as (Rust 1987):

EV 
Sit� =
∫
Si� t+1

ln
[
eEU
Si� t+1� + e−C
Si� t+1�+EV 
Si� t+1�

]
·�
Si� t+1 � Sit� dit = 0� dSi� t+1� (22)

As discussed in the electronic companion, the state
space relevant to solving EV 
·� is discrete and can be
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much simplified thanks to the high degree of inde-
pendence among the state variables in this data. Let K
denote the dimension of the state space, and let 1 be a
K×K Markov transition matrix in which the 
r� c� ele-
ment represents the transition probability from state r
to state c. (Please see the electronic companion for the
construction of 1.) The discrete representation of the
value function becomes

EV 
·�=1 · ln [eEU
·� + e−C
·�+EV 
·�]� (23)

where EV 
·�, EU
·�, and C
·� are all K×1 vectors with
the rth element being the function value evaluated at
the rth state. The value function EV 
·� is then solved
iteratively using standard fixed-point algorithms.

4.1.2. Evaluating the Log-Likelihood Function.
Given EV 
·� for each state, the choice probability in
Equation (16) can be rewritten as

Pr
dit = 1 � Sit�=
eEU
Sit �

eEU
Sit � + e−C
Sit �+EV 
Sit �
�

The probability of kidney t being accepted in posi-
tion Rt , Pr
Rt�, thus follows as given by Equation (18).
Note that the value function and these probabili-
ties are derived for a given set of parameters. Let 3
denote the parameter vector to be estimated. The log-
likelihood associated with kidney t is a function of 3:

LLt
3�= ln Pr
Rt �3�� (24)

Finally, let T denote the total number of kidneys
offered in the sample; the log-likelihood function for
the entire sample is

LL
3�=
T∑

t=1
LLt
3�� (25)

The log-likelihood function includes high-dimen-
sional integrals, and is evaluated using the simu-
lated maximum likelihood method. (Please see the
appendix for detailed procedures to formulate the
simulated likelihood function.)

4.2. Identification
4.2.1. Parameter Identification. To summarize,

the parameters to estimate include patients’ utility
weights associated with the patient and/or kidney
characteristics that determine the utility from accept-
ing the kidney offer (�), patients’ utility weights asso-
ciated with the cost of waiting (.), patients’ utility
weights associated with the unobservable quality (�),
patients’ risk-aversion coefficient (�), the prior mean
of the unobservable kidney quality (�), the prior stan-
dard deviation of the unobservable kidney quality
(��), the standard deviation of the private signals (�s),
and the discount factor ().

The utility weight parameters � and . are identified
from the exogenous variation in patient, kidney, and
patient–kidney-interactive characteristics. � is identi-
fied from the systematic variation in choice decisions
after the observable patient and kidney characteris-
tics are controlled for. The identification of � relies
on the functional form restrictions in the model: by
assuming a functional form for the prior unobserv-
able quality distribution and for the conditional signal
distribution, we are able to specify the posterior vari-
ance in the unobservable quality and isolate the effect
of � from the magnitude of the impact of this pos-
terior variance on risk-adjusted preferences (see also
Coscelli and Shum 2004).
The parameters �, ��, and �s together shape the

learning process. The prior mean � affects the choices
among patients at the top of the queue who do not
engage in observational learning. However, since Xit

includes a constant term, the intercept term in � can-
not be separately identified from �. We set � to zero.
The idea is to capture the fixed value of transplanta-
tion through the intercept and to measure the mean
value of a particular kidney from the other observ-
able attributes, with the unobservable quality adding
fluctuations around this mean. Note that �, ��, and
�s cannot be all identified simultaneously. The intu-
ition is that the relative precision of prior quality and
signals determines the shape of the learning path,
while � captures the remaining scaling effect. There-
fore, we restrict �� to be 1 and estimate � and �s as
free parameters.
Finally, we fix the value of  at 0.95 because of

the usual difficulties in estimating the discount factor
in forward-looking dynamic models (see Erdem and
Keane 1996). Altogether, the set of parameters to be
estimated are 3= ���.������s�.

4.2.2. Observational Learning and Queue Posi-
tion. Because the amount of (negative) observational
learning monotonically increases down the queue,
it is crucial to isolate observational learning from
other queue-position-related factors. We try to keep
the identification of observational learning clean in
the following ways. First, the same kidney may be
of different quality when it reaches the 30th patient
than when it was with the first patient. We capture
this within-kidney quality variation across positions
by the “cold time” variable, which measures the time
from when a kidney was retrieved from the donor
until when it reaches the patient. Second, queue posi-
tion is completely determined by a set of exogenous
variables, which are observable to the econometri-
cian and are controlled for in the analyses. Third,
because of the queuing policy, a patient’s queue posi-
tion fluctuates across kidney episodes. This variation
enables us to observe choices of the same patient
with different amounts of observational learning and
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thus separately identify observational learning from
patient-specific heterogeneity. Fourth, as information
accumulates along the queue, the precision of the pos-
terior quality varies across queue position. This may
create additional cross-position variation in utilities
if patients are not risk neutral. We capture this vari-
ance by adding a flexible risk adjustment component
in the utility specification. Finally, patients in differ-
ent positions of the queue may have systematically
different prospects of future kidney offers. Modeling
patients’ dynamic trade-off helps to rule out potential
confounds from the intertemporal dimension.

4.3. Alternative Models
In addition to observational learning, we specify four
alternative models, each corresponding to a different
behavioral account of patients’ decision-making pro-
cesses. All five models are embedded in the dynamic-
choice setting.

4.3.1. No Quality Uncertainty. In this basic
model, patients make decisions based on observable
attributes only, either because quality is fully certain,
or because quality uncertainty does not affect their
utilities. This is equivalent to restricting � in the full
observational learning model to zero. As a result,
�s and � cannot be identified in this model.

4.3.2. Public Quality Information. Causality
claims for socially correlated choices demand extra
caution (see Manski 1993). If there exist common
contextual factors that the econometrician neither
observes nor accounts for, choice conformity can be
spuriously attributed to social contagion.11 For exam-
ple, Van den Bulte and Lilien (2001) reanalyze the
classic diffusion study Medical Innovation (Coleman
et al. 1966) and discover that the adoption of tetra-
cycline turns out to be driven by marketing efforts
rather than social contagion as previously speculated.
Manchanda et al. (2008) separate the effects of mar-
keting communication and interpersonal communica-
tion and find that both affect adoption. In the NBA
draft example at the beginning this paper, inferences
could coexist with rumors about the player’s caliber
that spread among teams. In our data, one major com-
peting explanation for repeated kidney refusals is the
existence of (negative) kidney quality information that
is publicly known to patients but is unobserved by the
researcher. This competing explanation can be mod-
eled by restricting �s to zero in the full observational
learning model. It follows that �t represents the pub-
lic quality information unobserved by the researcher,
and the model essentially becomes one with random

11 See Villas-Boas and Winer (1999) for a general discussion of how
the correlation between independent variables and the error term
can bias parameter estimates in choice models.

kidney effects. Therefore, given the functional form
assumption, the test between public quality informa-
tion and observational learning becomes the param-
eter test of whether or not �s = 0. Note that because
there is no quality uncertainty, � is not identified in
this model.

4.3.3. No Observational Learning. In this com-
peting account of the decision process, patients ignore
previous rejections and infer kidney quality using the
prior and their private signal only as if they were
the first in the queue, as specified in Equation (8).
Note that because every patient updates the prior
only once, the variance of the posterior is identical
across patients. Therefore, the risk adjustment in the
acceptance utility cannot be identified separately from
the intercept. We do not estimate � as a free parameter
but fix its value at zero.

4.3.4. Information Sharing. Although informa-
tion sharing does not exist in the data by institu-
tional design, we estimate this model for comparison
purposes. The quality updating rule is specified in
Equation (9).

4.4. Estimation Results

4.4.1. Goodness of Fit and Model Selection.
Table 2 reports the parameter estimates and model fit
statistics of the observational learning model and the
four alternative models. Observational learning fits
the data best with the highest log-likelihood. In partic-
ular, the nested models “no quality uncertainty” and
“public information” are both rejected (likelihood-
ratio statistic = 31�602, p = 0�000; likelihood-ratio
statistic= 27�164, p = 0�000, respectively). Indeed, the
estimate of � in the observational learning model dif-
fers from zero at the p = 0�000 level, which means that
uncertain kidney quality does affect patients’ deci-
sions. The estimated �s in the observational learn-
ing model is also significantly different from zero
(p = 0�000), which rules out the competing explana-
tion of public kidney quality information, given the
functional form assumption.
The “no social learning” and “information sharing”

models are not nested models of observational learn-
ing. The Akaike information criterion (AIC) selects
observational learning as the best model. In fact,
because of the significant signal variance, quality
inference by simply observing one’s own signal is
noisy, which necessitates social learning. The infor-
mation sharing model fits better than no social learn-
ing. Note that information sharing does not exist in
the data. The better fit comes from the additional
risk component; because the posterior variance under
information sharing declines with queue position and
because the corresponding risk coefficient is nega-
tive (meaning patients are risk seeking by definition),
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Table 2 Estimation Results

No quality Public
uncertainty information No social Information Observational

Parameters ��= 0� �	s = 0� learning sharing learning

Intercept 0�000 −0�001 −0�001 −0�001 0�000
Patient age 0�023∗∗ 0�023∗∗ 0�023∗∗ 0�016∗∗ 0�015∗∗

Patient_female 0�008 0�018 0�027 0�019 0�009
Patient_Caucasian −0�245 −0�205 −0�194 −0�283 −0�284
Patient income 0�000 0�000 0�000 0�000 0�000
Patient_unemployed −0�026 −0�006 −0�002 −0�007 −0�039
No. of years on dialysis −0�014 −0�002 0�000 −0�002 −0�008
PRA> 80% −0�784 −0�317 −0�284 −0�273 −0�491
Patient below 11 0�935 0�976 0�991 0�919 0�920
Patient btwn 11 and 18 1�325 1�209 1�218 1�278 0�726
Donor age 0�000 0�000 0�000 0�000 0�000
Donor_female 0�159 0�127 0�118 0�043 0�053
Donor_Caucasian −0�142 −0�113 −0�096 −0�127 −0�284
0 mismatch 6�396∗∗∗∗ 6�838∗∗∗∗ 6�832∗∗∗∗ 6�858∗∗∗∗ 6�004∗∗∗∗

0 mismatch at DR 1�487∗∗∗∗ 1�462∗∗∗ 1�441∗∗∗ 1�956∗∗∗ 1�474∗∗∗

1 mismatch at DR 0�186 0�158 0�144 0�630 0�442∗

Cold time 0�075∗∗ 0�078∗∗ 0�078∗∗ 0�093∗∗ 0�104∗∗

Utility weight on unobs. � — 0�001∗∗ 0�003∗∗ 0�172∗∗ 2�260∗∗∗∗

Signal noise 	s — — 0�000 0�208∗∗ 0�524∗∗∗∗

Risk coefficient � — — — −0�011∗ 0�003

No. of observations 9,384 9,384 9,384 9,384 9,384
No. of parameters 17 18 19 20 20
LL −913�732 −911�513 −911�397 −908�323 −897�931
AIC 1�861�464 1�859�026 1�860�794 1�856�646 1�835�862

∗P < 0�10; ∗∗P < 0�05; ∗∗∗P < 0�01; ∗∗∗∗P < 0�001.

other things being equal, the back of the queue would
have lower acceptance utility—a pattern in the same
direction of observational learning. The estimated
utility weight associated with the unobservable qual-
ity � is more significant in the observational learning
model than in the alternative models. One explana-
tion is that because the quality inference processes
specified in the observational learning model are
more consistent with the data, these inference pro-
cesses assume higher explanatory power.

4.4.2. Parameter Estimates. All five models yield
similar parameter estimates for the observable
attributes. In particular, older patients are more likely
to accept a kidney offer. There is no significant effect
of patient’s number of years on dialysis, which is
included to control for medical urgency, need for
transplant, and dialysis-induced status quo bias. As
expected, good tissue match increases the acceptance
propensity; perfect issue match increases it dramat-
ically. Interestingly, a longer cold time is associated
with higher acceptance rates across all models. This
coefficient would be better interpreted as a correla-
tion rather than a causal effect. One possibility is that
patients take a longer time to evaluate “marginally
acceptable” kidneys but can reject obviously poor kid-
neys immediately. Consistent with this interpretation,
cold time and queue position are negatively corre-
lated (correlation coefficient=−0�127, p = 0�035).

Figure 3 illustrates at the micro level how inferred
quality changes along the queue. For illustrative pur-
poses, we take one representative kidney, fix unob-
servable quality at zero, draw random signals, and
calculate each patient’s inferred unobservable quality
using the parameters estimates from the observational
learning model. In the absence of social learning,
inferred unobservable quality fluctuates with private
signals but shows a smaller variance because of the
stickiness of the prior quality perception. With infor-
mation sharing, inferred unobservable quality quickly
converges to the true value. With observational learn-
ing, inferred unobservable quality still responds to
private signals but declines noticeably towards the
end of the queue.
Figure 4 shows the impact of observational learn-

ing at the aggregate level. It plots the average
inferred unobservable quality across queue position.
As expected, overall, the inferred quality declines
down the queue as doubts about quality accumu-
late with repeated refusals. Interestingly, the shape
of patients’ inferred quality curve shows how hetero-
geneity in acceptance standards create heterogeneity
in the pace of learning. Among patients at the top
of the queue, 10.91% have perfect tissue match com-
pared to 0.35% across all patients. A rejection in spite
of perfect match contains a strongly negative message,
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Figure 3 Quality Inference—Example of One Kidney
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lowering the inferred quality significantly from posi-
tion 1 to position 2. After that, inferences slow down.
This is because patients near the top of the queue tend
to have longer waiting times and are likely to keep
their priority in the queue at the next offer. There-
fore, they can afford to wait for the “ideal kidney,”
and their refusal reveals little information about their

Figure 4 Quality Inference—Aggregate Effect
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private signals. This is consistent with the fact that
patients in positions 2 to 12 almost always reject (see
Figure 1). Moving down the line, when the kidney
keeps being rejected by patients with lower queue pri-
ority and lower acceptance standards, negative qual-
ity inference escalates. However, as more patients
reject partly because their predecessors have done
so, refusals become less informative. Consequently,
observational learning slows down again near the end
of the queue.
The impact of acceptance standards on quality infer-

ence calls for rethinking of the conventional need-
based allocation mechanisms for scarce resources.
By giving priority to people with the most need, effi-
ciency is enhanced conditional on acceptance. However,
in the possible case of refusal despite urgent need, oth-
ers may draw strongly negative quality inferences that
slow down the utilization of scarce resources.

5. Counterfactual Simulations of
Alternative Learning Mechanisms

In this section, we use parameter estimates obtained
from the observational learning model to simu-
late patients’ kidney acceptance decisions under two
counterfactual learning mechanisms. One is if there
were no social learning and each patient only fol-
lowed her private signal. The other is if each patient
were able to share the private signals of all her pre-
decessors. We then compare the decision quality of
these mechanisms and observational learning.
We make 10,000 random draws from the distri-

bution of unobservable kidney quality and match
each up with one random draw of observable kid-
ney attributes from the data. Each simulated kidney
draw is assigned a queue of eligible patients based on
the UNOS point system. These patients then receive
independent private signals conditional on the draw
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of unobservable kidney quality. Finally, each deci-
sion is assigned a random idiosyncratic utility shock.
We use the “first best” case of complete information
as the benchmark to assess the decision quality of
each learning mechanism. That is, we define opti-
mal patient decisions as those dictated by true kidney
quality, assuming it is observable to patients. We then
simulate patients’ decisions under different learning
mechanisms.
We first compare the prescriptive accuracy of these

learning mechanisms. We define “hit rate” as the
percentage of decisions consistent with those indi-
cated by complete information, assuming each patient
has the choice over each kidney.12 Information shar-
ing achieves a hit rate of 97.26%, higher than the
89.10% with observational learning (p = 0�000), which
in turn is higher than the 88.17% without social
learning (p = 0�000). Out of all decisions, the per-
centage of type I errors, where a patient rejects a
kidney while complete information prescribes accep-
tance, is 10.08% with observational learning, 3.89%
without social learning, and 1.33% with information
sharing. The percentage of type II errors, where a
patient accepts a kidney while complete information
prescribes rejection, is 7.94% without social learn-
ing, 1.41% with information sharing, and 0.82% with
observational learning.
One limitation of hit rate is that it does not measure

the valence of decision mistakes. Also, because the
above hit rate analysis is conditional on each patient
receiving the current kidney offer, it does not cap-
ture the possibility that better kidneys might have
been accepted early in the queue. To address both
problems, we study patients’ ex ante expected util-
ity under different learning mechanisms. For each
learning mechanism, a kidney is removed from the
queue once it is accepted. If a patient accepts a sim-
ulated kidney offer, she earns the acceptance utility
based on true kidney quality; if she rejects an offer or
does not receive one, she earns the discounted value
of her future expected utility net of waiting costs,
taking her transition probabilities into account. The
average of a patient’s utility (given her choice and
offer status) across simulated kidney draws yields the
ex ante expected utility of this patient for this learning
mechanism.

12 Alternatively, we can remove a simulated kidney draw from the
queue once it is accepted. However, this may lead to biased mea-
sures of decision accuracy. For example, suppose complete infor-
mation indicates that a kidney is accepted at position 20, whereas
observational learning delays acceptance until position 40. If we
truncate the queue after position 20, it will appear that observa-
tional learning achieves a hit rate of 95%, which can be an over-
statement because any decision mistakes after position 20 are not
captured.

Figure 5 Policy Experiments: Patients’ Ex Ante Expected Utility
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Figure 5 plots patients’ average ex ante expected
utility across queue positions. Generally, patients’
ex ante expected utility decreases along the queue, as
good kidneys are less likely to reach the back of the
line. The only exception is in position one. Because
some patients are advanced to the top because of
perfect tissue match with the current kidney, they
are not guaranteed the same priority when the next
kidney arrives. These patients therefore enjoy lower
rejection utilities, which in turn reduces the aver-
age ex ante expected utility at the top of the queue.
Among the three learning mechanisms, information
sharing generates the highest expected utility. In fact,
the expected utility curve with information sharing
is almost identical to that with complete information.
Patients are worse off with observational learning,
and are the worst off without social learning.13 As a
measure of aggregate patient welfare, the total ex ante
expected utility across all patients is 102.641 with
complete information, 102.179 with information shar-
ing, 88.550 with observational learning, and 64.911
without social learning. The difference in average
ex ante expected utility is insignificant between com-
plete information and information sharing (p = 0�191)
but significant between all other learning mechanisms
(p = 0�000).
The best decision quality generated by information

sharing is anticipated because it represents the most

13 Significantly, in simulating decisions without social learning, we
assume that patients know their positions in the queue. That is,
although patients judge the quality of the current kidney offer as
if they were first in the queue, they rationally know that in future
they are less likely to receive good kidneys if they are far down the
line. Alternatively, if patients naïvely believe that they will be the
first in the queue in the future, they may overestimate their ex ante
expected utility.
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informative mechanism among the three. With obser-
vational learning, patients also draw information
from previous rejections. However, repeated observa-
tions of rejections may bias quality inferences down-
wards. This explains the frequent type I decision
errors with observational learning. Without social
learning, patients further ignore the information con-
tained in previous rejections. In particular, patients
ignore the fact that good kidneys are ex ante less
likely to remain available. As a result, they make fre-
quent type II decision errors.
An imperative of organ allocation in the United

States is to improve the usage efficiency of kidneys.
The dominant problem is the high volume of type
I decision errors, where most of the refused kidneys
are of acceptable clinical value (UNOS 2002). The
policy experiments suggest that facilitating informa-
tion sharing among patients can help achieve this
goal. A platform could be set up where patients
exchange their concerns for turning down the kidney
offer, should confidentiality regulations permit. This
enhanced decision transparency can limit overinter-
pretation of previous refusals, and prevent excessive
rejections down the line. Note that although suppress-
ing social learning also increases acceptance, it cre-
ates the opposite problem of overusing low-quality
kidneys. Whether organ allocation authorities should
suppress social learning (for example, by offering kid-
neys simultaneously to a batch of patients) depends
on whether they aim to maximize kidney usage or
maximize aggregate patient utility.

6. Discussion: Implications for
Other Markets

This paper models and finds evidence of observa-
tional learning from the kidney market. The results
bear direct relevance to other markets of single non-
divisible goods that can be consumed by a single
buyer. Examples include labor markets, housing mar-
kets, auctions, business-to-business contracting, jour-
nal publications, child adoptions, and marriages. In
these markets, mere “availability” signals lesser qual-
ity, although the signal may be exaggerated. Credibly
communicating the reasons behind availability facil-
itates future transactions. In particular, marketers of
these goods may want to emphasize it if availabil-
ity is caused by nonquality reasons such as stringent
adoption standards, taste mismatch, high prices, and
circumstantial restrictions.
More generally, observational learning affects

choices if peer decisions convey relevant quality infor-
mation. This paper highlights the critical difference
between observational learning and information shar-
ing (for example, through truthful word-of-mouth
communication) in shaping choices. As two major

ways of social learning, observational learning and
information sharing are often intertwined in prac-
tice with their effects studied in combination. For
example, most diffusion models focus on forecast-
ing product adoption paths that are jointly fueled
by observations and communications (e.g., Bass 1969,
Horsky and Simon 1983, Narasimhan 1989, Talukdar
et al. 2002, Golder and Tellis 2004). It is therefore often
unclear which force is the main driver of sales and
what the optimal marketing strategies should be. This
paper suggests two aggregate predictions that differ-
entiate observational learning and information shar-
ing in general marketplaces.
First, if consumers’ private information collectively

reveals the true value of a product, information shar-
ing as a signal-averaging mechanism will ensure that
the ultimate success of a product reflects its quality.
If choices are instead driven by observational learn-
ing, mass behavior can sometimes depart from what
the underlying values would prescribe. As a result,
the quality of popular products may turn out to be
surprisingly low. For example, one major criticism of
today’s user-moderated websites such as Digg.com
is that stories promoted to the front page for their
popularity are frequently found to carry poor con-
tent. Indeed, hits and misses can crucially depend on
how the product is initially received by the market.
The business book The Discipline of Market Leaders is
believed to have made the bestseller list despite lack-
luster reviews because the authors secretly bought
back 50,000 copies at book release (Bikhchandani et al.
1998). Beyond the ethical debate surrounding such
promotional tactics, a general message to marketers
is that the early stage can be critical in shaping a
product’s life cycle, especially in categories such as
apparel, automobile, and digital music where choices
are highly visible. For these categories, the impact
of observational learning should be factored into
dynamic marketing decisions such as advertising tim-
ing, introductory pricing, and targeting.
Second, market dynamics under observational

learning can be sensitive to the choices of a few
pivotal consumers. Whereas diffusion paths driven
by information sharing tend to follow a smooth tra-
jectory, those shaped by observational learning can
be turbulent with abrupt changes in mass behavior
triggered by small events. It is likely, for example,
that observational learning powered the unantici-
pated rejuvenation of Hush Puppies in the mid-1990s,
the sudden rave of text messaging despite little pro-
motion, and the whimsical rise and fall of fashion
ideals. Although injecting significant unpredictabil-
ity into the market, observational learning also offers
marketers ample opportunities to orchestrate large-
scale changes with a limited budget. For example,
marketing resources spent on marginal customers
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and visible users may bring disproportionate returns
to the firm, although the exact amount of returns
depends on how consumers strategically react to such
marketing tactics.

7. Concluding Remarks
Mere observation of others’ choices can be a qual-
ity signal. This paper studies observational learning
in the U.S. deceased-donor kidney market, where
transplant candidates on a waiting list sequentially
decide whether to accept a kidney offer. The fact
that a patient receives a kidney offer implies that all
patients before her in the queue have turned down
the same kidney. However, confidentiality does not
allow between-patient communication of the reasons
for the refusals.
We model observational learning at the patient

level. Kidney quality is not perfectly observed. How-
ever, each patient has private information on kid-
ney quality, such as her doctor’s opinion. Suppose
the second patient is offered a kidney. She can infer
that the first patient’s private signal is not favorable
enough. She then uses this information and her pri-
vate signal to update her quality perception follow-
ing Bayes’ rule. Without sharing the exact concerns,
the first patient’s refusal can only (weakly) lower the
second patient’s inferred quality, thus increasing her
probability of refusal as well. Consequently, refusals
can be self-reinforcing, causing an otherwise accept-
able kidney to be wasted.
The data show aggregate patterns consistent with

observational learning. Even identical same-donor
kidneys are received much differently; some of them
are accepted early on in the queue while their iden-
tical counterparts have to travel far down the line to
find a willing recipient. At the same time, the U.S.
kidney allocation organizations lament the poor kid-
ney acceptance rate, which is lower than what the
observable patient and kidney characteristics could
justify. We estimate the observational learning model
using disaggregate data, controlling for patient-donor
match, deterioration of kidney quality while travel-
ing down the line, unobservable (to the researcher)
kidney quality information, patients’ risk attitudes,
and prospects of future kidney offers. We find evi-
dence of observational learning, where inferred qual-
ity indeed declines towards the back of the queue. We
then simulate patient choices in two counterfactual
scenarios: one without social learning and the other
with information sharing. Patients make more effi-
cient decisions with information sharing and worse
decisions without social learning. The findings sug-
gest that facilitating communication among patients
can help improve kidney utilization.
A general message to marketers is that mass behav-

ior can be shaped by the choices of a few. Therefore,

how to manage observational learning to marketers’
benefits becomes an important managerial question,
especially in markets where choices are immedi-
ately visible while information sharing lags behind.
Early adopters, visible lead users, and marginal con-
sumers can all be critical determinants of product
success.
This study suggests a way to model observational

learning in the field. Technically, observational learn-
ing becomes relevant when decisions are at least par-
tially sequential and are not sufficient statistics of
decision-makers’ private information (Banerjee 1992).
Below we discuss several possibilities of extending
the observational learning model to more complex
marketplaces.
First, decisions may not always be sequential. The

pace of learning will vary with the timing of deci-
sions. For example, suppose a new laptop model has
achieved success among technology enthusiasts who
make independent purchase decisions. The rest of the
population can then infer higher quality than if the
early wave itself was formed through observational
learning. In other words, by delaying observational
learning, marketers may subsequently create a fast
rising herd. The optimal timing to enable observa-
tional learning would be interesting to explore, given
that timing itself can signal quality.
Second, in general markets observational learning

may drive the herd in both ways. Product success
is path-dependent rather than a simple sum of per-
period sales. For example, declining sales follow-
ing an early rave communicates a different quality
image than delayed popularity following a slow start.
The model we present can be extended to accommo-
date any permutation of adoption/rejection decisions
along the sequence. An interesting question remains
though on how marketers should allocate promo-
tional resources across time, given strategic consumer
reactions.
Third, it is often uncertain how many people have

actually made a decision. For example, a consumer
may not know whether sluggish sales stem from a
lack of awareness or lack of preference. This is anal-
ogous to the “attribution story” of the kidney mar-
ket, where a patient may not know whether a refusal
stems from a mismatch or a poor signal. Future stud-
ies can model awareness as a moderator of quality
inferences and a strategic marketing decision variable.
Finally, observational learning often coexists with

information sharing (Chen et al. 2009). It would be
important to understand how they interact. Also,
it would be interesting to distinguish between obser-
vational learning and simple mimicking, which may
generate similar behavior although they represent dis-
tinct behavioral mechanisms.
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8. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mktsci.pubs.informs.org/.
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Appendix

The Queue Construction Process
UNOS oversees 90 organ procurement organizations
(OPOs) throughout the United States. An OPO is an orga-
nization which concentrates its organ procurement efforts
within a geographic territory. When a kidney is procured by
an OPO, blood-type compatible patients within this OPO
are selected and sorted into a queue based on a point system
that UNOS launched in 1995.14 Specifically, the UNOS point
system constructs the queues based on the following four
criteria. First, priority is given to patients with longer wait-
ing time. A patient receives one point for each year spent
on the waiting list. Second, priority is given to patients who
have better tissue match with the donor. The tissue type is
determined by six proteins at six loci—namely, A1, A2, B1,
B2, DR1, and DR2. A “mismatch” occurs at a locus if the
patient and the donor have different protein types there.
A patient receives infinite points if there is no mismatch at
any of the six loci (perfect tissue match), two points if there
is no mismatch at the DR loci (second-best tissue match),
and one point if there is one mismatch at the DR loci (third-
best tissue match). Third, priority is given to patients with
higher peak panel reactive antibody (PRA) measures, who

14 A small fraction of patients register at multiple OPOs. According
to UNOS (2002), 5.74% of patients on the national waiting list sign
up with two OPOs, 0.30% three, 0.02% four, and none above four.
This study does not model multiple registration but treats each
OPO as one separate waiting list.

are subject to higher risk of graft failure. Peak PRA ranges
between 0 and 1. Four points are given to patients whose
peak PRA are greater than 80%. Fourth, priority is given
to patients below 18 years of age who have higher risk of
graft failure. Patients below 11 receive four points, and those
between 11 and 18 get three points.
For each kidney, eligible patients are ranked in descend-

ing order of total UNOS points. In practice, the continued
shortage of kidneys has lengthened the average waiting
time, making it the dominant factor in determining the
queue. Meanwhile, only a small fraction of patients qual-
ify for criteria two to four. (See Table 1 for the percentages
in the sample of this study.) As a result, the UNOS point
scheme is converging to a first-come, first-serve priority sys-
tem (Su and Zenios 2004). In these data, patients’ current
queue position and next-period queue position are signifi-
cantly positively correlated (�= 0�803, p = 0�000).

Formulating the Simulated
Log-Likelihood Function
The log-likelihood function involves high-dimensional inte-
grals. First, the cutoff sequence �Bit� is only stochastically
known to subsequent patients. Therefore, to form her qual-
ity inference, a patient needs to evaluate Equation (12) by
integrating over the joint distribution G
B1t� � � � � Br−1� t�. We
approximate this integral by taking N random draws from
the joint distribution of B1t� � � � � Br−1� t , evaluating the inte-
grand at these draws, and taking the mathematical average:

1
N

N∑
n=1

r−1∏
j=1

'

(
Bn

jt − �t

�s

)
�

where Bn
jt is obtained by solving patient j’s indifference con-

dition (Equation (13)) given an nth draw from the joint
distribution of Xjt , Zjt , �jt , and �jot . (Technical details on
how to solve the cutoff sequence recursively are available
on request.) Note that the cutoff sequence only depends
on the joint distribution of patient and kidney characteris-
tics and idiosyncratic utility shocks but not on the actual
signals. Therefore, �Bit� can be solved recursively indepen-
dent of �sit�. This property allows us to perform simulation
in separate modules: the total number of simulation draws
needed to form the log-likelihood is linear in, rather than
multiplicative of, the number of signal draws and cutoff
draws.
Given the random cutoff draws, the posterior expected

quality with observational learning, hrt , can be approxi-
mated as

ĥrt
srt�3� = 1
D

∫
(

(
srt − �t

�s

)
(

(
�t −�

��

)

· 1
N

N∑
n=1

r−1∏
j=1

'

(
Bn

jt − �t

�s

)
�t d�t�

where

D =
∫

(

(
srt − �t

�s

)
(

(
�t −�

��

)
1
N

N∑
n=1

r−1∏
j=1

'

(
Bn

jt − �t

�s

)
d�t�

Evaluating ĥrt
srt�3� involves one-dimensional integration
over �t , which is numerically implemented using Gaussian
quadratures.
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After knowing ĥrt
srt�3�, the expected utility and hence
the probability for patient i to accept kidney t can be cal-
culated based on Equation (16). Denote this probability as
P̂r
dit = 1 � sit�3�, which is a function of the draw of private
signal sit and 3. Finally, to evaluate Pr
Rt � 3�, the private
signals need to be simulated:

P̂r
Rt �3� = 1
L

L∑
l=1

{Rt−1∏
i=1

[
1
M

M∑
m=1


1− P̂r
dit = 1 � slm
it �3��

]

· 1
M

M∑
m=1

P̂r
dRt� t = 1 � slm
Rt� t�3�

}
�

The specific procedure is to make L random draws from the
distribution of �t for each kidney t. Label the lth draw �l

t .
Given each �l

t , the private signals are conditionally indepen-
dent. Let eit denote the deviation of actual signal sit from �l

t .
eit follows an i.i.d. normal distribution with mean 0 and
variance �2

s . Make M draws from the distribution of eit and
label the mth draw em

it . It follows that slm
it = �l

t +em
it . This pro-

cedure maintains the signal correlation for the same kidney.
Finally, the simulated log-likelihood function to maxi-

mize is

L̂L
3�=
T∑

t=1
ln P̂r
Rt �3��
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