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Abstract

Quantifying the risk of unfortunate events occurring, despite limited distributional in-

formation, is a basic problem underlying many practical questions. Indeed, quantifying

constraint violation probabilities in distributionally robust programming or judging the risk

of financial positions can both be seen to involve risk quantification, notwithstanding dis-

tributional ambiguity. In this work we discuss worst-case probability and conditional value-

at-risk (CVaR) problems, where the distributional information is limited to second-order

moment information in conjunction with structural information such as unimodality and

monotonicity of the distributions involved. We indicate how exact and tractable convex

reformulations can be obtained using standard tools from Choquet and duality theory. Our

reformulations can be embedded conveniently into higher-level problems such as distribu-

tionally robust programs. We make our theoretical results concrete with a stock portfolio

pricing problem and an insurance risk aggregation example.

Keywords— optimal inequalities, extreme distributions, convex optimisation, CVaR

1 Introduction

In a wide range of applications, one is faced with the problem of quantifying the expected cost

L(ξ) of a random variable ξ with distribution P. Common problems include determining the

expected profit of a stock portfolio with uncertain stock returns [3,9], or quantifying the symbol

error rate in a noisy communication channel [27]. When the distribution P of the random vector

ξ is known, computing EP {L(ξ)} typically reduces to the evaluation of a (high dimensional) in-

tegral. The evaluation of a high dimensional integral is in general a computationally formidable

task [11].
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Furthermore, in practice it is often the case that the information available concerning the

distribution P is limited. This means that the distribution of ξ is ambiguous and only known to

belong to some ambiguity set P containing all distributions consistent with the known partial

information concerning P. We are thus limited to providing an upper bound on the expected

cost EP {L(ξ)} holding uniformly for all distributions P in the ambiguity set P. Hence when

faced with limited information on the distribution of ξ, the least upper bound on the expected

cost is supP∈P EP {L(ξ)}.

Unfortunately, such worst-case expectation bounds or inequalities are generally unavailable in

closed form, except in special cases where one can resort to classical bounds such as the Cheby-

shev or Gauss inequalities [21]. On the other hand, tractable reformulations based on convex

programming are known [27, 29] for the case where P consists of all distributions sharing a

known mean and variance. Thanks to modern interior point algorithms [13], these convex

programming reformulations provide a de facto closed form solution to the worst-case expec-

tation problem. The resulting inequalities are widely used across many different disciplines

such as distributionally robust optimisation [4] and control [25, 26] or portfolio selection and

hedging [28,30].

The main downside of these inequalities stems from the fact that the ambiguity set P, con-

sisting of all distributions sharing a known mean and variance, contains distributions that are

not realistic in many applications and that consequently render the inequalities overly pes-

simistic. Indeed, the distributions achieving the worst-case expectation bound generically have

discrete support with a finite number of discretisation points. Fortunately, recent work has

demonstrated that this pessimism can be partially mitigated by restricting the ambiguity set P

to contain only distributions satisfying additional structural requirements [18, 24]. In this pa-

per, we will therefore consider the following worst-case expectation problem with second-order

moment information:

Bwc (L,Ps, µ, S) := sup
P∈Ps

EP {L(ξ)}

s.t. P ∈ P(µ, S),

(Pwc)

where the ambiguity set P(µ, S) is defined as the collection of all distributions sharing a known
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mean and variance P(µ, S) =
{

P ∈ Pn
∣∣ ∫ x P(dx) = µ,

∫
xx> P(dx) = S

}
. The set Ps will be

used to characterize any further structural information about the distributions P considered,

e.g. symmetry, unimodality or monotonicity. When Ps is taken to be the standard probability

simplex Pn on (Rn,B(Rn)), then the worst-case expectation problem reduces to the standard

generalised moment problem discussed in [27,29]. The principal aim of this paper is to provide a

unified approach to the situations under which problem (Pwc) admits a tractable reformulation,

specifically for those situations in which Ps is more richly structured.

1.1 Conditional value-at-risk

A closely related and popular alternative to the expected cost of L(ξ) is its expected shortfall

or conditional value-at-risk (CVaR).

Definition 1.1 (CVaR). For any measurable loss function L : Rn → R, probability distribution

P and tolerance ε ∈ (0, 1), the CVaR of the random loss L(ξ) at level ε with respect to P is

defined as

P-CVaRε (L(ξ)) := inf
β∈R

{
β +

1

ε
EP
{

(L(ξ)− β)+}} . (1)

Rockafellar and Uryasev [19] have shown that the set of optimal solutions for β in (1) is a closed

interval whose left endpoint is given by the 1 − ε quantile of L(ξ). Moreover, it can be shown

that if the random loss L(ξ) follows a continuous distribution, then CVaR coincides with the

conditional expectation of L(ξ) above its 1− ε quantile. This observation originally motivated

the term conditional value-at-risk.

While CVaR is an interesting risk measure, it nevertheless still requires that the distribution

of ξ be known. As in the worst-case expectation problem, we therefore consider instead the

following worst-case CVaR problem:

BCVaR := sup
P∈Ps

P-CVaRε (L(ξ))

s.t. P ∈ P(µ, S).

However, from a computational point of view the CVaR problem can be reduced to a worst-case
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expectation problem. Defining L(β,P) := β+ 1
εEP

{
(L(ξ)− β)+} and recalling the definition (1),

our worst-case CVaR problem becomes

BCVaR = sup
P∈P

inf
β
L(β,P) = inf

β
sup
P∈P

L(β,P)

= inf
β

{
β + sup

P∈P

1

ε
EP
{

(L(ξ)− β)+}} .
Since L(β,P) is convex in β and linear in P, the interchange of the supremum and infimum

operations is justified when the ambiguity set P = Ps ∩ P(µ, S) is weakly closed by virtue of a

stochastic saddle point theorem due to [23]. The worst-case expectation problem can now be

seen to constitute an inner problem in the worst-case CVaR problem. Since the optimal β? is

known to lie in a closed interval [19] and supP∈P L(β,P) is convex in β, computing a solution to

the worst-case CVaR problem reduces to solving a sequence of worst-case expectation problems.

For instance, the golden section search can be used to optimise supP∈P L(β,P) only requiring a

polynomial number of evaluations supP∈P EP {(L(ξ)− β)+} [8]. Hence in what follows, we will

deal with the more general worst-case expectation problem (Pwc) directly.

1.2 Outline of the paper

In Section 2, we describe the worst-case expectation bound Bwc (L,Pn, µ, S) over the stan-

dard simplex Pn. We then show how the more general expectation bound Bwc (L,Ps, µ, S)

over the restricted ambiguity set Ps ⊆ Pn can be reduced to an equivalent expectation bound

Bwc (Ls,Pn, µs, Ss) over the standard simplex Pn using an integral or Choquet star represen-

tation of Ps. In Sections 3, we show that two important classes of structured distributions –

namely unimodal and monotone distributions – admit such Choquet star representations. In

Section 4 we make the abstract results concrete for the case of unimodal and monotone dis-

tributions, respectively, for both worst case probability and expectation inequalities. Section 5

illustrates the results on an stock portfolio problem and an insurance risk aggregation problem.

The main results presented in this paper, from a practitioners point of view, are summarised

in Table 1. We will focus mainly on indicator functions of polytopic sets Ξ which arise in

worst-case probability inequalities and piecewise affine functions which arise when dealing with

convex cost functions L : Rn → R+.
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Bwc (L,Ps, µ, S) Probability inequalities Expectation inequalities

L(x) = 1Rn\Ξ(x) L(x) = maxi∈I a>i x− bi

Standard simplex Pn [27] or Example 4.1 [29] or Example 4.2

Choquet star simplex Section 2.3 Section 2.4

Unimodal Uα Cor. 4.1 or [24] Cor. 4.2

Monotone Mγ Cor. 4.3 Cor. 4.4

Table 1: Optimal inequalities described by problem (Pwc) and discussed in this paper.

1.3 Notation

We denote by In the identity matrix in Rn×n and by Sn+ and Sn++ the sets of all positive

semidefinite and positive definite symmetric matrices in Rn×n, respectively. For any matrix

A ∈ Rn×n we denote its pseudo-inverse with A†. The beta function, or Euler integral of the

first kind, B : R2
++ → R++ is defined as the integral

B(u, v) :=

∫ 1

0
λu−1 · (1− λ)v−1 dλ.

The gamma function, or Euler integral of the second kind, Γ : R→ R is defined as the integral

Γ(t) :=

∫ ∞
0

λt−1 · e−λ dλ.

For any set S ⊆ Rn, we denote its associated indicator function by 1S : Rn → {0, 1}, where

1S(x) = 1 when x ∈ S and zero otherwise. Similarly when 0 ∈ S, its associated Minkowski or

gauge function is denoted by κS : Rn → R+, where κS(x) := inf {λ > 0 | x ∈ λS } .

2 Expectation Inequalities for Structured Distributions

Throughout, we will consider worst-case expectation problems of the type

Bwc

(
max
i∈I

fi(Aix),Pn, µ, S
)

= sup
P∈Pn

EP

{
max
i∈I

fi (Aiξ)

}
s.t. P ∈ P(µ, S)

(P )
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where each fi : Rd → R and Ai ∈ Rd×n, and maxi∈I fi(Aix) ≥ 0. It is clear that problem (P )

is a special case of the more general problem (Pwc) for a loss function L(x) = maxi [fi(Aix)]

comprised of the maximum of functions fi of the d dimensional projections Aiξ.

Although the problem (P ) is by itself quite general, we will restrict our attention initially to

problems with limited moment information only, absent any additional special structure in

the distributions P. In other words, we assume for the moment that the ambiguity set Ps

corresponds to the standard probability simplex Pn. In subsequent sections we will show how

worst-case expectation problems over more restrictive convex ambiguity sets Ps ⊆ Pn can be

recast in the form (P ) via a transformation of the problem data.

2.1 The dual problem and known results

The problem (P ) is an infinite dimensional linear program (LP) over a convex set of distribu-

tions, and can be dualized yielding a finite dimensional linear semi-infinite program

Bwc(L,Pn, µ, S) ≤

Bd
wc(L,Pn, µ, S) := inf

(Y,y,y0)
Tr


 Y y

y> y0

 ·
 S µ

µ> 1




s.t. Y ∈ Sn, y ∈ Rn, y0 ∈ R

x>Y x+ 2x>y + y0 ≥ L(x), ∀x ∈ Rn.

(D)

Under standard and quite mild regularity assumptions, e.g.
[
S, µ;µ>, 1

]
∈ Sn+1

++ , strong duality

Bwc(L,Pn, µ, S) = Bd
wc(L,Pn, µ, S) holds [22]. We will refer to both the primal problem (P ) and

the dual problem (D) as worst-case expectation problems with second-order moment information.

Note that the final constraint in problem (D) is convex, since it represents an infinite collection

of convex constraints in the variables (Y, y, y0), parametrized by x. Whether the problem (D)

can be solved conveniently or not is a separate matter, since it is not obvious for a general

function L how to cleanly eliminate the universal quantifier.

However, there are two important special cases in which problem (D) can be converted into

a standard-form semi-definite program (SDP). The first is when L is the indicator function
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of the intersection of polyhedral or elliptical sets, in which case (D) was shown in [27] to be

transformable to an SDP via application of the S-procedure. The result is a method for easily

computing a (tight) worst-case bound on the probability of a random vector with known first

and second moments falling outside of a convex set, which provides a multi-dimensional analog

of the Chebyshev inequality1.

The second is the case when L is a convex piecewise affine function with a finite number of pieces,

in which case it is again possible to convert the problem (D) to an SDP using the procedure

described in [29]. As in the previous case, the method described in [29] is applicable only to

situations in which the first two moments of the uncertainty are known, but the ambiguity set

is otherwise unstructured.

2.2 Expectation inequalities over a Choquet simplex

We have thus far described expectation bounds Bwc(L,Pn, µ, S) over the standard probability

simplex Pn. The principle aim of this work, however, is to describe worst-case expectation

problems over convex ambiguity sets Ps ⊆ Pn. We will argue that the worst-case expectation

problem (P ) is in fact rich enough to handle worst-case expectation bounds Bwc(L,Ps, µ, S)

as well, with Ps ⊆ Pn a convex ambiguity set. The main theoretical tool necessary to handle

convex classes of probability distributions Ps ⊆ Pn is their Choquet representation [18,24].

Definition 2.1 (Extreme distributions). A distribution P ∈ Ps is said to be an extreme point

of a convex ambiguity set Ps if it is not representable as a strict convex combination of two

distinct distributions in Ps. The set of all extreme points of Ps is denoted as exPs.

Definition 2.2 (Choquet representation). We say that an ambiguity set Ps admits a (unique)

Choquet representation if

∀P ∈ Ps, ∃(!)m̄ : P =

∫
Ps

Q m̄(dQ)

where m̄ : B(Ps) → [0, 1] is supported on exPs and is referred to as the mixture representation

of P over exPs.

1Note that in the case of structured distributions, one can also derive a multidimensional analog to the Gauss
inequality as shown in [24]. In contrast to the present work, which operates on the dual problem (D), the bounds
in [24] are produced by operating directly on the primal problem (P ).
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P

ex

ey ez

Figure 1: A simplicial ambiguity set Ps with extreme points exPs = {ex, ey, ez}. Every distri-
bution P ∈ Ps has a unique mixture representation over exPs. For the depicted distribution we
have the representation in term of the extreme points P = 1

2ex + 1
4ey + 1

4ez.

The Choquet representation of a convex ambiguity set Ps will enable us to reduce the worst-

case expectation problem (Pwc) over the ambiguity set Ps to a related worst-case expectation

problem over the standard simplex Pn. The existence or otherwise of a Choquet representation

for an ambiguity set Ps is the topic of Choquet theory [17]. It can be shown that under

the relatively mild assumption that exPs is metrisable, convex and compact, such Choquet

representations always exist. However, not all Choquet representable sets have necessarily a

compact set of extreme points. Indeed, in Section 3 we will encounter sets of distributions

with non-compact sets of extreme points which nevertheless admit a Choquet representation.

It should also be remarked that when Ps is finite dimensional, the preceding statement is closely

related to Minkowski’s theorem stating that a compact convex set is the closed convex hull of

its extreme points; see Figure 1.

In this paper, we will mainly encounter ambiguity sets Ps that enjoy the slightly stronger notion

of Choquet star representability.

Definition 2.3 (Choquet star representation). Suppose that T is a distribution on (R+,B(R+)),

and define a family of distributions Tx on (Rn,B(Rn)) such that, for every x ∈ Rn and every

C ∈ B(Rn),

Tx(C) = T ({λ ≥ 0 | λx ∈ C }).

We say that the ambiguity set Ps admits a Choquet star representation if it admits a unique

Choquet representation over

exPs = {Tx | ∀x ∈ Rn } . (2)

In this case we say that Ps is generated by T .
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Observe that in Definition 2.3 each distribution Tx ∈ exPs is supported on the ray {λx | λ ≥ 0}.

We will refer to distributions with support on rays emanating from the origin as radial distri-

butions.

From Definition 2.3 it is evident that if Ps admits a Choquet star representation, then it is

isomorphic to the standard probability simplex Pn. We might therefore also refer to a Choquet

star representable set as a Choquet star simplex. The extreme points of a Choquet star simplex

Ps admit the spatial parametrization (2), which enables us to specialise Definition 2.2 to

P ∈ Ps ⇐⇒ ∃!m̄ : P =

∫
exPs

Q m̄(dQ) ⇐⇒ ∃!m ∈ Pn : P =

∫
Rn
Tx m(dx). (3)

Observe that the mixture representation m̄ in Definition 2.2 is a distribution on the set of

distributions Ps. With (3) many subtle problems arising from the need to endow Ps with a

σ-algebra in which exPs is measurable are circumvented. Indeed, the mixture representations

m in (3) are elements of the standard probability simplex Pn. In the context of Choquet star

simplices, we will refer to both m̄ and m as mixture representations.

With this in mind, the power of Choquet star representable ambiguity sets becomes clear. We

now show that a Choquet star representation of Ps can be utilized to remodel a structured

problem in the form (Pwc) as an equivalent unstructured problem (i.e. one with ambiguity set

Pn) via an appropriate transformation of the loss function and moments.

Theorem 2.1. Assume that the ambiguity set Ps admits a Choquet star representation with

generating distribution T , then

Bwc (L,Ps, µ, S) = Bwc (Ls,Pn, µs, Ss) (4)

for Ls(x) :=
∫∞

0 L(λx) T (dλ), Ss ·
∫∞

0 λ2 T (dλ) = S and µs ·
∫∞

0 λ T (dλ) = µ.

Proof. Since the set Ps admits a Choquet star representation, we can optimize of the mixture

representations m instead of P. Indeed, using the reparametrization P =
∫

Rn Ty m(dy) we obtain

supP

∫
Rn L(x) P(dx) = supm

∫
Rn
[∫

Rn L(λ)Ty(dλ)
]

m(dy)

s.t. P ∈ Ps ∩ P(µ, S) s.t.
∫

Rn Ty m(dy) ∈ P(µ, S).
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Indeed, we have that P =
∫

Rn Ty m(dy) ∈ Ps ∩ P(µ, S) is equivalent to
∫

Rn Ty m(dy) ∈ P(µ, S).

Furthermore, we have the identity

∫
Rn

[x>, 1]> · [x>, 1] P(dx) =

∫
Rn

[∫
Rn

[x>, 1]> · [x>, 1] Ty(dx)

]
m(dy),

which equals using Fubini’s Theorem and the Choquet star property of Ty

∫
Rn

[x>, 1]> · [x>, 1] P(dx) =

∫
Rn

∫∞0 λ2 T (dλ) y · y>
∫∞

0 λT (dλ) y∫∞
0 λT (dλ) y> 1

 m(dy).

Hence P =
∫

Rn Ty m(dy) ∈ P(µ, S) is equivalent to m ∈ P(µs, Ss). We have lastly that the

expectation EP {L(ξ)} for P =
∫

Rn Ty m(dy) equals the expectation Em {Ls(ξ)} where Ls(y) :=

ETy {L(ξ)} =
∫∞

0 L(λy) T (dλ) again using Fubini’s Theorem concluding the proof.

Hence a worst-case expectation problem over a Choquet star simplex Ps can be reduced to

an equivalent problem over the standard probability simplex Pn. Both worst-case expectation

problems are related in terms of their loss functions, since

Ls(x) = ETx {L(ξ)} (5)

according to the result presented in Theorem 2.1.

In the remainder of this section, we will discuss the transformation, via Theorem 2.1, of two

important types of loss function L. These include indicator functions L = 1Rn\Ξ of polytopic

sets Ξ which arise in worst-case probability inequalities, and certain piecewise affine functions

L = maxi∈I a>i x− bi which come about when dealing with convex cost functions.

In section 4 we will then show how, for either type of loss function, the associated worst-case

expectation bound Bwc(Ls,Pn, µs, Ss) amounts to a tractable SDP when the ambiguity set

describes the set of all unimodal or monotone distributions.
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2.3 Worst-case probability inequalities

We address first the problem of bounding the probability of the event ξ /∈ Ξ where Ξ is an

open convex polytope and P ∈ Ps is a structured ambiguity set with known mean µ and

second moment S. In this case we can use the standard identity between the probability of

an event P(ξ /∈ Ξ) = EP
{

1Rn\Ξ(ξ)
}

and the expectation of its indicator function to state

supP∈Ps∩P(µ,S) P(ξ /∈ Ξ) = Bwc(1Rn\Ξ,Ps, µ, S).

In what follows, we assume that the set 0 ∈ Ξ has a half-space representation in the form

Ξ :=
{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}
. It can be seen that the associated indicator function can be

represented as the point-wise maximum of the indicator functions associated with the half-spaces

from which the set Ξ is composed, i.e.

L = max
i∈I

1a>i x≥bi = 1Rn\Ξ. (6)

The next proposition shows how to transform, via (5), such an indicator function for radial

extreme distributions Ty into a loss function Ls for use in (4):

Proposition 2.1. If the set Ps admits a Choquet star representation with generating distribution

T , then

Ls(y) = ETy

{
max
i∈I

1a>i x≥bi(ξ)

}
= max

i∈I
T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi(y).

Hence, we have according to Theorem 2.1 that the worst-case probability problem over Ps can

be reduced to an equivalent worst-case probability problem over the standard simplex Pn

sup
P∈Ps∩P(µ,S)

P(ξ /∈ Ξ) = Bwc

(
1Rn\Ξ,Ps, µ, S

)
,

= Bwc

(
max
i∈I

T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi(y),Pn, µs, Ss

)
.
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2.4 Worst-case expectation inequalities

As mentioned in Section 2, the worst-case expectation problem over the standard simplex with

second-moment information is tractable when the loss function L is in the form

L(x) = max
i∈I

a>i x− bi (7)

and thus convex. Because the set of all functions consisting of the point-wise maximum of

affine functions coincides with the class of lower semi-continuous (l.s.c.) convex functions, the

following fact is of interest.

Fact 2.1. If the set Ps admits a Choquet star representation with generating distribution T and

L is convex then

Ls(x) = ETx {L(ξ)} =

∫ ∞
0

L(λx) T (dλ)

is convex as well.

Proof. The statement can be proved almost immediately from the definition of convexity. For

all θ ∈ [0, 1]

Ls(θa+ (1− θ)b) =

∫ ∞
0

L(λ(θa+ (1− θ)b)) T (dλ)

=

∫ ∞
0

L(θ(λa) + (1− θ)(λb)) T (dλ)

≤
∫ ∞

0
θL(λa) + (1− θ)L(λb) T (dλ)

≤ θLs(a) + (1− θ)Ls(b)

showing convexity of Ls.

Despite the previous encouraging result, it is generally not the case that the function Ls can be

represented as the maximum of a finite number of affine functions when L is in the form (7).

Indeed, Fact 2.1 merely establishes that convexity is preserved, but does not otherwise address

the structure of Ls.

Instead of considering convex piecewise linear loss functions L as done in (7), we focus our
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attention in what follows on loss functions in the form

L(x) = (` ◦ κΞ) (x) (8)

where ` : R+ → R is a monotonically increasing function and 0 ∈ Ξ a convex set. Loss functions

in the form (8) arise in distributionally robust optimisation [29, 30] and control [25, 26] when

bounding the expected violation of a constraint ξ ∈ Ξ using

EP {(` ◦ κΞ)(ξ)} ≤ α, ∀P ∈ P

as L increases with decreasing proximity to the set Ξ. Moreover, the loss function (8) generalises

the loss function (6) for ` = 1t≥1. The next proposition establishes that the structure of a

loss function in the form (8) is preserved under the transformation (5) when Tx are radial

distributions.

Proposition 2.2. If the set Ps admits a Choquet star representation with generating distribution

T and L is in the form (8) with 0 ∈ Ξ =
{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}

then

Ls(x) = ETx {L(ξ)} = (`s ◦ κΞ)(x) = max
i∈I

`s(a
>
i x/bi),

with `s(t) :=
∫∞

0 `(λt) T (dλ).

Proof. We have the following chain of equalities proving the claim

Ls(x) = ETx {L(ξ)} =

∫ ∞
0

L(λx) T (dλ) =

∫ ∞
0

` (κΞ(λx)) T (dλ)

=

∫ ∞
0

` (λ · κΞ(x)) T (dλ)

where the last equality follows from the positive homogeneity of κΞ.

Hence, we have according to Theorem 2.1 that the worst-case expectation problem over Ps can

be reduced to an equivalent worst-case probability problem over the standard simplex Pn, i.e.

Bwc(` ◦ κΞ,Ps, µ, S) = Bwc(max
i∈I

`s(a
>
i x/bi),Pn, µs, Ss).
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In the next section we discuss specific ambiguity sets Ps that admit Choquet star representa-

tions, with a focus on unimodal and monotone distributions. Both structural properties are

shown to be closely related and their corresponding ambiguity sets admit Choquet star rep-

resentations. We will then be able to exploit the particular structure of these ambiguity sets

in combination with Propositions 2.1 and 2.2 to produce tractable optimization problems in

Section 4 for the computation of the worst case bound (4) via the solution of its dual.

3 Unimodal and monotone distributions

We next identify two important classes of distributions that are amenable to Choquet represen-

tation. These include the family of unimodal (and more generally α-unimodal) distributions –

which have previously been employed to produce multi-dimensional generalizations to the Gauss

and Chebyshev inequalities in [24] – and the related (and more restrictive) class of monotone

(and more generally γ-monotone) distributions.

3.1 Unimodal distributions and their Choquet representations

A minimal structural property commonly encountered in practical situations is unimodality.

Informally, a continuous probability distribution is unimodal if it has a centre m, referred

to as the mode, such that the probability density function is non-increasing with increasing

distance from the mode. Note that most distributions commonly studied in probability theory

are unimodal. So too are all stable distributions, which are ubiquitous in statistics as they

represent the attractors for properly normed sums of independent and identically distributed

random variables.

In the remainder we adopt the following standard definition of unimodality; see e.g. Dharmad-

hikari and Joag-Dev [5].

Definition 3.1 (α-Unimodal distributions [5,15]). For any fixed α ∈ R+, a distribution P ∈ Pn

is called α-unimodal with mode 0 if tαP(B/t) is non-decreasing in t ∈ (0,∞) for every Borel set

B ∈ B(Rn). The set of all α-unimodal distributions with mode 0 is denoted as Uα.

To develop an intuitive understanding of Definition 3.1, it is instructive to study the special

case of continuous distributions. The density function of a continuous α-unimodal distribution
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Figure 2: Univariate α-unimodal probability distributions and their density functions.

may increase along rays, but the rate of increase is controlled by the parameter α. We have

that a distribution P ∈ Pn with a continuous density function f(x) is α-unimodal about 0 if and

only if tn−αf(tx) is non-increasing in t ∈ (0,∞) for every fixed x 6= 0. This implies that if an

α-unimodal distribution on Rn has a continuous density function f(x), then f(x) does not grow

faster than ‖x‖α−n. In particular, for α = n the density is non-increasing along rays emanating

from the origin. In this case, the notion of α-unimodality coincides with star unimodality [5].

Hence α can be seen as a characterization of the degree of unimodality of a distribution; see

Figure 2.

Definition 3.2 (Radial α-unimodal Distributions). For any α > 0 and x ∈ Rn we denote by

uαx the radial distribution supported on the line segment [0, x] ⊂ Rn with the property that

uαx ([0, tx]) = α

∫ t

0
λα−1 dλ ∀t ∈ [0, 1].

The importance of the radial distributions uαx is highlighted in the following theorem, stating

that the set of radial unimodal distributions are the extreme points of the ambiguity set Uα:

Theorem 3.1 ([5]). The set Uα admits a Choquet star representation of the form

∀P ∈ Uα, ∃!m ∈ Pn : P(·) =

∫
Rn
uαx(·) m(dx).

for the generating distribution T ([0, t]) = α
∫ t

0 λ
α−1 dλ, ∀t ∈ [0, 1].

Theorem 3.1 asserts that every α-unimodal distribution admits a unique Choquet star repre-

sentation in terms of the extreme radial distributions uαx . Thus, Uα is a Choquet simplex over

the set of radial α-unimodal distributions.

The ambiguity sets Uα enjoy the nesting property Uα ⊆ Uβ whenever α ≤ β. It easy to

15



verify that the radial distribution uαx converges weakly to the Dirac distribution δx as α tends

to infinity. This allows us to conclude that the weak closure of ∪α≥0 Uα coincides with the

standard simplex Pn. Hence, the standard simplex Pn is included as the limit of the hierarchy

of α-unimodal ambiguity sets Uα for α tending to infinity.

3.2 Monotone distributions and their Choquet representations

A structural property which is closely related to unimodality is monotonicity. Where uni-

modality requires intuitively that the density function of a continuous distribution should be

decreasing with increasing distance from the mode, monotonicity additionally requires that this

decrease is smooth. Indeed, monotonicity is often used in mathematics to model the notion of

smoothness of a distribution [16].

In the remainder we adopt the following standard definitions of monotonicity [16] of distribu-

tions, which are inspired on the notion of monotone functions.

Definition 3.3 (γ-monotone functions). A univariate function f : R+ → R is denoted as

γ-monotone if it is γ times differentiable and

(−1)kf (k)(t) ≥ 0, ∀t > 0, k ∈ {0, . . . , γ}.

Definition 3.4 (γ-Monotone distributions2). For any 1 ≤ γ ∈ N, a distribution P is called

γ-monotone with mode 0 if tγ+n−1P(B/t) is γ-monotone in t ∈ (0,∞) for every Borel set

B ∈ B(Rn). The set of all γ-monotone distributions with mode 0 is denoted as Mγ.

Again, it is instructive to consider the case of continuous distributions. We have that a con-

tinuous distribution P is γ-monotone if and only if its density function f(tx) is γ-monotone

in t ∈ (0,∞) for every fixed x [2]. This means that if a γ-monotone distribution P admits a

continuous density f , then f is γ-monotone along rays emanating from the mode. Hence γ can

be seen as a characterization of how smooth the distribution is, see also Figure 3.

Definition 3.5 (Radial γ-monotone distributions). For any γ ∈ N0 and x ∈ Rn we denote by

2The class of γ-monotone distributions defined here can be identified with the class of (n, γ)-unimodal dis-
tributions discussed in [2, Theorem 3.1.14].
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Figure 3: Univariate γ-monotone probability distributions and their density functions.

mγ
x the radial distribution supported on the line segment [0, x] ⊂ Rn with the property that

mγ
x ([0, tx]) =

1

B(n, γ)
·
∫ t

0
λn−1 · (1− λ)γ−1 dλ ∀t ∈ [0, 1].

The importance of the radial distributions mγ
x is highlighted in the following theorem, stating

that the set of radial monotone distributions are the extreme points of Mγ .

Theorem 3.2 ([2]). The set Mγ admits a Choquet star representation of the form

∀P ∈Mγ , ∃!m ∈ Pn : P(·) =

∫
Rn
mγ
x(·) m(dx).

for the generating distribution T ([0, t]) = B−1(n, γ) ·
∫ t

0 λ
n−1 · (1− λ)γ−1 dλ, ∀t ∈ [0, 1].

Theorem 3.2 asserts that every γ-monotone distribution admits a unique Choquet star repre-

sentation in term of the extreme radial monotone distributions mγ
x. Thus, Mγ is a Choquet

simplex over the set of radial γ-monotone distributions.

The ambiguity sets Mγ enjoy the nesting property Mδ ⊆Mγ whenever γ ≤ δ. Historically, a

distribution in ∩γ∈N0Mγ has been denoted as a completely monotone distribution [1]. It easy

to verify that the sequence mγ
xγ of radial monotone distributions converges weakly when γ tends

to infinity to a radial distribution mx supported on the ray {λx | λ ∈ R+ } with the property

mx ([0, tx]) =
1

Γ(n)

∫ t

0
λn−1e−λ dλ ∀t ∈ [0,∞).

In the light of this observation, Theorem 3.2 reduces in the case of univariate completely mono-

tone distributions to Bernstein’s representation theorem [1]. Hence, the set of completely mono-

tone distributions is included as the limit of the hierarchy of γ-monotone ambiguity sets Mγ

for γ tending to infinity.
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4 Structured expectation inequalities as semidefinite programs

Having identified two classes of structured distributions amenable to Choquet representation,

we are now free in principle to apply our approach to solving the dual problem (D). Specifically,

given the generating distributions T identified in either Theorem 3.1 (for unimodal distributions)

or Theorem 3.2 (for monotone distributions) and either an indicator or convex piecewise affine

(PWA) function L, we can apply the appropriate transformations from Section 2.2 to transform

(L, S, µ) 7→ (Ls, Ss, µs) and then solve the dual problem (D) with this new data.

However, as a practical matter this remains problematic, since our transformed function Ls will

be neither an indicator function nor PWA. In order to circumvent this difficulty we require the

following result, which transforms the semi-infinite constraints over Rn in the dual problem (D)

to an equivalent semi-infinite constraint over Rd.

Theorem 4.1. The worst-case expectation problem with second-order moment information (D)

can be reformulated as Bd
wc (maxi∈I fi(Aix),Pn, µ, S) =

inf Tr


 Y y

y> y0

 ·
 S µ

µ> 1




s.t.

 Y y

y> y0

 ∈ Sn+1
+ ,

T1,i T2,i

T>2,i T3,i

 ∈ Sd+1
+ , Λ1,i ∈ Rd×d, Λ2,i ∈ Rd


Λ1,i + Λ>1,i − T1,i Λ2,i − T2,i −Λ>1,iAi

Λ>2,i − T>2,i y0 − T3,i y> − Λ>2,iAi

−A>i Λ1,i y −A>i Λ2,i Y

 � 0, ∀i ∈ I


(C1)

T3,i + 2q>T2,i + q>T1,iq ≥ fi(q), ∀q ∈ Rd, ∀i ∈ I (C2)

Proof. The constraint in the dual problem (D) can be reformulated as

∀i ∈ I, ∀q ∈ Rd : inf
Aix=q

x>Y x+ 2x>y + y0 ≥ fi(q).

As we assume throughout that maxi∈I fi(Aix) ≥ 0, it must hence follow that Y is positive

semidefinite and x>Y x+2x>y is bounded from below. The claim now follows immediately from
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Theorem A.1 applied to the parametric optimization problem infAix=q x
>Y x+ 2x>y+ y0.

Note that this reformulation of the standard dual problem (D) into the more unconventional

form in Theorem 4.1 is motivated by a desire to replace the semi-infinite constraint over Rn with

one over Rd. Hence when d� n, the reformulation offered by Theorem 4.1 is preferable to the

standard dual (D). It is well known that the semi-infinite constraint in Rd of Theorem 4.1 for

piece-wise polynomial fi admits a tractable reformulation in the univariate case when d = 1, or

when the functions fi are quadratically representable. In particular, when the functions fi are

univariate piecewise polynomial, the semi-infinite constraints in Theorem 4.1 are known to admit

tractable linear matrix inequality (LMI) reformulations based on exact sum-of-squares (SOS)

representations [12].

4.1 Unstructured distributions

Before considering the structured classes of distributions identified in Section 3, it is instructive

to apply Theorem 4.1 to the unstructured case Ps = Pn, and restate two well-known results for

problems with univariate fi in terms of Theorem 4.1.

When the functions fi = 1a>i x≥bi are indicator functions, problem (P ) describes the worst-case

probability of ξ /∈ Ξ =
{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}

as found in [27]:

Example 4.1 (Vandenberghe et al. [27]). Suppose that Ξ =
{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}

and

define a loss function L = 1Rn\Ξ. Then the worst-case probability problem for the event ξ /∈ Ξ

can be modelled as in Theorem 4.1. The constraint (C2) becomes

T3,i − 1 + 2q>T2,i + q>T1,iq ≥ 0, ∀q ≥ bi, ∀i ∈ I,

which can be rewritten using a LMI representation. The worst-case probability problem is there-
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fore equivalent to an SDP, i.e.

Bwc(L,Pn, µ, S) = inf Tr {Y S}+ 2y>µ+ y0

s.t. (C1),

∃τi ∈ R+,

T1,i T2,i

T2,i T3,i − 1

 � τi
0 1

1 −2bi

 , ∀i ∈ I.

Similarly, for affine functions fi, problem (P ) describes the worst-case expectation problem for

convex piecewise affine loss functions, as can be found in [29]:

Example 4.2 (Zymler et al. [29]). For a piecewise affine loss function L(x) = maxi∈I a
>
i x−bi,

the constraint (C2) in Theorem 4.1 becomes

T3,i + 2q>T2,i + q>T3,iq ≥ q − bi, ∀q ∈ R, ∀i ∈ I,

which can be rewritten using an LMI representation. The worst-case expectation problem for

the piece-wise affine loss function L is therefore equivalent to an SDP, i.e.

Bwc(L,Pn, µ, S) = inf Tr {Y S}+ 2y>µ+ y0

s.t. (C1), T1,i T2,i − 1
2

T2,i − 1
2 T3,i + bi

 � 0, ∀i ∈ I.

4.2 Unimodal distributions

We can now make the abstract result of Theorem 2.1 concrete and explicitly state SDP reformu-

lations of a worst-case probability problem for a polytopic set Ξ and a worst-case expectation

problem for a loss function L(x) = (κΞ(x)− 1)+ for the case of unimodal ambiguity sets.

Specifically, our method is as follows: Theorem 3.1 provides us with the appropriate generat-

ing distribution T for α-unimodal distributions. We then use this generating distribution to

transform (L, µ, S) 7→ (Ls, µα, µα) via Theorem 2.1, where the mapping L 7→ Ls in particu-
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lar is supplied by either Proposition 2.1 or Proposition 2.2. This produces a transformed loss

function in the form Ls(x) = maxi fi(Aix) for some univariate functions fi. Finally, we apply

Theorem 4.1 and identify the appropriate expression for the constraint C2 for our particular

functions fi.

Corollary 4.1 (α-Unimodal probability inequalities). For any rational 0 ≤ α = v
w , with

(v, w) ∈ N and 0 ∈ Ξ we have the equality Bwc(1Rn\Ξ,Uα, µ, S) =

inf Tr


 Y y

y> y0

 ·
Sα µα

µ>α 1




s.t. (C1),

q2w+vb2iT1,i + 2qw+vbiT2,i + qv(T3,i − 1) + 1 ≥ 0, ∀q ≥ 0

where Sα � µαµ>α for Sα = α+2
α S and µα = α+1

α µ.

We remark here that Corollary 4.1 generalizes the results presented in [24] as it no longer

matters that α ≥ 1. However where the result in [24] follows from a direct reformulation of the

primal problem (Pwc), the result in corollary 4.1 is hinges on the dual problem (D) to be strong.

Strong duality calls for the additional Slater type condition Sα � µαµ>α to hold, which explains

the strict inequality in the corollaries stated hereafter. The proofs of the corollaries presented

in this section are deferred to Appendix B.

Corollary 4.2 (α-Unimodal expectation inequalities). For any rational 0 ≤ α = v
w ∈ Q, with

v, w ∈ N, we have the equality Bwc(max{0, κΞ(x)− 1},Uα, µ, S) =

inf Tr


 Y y

y> y0

 ·
Sα µα

µ>α 1




s.t. q2w+v b2iT1,i + qw+v

(
2biT2,i −

α

α+ 1

)
+ qv (1 + T3,i)−

1

α+ 1
≥ 0, ∀q ≥ 1

where Sα � µαµ>α for Sα = α+2
α S and µα = α+1

α µ.
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4.3 Monotone distributions

We now can also make the abstract results of Theorem 2.1 concrete and explicitly state the

SDP reformulations of a worst-case probability problem for a polytopic set Ξ and a worst-case

expectation problem for a loss function L(x) = (κΞ(x)−1)+ for the case of monotone ambiguity

sets.

Our approach is identical to that in Section 4.2, except that we now look to Theorem 3.2 to

provides us with the appropriate generating distribution T for γ-monotone distributions.

Corollary 4.3 (γ-Monotone probability inequalities). For any γ ∈ N0 we have the equality

Bwc(1Rn\Ξ,Mγ , µ, S) =

inf Tr


 Y y

y> y0

 ·
Sγ µγ

µ>γ 1




s.t. (C1),

T1,ib
2
i q
n+γ+1 + 2biT2,iq

n+γ+ (T3,i − 1) qn+γ−1+

1

B(n, γ)

γ−1∑
k=0

(−1)k

n+ k

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ 1

where Sγ � µγµ>γ for Sγ = n+γ
n

n+γ+1
n+1 S and µγ = n+γ

n µ.

Corollary 4.4 (γ-Monotone expectation inequalities). For any γ ∈ N0 we have the equality

Bwc(max{0, κΞ(x)− 1},Mγ , µ, S) =

inf Tr


 Y y

y> y0

 ·
Sγ µγ

µ>γ 1




s.t. (C1),

T1,ib
2
i q
n+γ+1 +

(
2biT2,i −

n

n+ γ

)
qn+γ + (T3,i + 1) qn+γ−1−

1

B(n, γ)

γ−1∑
k=0

(−1)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ 1

where Sγ � µγµ>γ for Sγ = n+γ
n

n+γ+1
n+1 S and µγ = n+γ

n µ.
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As mentioned in the beginning of this section, the polynomial inequalities appearing in Corollar-

ies 4.1 to 4.4 admit exact SDP representations [12]. Standard software tools, such as YALMIP [10],

are available which implement this transformation automatically. We do not state the resulting

SDP constraints explicitly as they offer no further insight and would only clutter the statement

of previous corollaries further.

5 Numerical examples

We illustrate the optimal inequalities presented in this paper by bounding the value of European

stock portfolios [3] and by computing worst-case bounds when aggregating random variables

with known marginal information [6]. The resulting SDP problems are implemented in Matlab

using the interface YALMIP, and solved numerically using SDPT3.

5.1 Optimal pricing of stock portfolios

In this example we are interested in finding an upper bound on the price of a European stock

option [3] with random pay-off

Φ(ξ) := max{0, a>ξ − k} = k (κΞ(ξ)− 1)+ ,

for Ξ =
{
x ∈ Rn

∣∣ a>x ≤ k}. This option allows its holder to buy a portfolio a ∈ Rn of stocks

at a price k ∈ R+ at maturity. The payoff Φ is hence positive if the uncertain value ξ ∈ Rn

of the stocks at maturity in the portfolio a ∈ Rn exceeds the negotiated price k ∈ R+. If the

price of portfolio of stocks a>ξ in the market at maturity is less then k, then the holder will

not exercise his right to buy the stock portfolio at price k.

When we denote with P? the distribution of ξ, then for the issuer of the option it is of interest

to know

p := sup
P∈P

EP {Φ(ξ)}

for P a set of distributions for which the option issuer is convinced that P? ∈ P. Indeed, the

issuer would like to demand a price of the stock option buyer which exceeds p, as in this case

he or she is convinced that on average a profit is made.

In the remainder of this section, we assume that our portfolio ξ = (ξIBM, ξAPPLE) consists of
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Figure 4: Optimal pricing of a portfolio containing an equal amount of IBM™ and APPLE™
stocks. Figure 4(a) indicates the distribution of (ξIBM, ξAPPLE) visually. The red half line indicates
realizations beyond which a profit is made.

a = (1, 1)> an equal part of IBM™ and APPLE™ stocks. The stock holder is convinced that the

distribution of ξ satisfies

P? ∈ P


164

114

 ,

20 5

5 60

+

164

114


164

114


>

for a strike price at maturity k = 280. This situation is sketched in Figure 4(a). The stock

holder is also convinced that the distribution of ξ should be well-behaved and has a mode which

coincides with its mean. In Figure 4(b), the optimal price p is given when the stock holder

believes that either P? ∈ Mγ or P? ∈ Uα in function of γ ∈ {1, . . . , 5} and α ∈ {2, . . . , 6}.

As remarked before the bounds converge to either the bounds for arbitrary distributions when

α→∞ or completely monotone distributions in case γ →∞.

5.2 Factor models in insurance

Insurance companies most commonly model the size of claims ξi incurred as a result of different

types of insurance policies separately from another [6]. The claims ξi factor the total claim

Sd :=
∑d

i=1 ξi
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CHF Average µi Standard deviation σi

Car insurance 15.000 2.000

Life insurance 7.000 1.000

Fire insurance 3.000 5.000

Medical insurance 20.000 2.000

Table 2: Marginal means and standard deviations of the size of the claims incurred by the four
types of insurance policies in the portfolio.

as a sum of d separate claims ξi without a specified dependence structure. The problem of

quantifying a certain statistic of L(Sd) for a given loss function L based on (partial) marginal

information of the distributions of the factors ξi is known as a Fréchet problem [20].

We consider a portfolio containing four types of insurance policies, i.e. car, life, fire and medical

insurances. We will assume that only information on the means µi := EP {ξi} and second

moments s2
i := EP

{
ξ2
i

}
of the size of the corresponding insurance claims are given. Suppose we

are interested in large aggregate claims Sd occurring with probability at most α = 5%, where

that part of the claim Sd exceeding the threshold k = 150.000 CHF is covered by a reinsurer.

In what follows we therefore consider the problem of quantifying the least upper bound on the

conditional value at risk CVaRα (L(Sd)), where

L(Sd) = min (max (Sd, 0) , k)

using only the marginal means µi and second moments s2
i as given in Table 2. Additionally, it

is assumed that the joint probability distribution P of (ξ1, . . . , ξ4) is star unimodal. The worst-

case CVaR problem can be reduced to a worst-case expectation problem as indicated in Section

1.1 using the golden search method for the outer minimization problem over β ∈ [0, k]. The

corresponding transformed loss function Ls according to Theorem 2.1 is given in Appendix C.

The worst-case excepted aggregate claim above the 5th percentile, i.e. CVaRα (L(Sd)), was

numerically determined to be 123.325 CHF in approximately 15 seconds using Matlab on a

PC3 operated by Debian GNU/Linux 7 (wheezy).

3An Intel(R) Core(TM) Xeon(R) CPU E5540 @ 2.53GHz machine.
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6 Conclusion

This paper provides a new perspective on the computational solution of worst-case expectation

problems for convex classes of distributions with second-order moment information. We show

that worst-case expectation inequalities over a Choquet simplex can in several interesting cases

be reduced to worst-case expectation inequalities over the standard probability simplex. We

focus in particular on the set of all unimodal distributions and the set of all monotone distri-

butions. We illustrate the power of this perspective by pointing out that all known previous

results concerning worst-case probability bounds with second-order moment information can be

reduced to special cases of the results stated in this work. Moreover, we present how our results

can be used to compute optimal bounds on the worst-case expectation and CVaR of certain loss

functions when the true but unknown distribution is known to be either unimodal or monotone.

We illustrate our methods by considering an option pricing problem for European stock options

and an insurance risk aggregation problem with marginal information.

A Equality constrained quadratic programs (QPs).

We will state here a relevant result concerning equality constrained QPs used throughout the

rest of this paper. Assume we define a function I : Rd → R as follows

I(b) := min
x∈Rn

x>Gx+ 2x>c+ y

s.t. Ax = b,

with A ∈ Rd×n having full row rank and G positive semidefinite. It is assumed that the function

x>Gx+ 2x>c in bounded from below such that I(b) >∞. We can now represent the quadratic

function I using a dual representation as indicated in the following theorem.

Theorem A.1 (Parametric representation of I). The function I is lower bounded by

I(b) ≥ b>T1b+ 2b>T2 + T3 (9)
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for all T1 ∈ Sd, T2 ∈ Rd and T3 ∈ R such that there exist Λ1 ∈ Rd×d, Λ2 ∈ Rd with


Λ1 + Λ>1 − T1 Λ2 − T2 −Λ>1 A

Λ>2 − T>2 y − T3 c> − Λ>2 A

−A>Λ1 c−A>Λ2 G

 � 0. (10)

Moreover, inequality (9) is tight uniformly in b ∈ Rd for some T1, T2 and T3 satisfying condition

(10).

Proof. The Lagrangian of the optimization problem defining I(b) is given as

L(x, λ) := x>Gx+ 2x>
(
c+A>λ

)
− 2λ>b+ y.

As x>Gx + 2x>c is bounded from below on Rn, we have that for all b ∈ Rd there exists a

minimizer x? such that I(b) = (x?)>Gx? + 2(x?)>c + y and Ax? = b. From the first order

optimality conditions for convex QPs [14, Lemma 16.1], we have that minx maxλ L(x, λ) =

L(x?, λ?) = maxλ minx L(x, λ) where the saddle point (x?, λ?) is any solution of the linear

system G A>

A 0


x?
λ?

 =

−c
b

 . (11)

The quadratic optimization problem maxx L(x, λ?) admits a maximizer if and only if (c+A>λ?)

is in the range of G. It must thus hold that

(
Id −GG†

)(
c+A>λ?

)
= 0. (12)

Hence when dualizing the problem defining I(b), we get its dual representation I(b) = maxλ −(
c+A>λ

)>
G†
(
c+A>λ

)
− 2λ>b + y. From equation (11) it follows that λ? is any solution of

the linear equation b+AG†A>λ?+AG†c = 0. Therefore there exists an affine λ?(b) = −Λ?1b−Λ?2

with Λ?1 ∈ Rd×d and Λ?2 ∈ Rd such that

I(b) = −
(
c−A>Λ?1b−A>Λ?2

)>
G†
(
c−A>Λ?1b−A>Λ?2

)
+ 2b>Λ?1

>b+ 2Λ?2
>b+ y. (13)

From equation (12) it follows that for all b in Rd it holds that
(
Id −GG†

) (
c−A>Λ?1b−A>Λ?2

)
= 0.
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We must hence also have that

(
Id −GG†

)(
−A>Λ?1, c−A>Λ?2

)
= 0 (14)

The dual reprenstation of I(b) guarantees that for all λ(b) = −Λ1b − Λ2 with Λ1 ∈ Rd×d and

Λ2 ∈ Rd

I(b) ≥ −
(
c−A>Λ1b−A>Λ2

)>
G†
(
c−A>Λ1b−A>Λ2

)
+ 2b>Λ>1 b+ 2Λ>2 b

Lower bounding the right hand side of the previous inequality with b>T1b + 2T>2 b + T3 yields

I(b) ≥ b>T1b+ 2T>2 b+ T3 if for all b in Rd it holds that

b
1


> 
Λ1 + Λ>1 − T1 Λ2 − T2

Λ>2 − T>2 y − T3

−
 −Λ>1 A

c> − Λ>2 A

G†
(
−A>Λ1 c−A>Λ2

)
b

1

 ≥ 0

and (
Id −GG†

)(
−A>Λ1, c−A>Λ2

)
= 0.

After a Schur complement [7, Thm 4.3], we obtain the first part of the theorem

∃Λ1,Λ2 :


Λ1 + Λ>1 − T1 Λ2 − T2 −Λ>1 A

Λ>2 − T>2 y − T3 c> − Λ>2 A

−A>Λ1 c−A>Λ2 G

 � 0 =⇒ I(b) ≥ b>T1b+ 2T>2 b+ T3.

As I(b) is a quadratic function there exist T ?1 , T ?2 and T ?3 such that I(b) = b>T ?1 b+ 2T ?2
>b+T ?3 .

The equations (13) and (14) guarantee [7, Thm 4.3] that


Λ?1 + Λ?1

> − T ?1 Λ?2 − T ?2 −Λ?1
>A

Λ?2
> − T ?2 > y − T ?3 c> − Λ?2

>A

−A>Λ?1 c−A>Λ?2 G

 � 0

completing the proof.
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B Proofs

Corollary 4.1:

From Theorem 3.1, we have that the generating distribution T for α-unimodal ambiguity sets

satisfies

T ([0, t]) = α

∫ t

0
λα−1 dλ, ∀t ∈ [0, 1].

The moment transformations from Theorem 2.1 become

µα :=

[∫ ∞
0

λT (dλ)

]-1
µ =

[
α

∫ 1

0
λα(dλ)

]-1
µ =

α+ 1

α
µ

Sα :=

[∫ ∞
0

λ2 T (dλ)

]-1
S =

[
α

∫ 1

0
λα+1(dλ)

]-1
S =

α+ 2

α
S.

From Proposition 2.1, the transformed loss function Ls required in Theorem 2.1 can be found

as

Ls(y) = max
i∈I

T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi(y)

=: max
i∈I

fi(a
>
i y),

where

fi(q) =


α

∫ 1

bi/q
λα−1 dλ, q ≥ bi,

0 otherwise.

In order to apply Theorem 4.1, we now need only reformulate the semi-infinite constraint (C2),

i.e. the constraint

T3,i + 2qT2,i + q2T1,i ≥ fi(q) ∀q ∈ R, ∀i ∈ I.

Because 0 ∈ Ξ and hence bi > 0, we have equivalently, for each i ∈ I, and for all q ∈ R+

T3,i + 2qT2,i + q2T1,i ≥


1− (bi/q)

α q ≥ bi,

0 otherwise.
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which can be seen to reduce to

T3,i + 2qT2,i + q2T1,i ≥ 1− bαi
qα
, ∀q ≥ 0.

Defining a new scalar variable q̃ and applying the variable substitution q̃w = q, this can be

rewritten as

q̃2w+vT1,i + 2q̃w+vT2,i + q̃v(T3,i − 1) + bαi ≥ 0, ∀q̃ ≥ 0

after multiplying both sides with q̃v > 0. The final result is obtained after the substitution

b
1/w
i q̄ = q̃.

Corollary 4.2: The method of proof follows that of Corollary 4.1, except that we now apply

Proposition 2.2 to generate the transformed loss function Ls.

In this case the loss function L is equivalent to L = ` ◦ κΞ with `(t) = max{0, t− 1}. Recalling

from Theorem 3.1 the generating distribution T for α-unimodal distributions, we set

`s(t) =

∫ ∞
0

`(λt)T (dλ)

= α

∫ 1

0
max{0, (λt− 1)}λα−1dλ,

which is zero for any t ≤ 1. For t ≥ 1, we can evaluate the integral to get

∀t ≥ 1 : `s(t) = α

∫ 1

1/t
(tλα − λα−1)dλ

=
α

α+ 1
t− 1 +

1

α+ 1

(
1

t

)α

and then set Ls(x) = maxi∈I fi(a
>
i x) where each fi(q) := `s(q/bi).

We can now apply Theorem 4.1 by reformulating the constraint (C2) for this choice of fi for

each i ∈ I, resulting in the constraint

T3,i + 2qT2,i + q2T1,i ≥
α

α+ 1

q

bi
− 1 +

1

α+ 1

bαi
qα

∀q ≥ bi

because 0 ∈ Ξ and hence bi > 0. We define a new scalar variable q̃ and apply the variable
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substitution q̃w = q, resulting in the constraint

q̃2w+vT1,i + q̃w+v

(
2T2,i −

α

(α+ 1)bi

)
+ q̃v (1 + T3,i)−

bαi
α+ 1

≥ 0, ∀q̃ ≥ b1/wi

after multiplying both sides by q̃v > 0. The final result is obtained after the substitution

b
1/w
i q̄ = q̃.

Corollary 4.3:

We follow the same approach as the proof of Corollary 4.1, but this time use the generating

distribution T for γ-monotone distributions from Theorem 3.2, i.e.

T ([0, t]) =
1

B(n, γ)
·
∫ t

0
λn−1 · (1− λ)γ−1 dλ, ∀t ∈ [0, 1].

In this case the moment transformations from Theorem 2.1 become

µγ :=

[∫ ∞
0

λT (dλ)

]-1
µ =

[
1

B(n, γ)

∫ 1

0
λn(1− λ)γ−1(dλ)

]-1
µ =

n+ γ

n
µ

Sγ :=

[∫ ∞
0

λ2 T (dλ)

]-1
S =

[
1

B(n, γ)

∫ 1

0
λn+1(1− λ)γ−1(dλ)

]-1
S =

n+ γ

n

n+ γ + 1

n+ 1
S.

From Proposition 2.1, the transformed loss function Ls required in Theorem 2.1 become

Ls(y) = max
i∈I

T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi(y)

=: max
i∈I

fi(a
>
i y).

where

fi(q) =


1

B(n, γ)

∫ 1

bi/q
λn−1(1− λ)γ−1 dλ, q ≥ bi,

0 otherwise.
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For q ≥ bi, we can use a binomial expansion to evaluate this integral4, obtaining

B(n, γ)fi(q) = B(n, γ)−
∫ bi/q

0
λn−1 · (1− λ)γ−1 dλ

= B(n, γ)−
γ−1∑
k=0

∫ bi/q

0
(−1)k

(
γ − 1

k

)
λn+k−1 dλ

= B(n, γ)− bni
γ−1∑
k=0

(−bi)k

n+ k

(
γ − 1

k

)
1

qn+k

In order to apply Theorem 4.1, we now need only reformulate the semi-infinite constraint (C2).

We obtain, for each i ∈ I, the constraint

T3,i + 2qT2,i + q2T1,i ≥ 1− bni
B(n, γ)

γ−1∑
k=0

(−bi)k

n+ k

(
γ − 1

k

)
1

qn+k
, ∀q ≥ bi.

recalling that 0 ∈ Ξ and hence bi > 0. We multiply both sides by qn+γ−1 > 0 to produce, for

each i ∈ I the constraint

T1,iq
n+γ+1 + 2T2,iq

n+γ + (T3,i − 1) qn+γ−1 +
bni

B(n, γ)

γ−1∑
k=0

(−bi)k

n+ k

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ bi.

The final result is obtained after the substitution biq̄ = q.

Corollary 4.4:

The method of proof parallels that of Corollary 4.2, but this time using the generating distri-

bution T for γ-monotone distributions from Theorem 3.2. In this case we set

`s(t) =
1

B(n, γ)

∫ 1

0
max{0, (λt− 1)}λn−1(1− λ)γ−1dλ,

which is zero for any t ≤ 1. For any t ≥ 1, using a binomial expansion we can evaluate the

4Note that the integral amounts to 1− 1
B(n,γ)

∫ bi/q
0

λn−1(1−λ)γ−1 dλ =: 1−Ibi/q(n, γ), where Ibi/q(n, γ) is the
so-called regularized incomplete beta function, i.e. the cumulative distribution function for the beta distribution
with shape parameters (n, γ).
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integral to get

∀t ≥ 1 : B(n, γ)`s(t) = t

∫ 1

1/t
λn(1− λ)γ−1 dλ−

∫ 1

1/t
λn−1(1− λ)γ−1 dλ

= tB(n+1, γ)−B(n, γ)+

∫ 1/t

0
λn−1(1−λ)γ−1dλ− t

∫ 1/t

0
λn(1−λ)γ−1dλ

= tB(n+1, γ)−B(n, γ)+

γ−1∑
k=0

[
(−1)k

(
γ − 1

k

)∫ 1/t

0

(
λn−1 − tλn

)
λk dλ

]

= tB(n+ 1, γ)−B(n, γ) +

γ−1∑
k=0

(−1)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)(
1

t

)n+k

and then set Ls(x) = maxi∈I fi(a
>
i x) where each fi(q) := `s(q/bi). In order to apply Theorem

4.1, we now need only reformulate the semi-infinite constraint (C2). We obtain, for each i ∈ I,

the constraint

T3,i + 2qT2,i + q2T1,i ≥
B(n+ 1, γ)

biB(n, γ)
q − 1+

bni
B(n, γ)

γ−1∑
k=0

(−bi)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)
1

qn+k
∀q ≥ bi

because 0 ∈ Ξ and hence bi > 0. We multiply both sides by qn+γ−1 > 0 to produce the

constraint

T1,iq
n+γ+1 +

(
2T2,i −

B(n+ 1, γ)

biB(n, γ)

)
qn+γ + (T3,i + 1) qn+γ−1−

bni
B(n, γ)

γ−1∑
k=0

(−bi)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ bi.

The final result is obtained after the substitution biq̄ = q̃.

C Factor models in insurance

As mentioned in Section 1.1, any worst-case CVaR problem can be reduced to a related worst-

case expectation problem. We are therefore interested in loss functions of the form L(Sd) =

min (max (Sd, 0) , k)− β for 0 ≤ β ≤ k. We have that the loss function L(Sd) can be written as
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the gauge function L(Sd) = ` ◦ κΞ(Sd) for Ξ =
{
x ∈ Rd

∣∣∣ ∑d
i=1 xi ≥ 1

}
and

` =


0 if t ≤ β,

t− β if β ≤ t < k,

k − β if t ≥ k.

Recalling from Theorem 3.1 the generating distribution T for α-unimodal distributions, we set

`s(t) =
∫∞

0 `(λt)T (dλ) which is zero for any t ≤ β. For β ≤ t < k, we can evaluate the integral

to get

β ≤ ∀t < k : `s(t) = α

∫ 1

β/t
(λt− β)λα−1dλ

=
α

α+ 1
t− β +

βα+1

α+ 1

1

tα
.

Similarly for t ≥ k, we get

∀t ≥ k : `s(t) = α

∫ k/t

β/t
(λt− β)λα−1dλ+ α

∫ 1

k/t
(k − β)λα−1dλ

= k − β − kα+1 − βα+1

α+ 1

1

tα

and then set Ls(x) = `s(
∑d

i=1 xi). In order to apply Theorem 4.1, we now need only reformulate

the semi-infinite constraint (C2). This can be done using methods analogous to the method

described in the proof of Corollary 4.2, but is omitted here for the sake of brevity. We get

finally



T1,iq
2 + 2qT2,i + T3,i ≥ 0, ∀q ∈ R

T1,iβ
2q2w+v + qw+vβ

(
2T2,i −

α

α+ 1

)
+ qv (T3,i + β)− β

α+ 1
≥ 0, 1 ≤ ∀q <

(
k

β

)1/w

T1,ik
2q2w+v + 2kqw+vT2,i + qv (T3,i + β − k) + k

1− (β/k)α+1

α+ 1
≥ 0, ∀q ≥ 1


(C2)
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[6] P. Embrechts, G. Puccetti, and L. Rüschendorf. Model uncertainty and VaR aggregation.

Journal of Banking & Finance, 37(8):2750–2764, 2013.

[7] J. Gallier. The Schur complement and symmetric positive semidefinite (and definite) ma-

trices. Technical report, Penn Engineering, 2010.

[8] J. Kiefer. Sequential minimax search for a maximum. Proceedings of the American Math-

ematical Society, 4(3):502–506, 1953.

[9] A.W. Lo. Semi-parametric upper bounds for option prices and expected payoffs. Journal

of Financial Economics, 19(2):373–387, 1987.
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