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Abstract

We investigate the control of constrained stochastic linear systems when faced with only limited

information regarding the disturbance process, i.e. when only the first two moments of the disturbance

distribution are known. We consider two types of distributionally robust constraints. The constraints of

the first type are required to hold with a given probability for all disturbance distributions sharing the

known moments. These constraints are commonly referred to as distributionally robust chance constraints

with second-order moment specifications. In the second case, we impose conditional value-at-risk (CVaR)

constraints to bound the expected constraint violation for all disturbance distributions consistent with the

given moment information. Such constraints are referred to as distributionally robust CVaR constraints

with second-order moment specifications. We argue that the design of linear controllers for systems with

such constraints is both computationally tractable and practically meaningful for both finite and infinite

horizon problems. The proposed methods are illustrated for a wind turbine blade control design case

study where flexibility issues play an important role, and for which distributionally robust constraints

constitute sensible design objectives.

I. INTRODUCTION

The problem of finding a control policy such that the state and inputs of an uncertain dynamical

system remain in a given constraint set, despite the uncertain nature of the system, is an important

and well studied problem within the control literature. In this article, we focus on discrete-time

linear time-invariant (DLTI) systems, with system dynamics

xt+1 = Axt +But + Cwt,
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where xt is the state of the system, and ut and wt are the input and disturbance to the system,

respectively. In constrained control problems, we are given a constraint set X for which we

would like to express a requirement that “xt ∈ X”, i.e. the state xt must remain in X in some

sense. There are several common approaches to putting the design requirement “xt ∈ X” on

a mathematically sound footing. We first describe two standard methods for modeling such

a constraint; the now classical worst-case approach and the more recent chance-constrained

approach. Our notation is intentionally informal to start, with a more rigorous treatment deferred

to later in the paper. We will propose two alternative approaches that overcome some of the

deficiencies inherent in the two standard methods, particularly when faced with only a limited

amount of information regarding the moments of the disturbance process wt.

Worst-case constraints: The problem of finding a control policy such that the state of

an uncertain dynamical system remains in a given constraint set, for all possible disturbance

realizations, is historically the most prevalent design goal within the control literature [3], [4],

[23], [31]. This worst-case (or robust) formulation starts by assuming that the disturbance support

is bounded and known, i.e. that the disturbance wt is restricted to be an element of a bounded

set W . The constraint “xt ∈ X” is then interpreted as a condition that the state xt is an element

of X for all realizations of the disturbance process wt generated from W . Identification of an

optimal control policy for such problems is computationally intractable in general, so significant

research effort has focussed on the development of design methods that provide admissible, but

possibly suboptimal, control policies; see [16], [23] and the references therein.

The worst-case formulation requires that the support of the disturbance process is completely

known and, in the presence of state constraints, a bounded set. This assumption may be quite

restrictive, e.g. in cases where the disturbances are normally distributed and hence the disturbance

support is unbounded. This motivates the need for approaches that make no such assumption

regarding the support of the disturbance.

Chance constraints: Chance constraints require that the system’s state constraints hold only

with a specified probability level [11], [12]. The constraint “xt ∈ X” is then modelled as

P? {xt ∈ X} ≥ 1− ε, (1)

where the probability measure P? is defined on the disturbance process wt and is assumed
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known. Although no boundedness assumption is required on the disturbance support supp {P?},

in contrast to the worst-case approach, chance constraints are arguably worse from a practical

perspective since they require the availability of a probability measure over the disturbances.

Unfortunately, verifying a chance constraint in the form (1) is intractable under generic distri-

butions, i.e. checking (1) for a given state distribution xt is NP-hard [25]. As a consequence,

recent attention has shifted towards stochastic sampling methods, for which only probabilistic

guarantees can typically be provided, e.g. that the chance constraint condition holds only with

some level of confidence [8], [9].

In this paper we take an approach intermediate to these two extremes. Our goal is to provide

a framework that addresses the constraint “xt ∈ X” using only partial information about the true

but unknown disturbance probability measure P?. We briefly describe both of the new constraint

models that will be introduced as alternatives to the worst-case and chance constrained problem

formulations.

Distributionally robust chance constraints: In many situations the disturbance distribution P?

is unknown and must be estimated from historical data, and hence is uncertain. We therefore

assume only that the distribution P? belongs to a set P of distributions that share certain structural

properties, i.e. their first two moments, which are assumed known. The distributionally robust

counterpart [35] of the chance constraint (1) hence becomes

∀P ∈ P : P {xt ∈ X} ≥ 1− ε. (2)

The constraint (2) is referred to as a distributionally robust chance constraint [35] on xt with

a second moment specification. Such a constraint is a robust version of the classical chance

constraint (1) in that it is insensitive to ambiguity in the disturbance distribution P?, at least

with respect to its higher order moments. One of the main advantages of this formulation over

the classical chance constrained formulation is the fact that only partial information on the

disturbance distribution P? is required.

Distributionally robust conditional value-at-risk (CVaR) constraints: For chance constraints

in the form (2), a natural additional goal is to guarantee that the expected constraint violation

in the remaining ε percent of the cases is small. To model such a requirement, we will consider

distributionally robust CVaR constraints [34]. Our general approach is to measure, via some loss
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function L, the severity of constraint violation in the ε percent of the worst cases and to keep the

degree of loss by this measure small. A precise statement of this distributionally robust CVaR

approach requires some additional notation, and we defer the formalities to Section II.

We will show in the remainder of the paper how both the distributionally robust chance

constraint and worst-case CVaR constraint interpretations of the condition “xt ∈ X” constitute

mathematically sound control design specifications. In particular, we will show that for optimal

control problems with either constraint type, the resulting problems are both practically mean-

ingful and computationally tractable. We stress that all of the numerical methods we present for

solving such problems are deterministic, in contrast to the stochastic methods presented in [8],

for which only probabilistic admissibility guarantees can be provided.

Outline: We provide a more mathematically rigorous description of distributionally robust

chance and CVaR constraints in the context of control design problems in Section II, which

can be read as an extended introduction. In Sections III and IV, we propose two control design

problems, of finite and infinite horizon type respectively. We show that in addition to being

practically justifiable, finding the optimal linear control policy in either case is a tractable problem

when considered in conjunction with either of our alternative constraint descriptions. The latter

of our proposed control problems is illustrated for a wind turbine blade control design case

study in Section V, for which an assumption of limited moment information on the disturbance

is quite natural. We have deliberately chosen a realistic and detailed numerical example in order

to illustrate that the framework developed in the paper is not merely l’art pour l’art.

Notation and definitions

We denote by In the identity matrix in Rn×n and by Sn+ and Sn++ the sets of all positive

semidefinite and positive definite symmetric matrices in Rn×n, respectively. The diagonal con-

catenation of two matrices X and Y is denoted by diag(X, Y ). All random vectors are defined

as measurable functions on an abstract probability space (Ω,F ,P?), where Ω is referred to as

the sample space, F represents the σ-algebra of events, and P? denotes the true (but possibly

unknown) probability measure. Without loss of generality we assume that Ω is sufficiently rich

such that any (joint) distribution of all the random variables appearing in this paper on the

Cartesian product of their individual range spaces is induced by a probability measure in P0.
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This means that we can think of Ω as the Cartesian product of all the random variables’ range

spaces, in which case F is identified with the Borel σ-algebra on Ω, while each random variable

reduces to a coordinate projection. For notational convenience, random vectors will be denoted

in boldface, while their realizations will be denoted by the same symbols in normal font. For any

z ∈ R we define (z)+ := max{z, 0}. The set P0 contains all probability measures on (Ω,F).

For any random variable x we introduce the following shorthand notation

µx := EP? {x} , Σx := EP?

{
[x− µx] · [x− µx]>

}
, Mx :=


Σx + µxµ

>
x µx

µ>x 1


 .

II. DISTRIBUTIONALLY ROBUST CVAR AND CHANCE CONSTRAINTS

Chance constraints are popular as soft constraints that need only to hold up to a certain

confidence level. Formally, the requirement that the n-dimensional random vector x should be

contained in a set X ⊆ Rn with high probability is expressed as

P?(x ∈ X) ≥ 1− ε, (3)

where ε is a prescribed safety parameter that controls the level of acceptable constraint violations.

Here, we could think of x as the random state of a linear dynamical system that depends both on

previous control inputs (actions) and exogenous disturbances (noise). Chance constraints are often

more practical than hard constraints, which can be viewed as degenerate chance constraints with

ε = 0 and which tend to encourage overly conservative decisions. Even worse, in linear dynamical

systems hard state constraints typically become infeasible in the presence of unbounded (e.g.

Gaussian) noise.

In spite of their conceptual appeal, chance constraints have not yet found wide application in

optimization and control theory for a variety of reasons. On the one hand, the feasibility of a

chance constraint can only be checked if the true distribution of the random vector x (which

is determined by the true probability measure P?) is precisely known. In practice, however, this

distribution must almost invariably be estimated from noisy data and is therefore itself subject

to ambiguity. This is problematic because even small changes in the distribution can have a

dramatic impact on the geometry and size of the set of inputs or actions consistent with the
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chance constraint. Moreover, incorporating chance constraints into otherwise tractable optimiza-

tion problems typically results in a non-convex problem, and consequently to computational

intractability.

Finally, chance constraints bound the probability of constraint violation but do not impose any

restrictions on the degree of the infeasibility encountered. However, severe constraint violations,

i.e. scenarios in which the system state strays far outside of X, are often much more harmful

than mild violations in which the state remains close to the boundary of X. Chance constraints

fail to distinguish between these two situations and provide no mechanism to penalize severe

constraint violations relative to mild ones.

In order to gain a better understanding of chance constraints, we require some terminology

and notation. We will assume throughout that the set X is described as an intersection of lower

level sets of finitely many convex loss functions Li : Rn → R, so that

X := {x ∈ Rn | Li(x) ≤ 0 ∀i = 1, . . . , I }

and intX = {x ∈ Rn | Li(x) < 0 ∀i = 1, . . . , I }. We refer to (3) as an individual chance con-

straint if I = 1 and as a joint chance constraint if I > 1. Every joint chance constraint can easily

be reduced to an individual chance constraint by re-expressing X as {x ∈ Rn | L(x;α) ≤ 0},

where the aggregate loss function

L(x;α) := max
i=1,...,I

αiLi(x)

remains convex in x and depends on a set of strictly positive scaling parameters α ∈ Rn
++. Note

that the particular choice of α has no impact on X and, consequently, no impact on the chance

constraint (3). The reader may therefore regard α initially as a positive parameter that can be

chosen arbitrarily. However, the flexibility to select α will be useful at a later stage to control

the tightness of a tractable approximation of the chance constraint (3).

We now review an interesting connection between chance constraints and quantile-based risk

measures that are commonly used in economics.

Definition II.1 (Value-at-risk). For any measurable loss function L : Rn → R, probability

measure P on (Ω,F) and tolerance ε ∈ (0, 1), the value-at-risk (VaR) of the random loss L(x)
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Fig. 1. Relation between VaR and CVaR for the illustrated loss distribution. The VaR is the (1 − ε)-quantile of the loss

distribution, while the CVaR is the conditional expectation of loss above the (1 − ε)-quantile of the loss distribution, e.g. the

CVaR is at the centre of mass of the ε-tail of the loss distribution.

at level ε with respect to P is defined as

P-VaRε (L(x)) := inf {γ ∈ R | P(L(x) > γ) ≤ ε} .

We emphasize that the “value” at risk in this particular context is unrelated to the loss of

economic currency, as in the usual interpretation in economics. In this constraint control context,

“violation” at risk might be a more appropriate interpretation.

By definition, the VaR coincides with the (1−ε)-quantile of the distribution of L(x), as shown

in Figure 1. Moreover, the reader may verify that the chance constraint (3) can be reformulated

as a constraint on the VaR at level ε of the aggregate loss function L(x;α), that is,

P?(x ∈ X) ≥ 1− ε ⇐⇒ P?(L(x;α) > 0) ≤ ε ⇐⇒ P?-VaRε (L(x;α)) ≤ 0. (4)

Some useful properties of the VaR are summarized in the following lemma:

Lemma II.1 (Properties of VaR [14]). Let L : Rn → R and L′ : Rn → R be measurable loss

functions, P a probability measure on (Ω,F) and ε ∈ (0, 1). Then, the following hold:

(i) Monotonicity: L(x) ≥ L′(x) P-a.s. =⇒ P-VaRε(L(x)) ≥ P-VaRε(L
′(x))

(ii) Positive Homogeneity: λP-VaRε(L(x)) = P-VaRε(λL(x)) for all λ ∈ R+
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(iii) Translation Invariance: P-VaRε(L(x) + λ) = P-VaRε(L(x)) + λ for all λ ∈ R.

A major deficiency of the VaR is its non-convexity in L(x). In fact, it can be shown that

P-VaRε(L(x)) is generally non-convex in x even for linear loss functions. An alternative, convex,

risk measure closely related to the VaR is the conditional value-at-risk defined next.

Definition II.2 (Conditional value-at-risk). For any measurable loss function L : Rn → R,

probability distribution P on (Ω,F) and tolerance ε ∈ (0, 1), the CVaR of the random loss L(x)

at level ε with respect to P is defined as

P-CVaRε (L(x)) := inf
β∈R

{
β +

1

ε
EP
{

(L(x)− β)+}
}
. (5)

Rockafellar and Uryasev [29] have shown that the set of optimal solutions for β in (5) is a

closed interval whose left endpoint is given by P-VaRε (L(x)). Moreover, it can be shown that

the CVaR admits the following equivalent representation [14, §4.4]:

P-CVaRε (L(x)) =
1

ε

∫ ε

0

P-VaRλ (L(x)) dλ. (6)

This immediately implies that CVaR majorizes VaR, that is,

P-CVaRε (L(x)) ≥ P-VaRε (L(x)) . (7)

If the random loss L(x) follows a continuous distribution, then (6) can be integrated by parts

to show that CVaR coincides with the conditional expectation of L(x) above P-VaRε (L(x)), as

shown in Figure 1. This observation originally motivated the term conditional value-at-risk. The

following lemma describes some basic properties of CVaR:

Lemma II.2 (Properties of CVaR [14]). Let L : Rn → R and L′ : Rn → R be measurable loss

functions, P a probability measure on (Ω,F) and ε ∈ (0, 1). Then, the following holds.

(i) Monotonicity: L(x) ≥ L′(x) P-a.s. =⇒ P-CVaRε(L(x)) ≥ P-CVaRε(L
′(x))

(ii) Positive Homogeneity: λP-CVaRε(L(x)) = P-CVaRε(λL(x)) for all λ ∈ R+

(iii) Translation Invariance: P-CVaRε(L(x) + λ) = P-CVaRε(L(x)) + λ for all λ ∈ R

(iv) Convexity: For each λ ∈ [0, 1] we have

λP-CVaRε (L(x)) + (1− λ)P-CVaRε (L′(x)) ≥ P-CVaRε (λL(x) + (1− λ)L′(x)) .
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One of the main reasons for the popularity of CVaR is the fact that it represents a convex

and conservative (i.e. pessimistic) approximation of VaR. Recalling that chance constraints can

always be rewritten as VaR constraints, this observation prompts us to use CVaR constraints as

conservative approximations for chance constraints. Indeed, (4) and (7) imply

P?-CVaRε (L(x;α)) ≤ 0 =⇒ P?-VaRε (L(x;α)) ≤ 0 ⇐⇒ P?(x ∈ X) ≥ 1− ε. (8)

Note that for convex loss functions the set of all random vectors x satisfying the CVaR constraint

in (8) is convex due to the convexity and monotonicity of CVaR.

In economic theory, CVaR traditionally measures an economic loss, hence the function L is

given ab initio. In control practice however, one is typically given a constraint set X, and is

free to select any loss functions Li compatible with X, i.e. one can choose any Li satisfying

X = {x ∈ Rn | L(x;α) ≤ 0}. The choice of weights αi can then be used to indicate the relative

importance of the individual loss functions Li.

CVaR constraints address two of the main shortcomings of chance constraints. First, unlike

chance constraints, they lead to tractable convex optimization problems. Second, CVaR con-

straints impose a higher penalty on realizations of x that materialize far outside of X (i.e.

with L(x;α) � 0) and therefore penalize severe constraint violations more aggressively than

mild ones. In contrast, chance constraints impose uniform penalties on all constraint violations

irrespective of their degree of infeasibility.

Unfortunately, checking the feasibility of CVaR constraints still requires precise knowledge of

the true probability measure P?. In practice, only limited information about P? may be available,

such as the support or some descriptive measures of the location and dispersion of certain random

variables under P?. Abstractly, we can represent the limited available information about P? by

a set P of probability measures on (Ω,F) with the following properties: (i) It is known that

P? ∈ P , and (ii) P is the smallest set of probability distributions for which we can guarantee

that P? ∈ P . We will henceforth refer to P as an ambiguity set.

To immunize the chance constraint (3) against distributional ambiguity, we may require that

it should hold for each probability measure in the ambiguity set. The resulting distributionally

robust chance constraint can be represented as

P(x ∈ X) ≥ 1− ε ∀P ∈ P ⇐⇒ inf
P∈P

P(x ∈ X) ≥ 1− ε. (9)
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Similarly, recalling that X = {x ∈ Rn | L(x;α) ≤ 0} for any α ∈ R++, we can immunize

the CVaR constraint on the left hand side of (8) against distributional ambiguity. The resulting

distributionally robust CVaR constraint takes the form

P-CVaRε(L(x;α)) ≤ 0 ∀P ∈ P ⇐⇒ sup
P∈P

P-CVaRε(L(x;α)) ≤ 0. (10)

As in the classical setting without distributional ambiguity, it can be shown that (10) provides a

conservative approximation for (9). Indeed, it is easy to see that the worst-case CVaR dominates

the worst-case VaR, and thus

sup
P∈P

P-CVaRε(L(x;α)) ≤ 0 =⇒ sup
P∈P

P-VaRε(L(x;α)) ≤ 0 ⇐⇒ inf
P∈P

P(x ∈ X) ≥ 1− ε,

see, e.g. [13] or [35].

In order to further characterize the relation between worst-case VaR and worst-case CVaR, and

to facilitate statements about computational tractability, we require some structural assumptions

about the ambiguity set P and the loss functions Li(x), i = 1, . . . , I defining the constraint set

X. We henceforth assume that the ambiguity set P contains all probability measures P under

which the random variable x has a given mean value µx ∈ Rn and a given covariance matrix

Σx ∈ Sn++. Moreover, we require that each constraint function Li is convex and quadratic, and

is representable as Li(x) = x>Eix + 2e>i x + e0
i for some Ei ∈ Sn+, ei ∈ Rn and e0

i ∈ R. This

means that X can be any intersection of half-spaces and generalized ellipsoids. The aggregate

loss L(x;α) is then given by a pointwise maximum of quadratic functions.

We next recall some tractability and exactness results relating to the CVaR approximation.

Theorem II.1 (Tractability of worst-case CVaR [35]). Under the preceding assumptions about

the ambiguity set P and the loss functions Li, i = 1, . . . , I , the worst-case CVaR is equivalent

to the following tractable semi-definite program (SDP):

sup
P∈P

P-CVaRε(L(x;α)) = inf
β,X

β +
1

ε
Tr {MxX}

s.t. X ∈ Sn+1
+ , β ∈ R

X −


αiEi αiei

αie
>
i αie

0
i − β


 � 0, ∀i ∈ {1, . . . , I}.

(11)
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If there is only one loss function that is concentric with the distribution of x, then the SDP (11)

admits an analytical solution. So far, this special case has not been considered in the literature.

However, we will see in Section IV that it is relevant for constrained infinite horizon problems.

Corollary II.1 (Concentric distributions and loss functions). If X constitutes a single ellipsoid

centred at the origin (i.e. I = 1 and e1 = 0), while the random vector x has mean µx = 0, then

sup
P∈P

P-CVaRε (L1(x)) = e0
1 +

1

ε
Tr {ΣxE1} . (12)

Proof: For I = 1, α1 = 1 and e1 = µx = 0 Theorem II.1 implies

sup
P∈P

P-CVaRε(L1(x)) = inf β +
1

ε
(Tr {ΣxY }+ y0)

s.t. Y ∈ Sn+, y ∈ Rn, y0 ∈ R+, β ∈ R

Y y

y> y0


 � 0,


Y − E1 y

y> y0 − e0
1 + β


 � 0.

(13)

As Y = E1, y = 0, y0 = 0 and β = e0
1 is feasible in (13), it is clear that the worst-case CVaR

is bounded above by e0
1 + 1

ε
Tr {ΣxE1}. To prove the converse inequality, we let (Y ?, y?, y?0, β

?)

be an optimal solution of (13). Then, we find

sup
P∈P

P-CVaRε (L1(x)) = β? +
1

ε
(Tr {ΣxY

?}+ y?0)

≥ β? +
1

ε

(
Tr {ΣxE1}+ (e0

1 − β?)+
)
≥ e0

1 +
1

ε
Tr {ΣxE1} ,

where the first inequality exploits the feasibility of (Y ?, y?, y?0, β
?) in (13), and the second

inequality exploits the fact that y?0 ≥ (e0
1 − β?)+ and ε ∈ (0, 1).

Theorem II.1 implies that the CVaR constraint supP∈P P-CVaRε(L(x;α)) ≤ 0 is equivalent to

a collection of linear matrix inequality (LMI) constraints. Similarly, under the assumptions of

Corollary II.1 the CVaR constraint supP∈P P-CVaRε(L1(x)) ≤ 0 is equivalent to a single scalar

linear inequality.

Even though these CVaR constraints generally provide conservative approximations for the

corresponding distributionally robust chance constraints, the approximations become essentially

exact1 for a judicious choice of the scaling parameters α ∈ Rn
++.

1Up to an interior operation, see equivalence (14).
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Theorem II.2 (Exactness of the CVaR Approximation [7], [35]). Under the above assumptions

about the ambiguity set P and the loss functions Li, i = 1, . . . , I , the worst-case CVaR constraint

is equivalent to a variant of a distributionally robust chance constraint where X is replaced with

its interior if we can optimize over α ∈ Rn
++, i.e.

inf
α∈Rn

++

sup
P∈P

P-CVaRε(L(x;α)) ≤ 0 ⇐⇒ inf
P∈P

P(x ∈ intX)≥1− ε. (14)

If the set X is described by a single quadratic inequality (i.e. I = 1), then the worst-case CVaR

constraint involving L1 (instead of the aggregate loss function) is equivalent to the distributionally

robust chance constraint, i.e.

sup
P∈P

P-CVaRε(L1(x)) ≤ 0 ⇐⇒ inf
P∈P

P(x ∈ X) ≥ 1− ε. (15)

Note that the inclusion intX ⊆ X implies

inf
P∈P

P(x ∈ intX) ≤ inf
P∈P

P(x ∈ X),

but except for degenerate situations the two worst-case probabilities in the above expression

are equal. Theorems II.1 and II.2 thus imply that the worst-case chance constraint is essentially

equivalent to the following constraints:

∃X ∈ Sn+1
+ , β ∈ R, α ∈ RI

++ : β+
1

ε
Tr {MxX} ≤ 0, X−


αiEi αiei

αie
>
i αie

0
i − β


 � 0 ∀i ∈ {1, . . . , I}.

III. FINITE HORIZON DISTRIBUTIONALLY ROBUST CONTROL PROBLEMS

We consider a DLTI system with n states, m control inputs, r outputs, d exogenous inputs or

disturbances and r measurements:


xt+1 = Axt +But + Cwt and x0 = x

yt = Dxt + Ewt,
(S)

where all matrices are of appropriate dimension and the disturbances wt model both process

noise (via the term Cwt) and measurement noise (via Ewt). The input ut is restricted to

be Fyt := σ(y0, . . . ,yt) -measurable. Our goal is to design a finite-horizon control law for the

system (S) that minimizes an expected value quadratic cost, subject to an additional requirement

that the state satisfies the constraint “xt ∈ X” according to either a chance-constrained or CVaR

interpretation. We wish to do this despite some ambiguity on the disturbance distribution.
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Specifically, we assume only that the following information is available about the disturbance

process:

Assumption III.1 (Weak sense stationary disturbances). We assume that in the DLTI system

S, the disturbance wt is a weak sense stationary (w.s.s.) white noise process with covariance

matrix Σwt = Id2 and mean µwt = µ for all t ∈ N0.

The w.s.s. assumption appears frequently in signal processing [28], but is less common in the

control literature. In effect, it assumes that only the autocorrelation Rww(t) := EP?{wi ·w>i−t}

is known, with Rww(0) = Id + µµ> and Rww(t) = µµ> otherwise. Furthermore, knowing the

first two moments of a w.s.s. process is, by merit of the Wiener-Khintchine Theorem, equivalent

to knowing its power spectrum [28]. Estimating the spectral density of the disturbance wt, for

example from historical data3, is significantly easier in practice than determining the complete

distribution P?.

The w.s.s. assumption implies that the only information available about the disturbance dis-

tribution P? is its autocorrelation function. Hence, P? is only known to be an element of the

ambiguity set

P∞ :=



P ∈ P0

∣∣∣∣∣∣
EP
{

(w>i , 1)> · (w>j , 1)>
}

=


Idδij + µµ> µ

µ> 1


 , ∀i, j ∈ N0



 .

The set P∞ contains all probability distributions consistent with the known moment information.

When choosing a control policy for the system S , we will require that it be distributionally

robust with respect to the ambiguity set P∞, in either a chance constrained or CVaR sense,

for the constraint “xt ∈ X”. In order to achieve this control design objective, the notion of a

distributionally robust constraint, introduced in Section II, is now used to formulate our control

problem.

Control constraints: We will consider distributionally robust constraints for the system S

2 The assumption that the covariance of the disturbance wt is the identity matrix Id, is without loss of generality. In case

Σwt is not the identity, taking the Cholesky decomposition Σwt = LL> and substituting C ← CL, E ← EL we can obtain

an equivalent system which satisfies Assumption III.1.
3The study of this problem is referred to as spectral density estimation in the signal processing community.
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enforced over a finite time horizon t ∈ {0, . . . , N}, i.e.

sup
P∈P∞

P-CVaRε (L (xt;α)) ≤ 0 ∀t ∈ {0, . . . , N − 1}. (16)

We will refer to the parameter N as the horizon length of the finite optimal control problem

studied. We assume that the parameter α ∈ Rn
++ is given, either as an attempt to approximate a

distributionally robust chance constraint or as an indicator of the relative importance of the loss

severity measures Li.

Assumption III.2. An aggregated loss function L : Rn×Rn
++ → R for the distributionally robust

CVaR constraints (16) is given as L(x;α) = maxi∈{1,...,I}
[
αi
(
x>Eix+ 2e>i x+ e0

i

)]
where Ei ∈

Sn+, ei ∈ Rn, e0
i ∈ R.

Hence, the set X corresponding to a loss function satisfying Assumption III.2 is a finite

intersection of half-spaces and generalized ellipsoids.

For the system S we define a causal control policy πN := {u0,u1, . . . ,uN−1}, such that the

control input selected at each time t ∈ [0, . . . , N − 1] is a function mapping prior measurements

to actions, i.e. ut is Fyt -measurable, where we assume that the initial state x0 = x is known

without any loss of generality4. We denote the set of all such policies as ΠN . We wish to find, if

it exists, a policy πN ∈ ΠN such that system S satisfies the CVaR constraints (16) over a finite

horizon. We refer to such a policy as admissible with respect to the system S and the CVaR

constraints (16).

Objective function: Our aim is to find a causal control policy πN ∈ ΠN that is admissible

with respect to the CVaR constraints while minimizing a given objective function JN . We will

assume throughout that the objective function JN : Rn × ΠN → R+ is a discounted sum of

quadratic stage costs, i.e. that it is in the form

JN(x, πN) := sup
P∈P∞

EP

{
N−1∑

t=0

βt
[
x>t Qxt + u>t Rut

]
+ βNx>NQfxN

}
, (17)

where we refer to β ∈ (0, 1] as the discount factor of the control cost. It is assumed that the

objective function JN is convex, i.e. Q, Qf ∈ S+ and R ∈ S++. We are therefore interested in

4In the case that the initial state x0 = x is itself uncertain, one can always add an additional leading state x−1 = 0 and a

state update equation x0 = Ax−1 + x, where x would be a noise term.
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the solution to the optimal control problem

inf
πN∈ΠN

JN(x, πN)

s.t. xt+1 = Axt +But + Cwt, x0 = x

sup
P∈P∞

P-CVaRε (L (xt;α)) ≤ 0, ∀t ∈ {0, . . . , N − 1}

(RN )

This problem appears to be intractable in general, since; (i) optimizing directly over arbitrary

measurable policies πN in ΠN seems to be out of the question; and (ii) distributionally robust

constraints such as (16), even for convex loss functions L, seem hard to deal with directly when

xt is a general non-linear function.

Hence, in what follows we restrict attention to control policies that are affine in the past

disturbances as in [15]. Restricted policies of this type are well known in the operations research

and control community, where they are commonly referred to either as linear decision rules [2]

or affine feedback policies [16]. Although such policies are typical suboptimal, recent research

effort has focussed on providing suboptimality bounds when applied to systems with worst-case

constraints [17], [18], [27].

Denote by x := (x>0 , . . . ,x
>
N)>, u := (u>0 , . . . ,u

>
N−1)> and y := (y>0 , . . . ,y

>
N−1)> the

collection of states, inputs and measurements, respectively, over the given finite horizon. We

similarly define a vector of disturbances as

w := (1,w>0 , . . . ,w
>
N−1)>, (18)

augmented with a leading one. This leading term is included for notational convenience so that

any affine function of (w0, . . . ,wN−1) can be written as Xw for some matrix X with appropriate

dimensions. Because of the w.s.s. condition on the disturbance process in Assumption III.1, we

have that EP?

{
w ·w>

}
= Mw ∈ SNd+1

++ with

Mw :=
(
1, µ>, . . . , µ>

)> (
1, µ>, . . . , µ>

)
+ diag (0, IN ⊗ Id).

The dynamics of the linear system S over the finite horizon N can then be written as

x = Bu + Cw, y = Du+ Ew, (19)

for some matrices (B, C,D, E) that can be derived from the system matrices and initial state

x0 = x; see Appendix A. Note in particular that the leading one in (18) means that the term Cw
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is an affine function of both the disturbances and the initial state x0 = x. Our approach will be

to restrict u to be affine in the past disturbances, i.e. u = Uw for some causal feedback matrix

U ∈ N .

The causality set N must ensure that the resulting feedback policy ut is Fyt -measurable, i.e.

that the feedback policy ut depends only on the initial state x and observed outputs [y0, . . . ,yt].

This can be achieved by a reparametrization of the feedback policy u = Ũη as an affine function

of the purified observations η = (DC + E)w as discussed in [2, §14.4.2]. The causality set can

then be defined as

N :=




U ∈ RNx×Nw

∣∣∣∣∣∣∣∣
U =




u0 0 0 0 0 0
u1 U1,0 0 0 0 0
u2 U2,0 U2,1 0 0 0

...
...

... . . . . . . ...
uN−2 UN−2,0 UN−2,1 ... UN−2,N−2 0
uN−1 UN−1,0 UN−1,1 ... UN−1,N−2 UN−1,N−1


 (DC + E)





which ensures that ut is Fyt -measurable. Assume we have such an affine policy u = Uw, then

the cost of this policy according to the cost function (17) is

J̃N(x, U) := Tr
{
U> (Ju + BJxB)UMw + 2CJxBUMw + C>JxCMw

}
,

where Jx := diag
(
diag

(
β0, . . . , βN−1

)
⊗ Q, βNQf

)
and Ju := diag

(
β0, . . . , βN−1

)
⊗ R. Note

that J̃N(x, U) is convex quadratic in U since diag(Q,R) ∈ S+. We are now ready to state the

main result of this section, which shows that finding the best affine control policy for problem

RN can be reformulated as a tractable convex optimization problem.

Theorem III.1 (CVaR constrained control). The best admissible affine control policy of problem

RN , i.e. a solution to the restricted problem

inf
U∈N

J̃N(x, U)

s.t. x = Bu + Cw, u = Uw

sup
P∈P∞

P-CVaRε (L(xt;α)) ≤ 0, ∀t ∈ {0, . . . , N − 1}

(R̃N )

where the loss function L : Rn×RI
++ → R satisfies Assumption III.2, can be found as a solution
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of the SDP

inf J̃N(x, U)

s.t.

U ∈ N , βt ∈ R, Xt ∈ SNd+2
+ , P i

t ∈ SNd+1
+

βt +
1

ε
Tr {MwXt} ≤ 0,

Xt −


 αiP

i
t αi(BtU + Ct)>ei

e>i (BtU + Ct)αi αie
0
i − βt


 � 0,


 P i

t (BtU + Ct)>E1/2
i

E
1/2
i (BtU + Ct) In


 � 0,





∀t ∈ {0, . . . , N − 1}

∀i ∈ {1, . . . , I}

(20)

where B =: (B>0 , . . . ,B>N−1)> and C =: (C>0 , . . . , C>N−1)>.

Proof: See Appendix A.

We remark that the equivalence (14) in Theorem II.2 ensures that there exists some α ∈ R++

such that the constraints (16) reduce to a distributionally robust chance constraint for X =

{x | L(x;α) ≤ 0}, whenever xt is an affine function of the disturbances. In principle one could

therefore identity such a parameter vector α to recover an exact representation of a robust chance

constraint in the problem (R̃N ). However, simultaneous optimization over both U and α in (20)

would result in a non-convex bi-affine optimization problem, and such problems are known to

be NP-hard in general.

While Theorem II.2 is only existential in nature, i.e. it is true for some unknown α ∈ R++,

the equivalence between chance constraints and CVaR constraints when X is a simple ellipsoid

or I = 1 is guaranteed. This result enables us to formulate the following corollary to Theorem

III.1.

Corollary III.1 (Chance constrained control). The best admissible affine control policy of the

restricted problem

inf
U∈N

J̃N(x, U)

s.t. x = Bu + Cw, u = Uw

inf
P∈P∞

P {xt ∈ X} ≥ 1− ε, ∀t ∈ {0, . . . , N − 1}
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where the constraint set X =
{
x
∣∣ x>E1x+ 2e>1 x+ e0

1 ≤ 0
}

is a single ellipsoid, can be found

as a solution of the SDP (20) with I = 1 and α1 = 1.

IV. INFINITE HORIZON DISTRIBUTIONALLY ROBUST CONTROL PROBLEMS

Infinite horizon control problems lend themselves to applications in which transient behaviour

is of lesser importance, but in which we are interested in steady state behaviour. In Section V

we present a numerical example of such a problem in the context of wind turbine blade control.

The problem setting is similar to the one presented in Section III, in that we again consider the

DLTI system S where the disturbance input process wt satisfies Assumption III.1. In addition,

we assume that the disturbance wt has zero mean µwt = µ = 0, a zero initial condition x0 = 0

reflects our indifference towards transient behaviour.

Control constraints : We will consider the problem of finding a causal linear time-invariant

feedback law π, that satisfies the following limit or steady state constraint,

lim sup
t→∞

sup
P∈P∞

P-CVaRε (L0 (xt)) ≤ 0, (21)

where the loss function L0(x) := x>E0x+e0 is a convex quadratic function with E0 ∈ Sn++. This

implies that the corresponding constraint set X := {x | L0(x) ≤ 0} is an ellipsoid centred at

the origin. The set of all linear time-invariant and causal feedback policies satisfying constraint

(21) is denoted by Π∞.

Objective function: We are interested in finding a feedback law π ∈ Π∞ that minimizes the

infinite horizon limit of the stage cost function in (17) for system S, with no discounting or

terminal cost. The design goal in this case reduces to minimizing the average stage cost, so that

the objective function becomes

J∞(π) := lim sup
N→∞

sup
P∈P∞

1

N
EP

{
N−1∑

t=0

[
x>t Qxt + u>t Rut

]
}
,

= lim sup
N→∞

1

N

N−1∑

t=0

EP?

{
x>t Qxt + u>t Rut

}
,

where the inequalities

lim inf
t→∞

EP?

{
x>t Qxt + u>t Rut

}
≤ J∞(π) ≤ lim sup

t→∞
EP?

{
x>t Qxt + u>t Rut

}
(22)
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follow immediately from the definition of limit inferior and limit superior, respectively. Further-

more, the following can be asserted about the stationary behaviour of the stochastic process xt

when the controller π ∈ Π∞ stabilizes S asymptotically:

Theorem IV.1 (Steady state behaviour [21, Theorem 6.23]). Let the discrete-time stochastic

process xt be the solution of the stochastic difference equation

xt+1 = Āxt + C̄wt,

xt0 = x0

where Ā ∈ Rn×n, C̄ ∈ Rn×d and wt has zero mean and satisfies Assumption III.1. If Ā is strictly

stable and t0 → −∞, then the covariance

Cxx(s, t) := EP?

{
[xs − EP? {xs}] · [xt − EP? {xt}]>

}

of the state process tends to an asymptotic value that depends only on the difference s− t. The

asymptotic variance matrix P∞ := limt0→−∞Cxx(0, 0) exists and is the unique solution of the

discrete Lyapunov equation

P∞ = Rxx(0) = ĀP∞Ā
> + C̄C̄>.

In light of Theorem IV.1, we have that the inequalities in (22) are tight whenever Π∞ is

restricted to contain only exponentially stabilizing linear time-invariant control policies. Hence,

we consider the following control problem

inf
π∈Π∞

lim
t→∞

EP?

{
x>t Qxt + u>t Rut

}

s.t. xt+1 = Axt +But + Cwt,

lim sup
t→∞

sup
P∈P∞

P-CVaRε (L0 (xt)) ≤ 0.

(R∞)

We assume throughout that the pairs (Q1/2, A) and (C,A) are observable and that the pair (A,B)

is stabilisable, which is sufficient to guarantee the existence of linear time-invariant exponentially

stabilising control policies. The assumption x0 = 0 is without loss of generality, i.e. the limit

of the covariance matrix of the state is independent of x0 as indicated by Theorem IV.1. Under

the observability and stabilisability assumptions made, the cost function is independent of the

distribution of x0, as are the optimal control policies.
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We restrict attention to linear control strategies for problem R∞, for the same reasons men-

tioned in Section III. It is well known that such a restriction causes no loss of optimality when

constraint (21) is disregarded. The equivalence (12) gives a probabilistic interpretation to what

otherwise could be considered an ad hoc covariance constraint [33]. We next show that the

equivalence (12) also implies that the optimal linear feedback law for problem R∞ has an order

which equals the number of states n of system S, and is the combination of a Kalman filter and

a static feedback gain.

Theorem IV.2 (Optimal linear feedback law). The optimal linear feedback law π? of problem

R∞ consists of a linear estimator-controller pair (S,K) and hence is of the form

π? :




x̂t+1 = (A+BK)x̂t + S (yt −Dx̂t)

ut = Kx̂t,
(23)

with S := AYD>
(
DYD> + EE>

)−1. The matrix Y is the unique positive definite solution of

the discrete algebraic Riccati equation

Y = A
(
Y − Y D>

(
DYD> + EE>

)−1
DY

)
A> + CC>,

which can be solved efficiently [1]. The static feedback matrix is given by K = Z?(P ?)−1, where

P ? ∈ Sn++ and Z? ∈ Rm×n can be found as the optimal solution of the SDP

inf TrQ (Y + P ) + TrRX

s.t. P ∈ Sn+, Z ∈ Rm×n, X ∈ Sm+
X Z

Z> P


 � 0, e0 + 1

ε
Tr {E0 (Y + P )} ≤ 0


P − APA

> −BZA> − AZ>B> − W̃ BZ

Z>B> P


 � 0

(24)

where W̃ := AYD>
(
DYD> + EE>

)−1
DY A>. Since (23) can be decomposed into a Kalman

estimator S and state feedback controller K, problem R∞ satisfies a separation or certainty

equivalence principle.

Proof: See Appendix A.
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The Kalman filter in Theorem IV.2 depends only on the process and measurement noise

characteristics and is independent of the distributionally robust constraint (21) and cost function

J∞. Finding the optimal static feedback gain K requires only the solution of the tractable convex

problem (24).

V. WIND TURBINE BLADE CONTROL DESIGN PROBLEM

To illustrate the method introduced in the preceding section, we consider a wind turbine control

problem similar to the one introduced in [26]. As the size of wind turbines is increased for larger

energy capture, they are subject to greater risks of fatigue failure and extreme loading events.

Therefore, most large wind turbines today are equipped with pitch control for speed regulation,

which can also be used for load alleviation.

However, these pitch actuators are slow and limited by the inertia of the blades. Hence, as

in [26], we assume that the blades are equipped with an actively controlled flap. The control

objective is to minimize actuation energy while keeping some measure of blade loading within

specified bounds. The disturbance acting on the turbine blades is mostly due to atmospheric

turbulence, for which little more than the frequency spectrum is known [10]. According to

the standard design reference [24], atmospheric turbulence is typically treated as a Gaussian

stochastic process defined by a standardized velocity spectrum. We follow the standard atmo-

spheric turbulence model provided in [24], modulo the normality assumption which is not well

supported in reality. Hence, this is a natural setting in which the ideas developed in this paper

are of practical interest.

We start by briefly stating how a linear model of a wind turbine blade can be obtained. The

modelling technique used here is by no means the only one possible, but results in a modest sized

plant model of only ten states. An alternative technique using classical vortex-panel methods [19]

to get higher fidelity, but still linear, models is presented in [26]. Since the disturbance behaviour

is an important aspect of our model, we introduce it separately following the introduction of the

physical model of the wind turbine blades. Some numerical results are provided in the last part

of this section.
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Fig. 2. Figure 2(a) shows the geometry of the 2-DOF structural model. Figure 2(b) illustrates the connection of the different

subcomponents in the overall wind turbine wing model. The overall model is linear continuous time invariant and has a modest

size of 13 states, one endogenous and exogenous input T and n1, respectively.

A. Mathematical modelling

An aerofoil section with flap can be modelled using a simple two degree of freedom (2-DOF)

plunge-pitch aerofoil, restrained by a pair of springs as shown in Figure 2(a). The two dimensional

aerofoil represents a cross section of one of the flexible wind turbine blades. The spring constants

are kα which restrains pitch and kh which restrains plunge motions. The free-stream velocity is

denoted by U , pitch angle by α, plunge by h and flap deflection angle by β. The conventions

taken for h is positive downwards, α is positive nose up about the elastic axis and β is positive

flap down about the hinge. The lift Lf is positive upwards and the torque Mα about the elastic

axis is positive when the aerofoil pitches nose up.

Structural modelling: The dynamic equations of motion in continuous time of the aerofoil

can be obtained using Lagrange’s equation [22] if structural damping is neglected. They can be

written in state space form as

M Sα

Sα Iα




ḧ
α̈


+


kh 0

0 kα




h
α


 =


−Lf
Mα


 , (25)

where M is the mass, Sα is the static moment of the aerofoil about the elastic axis and Iα is

the aerofoil’s moment of inertia about the elastic axis. The second derivatives of the pitch and

plunge are denoted by α̈ and ḧ respectively. The flaps are assumed to be rigid, i.e. they do not
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flex, and their mass is considered to be small, so any inertia effects from flap deflection can

be ignored. As a result, flap deflection does not appear in equation (25) directly. The flap is

actuated using torque control

mf β̈ + rf β̇ + kfβ = T ,

where the friction factor rf ∈ R++, flap inertia mf � M , and flap spring kf are given. The

control input T is the torque forcing the wing flap. The power consumed by the flap is assumed

to be proportional to the norm of β̇.

Linear unsteady aerodynamics: In order to derive a mathematical model for the aerodynamic

disturbances, we must describe how the fluid flow around the aerofoil generates the lift Lf and

torque Mα. An analytical method for describing 2D unsteady aerodynamics in the presence of

transversal gust flow is provided by Wagner [30] and Küssner [20]. The closed form expression

for the lift Lf and torque Mα acting on the aerofoil was obtained by considering a 2D flat

plate5 with the additional flap undergoing harmonic motion in an inviscid and incompressible

flow with flat wake at fixed free-stream velocity U and transversal gust flow at speed wgust.

The total lift Lf and total torque Mα in this framework are given as the superposition of

the lift caused by the longitudinal flow at speed U and transversal flow at speed wgust. The

lift and torque caused by the longitudinal flow are determined using the Wagner filter [30].

Superimposing the lift and torque generated by the transversal gust flow wgust determined using

the Küssner filter [20], gives us an expression for the total lift Lf and total torque Mα. Both

the Wagner and Küssner filter have a second order state space representation, resulting in four

additional states (x1, . . . ,x4), as shown in Figure 2(b).

Disturbance model: The majority of the disturbance acting upon the wind turbine blades is a

direct result of atmospheric turbulence. Most commonly, atmospheric turbulence is represented

as the convolution of (Gaussian) white noise through a linear time-invariant (LTI) shaping filter,

usually referred to as a von Kármán filter, see [10], [24]. Hence

wgust := H · n1,

5 The flat plate model is parametrised by a half chord length of b, a distance from mid-chord to elastic axis denoted by ab

and a distance from mid-chord to hinge denoted by eb, see Figure 2(a).
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where n1 is Gaussian white noise and H the von Kármán filter, which we choose to be a proper

stable rational filter as in [10] with state space representation



−7.701 −7.008 −1.404 1

1 0 0 0

0 1 0 0

1.447 7.022 1.533 0



. (H)

It is clear that the Gaussian assumption made on wgust is unlikely to be fulfilled in practice,

hence we assume only that n1 is a scalar white w.s.s. noise process, i.e. E {n2
1(t)} = 1 and thus

not necessarily Gaussian. Hence, in practice we need only estimate the power spectrum of the

atmospheric turbulence wgust, e.g. from historical data.

The overall system of the wind turbine blade model with additional flap is a linear continuous

time invariant system with 13 states, 6 states for the structural model, 4 states for the flow model

and 3 states for the disturbance model. The overall model has one endogenous input T and one

exogenous input n1 as shown in Figure 2(b). We assume that the states α and h are measured

with negligible measurement noise, i.e.

y =


α
h


+ δn2,

where n2 is a zero mean white noise signal with unit covariance matrix, uncorrelated with n1.

To fit in the framework provided in the paper, we discretize the continuous time model using the

zero order hold method at sampling frequency fs = 100 Hz which captures most of the salient

plant dynamics for the model parameters we have selected.

B. Numerical results

A natural control design criterion in this setting is to ensure that the vector (α̇, ḣ) is kept

small in order to bound the fatigue stress, usually caused by high variance dynamic loads. In

addition we would like extreme static loading events to be rare, corresponding to the requirement

that the deformation vector (α,h) remains close to zero. We express these two design criteria
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Fig. 3. Figure 3(a) shows the variance of the vectors (α,h) and (α̇, ḣ) when uncontrolled and with the optimal controller

according to Section IV, as the sets
{
x ∈ R2

∣∣ x>Σ−1x− 1 ≤ 0
}

with Σ the respective covariance matrix. Similarly, Figure

3(b) shows the variance of the vectors (α,h) and (α̇, ḣ) when uncontrolled, and with the standard LQR controller KLQR(0.1).

respectively as

lim sup
t→∞

inf
P∈P∞

P
{

(α̇(t), ḣ(t)) ∈ B2[55]
}
≥ 1− ε, (26)

lim sup
t→∞

inf
P∈P∞

P {(α(t),h(t)) ∈ B2[6]} ≥ 1− ε, (27)

where ε = 0.1, and Bn[r] denotes a closed ball in Rn of radius r around the origin. The natural

control objective in this setting is to minimize the expected actuation power usage. We express

this by taking as a cost function:

J(π) = lim sup
t→∞

sup
P∈P∞

EP

{
β̇

2
(t)
}
,

which must be minimized subject to the fatigue and loading constraints (26) and (27) respectively.

Using the method described in Section IV, the optimal linear time invariant controller can be

computed efficiently. Although it should be noted that in Theorem IV.2 only one probability

constraint is considered, the generalisation to the case of finitely many constraints of type (21)

is straightforward and omitted here. The difference between the variance of the vectors (α,h)

and (α̇, ḣ), when uncontrolled or controlled with the synthesized controller K?, is visualized in

Figure 3(a).
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Control J (α,h) /∈ B2[6] (α̇, ḣ) /∈ B2[55]

Uncontrolled 0 0.16 0.12

K? 82 0.10 0.10

KLQR(0.43) 82 0.16 0.09

KLQR(0.1) 425 0.15 0.07

KLQR(3.2× 10−3) 3730 0.10 0.05

TABLE I

NUMERICAL RESULTS FOR THE WIND TURBINE BLADE CONTROL PROBLEM. THE THIRD AND FOURTH COLUMN SHOW THE

WORST-CASE PROBABILITY THAT (α,h) /∈ B2[6] AND (α̇, ḣ) /∈ B2[55], RESPECTIVELY.

We compare this controller to the standard H2-optimal controller found by tuning the cost

function

lim sup
t→∞

sup
P∈P∞

EP

{
γβ̇

2
(t) +α2(t) + α̇2(t) + h2(t) + ḣ

2
(t)
}
,

which weighs the actuation energy versus the size of the states (α, α̇,h, ḣ), according to the

tuning factor γ. A naı̈ve method of designing a controller is to tune γ such that the closed loop

system satisfies the fatigue (26) and loading (27) constraints.

We compare in Table V-B the cost of the optimal controller K? and three naı̈vely tuned

controllers KLQR(γi). First it is noted that when uncontrolled, the control cost is zero. However,

since ε = 0.1 both design specifications (26) and (27) are violated. The optimal controller K?

has satisfied (26) and (27) exactly with no conservatism and relatively low cost. The LQR

controller KLQR(0.43) has the same cost as K? but does not satisfy the constraints. The other

LQR controllers either violate one of the constraints or have a massive cost compared to K?.

The difference between the variance of the vectors (α,h) and (α̇, ḣ), when uncontrolled or

controlled with the controller KLQR(0.1), is visualized in Figure 3(b).

It can be seen from this example that the methodology of Section IV provides an easy

procedure to design controllers that handle constraints of the type (26) and (27). Again we

point out that, by dropping the Gaussian assumption on the stochastic process (n1,n2), an

assumption which in reality can not be justified anyway, the distributionally robust constraint

formulation both makes practical sense and leads to a computationally tractable formulation.
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VI. CONCLUSION

We investigate constrained control problems for stochastic linear systems when faced with the

problem of only having limited information regarding the disturbance process, i.e. knowing only

the first two moments of the disturbance distribution. We propose the use of distributionally robust

chance and CVaR constraints to express constraint specifications when faced with distributional

ambiguity.

These distributionally robust constrained formulations are subsequently used as control design

specifications in both a finite horizon optimal control problem, and in an average cost optimal

infinite horizon control problem.

We argue that these types of constraint formulations are practically meaningful and com-

putationally tractable in the proposed finite and infinite horizon control design problems. The

efficacy of the proposed formulation is illustrated for a wind turbine blade control design case

study where flexibility issues play an important role and in which the distributionally robust

framework makes practical sense.
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APPENDIX

Define the matrices B ∈ RNx×Nu , C ∈ RNx×Nw , D ∈ RNy×Nu and E ∈ RNy×Nw as follows

B :=




0
B 0
AB B 0
... . . . . . .
... B 0

AN−1B AN−2B ... AB B


=:




B0
B1
B2
...
...
BN


 , D :=




0
D 0
D 0

. . . . . .
D 0


=:




D0
D1
D2

...
DN−1


 ,

C :=




x0
Ax0 C
A2x0 AC C

... . . . . . .
ANx0 AN−1C ... AC C


=:



C0
C1
C2
...
CN


 , E :=




1
E
E

. . .
E


=:




E0
E1
E2
...

EN−1


 ,

where x0 is the initial state of system S , and Nx := (N + 1)n, Nu := Nm, Nw := Nd+ 1 and

Ny = rN .

The following general theorem establishes that distributionally robust constraints are invariant

under linear projections. It plays an important role in the proof of Theorem IV.2.

Theorem A.1 (General projection property). Let x and w be random vectors valued in Rn and

Rd, respectively, and define the ambiguity sets

Px :=
{
P ∈ P0

∣∣ EP
{

(x>, 1)>(x>, 1)
}

= Mx

}

and

Pw :=
{
P ∈ P0

∣∣ EP
{

(w>, 1)>(w>, 1)
}

= Mw

}
,

where Mx ∈ Sn+1
+ and Mw ∈ Sd+1

+ are related through Mx =
(
X 0
0> 1

)
Mw

(
X 0
0> 1

)> for some

X ∈ Rn×d. Then, for any Borel measurable function f : Rn → R that admits a quadratic

minorant we have

inf
P∈Px

EP(f(x)) = inf
P∈Pw

EP(f(Xw)).

Proof: This is an immediate consequence of [32, Theorem 1].

Proof of Theorem III.1

The proof follows by applying the tractability result in Theorem II.1 to the constraints

sup
P∈P∞

P-CVaRε(L(

xt︷ ︸︸ ︷
(BtU + Ct)w;α)) ≤ 0.
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Explicitly writing out the quadratic form in the preceding inequality as

sup
P∈P∞

P-CVaRε

(
max
i
αiw

>(BtU + Ct)>Ei(BtU + Ct)w + 2αie
>
i (BtU + Ct)w + αie

0
i

)
≤ 0

yields a matrix inequality with quadratic terms in the variable U :

∃βt ∈ R, Xt ∈ SNd+2
+ :





βt +
1

ε
Tr {MwXt} ≤ 0

Xt �
(
αi(BtU+Ct)>Ei(BtU+Ct) (BtU+Ct)>eiαi

αie
>
i (BtU+Ct) e0iαi−βt

)
,∀i ∈ {1, . . . , I}

The final result claimed in the theorem is than found by applying Schur complements, and

rewriting the quadratic matrix inequality as two LMIs using the additional variables P i
t ∈ SNd+1

+ .

Proof of Theorem IV.2

The feedback policies π in problem R∞ are restricted to be linear and causal, i.e. ∃Xt ∈

Rn×td : xt = XtTtw, where Tt : w → (w>0 , . . . , w
>
t−1)> is a truncation. We have then according

to Theorem A.1,

sup
P∈Pw

P-CVaRε (L0 (XtTtw)) ≤ 0 ⇐⇒ sup
P∈Pxt

P-CVaRε (L0(xt)) ≤ 0,

where Mxt = diag(XtTt, 1) ·Mw ·diag(XtTt, 1)>. Now according to Corollary II.1, we have that

the limit as t→∞ of the preceding inequality is equivalent to

lim
t→∞

e0 +
1

ε
Tr
{
E

1/2
0 EP?

{
xtx

>
t

}
E

1/2
0

}
≤ 0,

where Theorem IV.1 guarantees that the limit exists. The objective function can be written in

the form of a standard H2-problem,

Jlqr = lim
t→∞

Tr
{
Q1/2EP?

{
xtx

>
t

}
Q1/2 +R1/2EP?

{
utu

>
t

}
R1/2

}
,

using the fact that the expectation operator is linear and the trace identity Tr {AB} = Tr {BA}.

Hence, when restricted to linear control strategies, problem R∞ reduces to

infπ limt→∞ supP∈P∞ EP
{
x>t Qxt + u>t Rut

}

s.t. xt+1 = Axt +But + Cwt,

limt→∞ supP∈P∞ Tr
{
E1/2EP

{
xtx

>
t

}
E1/2

}
≤ −e0ε.

However, the last problem is an instance of a standard multi-criterion H2-problem, see [5,

§12.2.1]. The fact that the optimal control law is of the form (23) is a result of the fact that
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it solves an H2-problem with a different cost measure, i.e. there exists an unconstrained H2-

problem with state and input penalty matrices Q̃, R̃ for which the solution satisfies the omitted

trace constraint [5, §6.5.1]. The fact that K can be found as the solution to an SDP can be found

in [6], and essentially follows from standard LMI manipulations.

REFERENCES

[1] W.F. Arnold III and A.J. Laub. Generalized eigenproblem algorithms and software for algebraic Riccati equations.

Proceedings of the IEEE, 72(12):1746–1754, 1984.

[2] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press, 2009.

[3] D.P. Bertsekas and I.B. Rhodes. On the minimax reachability of target sets and target tubes. Automatica, 7(2):233–247,

1971.

[4] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999.

[5] S.P. Boyd and C.H. Barratt. Linear Controller Design: Limits of Performance. Prentice Hall, 1991.

[6] S.P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in Sstem and Control Theory. Society

for Industrial and Applied Mathematics, 1987.

[7] S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[8] G.C. Calafiore. Random convex programs. SIAM Journal on Optimization, 20(6):3427–3464, 2010.

[9] G.C. Calafiore and M.C. Campi. The scenario approach to robust control design. IEEE Transactions on Automatic Control,

51(5):742–753, 2006.

[10] C.W. Campbell. Monte Carlo turbulence simulation using rational approximations to von Kármán spectra. AIAA Journal,
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und Mechanik, 5(1):17–35, 1925.

[31] H.S. Witsenhausen. A counterexample in stochastic optimum control. SIAM Journal on Control, 6(1):131–147, 1968.
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