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Nowadays, trailing edge flaps on wind turbine blades are considered to reduce loading
stresses in wind turbine components. In this paper, an optimal control synthesis method-
ology for the design of gust load controllers for large wind turbine blades is proposed. We
discuss a control synthesis approach that minimises the power expenditure of the actuated
trailing edge flap, while at the same time guaranteeing that certain blade load measures
remain bounded in a probabilistic sense. To illustrate our proposed control design method-
ology, a standard NREL 5-MW reference turbine was considered. The obtained numerical
results indicate that through the use of optimal feedback considerable reductions in loading
stresses could be achieved for moderate actuation power.

Nomenclature

Wind turbine:
ν Position and orientation of wind turbine hub with respect to the ground
η Positions and orientations of wind turbine blades with respect to the hub
Mx Root torsion moment [N ·m]
My Root bending moment [N ·m]
rx Blade tip rotation [rad]
qz Blade tip displacement [m]
β Flap actuation angle [rad]

Wind flow:
∇Φ Air flow speed around blade [m/s]
ngust Wind gust speed [m/s]
τ Atmospheric turbulence level [%]

Optimal control:
J Cost function
K Control policy
ε Constraint satisfaction level

I. Introduction

The size of wind turbines has been increasing steadily over the years, and rotors measuring up to 160 meter
in diameter are being developed [1]. However, unfavourable aeroelastic behaviour as a result of increased

length and flexibility of the blades can raise blade safety concerns and increase structural degradation [2].
A cost-efficient alternative to a large increase in stiffness is the use of stronger materials and localised active
control techniques to overcome extreme blade loading and excessive oscillations.

Pitch actuation methods, which already exist on wind turbines for speed regulation and have been shown
to be effective in load alleviation, are only able to suppress lower frequency loading [3]. To overcome such
limitations, distributed load alleviation actuators placed along different sections of the blades can be designed
to complement existing pitch control mechanisms by addressing the higher frequency loadings. For instance,
using trailing-edge flaps for load reduction, Frederick et al. [4], Riziotis et al. [5] and Basualdo [6] were able
to achieve significant reduction in blade loading and aerofoil displacements, while Barlas et al. [7, 8] and
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Wilson et al. [9], demonstrated the performance benefits of multiple flaps on a full rotor.
In this paper, we discuss a control synthesis approach that minimises the power expenditure of the

actuated trailing edge flap, while at the same time guarantees that certain blade load measures remain
bounded. In particular, we use the distributionally robust control approach discussed in Van Parys et al. [10]
to synthesise control policies that guarantee that the root bending moments and tip deflections experienced
by the blades remain small in a probabilistic sense. The distributionally robust control approach can be
interpreted as constrained linear quadratic control, since the former approach reduces to standard linear-
quadratic-Gaussian (LQG) control in the absence of the blade load constraints.

Past work in blade load control has relied heavily on classical control methods, such as PD and PID
control [4]. Since the focus of initial work was on developing proofs-of-concept, more advanced control
techniques were not investigated. More recent work has considered optimal control synthesis approaches
such as H2 or H∞ optimal control [4,11,12] and model predictive control (MPC) methods [8,13]. However,
in these more recent works the cost functions employed did not reflect any particular control design objective,
but rather were treated as tuning parameters with which to synthesise controllers that met the blade load
requirements ex post facto. The main advantage of the approach taken in this paper over the existing
synthesis techniques is that they guarantee bounded blade load measures by construction, and hence only
require minor tuning. As our synthesis approach yields explicit linear controllers, they also represent less of
a computational burden than standard MPC implementations.

Outline : In Section II, the structural and aerodynamic model of the wind turbine used in this paper is
briefly described. Section III introduces the distributionally robust framework. Additionally, the approach
can be seen as a natural generalisation of standard LQG control with a relaxation of the standard atmospheric
turbulence assumption. The performance of the synthesised optimal controller for a benchmark turbine
developed by the National Renewable Energy Laboratory (NREL) [8, 14,15] is discussed in Section IV.

Notation and definitions

We denote by In the identity matrix in Rn×n and by Sn+ and Sn++ the sets of all positive semi-definite and
positive definite symmetric matrices in Rn×n, respectively. A signal is a measurable function that maps the
natural numbers N to Rn. A system is a mapping from the input signal space S1 to the output signal space
S2, i.e. G : S1 → S2, and will be denoted in upper-case bold. We assume throughout that all systems are
linear, i.e. G(n1 + n2) = Gn1 + Gn2, ∀n1, n2 ∈ S1. A small bold letter w indicates a stochastic process
w : Ω→ S defined on the abstract probability space (Ω,F ,P?), where Ω is referred to as the sample space, F
represents the σ-algebra of events and P? denotes a probability measure. The set P0 contains all probability
measures on (Ω,F), i.e. we have P? ∈ P0. The function δ : R→ R is defined as δ(0) = 1 and zero otherwise.

II. Aeroservoelastic Model

Throughout, we use the standard NREL 5-MW reference wind turbine [16] to illustrate our control design
methods. This wind turbine was developed to support conceptual studies aimed at accessing offshore wind
technology and has been widely adopted as a benchmark case for the aeroelastic analysis and design of large
flexible wind turbines [8, 14,15].

The aeroservoelastic model of the wind turbine presented here has been developed according to the
Simulation of High Aspect Ratio Planes (SHARP) [17–20] framework. The SHARP framework has been
extensively verified in flexible aircraft applications. Moreover, in recent work [21] it was tailored to model
the dynamics of large wind turbine blades. In the SHARP framework, a non-linear composite beam model
is coupled together with the Unsteady Vortex Lattice Method (UVLM) describing the airflow around the
wing blades. In subsequent sections, a brief overview of both structural and aerodynamic models coupled
according to Figure 1 will be presented.

II.A. Composite beam model of the wind turbine blades

The blades have been reduced to one dimensional beams using a variational asymptotic cross-sectional
analysis [22] able to cope with large static and dynamic deformations, as illustrated in Figure 2. The
structural model describes the displacements and rotations of this composite beam structure [23, 24] under
the influence of localised nodal external forces Qext. For the purpose of efficient control synthesis, the non-
linear model was linearised around a steady-state operating condition. In what follows, attention is limited
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Figure 1. Coupling between structural and aerodynamic modules in SHARP.

to a single blade.

Figure 2. Multi-beam configuration of the wind turbine with the definition of reference frames for the structural model.

As shown in Figure 2, the motion of the blade is described in a hub-fixed reference coordinate system S,
which moves with rotational velocities vG(t) ∈ R3 and ωG(t) ∈ R3 in the inertial reference frame G. The
displacements viS(t) ∈ R3 and rotations ωiS(t) ∈ R3 of node i ∈ [1, . . . , p] along the beam are described with
respect to the hub fixed reference frame S. The equations of motion for the structural dynamics system are
partially given by the second order ordinary differential equation (ODE) [18,24] in (η, ν)

Mη (η) η̈ +mν (η, η̇) ν̇ +Qgyr (η, ν) +Qstif (η) = Qext, (1)

where the vector η(t) = [v1S ;ω1
S ; . . . ; vpS ;ωpS ](t) ∈ R6p contains all the nodal displacements and rotations

describing the deformation of the beam in the reference frame S and ν(t) = [vG(t);ωG(t)] ∈ R6 describes
the velocity of the hub itself with respect to the inertial reference frame G. The generalised mass matrix
Mη(η) ∈ R6p×6p, gyroscopic Qgyr(η, ν) ∈ R6p and elastic forces Qstif (η) ∈ R6p are assumed known. The
ODE (1) describes the deformations of the blade by balancing the localised internal inertial and elastic forces
with the external forces Qext(t) ∈ R6p. The effects due to the motion ν(t) of the hub in the inertial reference
frame G are incorporated through the coupling mass matrix mν(η, η̇) ∈ R6p×6 and the gyroscopic forces
Qgyr(η, ν).

The structural dynamic model is linearised around the steady-state operating condition [η, η̇, ν, ν̇](t) =
(0, 0, 0, ν0)+[∆η,∆η̇,∆ν,∆ν̇](t) and Qext(t) = Q0 +∆Qext(t). The linearised form of the beam deformation
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model (1) is:
M∆η̈ +mν(ν0)∆ν̇ + Cgyr (ν0) ∆ν + [Kgyr (ν0) +Kstif ] ∆η = ∆Qext, (2)

where the mass matrix M ∈ R6p×6p, damping matrix Cgyr(ν0) ∈ R6p×6, stiffness matrices Kgyr(ν0) ∈ R6p×6p

and Kstif ∈ R6p×6p have been obtained through direct linearisation of the different generalised forces. A
more detailed derivation of the linearisation can be found in Hesse et al. [17]. The resulting continuous time
linear system (2) was discretised using the Newmark-β method [25] for integration at a frequency of fs = 200
Hz.

II.B. Unsteady aerodynamics model

In this section, we describe briefly the forces experienced by the blades caused by the fluid flow around them
under the influence of the blade movement, flap actuation and atmospheric turbulence. The airflow around
the blades is modelled using the discrete-time UVLM [20,26] with a prescribed helicoidal wake. The UVLM
assumes low-speed, high Reynolds number, attached flow conditions to hold.

Collocation
point (i, j+1)

BoundVortices

i, j+1

WakeVortices

j+1

j

i

i+1

b

w

S

G n

Figure 3. Typical thin lifting surface represented by the Unsteady Vortex Lattice Method.

Under the aforementioned conditions, the unsteady potential flow ∇Φ(x, k) ∈ R3 at position x ∈ R3 and
time k ∈ N is assumed to solve the Laplace equation in the space coordinates for all times k; see Katz et
al [26]. By merit of the superposition principle, an approximate solution satisfying Laplace’s equation can
be found as the linear combination

Φ(x, k) =
∑

i,j
Γi,j(k)Φhom(x− si,j),

where Φhom(x− s) are fundamental solutions of the Laplace equation at all locations s ∈ R3. The time de-
pendent weights Γi,j(k) ∈ R are determined uniquely by enforcing boundary conditions on the flow potential
Φ at fixed collocation points. The effects of flap actuation, blade movement and atmospheric turbulence are
included through the particular enforced boundary conditions.

The UVLM considered here uses vortex rings [26] as fundamental solutions, which are located in lattice
panels that represent the blades and their wakes. The leading segment of the vortex ring is placed along the
quarter chord of each panel. The geometry of this model is sketched in Figure 3.

To determine the potential flow ∇Φ, Neumann boundary conditions [26] are enforced at the three-quarter
chord of each panel, thereby fulfilling the Kutta-Joukowski condition. Hence, the normal velocity at each
collocation point due to the potential flow and motion of the blade must be zero, i.e. there is no flow passing
through the blades. The Neumann boundary conditions in vectorized form are

AcΓ(k) + w(k) = 0,

where Γ(k) ∈ Rq is a vector containing the vortex strengths Γi,j(k) and q the total number of panels covering
both the blade and wake model. The columns of the matrix Ac ∈ Rq×q contain the induced normal velocity
to the blade surface at the collocation points due to the corresponding vortex ring flow ∇Φhom(x − si,j).
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The term w(k) ∈ Rq is the downwash at the collocation points and is caused by the motion of the blade
wblade(k) ∈ Rq, the trailing-edge flap wflap(k) ∈ Rq, and atmospheric turbulence wgust(k) ∈ Rq, such that

w(k) = wblade(k) + wflap(k) + wgust(k). (3)

The terms (wblade, wflap) and wgust are treated as the endogenous and exogenous input to the aerodynamic
model, respectively. The output of the model are the forces Fi,j(k) ∈ R3 caused by the fluid flow experienced
by the blade at all collocation points. These forces

Fi,j(k) = [∆pi,j(k)∆c∆b] · ni,j (4)

are related to the pressure differences ∆pi,j(k) ∈ R across each panel on the lifting surface determined using
the linear unsteady Bernoulli equation [19]. The normal vectors ni,j ∈ R3 of the blade panels are considered
to be known and fixed in the reference frame S.

II.C. The overall system

The discretised structural equations of motion (2) are coupled with the discrete-time UVLM as illustrated
in Figure 1. As the lifting surface is comprised of panels in a lattice, while the beam structure is composed
of nodes along a curve, the aerodynamic forces Fi,j determined in equation (4) are approximated by a
linear interpolation mapping of the external force Qext in Equation (2). In turn, the nodal orientations,
translational and angular velocities represented by η and η̇ are mapped linearly onto the collocation points
as downwash wblade in Equation (3).

Moreover, we have at our disposal a linear time-invariant (LTI) gust system that determines the input
wgust(k) in case of an incoming transversal gust with strength ngust(k) ∈ R. Similarly, we have an LTI
system determining the input wflap(k) where we assume the flap to be torque controlled with torque input
u(k) ∈ R. The gust and flap model and the mappings discussed in the last paragraph are omitted for the
sake of brevity, but the overall blade model T is illustrated as a block diagram in Figure 4.

Figure 4. The overall system T is a combination of the structural model introduced in Section II.A and the aerodynamic
model of Section II.B. The grey boxes denote LTI systems omitted for the sake of brevity.

In the next section, we will be interested in constructing a control policy which minimises the expected
actuation power consumption while keeping several blade load measures within specified bounds. The con-
sidered control policies are restricted to be causal functions of the measured outputs y(k) ∈ R3 which consist
of the torsion Mx, the root bending moment My and the out-of-plane tip deflection qz as illustrated in Figure
6.

III. Constrained LQG control

The purpose of feedback control for load alleviation in wind turbines is to minimise actuation expen-
diture, while keeping several measures of blade loading within specified bounds. As is common in control
applications, atmospheric turbulence is treated in this paper as a stochastic stationary process with known
power spectrum. This stochastic turbulence model places our control problem in a distributionally robust
optimal control framework [10], closely related to the standard H2 or LQG control [27] framework.
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When the control objective is a quadratic function of the inputs and outputs of the system, it is well known
that the optimal controller in the H2 sense is the LQG controller. However, we wish to take into account
several additional blade load constraints, which requires us to employ a more sophisticated distributionally
robust optimal control method.

Distributionally robust control can be interpreted as constrained linear quadratic control, since the former
approach reduces to standard LQG control in the absence of constraints. This more advanced framework
allows us additionally to relax the standard atmospheric turbulence assumptions [28], as will be discussed
in the next section.

III.A. The nature of atmospheric turbulence

In control applications, atmospheric turbulence is most commonly treated as a stochastic disturbance with
a standardised spectrum, e.g. a von Kármán or Kaimal spectrum [28]. This standardised power spectrum
is then encoded in a LTI filter chosen to generate an output with the appropriate turbulence spectrum
when driven by a white noise input, as shown in Figure 5. It is assumed here that the standard turbulence
spectrum is not affected by the movement of wind turbine blades. A classical result of Kolmogorov [29]

Filter Hn1 Turbulence

Figure 5. The von Kármán turbulence model.

argues that the spectrum of turbulence decays in the high frequency limit as s−5/3, having as a consequence
that no filter with a turbulence spectrum admits a finite order state space representation. The third order
turbulence filter presented in [30] can be used as a finite order approximation.

The preference for Gaussian noise in most of the control and economic literature as a stochastic model
for the disturbance input is based on both theoretical and practical observations. Theoretically, the response
x(k) of LTI systems to a Gaussian process n is well characterised, i.e. the distribution of the response x(k)
remains Gaussian for all times k if x(0) is Gaussian as well. Practically, the Gaussian assumption avoids
the problem of having to specify a probability measure P? for the disturbance process n, as the Gaussian
process is fully determined by only its mean and covariance function.

It is clear that atmospheric turbulence is unlikely to be Gaussian in practice. Hence, we consider a more
general disturbance model. However, we would like to retain both the theoretical and practical advantages
of working with a Gaussian process. That is, we want only to specify a mean and covariance function
and to have a property mirroring the invariance property of Gaussian processes for linear systems. In the
following, we therefore assume that n is a white zero-mean weak-sense stationary (w.s.s.) stochastic process
with probability measure

P? ∈ P :=
{
P ∈ P0

∣∣ EP {n(k)} = 0, EP
{
n(k1) · n(k2)>

}
= Rn(k1, k2) = Idδ(k1 − k2)

}
.

The true but unknown probability measure P? is hence not necessarily Gaussian, and is only known to belong
to the distributional ambiguity set P. It should be clear that the distributional ambiguity set P depends
only on the covariance function Rn(k1, k2). We have additionally an invariance property for w.s.s. processes
mirroring the invariance property for Gaussian processes, i.e. the response of a linear system to a w.s.s.
process is a w.s.s. process itself [31].

It can be shown, by applying the Wiener-Khinchine Theorem, that P is the biggest set such that the
turbulence ngust = Hn1 has a von Kármán spectrum. Hence, our turbulence model is not a uniquely defined
random process, but the biggest set of random processes sharing the von Kármán spectrum as was originally
envisioned by Kolmogorov [29].

III.B. Control design objectives

The distributionally robust optimal controller [10] minimises a quadratic cost function, similar as the LQG
controller. In the context of load alleviation, a natural cost function is the square of the expected flap
actuation power consumption, defined as
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J := limN→∞ sup
P∈P

1

N
EP

{∑N−1

k=0
β̈
2
(k)

}
. (5)

where β(t) is the flap actuation angle. However, this cost function has no regard for blade loading or any
other physical consideration as it only measures actuation power consumption. Indeed, the unconstrained
optimal LQG controller that minimises the cost J reduces in this case to no control at all. Hence, in what
follows we will only consider control policies that ensure that the closed-loop system satisfies additional
probabilistic blade load constraints. In the light of these restrictions, the proposed distributionally robust
control method can be considered a constrained LQG method.

Figure 6. Description of forces/moments and tip displacements/rotations on the blade.

Blade load constraints : The primary reason for our introduction of a trailing-edge flap is the reduction
of blade load stresses using feedback control. We will reduce the blade load severity to two key blade load
indicators; the root-bending moment (RBM) My and out-of-plane tip deflection qz, as shown in Figure 6.
Both the RBM and tip deflection are key load indicators, since the root of the blade is a critical area
supporting the blade and is constantly subjected to large cyclic and fluctuating loads, while tip deflection
determines among other things whether the blade is in risk of contact with the tower. In the distributionally
robust setting, these considerations are translated into the constraints

∀k ∈ N, ∀P ∈ P :

{
P{−Mn

y ≤My(k) ≤Mn
y } ≥ 1− ε

P{−qnz ≤ qz(k) ≤ qnz } ≥ 1− ε
(6)

for the closed loop system. Informally, the last requirements read that both the RBM and tip deflection are
less in absolute value than their nominal limits Mn

y and qnz , respectively, with a probability of at least 1− ε
for all times k. The active flap actuation is expected to yield additional blade torsion loads. We require the
torsion Mx in the blade to be bounded as

∀k ∈ N, ∀P ∈ P : P{−Mn
x ≤Mx(k) ≤Mn

x } ≥ 1− ε. (7)

Additional physical constraints : In addition to the blade loading constraints, constraints on the flap
actuation angle and angle of attack (AOA) of the blades are also required. To ensure physical realizability,
the flap actuation angle should be bounded [16]. Hence, we require the following constraint to hold

∀k ∈ N, ∀P ∈ P : P{−βn ≤ β(k) ≤ βn} ≥ 1− ε. (8)

The UVLM model in the aeroelastic formulation operates under an incompressible flow assumption in which
viscous effects are neglected. Moreover, the lifting surfaces are assumed to be thin and the AOA of the blade
is assumed to remain small. Hence to ensure the validity of the model and smooth operation of the wind
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turbine, the magnitude of the blade’s AOA and its change over time are required to be sufficiently small,
thereby avoiding both dynamic and static flow separations. We model these requirements as

∀k ∈ N, ∀P ∈ P :

{
P{−rnx ≤ rx(k) ≤ rnx} ≥ 1− ε

P{||ṙx(k)/ṙnx , q̇z(k)/q̇nz ||2 ≤ 1} ≥ 1− ε
(9)

Observe that all of our design constraints are required to hold for all P ∈ P and not merely for the case
that n happens to be a Gaussian process. This explains the use of the term distributionally robust when
characterising this approach.

Filter H

Blade T 

Controller K

System G n1

n2

y

z

l

u

Figure 7. Visualisation of the control set-up. A controller K : y 7→ u needs to be found that minimises the cost output
z, while keeping the load output ` bounded. The overall system G consists of the blade model T and von Kármán filter
H.

The different LTI systems introduced throughout this paper so far can be combined to define an overall
model G, as shown in Figure 7. To simplify the exposition in subsequent sections, we make the following
standard assumptions. We assume that the system model G admits the following state space representation

x(k + 1) = Ax(k) +Bu(k) + Cn(k) and x(0) = 0

y(k) = Dx(k) + En(k),
(G)

with EC> = 0 and where the zero initial condition reflexes the fact that the transient response DAkx(0) of
the system is not of interest. The system matrices have the dimensions A ∈ Ra×a, B ∈ Ra×b, C ∈ Ra×d,
D ∈ Rr×a and E ∈ Rr×b. Moreover, without further loss of generality we assume there exists matrices
Ei ∈ Rpi×n, i ∈ [1, . . . , 6] such that the constraints (6)-(9) reduce to

∀k ∈ N, ∀P ∈ P : P{||`i(k)||2 ≤ 1} ≥ 1− ε,

with `i(k) = Eix(k). Similarly for the cost function (5), we assume there exists matrices Q ∈ S+, R ∈ S++

such that

J = limN→∞ sup
P∈P

1

N
EP

{
N−1∑
k=0

z(k)2

}
= limk→∞ sup

P∈P
EP
{
z(k)2

}
,

where the second equality in last equation is shown by Kwakernaak [32] and with z :=
(
Q1/2x;R1/2u

)
. The

control problem for the system G with augmented outputs ` := (`1, . . . , `6) and z is illustrated in Figure 7.

III.C. Distributionally robust control

We are interested in finding a control policy that minimises the actuation power consumption, while satisfying
the constraints discussed in the last section. More formally, we consider the following optimal control
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problem:

infK J = limk→∞ supP∈P EP
{
z(k)2

}
s.t. (z, `,y) = G(u,n), u = K(y),

k ∈ N, ∀P ∈ P : P {‖`i(k)‖2 ≤ 1} ≥ 1− ε, for all i

(R2)

As can be seen from Theorem III.1, the optimal causal linear control policy K? separates into a Kalman
estimator and a certainty equivalent control gain. A similar separation between estimator and controller can
be seen in the MPC approaches reported in [8, 13], where this structure was however assumed ad hoc.

Theorem III.1 (Distributionally robust optimal control [10]). The optimal linear feedback law K? : y 7→ u
of problem R2 consists of a linear estimator-controller pair (S,K) and is of the form{

x̂(k + 1) = Ax̂k +Buk + S (yk+1 − C (Ax̂k +Buk)) and x̂(0) = 0

u(t) = Kx̂(k),
(K?)

with S := Y D>
(
DYD> + EE>

)−1
. The matrix Y ∈ Sa+ is the unique positive definite solution of the

discrete algebraic Riccati equation

Y = A
(
Y − Y D>

(
DYD> + EE>

)−1
DY

)
A> + CC>,

which can be solved efficiently. The static feedback matrix K = Z?(P ?)−1, where P ? ∈ Sa++ and Z? ∈ Rb×a
can be found as the optimal argument of

min TrQ (Σ + P ) + TrRX

s.t. P ∈ Sa+, Z ∈ Rb×a, X ∈ Sb+(
X Z
Z> P

)
� 0, Tr

{
Ei (Σ + P )E>i

}
≤ ε(

P−APA>−BZA>−AZ>B>−W̃ BZ

Z>B> P

)
� 0

(10)

where W̃ := Y D>
(
DYD> + EE>

)−1
DY > and Σ = Y − W̃ .

The optimisation problem (10) is a semi-definite program (SDP) in the variables P , Z and X. This
type of optimisation problem is well studied [33] and extremely efficient numerical solvers exist [34]. In fact,
finding the optimal controller K? is computationally comparable to synthesising a standard LQG controller.

IV. Control synthesis and performance

Using the SHARP framework briefly described in Section II, we derive a linear model of the standard
NREL 5-MW reference wind turbine [16] around the stationary operating condition ν0 = (vG;ωG) with
vG = (0; 0; 0) [m/s] and ωG = (0; 0; 1.3) [rad/s]. In Table 1, we summarise the key characteristics of the
resulting model G. All computations were carried out in MATLAB with the help of the numerical optimisation
solver SDPT3 [34] used to solve problem (10).

The procedure described in Theorem III.1 can be used to construct an optimal controller K? for problem
R2. The resulting controller K? has an order equal to the number of states in the model G. However, as our
system G is of considerable size, the construction of a Kalman estimator for G is already computationally
challenging. Hence, in the sequel we abstain from synthesising a control policy directly from the system G.
Instead, we first derive a reduced system using model reduction by balanced truncation [35]. The resulting
reduced system Gr has an order of 25 states, see Figure 8. As the relative size of the cut-off singular value is
small, the reduced system Gr is close to the turbine model G, see for instance [35]. Although the constructed
control policies K? will be optimal only for the reduced system Gr, it will be the closed loop behaviour of
G and K? that will be investigated further; see Figure 7.

As the starting point of the analysis, we report the root mean square (RMS) norms of the considered
blade root measures discussed in Section III when the system G is left uncontrolled in Table 2. The RMS
norm of an output Fx(t) ∈ R is the positive root of FPF> ∈ R+ where P ∈ Sa+ solves the Lyapunov
equation

APA> − P + Cτ2C> = 0,
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Figure 8. The Hankel singular values of G relative to the
biggest Hankel singular value are shown in the figure. The
reduced system Gr is indicated with a red line.

Sampling frequency fs = 200 Hz

Internal states a = 1131

Endogenous inputs β̈

Exogenous inputs n1

Measured outputs {Mx,My, qz}
Unmeasured outputs {β, rx, ṙx, q̇z}

Table 1. The most important features of the
turbine model G.

ωG = (0; 0; 1.30) [rad/s] RMS K = 0 K? KLQG Units

Objective/constraints β̈ 0 4.22 4.75 [rad/s2]

Mn
y = 3.0× 105 My 1.40× 105 9.11× 104 1.08× 105 [N ·m]

qnz = 2.0× 10−1 qz 6.54× 10−2 3.55× 10−2 4.55× 10−2 [m]

Mn
x = 4.0× 103 Mx 5.14× 102 1.13× 103 8.46× 103 [N ·m]

βn = 1.0× 10−1 β 0 1.79× 10−2 1.04× 10−2 [rad]

rnx = 5.0× 10−2 rx 2.91× 10−4 1.33× 10−3 7.14× 10−3 [rad]

ṙnx = 1.0× 10−1 ṙx 7.91× 10−3 4.92× 10−3 1.17× 10−2 [rad/s]

q̇nz = 1.0× 100 q̇z 1.42× 10−1 1.10× 10−1 1.11× 10−1 [m/s]

Table 2. The RMS norms to three significant figures of the considered outputs in function of the applied control policy
for the stationary operating condition ωG = (0; 0; 1.3) [rad/s].

ωG = (0; 0; 0.95) [rad/s] RMS K = 0 K? KLQG Units

Objective/constraints β̈ 0 0.06 0.44 [rad/s2]

Mn
y = 5.0× 105 My 2.27× 105 1.57× 105 3.67× 105 [N ·m]

qnz = 2.0× 10−1 qz 9.92× 10−2 5.71× 10−2 1.25× 10−1 [m]

Mn
x = 4.0× 103 Mx 5.07× 102 1.22× 103 2.50× 103 [N ·m]

βn = 1.0× 10−1 β 0 2.84× 10−2 4.90× 10−2 [rad]

rnx = 5.0× 10−2 rx 2.28× 10−4 1.14× 10−3 3.06× 10−3 [rad]

ṙnx = 1.0× 10−2 ṙx 3.43× 10−3 3.44× 10−3 8.84× 10−3 [rad/s]

q̇nz = 1.0× 10−2 q̇z 9.11× 10−2 9.33× 10−2 1.78× 10−1 [m/s]

Table 3. The RMS norms to three significant figures of the considered outputs in function of the applied control policy
for the stationary operating condition ωG = (0; 0; 0.95) [rad/s].
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for an atmospheric turbulence level of τ = 6%.
The turbine model G is put in closed loop with the optimal control policy K? of the reduced system

Gr with the objective and additional blade load constraints as discussed in Section III.B for a probability
level ε = 10%. For the sake of comparison, a naively tuned LQG controller KLQG will be considered. The
controller KLQG minimises the proxy cost function

JLQG := limk→∞ sup
P∈P

EP

{
γβ̈

2
(k) +

M2
y(k)

(Mn
y )2

+
q2z(k)

(qnz )2
+
M2

x(k)

(Mn
x )2

+
β2(k)

(βn)2
+
r2x(k)

(rnx )2
+
ṙ2x(k)

(ṙnx )2
+
q̇2z(k)

(q̇nz )2

}

for the reduced turbine model Gr where γ is tuned such that the cost of KLQG, as measured by J , is
comparable to the cost of the distributionally robust control policy K?. We remark here that KLQG is
closely related to the control policies reported in [4, 11, 12]. The performance analysis reported in Table 2
indicates that for the same actuation power consumption, the controller KLQG yields significantly less blade
load reduction. We have indicated in grey the quantities for which the corresponding constraints discussed
in Section III.B are active, e.g. these quantities are smaller then there nominal values exactly 1 − ε = 90%
of the time. We note here that the results reported in Table 2 extend to different atmospheric turbulence
levels τ by merit of the linearity of the model G and control policies KLQG and K?. To be more specific,
the relative difference between the blade load measures reported in Table 2 on our distributionally robust
control policy and the standard LQG controller is independent of the atmospheric turbulence level τ . To
show that the reported results do not depend dramatically on the operating condition around which G is
a valid linearisation of the full nonlinear model derived in Section II, we give the corresponding results for
the alternative below rated condition ν0 = (vG, ωG) with vG = (0; 0; 0) [m/s] and ωG = (0; 0; 0.95) [rad/s]
in Table 3. It can again be seen that the results obtained using our proposed controller K? are superior to
a naively tuned LQG controller. Indeed, the LQG controller KLQG does not meet our design constraints
despite using more control actuation than the proposed optimal controller K?.

V. Conclusion

We proposed an optimal control methodology for the design of gust load controllers for large wind turbine
blades. This distributionally robust synthesis approach [10] minimises the actuation power expenditure,
while guaranteeing that all considered blade load indicators remain bounded in a robust probabilistic sense.
Moreover, we indicated that the assumptions made on the turbulence by this methodology are closely related
to Kolmogorov’s pioneering analysis of flow at high Reynolds numbers [29].

The control approach was tested on a standard 5-MW reference wind turbine [16] and our obtained
numerical results indicate that considerable blade load reductions can be achieved as compared to standard
LQG control methods. Furthermore, our new proposed method required far less tuning then the LQG syn-
thesis approach as it incorporates the proposed control design objectives and constraints in a straightforward
fashion.
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25Géradin, M. and Rixen, D., Mechanical Vibrations : Theory and Application to Structural Dynamics, John Wiley, 2nd

ed., 1997.
26Katz, J. and Plotkin, A., Low Speed Aerodynamics, Cambridge aerospace series, Cambridge University Press, Cambridge,

UK ; New York, 2nd ed., 2001.
27Zhou, K., Doyle, J., and Glover, K., Robust and Optimal Control , Vol. 40, Prentice Hall Upper Saddle River, NJ, 1996.
28Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E., Wind Energy Handbook , Wiley, 2011.
29Kolmogorov, A., “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,”

Dokl. Akad. Nauk SSSR, Vol. 30, 1941, pp. 299–303.
30Campbell, C. W., “Monte Carlo Turbulence Simulation Using Rational Approximations to von Kármán Spectra,” AIAA
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