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Results in this appendix are numbered consistently with those in the main paper. Results that
do not appear in the paper (auxiliary Lemmas or additional theorems omitted from the exposition
in the main paper) are numbered using the convention ‘SectionLetter.Number’ (eg. Theorem E.1).

We recall the following assumptions in several proofs that follow and so find it convenient to
repeat them here.

Assumption 1.

1. F (·) has a differentiable density f(·) with support R+.

2. F has a non-decreasing hazard rate. That is, ρ(p) = f(p)

F (p)
is non-decreasing in p.

Assumption 2. J∗λ(x) is a differentiable function of λ on R+ for all x ∈ N.

A Proofs for Section 3

Lemma 1. π∗λ(x) is decreasing in x (on N) and non-decreasing in λ (on R+).

Proof: We find it convenient to prove the following sub-homogeneity property for J∗λ(x) viewed
as function of λ: For λ2 ≥ λ1 > 0, J∗λ2

(x) ≤ λ2
λ1
J∗λ1

(x). To see this, consider a system beginning with
x units of inventory facing arrivals at rate λ2. Every arrival to the system is marked as either ‘real’
or ‘fictitious’ with probability λ1

λ2
and 1− λ1

λ2
respectively, independent of all other arrivals. Consider

using the pricing policy π∗λ2
(·), and denote by J∗,fλ2

(x) and J∗,rλ2
(x) the expected revenues earned

under this policy from sales to arrivals marked as fictitious and real respectively. By construction,
we have J∗λ2

(x) = J∗,fλ2
(x) + J∗,rλ2

(x) and further, J∗,rλ2
(x) = λ1

λ2
J∗λ2

(x). But J∗,rλ2
(x) is the expected

revenue earned under a randomized non-anticipatory policy for a system beginning with x units
of inventory and arrival rate λ1, so that J∗,rλ2

(x) ≤ J∗λ1
(x). Thus λ1

λ2
J∗λ2

(x) ≤ J∗λ1
(x) which is the

inequality we require.
We now turn to the proof of the Lemma. We have from the HJB equation for the case of a

known arrival rate and x > 0:

αJ∗λ(x)
λ

= sup
p
F̄ (p)(p+ J∗λ(x− 1)− J∗λ(x))
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Now αJ∗λ(x)
λ is trivially increasing in x. αJ∗λ(x)

λ is non-increasing in λ by the inequality we have just
shown (i.e. since J∗λ(x) is a sub-homogenous function of λ). Further, observe that supp F̄ (p)(p− c)
is decreasing in c. It follows that J∗λ(x)−J∗λ(x−1) is decreasing in x and non-decreasing in λ. But,
π∗λ(x)− 1

ρ(π∗λ(x)) = J∗λ(x)− J∗λ(x− 1) and p− 1/ρ(p) is an increasing function of p by Assumption
1. The claim follows. 2

Lemma 2. For all x ∈ N, J∗λ(x) is an increasing, concave function of λ on R+.

Proof: Consider two systems with λ1 < λ2. We will show that d
dλJ

∗
λ(x)|λ=λ1 ≥ d

dλJ
∗
λ(x)|λ=λ2 .

Delaying a proof until later in our argument, we have:

(1)
d

dλ
J∗λ(x)

∣∣∣∣
λ=λ

= E
[
Tαπ

∗
λ
(xTα)F̄

(
π∗
λ
(xTα)

)]
where Tα is exponentially distributed with mean 1/α. Now, the instantaneous rate at which a sale
occurs in a system with arrival rate λ and x units of inventory on hand is given by λF̄ (π∗λ(x)) =
λ
αJ∗λ(x)ρ(π∗λ(x))

λ = αJ∗λ(x)ρ(π∗λ(x)), which is an increasing function of λ, since π∗λ(x) and J∗λ(x) are
increasing functions of λ (see Lemma 1) and ρ(·) is a non-decreasing function by Assumption 1.
Thus, letting xλiTα be the inventory on hand at time Tα in the ith system (for i = 1, 2), we must
have that xλ1

Tα
stochastically dominates xλ2

Tα
. We consequently have:

d

dλ
J∗λ(x)

∣∣∣∣
λ=λ2

= E
[
Tαπ

∗
λ2

(xλ2
Tα

)F̄
(
π∗λ2

(xλ2
Tα

)
)]

≤ E
[
Tαπ

∗
λ2

(xλ1
Tα

)F̄
(
π∗λ2

(xλ1
Tα

)
)]

≤ E
[
Tαπ

∗
λ1

(xλ1
Tα

)F̄
(
π∗λ1

(xλ1
Tα

)
)]

=
d

dλ
J∗λ(x)

∣∣∣∣
λ=λ1

The first inequality follows from the fact that π∗λ(x) is decreasing in x by Lemma 1 and since pF̄ (p)
is decreasing in p for p ≥ p∗ (the static revenue maximizing price). The second inequality follows
from the fact that π∗λ(x) is increasing in λ by Lemma 1 and since pF̄ (p) is decreasing in p for p ≥ p∗.
That pF̄ (p) is decreasing in p for p ≥ p∗ follows from the fact that d

dppF̄ (p) = f(p)(1/ρ(p) − p)
which by Assumption 1 is negative for p > p∗ and 0 at p = p∗.

That J∗λ(x) is increasing in λ follows from the positivity of the right hand side in (1).
We now establish the equality (1). Consider a system with arrival rate λ. The expected

revenue from this system is equal to the expected revenue from an un-discounted system, where
after a random time Tα ∼ exp(1/α), no revenues are recorded. This can be seen by simply noting
that the HJB equations for the respective problems are identical and given by

(2) αJ∗λ(x) =

{
supp≥0 λF (p)(p+ J∗λ(x− 1)− J∗λ(x)) if x > 0
0 otherwise.
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In particular,

(3) J∗λ(x) = E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

]
Next, we observe that increasing λ to λ+ δ is equivalent to decreasing α to α( λ

λ+δ ). That is,

J∗,αλ+δ(x) = J
∗,α( λ

λ+δ
)

λ (x)

which is immediate from the HJB equation for a known arrival rate. This in turn is equivalent to
increasing Tα on each sample path to Tα(1 + δ/λ). In particular, we have:

J∗,αλ+δ(x) = E

[∫ ∞
0

π∗λ+δ(xt)F̄ (π∗λ+δ(xt))(λ+ δ) exp(−αt)dt
∣∣∣x0 = x

]
= E

[∫ ∞
0

π∗λ+δ(xt)F̄ (π∗λ+δ(xt))λ exp
(
−α λ

λ+ δ
t

)
dt
∣∣∣x0 = x

]
= E

[∫ Tα(1+δ/λ)

0
π∗λ+δ(xt)F̄ (π∗λ+δ(xt))λdt

∣∣∣x0 = x

](4)

where the second equality follows by noting that the optimal policy for the system with arrival
rate λ+ δ and discount factor α is identical to that for the system with arrival rate λ and discount
factor α λ

λ+δ which in turn follows from the fact that the HJB equations for the two systems are
identical. The third equality follows as in (3).

Now π∗λ(x) is a differentiable function of λ for all x ∈ N. To see this we note that π∗λ(x) is given
implicitly by

π∗λ(x) = 1/ρ(π∗λ(x)) + J∗λ(x)− 1x>0J
∗
λ(x− 1).

Since p − 1/ρ(p) is increasing on p ≥ 0 with R+ in its range (and therefore invertible on R+)
and differentiable in p (all of which follows from Assumptions 1) and since J∗λ(x) was assumed
differentiable in λ (Assumption 2) we may invoke the Inverse Function Theorem to conclude that
π∗λ(x) is a differentiable function of λ on R+.

Let x′t denote the inventory on hand at time t in an optimally controlled system with arrival
rate λ+ δ. Let us couple the sales processes in the systems with arrival rate λ and λ+ δ as follows:
assume the prevailing prices in the two systems are p and p′ respectively. If λF̄ (p) ≤ (λ+ δ)F̄ (p′)
then the system with arrival rate λ will witness its next sale no sooner than the system with arrival
rate λ+ δ; the next sale to the system with arrival rate λ+ δ will arrive at rate (λ+ δ)F̄ (p′) and
will constitute a sale in the system with arrival rate λ with probability λF̄ (p)/(λ + δ)F̄ (p′). The
situation is reversed if (λ+ δ)F̄ (p′) < λF̄ (p). By the continuity of π∗λ in λ, we have x′Tα → xTα in
probability under this coupling. Then, by the Cauchy-Schwarz inequality,

|E[Tαπ∗λ+δ(xTα)F̄ (π∗λ+δ(xTα))]−E[Tαπ∗λ+δ(x
′
Tα)F̄ (π∗λ+δ(x

′
Tα))]| ≤ 2 sup

p
pF̄ (p)

√
Pr(x′Tα 6= xTα)E[T 2

α],

where Pr(·) is the joint measure induced by our coupling. Since supp pF̄ (p) <∞ by Assumption 1,
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we thus have:

E[Tαπ∗λ+δ(xTα)F̄ (π∗λ+δ(xTα))]− E[Tαπ∗λ+δ(x
′
Tα)F̄ (π∗λ+δ(x

′
Tα))]→0

Again, via the continuity of π∗λ in λ, the dominated convergence theorem yields

E[Tαπ∗λ(xTα)F̄ (π∗λ(xTα))]− E[Tαπ∗λ+δ(xTα)F̄ (π∗λ+δ(xTα))]→0

by considering the dominating random variable 2Tα supp pF̄ (p). Together, the preceding two limits
let us conclude that

E[Tαπ∗λ(xTα)F̄ (π∗λ(xTα))]− E[Tαπ∗λ+δ(x
′
Tα)F̄ (π∗λ+δ(x

′
Tα))]→0

Together with (3) and (4) this yields:

d

dλ
J∗λ(x)

∣∣∣∣
λ=λ

= lim
δ→0

(
E

[∫ Tα(1+δ/λ)

0
π∗
λ+δ

(xt)F̄ (π∗
λ+δ

(xt))λdt
∣∣∣x0 = x

]
− E

[∫ Tα

0
π∗
λ
(xt)F̄ (π∗

λ
(xt))λ̄dt

∣∣∣x0 = x

])
/δ

=
d

dλ
E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
λ=λ

+ lim
δ→0

(
E
[
Tαπ

∗
λ+δ

(x′Tα)F̄
(
π∗
λ+δ

(x′Tα)
)]

+O(δ)
)

=
d

dλ
E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
λ=λ

+ E
[
Tαπ

∗
λ
(xTα)F̄

(
π∗
λ
(xTα)

)]

(5)

We note that

E

[∫ Tα

0
πλ(xt)F̄ (πλ(xt))λdt

∣∣∣x0 = x

]
is differentiable with respect to πλ(·). This follows from the differentiability of E[exp(−ατ)]

with respect to η when τ is distributed as an exponential random variable with parameter η, and
since F̄ is differentiable by Assumption 1.

Now,

d

dλ
E

[∫ Tα

0
π∗λ(xt)F̄ (π∗λ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
λ=λ

=
x∑

X=0

(
d

dλ
π∗λ(X)

)(
d

dπλ(X)
E

[∫ Tα

0
πλ(xt)F̄ (πλ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
πλ(X)=π∗λ(X)

)∣∣∣∣
λ=λ

= 0

where we use fact that since π∗
λ

attains maximum revenue for an arrival rate λ = λ,

d

dπλ(X)
E

[∫ Tα

0
πλ(xt)F̄ (πλ(xt))λdt

∣∣∣x0 = x

] ∣∣∣∣
πλ(X)=π∗

λ
(X)

= 0
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With (5), this yields equality (1) and the proof. 2

B Proofs for Section 4

Lemma 3. For all z ∈ S, α > 0

J∗(z) ≤ J̃(z) ≤ J∗µ(z)(x) ≤ F (p∗)p∗µ(z)
α

.

where p∗ is the static revenue maximizing price.

Proof: Since J∗λ(x) is concave in λ by Lemma 2, Jensen’s inequality gives us that J∗a/b(x) =

J∗E[λ](x) ≥ E[J∗λ(x)] = J̃(z). Note that J∗λ(x) is bounded above by the value of a system with
customer arrival rate λ but without a finite capacity constraint. The optimal policy in such a
system is simply to charge the static revenue maximizing price, p∗, garnering a value of F (p∗)p∗λ

α

yielding J∗λ(x) ≤ F (p∗)p∗λ
α . 2

Lemma 4. For all z ∈ S, there is a unique p ≥ 0 such that F (p)
ρ(p) µ(z) = αJ̃(z).

Proof: Note that F (p)pµ(z)
α is a continuous, monotone decreasing function of p for p ≥ p∗ under

Assumption 1. But since F (π∗(z))π∗(z)µ(z)
α = J∗(z), the result is immediate from Lemma 3; in fact

the unique solution to F (p)
ρ(p) µ(z) = αJ̃(z) must be in [p∗, π∗(z)]. 2

C Proofs for Section 6

Lemma 5. Let π : S → R+ be an arbitrary policy and let π′ : S → R+ be defined according to
π′(x, a, b) = π(x, a, b/α). Then, for all z ∈ S, α > 0, Jπ,α(z) = Jπ

′,1(x, a, αb), and, in particular,
J∗,α(z) = J∗,1(x, a, αb).

Proof: Let ẑ ≡ (x̂, â, b̂) ∈ S be arbitrary. Restricting attention to the pricing policy π, we have
that Jπ,α is given by the unique solution to the HJB equation HπJ = 0. That is, Jπ,α uniquely
satisfies

(6) F (π(x, a, b))
(
a

b
(π(x, a, b) + J(x− a, a+ 1, b)− J(x, a, b)) +

d

db
J(x, a, b)

)
− αJ(x, a, b) = 0,

for all z ∈ Sx̂,â,b̂ and similarly for Jπ
′,1. In particular,

F (π(x, a, b))
(
a

b
(π(x, a, b) + Jπ,α(x− a, a+ 1, b)− Jπ,α(x, a, b)) +

d

db
Jπ,α(x, a, b)

)
− αJπ,α(x, a, b)

= 0,

for all z ∈ Sx̂,â,b̂ and

F (π′(x, a, b))
(
a

b

(
π′(x, a, b) + Jπ

′,1(x− a, a+ 1, b)− Jπ′,1(x, a, b)
)

+
d

db
Jπ
′,1(x, a, b)

)
− Jπ′,1(x, a, b)

= 0
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for all z ∈ Sx̂,â,αb̂.
Now, in order to prove our claim it will suffice to show that J̄(z) defined according to J̄(x, a, b) =

Jπ
′,1(x, a, αb) satisfies (6). But, identifying the change of variables b′ = αb, we have:

F (π(x, a, b))
(
a

b

(
π(x, a, b) + Jπ

′,1(x− a, a+ 1, αb)− Jπ′,1(x, a, αb)
)

+
d

db
Jπ
′,1(x, a, αb)

)
− αJπ′,1(x, a, αb)

= F (π(x, a, b′/α))
(
aα

b′

(
π(x, a, b′/α) + Jπ

′,1(x− a, a+ 1, b′)− Jπ′,1(x, a, b′)
)

+
d

db
Jπ
′,1(x, a, b′)

)
− αJπ′,1(x, a, b′)

= α

(
F (π′(x, a, b′))

(
a

b′

(
π′(x, a, b′) + Jπ

′,1(x− a, a+ 1, b′)− Jπ′,1(x, a, αb)
)

+
d

db′
Jπ
′,1(x, a, b′)

))
− αJπ′,1(x, a, b′)

= 0.

This suffices for the proof. 2

Lemma 6. Let J ∈ J satisfy J(0, a, b) = 0. Let τ = inf{t : J(zt) = 0}. Let z0 ∈ Sx̃,ã,b̃. Then,

E

[∫ τ

0
e−αtHπJ(zt)dt

]
= Jπ(z0)− J(z0)

Let J : N→ R be bounded and satisfy J(0) = 0. Let τ = inf{t : J(xt) = 0}. Let x0 ∈ N. Then,

E

[∫ τ

0
e−αtHπ

λJ(xt)dt
]

= Jπλ (x0)− J(x0)

Proof: Define for J ∈ J , and π ∈ Π,

Aπ,zJ(z) = lim
t>0,t→0

e−αtEz,π[J(z(t))]− J(z)
t

.

Further, define
HπJ(z) = F (π(z))

a

b
π(z) +Aπ,zJ(z)

Lemma E.5 verifies that this definition is in agreement with our previous definition provided J ∈ J .
Let τ be a stopping time of the filtration σ(zt) (where zt = {zt′ : 0 ≤ t′ ≤ t}). We then have:

E

[∫ τ

0
e−αtHπJ(zt)dt

]
= E

[∫ τ

0
e−αt

(
F (π(zt))

at
bt
π(zt) +Aπ,zJ(zt)

)
dt

]
= Jπ(z0) + Ez0

[
e−ατJ(zτ )

]
− J(z0)

= Jπ(z0)− J(z0)

The second equality follows from the fact that

E

[∫ τ

0
e−αtAπ,zJ(zt)dt

]
= Ez0

[
e−ατJ(zτ )

]
− J(z0)

6



which is Dynkin’s formula for Markov processes (see III.10 in Rogers and Williams (2000)). The
third equality follows by the definition of τ and the assumption that J(0, a, b) = 0. The proof of
the second assertion is identical. 2

Lemma 7. If λ < µ, Jπ
nl

λ (x) ≥ (λ/µ)J∗µ(x) for all x ∈ N.

Proof: Letting τ = inf{t : nt = x0} as usual, we have

−E
[∫ τ

0
e−αtHπnl

λ J∗µ(xt)dt
]

= E

[∫ τ

0
e−αt(1− λ/µ)αJ∗µ(xt)dt

]
≤ E

[∫ τ

0
e−αt(1− λ/µ)αJ∗µ(x0)dt

]
≤ (1− λ/µ)J∗µ(x0)

where the inequality follows from the fact that J∗µ(x) is decreasing in x and since λ < µ here. So,
from Lemma 6, we immediately have:

J∗µ(x0)− Jπnlλ (x0) ≤ (1− λ/µ)J∗µ(x0)

which is the result. 2

Lemma 8. If λ ≥ µ, Jπ
nl

λ (x) ≥ J∗µ(x) for all x ∈ N.

Proof: Here,

−E
[∫ τ

0
e−αtHπnl

λ J∗µ(x(t))dt
]
≤ 0

so the result follows immediately from Lemma 6. 2

Corollary 1. For all z ∈ S, and exponential reservation price distributions with parameter r:

1
1 + log κ(a)

≤ πdb(z)
π∗(z)

≤ 1

For all z ∈ S, and logit reservation price distributions with parameter r:

1.27
1.27 + log κ(a)

≤ πdb(z)
π∗(z)

≤ 1

Proof: The decay balancing equation for exponential reservation prices yields:

πdb(z)
π∗(z)

=
r log ra

be−1J̃(z)

r log ra
be−1J∗(z)

≥
log ra

be−1J̃(z)

log raκ(a)

be−1J̃(z)

=
log ra

be−1J̃(z)

log ra
be−1J̃(z)

+ log κ(a)

≥ 1
1 + log κ(a)
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where the first inequality follows from Theorem 1 and the second inequality follows from the fact
that by Lemma 3, J̃(z) ≤ a

b r. That πdb(z) ≤ π∗(z) is immediate from the decay balance equation
and the fact that J̃(z) ≥ J∗(z). The proof of the bound for logit reservation prices is identical; we
employ the fact that for logit reservation prices, F̄ (p∗)p∗ = e−1.27r, so that J̃(z) ≤ a

b re
−0.27. 2

Lemma 9. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 2,

Jub(z) ≥ J∗(z)

Proof: Define the operator:

(HubJ)(z) = F (πdb(z))
(
a

b

(
π∗(z) + J(z′)− J(z)

)
+

d

db
J(z)

)
− e−1J(z).

Analogous to the proof of Theorem E.1, one may verify that Jub is the unique bounded solution to
(HubJ)(z) = 0 for all z ∈ Sx̃,ã,b̃ satisfying Jub(0, a, b) = 0. Identically to the proof of Lemma 6, we
can then show for J ∈ J satisfying J(0, a, b) = 0, and z0 ∈ Sx̃,ã,b̃ that

(7) E

[∫ τ

0
e−αtHubJ(zt)dt

]
= Jub(z0)− J(z0)

Now, observe that for x > 0,

(HubJ∗)(z)

= F (πdb(z))
(
a

b

(
π∗(z) + J∗(z′)− J∗(z)

)
+

d

db
J∗(z)

)
− e−1J∗(z)

≥ F (π∗(z))
(
a

b

(
π∗(z) + J∗(z′)− J∗(z)

)
+

d

db
J∗(z)

)
− e−1J∗(z)

= 0

where for the inequality, we use the fact that

π∗(z) + J∗(z′)− J∗(z) +
b

a

d

db
J∗(z) = 1/ρ(π∗(z)) ≥ 0

and that πdb(z) ≤ π∗(z) from Corollary 1. The equality is simply the HJB equation. We conse-
quently have

HubJ∗(z) ≥ 0 ∀z ∈ Sx̃,ã,b̃

so that (7) applied to J∗ immediately gives:

Jub(x, a, b) ≥ J∗(x, a, b)

2

Lemma 10. Let π : S → R+ be an arbitrary policy and let π′ : S → R+ be defined according to
π′(z) = (1/r)π(z). Then, for all z ∈ S, α > 0, r > 0, Jπ,α,r(z) = rJπ

′,α,1(z) and, in particular,
J∗,α,r(z) = rJ∗,α,1(z).

8



Proof: Consider the following coupling of the r system starting at state z = (x, a, b), and of the 1
system starting at state z. The first system is controlled by the price function π(·) while the second
is controlled by the price function π′(·) = (1/r)π(·). Consider the evolution of both systems under
a sample path with arrivals at {tk} and a corresponding binary valued sequence {ψk} indicating
whether or not the consumer chose to make a purchase. Let E[·] be a joint expectation over
{tk, ψk; k ≤ x} assuming {tk} are the points of a Poisson(λ) process where λ ∼ Γ(a, b), and ψk is a
Bernoulli random variable with parameter exp(−π(t−k )/r) = exp(−π′(t−k )). We then have:

Jπ,α,r(z) = E

[
x∑
k=1

ψkπ(t−k ) exp(−α(tk))

]

= rE

[
x∑
k=1

ψkπ
′(t−k ) exp(−α(tk))

]
= rJπ

′,α,1(z)

The result follows. 2

Lemma 11. For all z ∈ S,

J∗(z|τ) ≤ e−e−1τ
(
e−(π∗−πdb)

[
π∗ + J∗(x− 1, a+ 1, bdb

τ )
]

+ (1− e−(π∗−πdb))J∗(x, a+ 1, bdb
τ )
)

where π∗ = π∗(x, a, b∗τ ) and πdb = πdb(x, a, bdb
τ ).

Proof: Since π∗(·) ≥ πdb(·), and further since πdb(·) is decreasing in b 1, we must have that
π∗t ≥ πdbt on t < τ . Thus, by our coupling we must have that n∗t ≤ ndb

t on t ≤ τ ; n∗τ = 1 with
probability e−(π∗−πdb) and n∗τ = 0 with the remaining probability. Moreover, conditioned on τ and
n∗τ , λ is distributed as a Gamma random variable with shape parameter a+ 1 and scale parameter
bdb
τ .

We thus have

J∗(z|τ)

= E

[∫ ∞
t=0

e−e
−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, z∗0 = z

]
= e−e

−1τe−(π∗−πdb)π∗ + e−(π∗−πdb)E

[∫ ∞
t=τ

e−e
−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x− 1, z∗0 = z

]
+ (1− e−(π∗−πdb))E

[∫ ∞
t=τ

e−e
−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x, z∗0 = z

]
1This follows easily from the fact that for any positive constant k, X/k is distributed as a Gamma random variable

with parameters (a, bk) if X is distributed as a Gamma random variable with parameters (a, b).
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But by our observation on the posterior statistics of λ given τ and n∗τ ,

E

[∫ ∞
t=τ

e−e
−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x− 1, z∗0 = z

]
≤ sup

πt:t≥τ
E

[∫ ∞
t=τ

e−e
−1tπtλF (πt)dt

∣∣∣τ, x∗τ = x− 1, z∗0 = z

]
= e−e

−1τJ∗(x− 1, a+ 1, bdb
τ )

and similarly

E

[∫ ∞
t=τ

e−e
−1tπ∗(z∗t )λF (π∗(z∗t ))dt

∣∣∣τ, x∗τ = x, z∗0 = z

]
≤ sup

πt:t≥τ
E

[∫ ∞
t=τ

e−e
−1tπtλF (πt)dt

∣∣∣τ, x∗τ = x, z∗0 = z

]
= e−e

−1τJ∗(x, a+ 1, bdb
τ )

This yields the result. 2

Lemma 12. For x > 1, a > 1, b > 0, J∗(x, a, b) ≤ 2.05J∗(x− 1, a, b).

Proof: We establish this result for the case where α = e−1. This is without loss since by Lemma 5
we know that for all x > 1, a > 1, b > 0, J∗,α(x, a, b) ≤ 2.05J∗,α(x−1, a, b)⇔ J∗,e

−1
(x, a, αb/e−1) ≤

2.05J∗,e
−1

(x− 1, a, αb/e−1).
Let τ1 = inf{t : n∗(t) = x− 1}, and define

J∗,τ1(z) = Ez,π∗

[
x−1∑
k=1

e−e
−1tkπt−k

]
.

Now,

J∗(z) = J∗,τ1(z) + E
[
e−e

−1τ1J∗(1, a+ x− 1, bτ1)
]

(8)

We will show that E
[
e−e

−1τ1J∗(1, a+ x− 1, bτ1)
]
≤ 1.05J∗(x−1, a, b). Since we know by definition

that J∗(x− 1, a, b) ≥ J∗,τ1(z), the result will then follow immediately from (8).
To show E

[
e−e

−1τ1J∗(1, a+ x− 1, bτ1)
]
≤ 1.05J∗(x − 1, a, b), we will first establish a lower

bound on
π∗(2, a+ x− 2, bτ1)/J∗(1, a+ x− 1, bτ1).

Let a+ x− 2 ≡ k, a+ x− 1 ≡ k′. Certainly, k′ ≤ 2k since a > 1. Now,

π∗(2, k, b) = 1 + log k/b− log J∗(2, k, b) ≥ 1 + log k/b− log J∗k/b(2)

and J∗(1, k′, b) ≤ J∗(1, 2k, b) ≤ J∗2k/b(1) so that

π∗(2, k, b)
J∗(1, k′, b)

≥
1 + log k/b− log J∗k/b(2)

J∗2k/b(1)

10



But,

inf
y∈(0,∞)

1 + log y − log J∗y (2)
J∗2y(1)

= inf
y∈(0,∞)

1 + log y − logW (yeW (y))
W (2y)

≥ 0.96

recalling the expression for J∗y (x) from Section 3.1.
so that

π∗(2, a+ x− 2, bτ1)
J∗(1, a+ x− 1, bτ1)

≥ 0.96

It follows that

J∗(x− 1, a, b) ≥ J∗,τ1(z)

≥ E[e−e
−1τ1π∗(2, a+ x− 2, bτ1)]

≥ 0.96 E[e−e
−1τ1J∗(1, a+ x− 1, bτ1)]

Substituting in (8), we have the result. 2

A Remark on the Proof of Lemma 12.

The infimum in Lemma 12 is computed as follows. We first observe that

1 + log y − logW (yeW (y))
W (2y)

≥ 1 + log y − log 2W (y)
W (2y)

.

Some simple algebra establishes that

1 + log y − log 2W (y)
W (2y)

=
1− log 2 +W (y)

W (2y)
≥ 1− log 2 +W (y)

2W (y)
≥ 1

for y < 0.1 using the fact that W (·) is concave increasing and W (0.1) < 0.092. In addition, using
the fact that W (x)/W (2x) is increasing in x and by evaluating W (2 × 108)/W (4 × 108) > 0.961,
we can conclude that

1− log 2 +W (y)
W (2y)

≥ 1− log 2 +W (y)
1.041W (y)

≥ 0.961

for y > 2 × 108. It is then straightforward to numerically minimize 1+log y−logW (yeW (y))
W (2y) over the

compact interval [0.1, 2× 108] to any finite precision since it is Lipschitz over that interval.

D Auxiliary Results for Section 6

In what follows we derive an approximation bound for decay balancing prices when reservation
prices satisfy the following assumption in addition to Assumption 1:

Assumption 3.

1. ρ(p)

F (p)
is a differentiable, convex function of p with support R+.

2. There exists a unique static revenue maximizing price p∗ > 0 with d
dp

ρ(p)

F (p)

∣∣∣
p=p∗

≥ 1/F (p∗)p∗2.

11



Corollary D.1. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 3

1
κ(a)

≤ πdb(z)
π∗(z)

≤ 1

Proof: Recall that the decay balance equation implies that F (p∗)p∗ρ(π∗(z))

F (π∗(z))
= F (p∗)p∗a

J∗(z)bα ≡ r∗. Let

r̃ = F (p∗)p∗a

J̃(z)bα
. Lemma 3 implies that r∗ ≥ r̃ ≥ 1.

Define a function g : [p∗, π∗(z)] → [1, r∗] according to g(p) = F (p∗)p∗ρ(p)

F (p)
. Observe that g(p∗) =

1, g(π∗(z)) = r∗ and further by Assumptions 1 and 3, g(·) is an increasing convex function of p
on [p∗, π∗(z)] with range [1, r∗]. It follows that the inverse function g−1 is a concave increasing
function on [1, r∗] with range [p∗, π∗(z)].

Now we have that πdb(z) = g−1(r̃) = p∗+ πdb(z)−p∗
r̃−1 (r̃−1) and by the concavity of g−1, we have

π∗(z) = g−1(r∗) ≤ g−1(r̃) + g−1(r̃)−g−1(1)
r̃−1 (r∗ − r̃) = p∗ + πdb(z)−p∗

r̃−1 (r∗ − 1).
Consequently,

πdb(z)
π∗(z)

≥
p∗ + πdb(z)−p∗

r̃−1 (r̃ − 1)

p∗ + πdb(z)−p∗
r̃−1 (r∗ − 1)

≥
p∗ + πdb(z)−p∗

r̃−1 (r̃ − 1)

p∗ + πdb(z)−p∗
r̃−1 (κ(a)r̃ − 1)

≥
p∗ + (r̃ − 1)/(F (p∗)p∗ ddp

ρ(p)

F (p)

∣∣
p=p∗

)

p∗ + (κ(a)r̃ − 1)/(F (p∗)p∗ ddp
ρ(p)

F (p)

∣∣
p=p∗

)

≥ 1
κ(a)

where the second inequality follows from Theorem 1. The third inequality follows from the fact
that by Assumption 3, r̃−1

πdb(z)−p∗ ≥ g′(p)|p=p∗ = F (p∗)p∗ ddp
ρ(p)

F (p)

∣∣
p=p∗

. The final inequality follows

from part 2 of Assumption 3: F (p∗)p∗ ddp
ρ(p)

F (p)

∣∣
p=p∗

≥ 1/p∗. That πdb(z)
π∗(z) ≤ 1 is immediate from the

fact that J∗(z) ≤ J̃(z). 2

Armed with this result, we can derive a performance bound analogous to Theorem 2, but for
general reservation price distributions:

Theorem D.1. For all z ∈ S, and reservation price distributions satisfying Assumptions 1 and 3,

1
κ(a)

≤ Jπdb(z)
J∗(z)

≤ 1.

E Existence and Uniqueness of solutions to the HJB equation

Our analysis thus far has been predicated on using the HJB equation to characterize the optimal
value function J∗. This section makes this argument rigorous for the case of a Gamma prior (which
is the focus of our analysis). In particular, we establish the following theorems for this special case:

Theorem E.1. The value function J∗ is the unique solution in J to HJ = 0.
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Theorem E.2. A policy π ∈ Π is optimal if and only if HπJ∗ = 0.

Our proofs to both Theorems E.1 and E.2 will rely on showing the existence of a bounded
solution to the HJB Equation (HJ)(z) = 0 for z ∈ Sx̃,ã,b̃. We restrict attention to exponential
reservation prices (which are the primary focus of our analysis). All of the arguments that follow
are easily extended to the case of general reservation prices satisfying Assumption 1 , but doing so
is notationally quite cumbersome.

E.1 Existence of Solutions to the HJB Equation

We will demonstrate the existence of a solution to the HJB Equation wherein price is restricted to
some bounded interval. We will later show that the solution obtained is in fact a solution to the
original HJB Equation. Throughout, this section, we will let r denote the mean of the reservation
price.

Define B = r + r
b̃

(
1 + e−1(ã+x̃)

ãα + e−1(ã+x̃)
α

)
. Let ΠB be the set of admissible price functions

bounded by B, and define the Dynamic programming operator

(HBJ)(z) = sup
π∈ΠB

(HπJ)(z)

We will first illustrate the existence of a bounded solution to the HJB Equation:

(9) (HBJ)(z) = 0

for z ∈ Sx̃,ã,b̃.
For some arbitrary N > b̃ we first obtain a solution on the compact set SN

x̃,ã,b̃
≡ {(x, a, b) ∈ S :

x+ a = x̃+ ã; b̃ ≤ b ≤ N} with the boundary conditions J(x, a,N) = 0 and J(0, a, b) = 0:

Lemma E.1. (9) has a unique bounded solution on SN
x̃,ã,b̃

satisfying J(x, a,N) = 0 and J(0, a, b) =
0.

The proof is analogous to that of Theorem VII.T3 in Bremaud (1981); upon setting J(0, a, b) =
0, (9) can be interpreted as an initial value problem of the form J̇ = f(J, b) with J(N) = 0, in the
space Rx̃−1 equipped with the max-norm.

The following two Lemma’s construct a solution to (9) on Sx̃,ã,b̃ using solutions constructed on
SN
x̃,ã,b̃

.

Lemma E.2. Let JN be the unique solution to (9) on SN
x̃,ã,b̃

with J(x, a,N) = 0 and J(0, a, b) = 0.

Moreover, let JN
′

be the unique solution to (9) on SN ′
x̃,ã,b̃

for some N ′ > N with J(x, a,N ′) = 0 and

J(0, a, b) = 0. Then, for (x, a, b) ∈ SN
x̃,ã,b̃

,

|JN (x, a, b)− JN ′(x, a, b)| ≤ r ã+ x̃

b̃
exp(−α(N − b))

Moreover, JN (x, a, b) ≤ re−1(ã+x̃)

αb̃
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Proof: Define τN = inf{t : nt = x} ∧ inf{t : bt = N}. Similarly, define τN ′ . Let π∗,N (·),
defined on SN

x̃,ã,b̃
, be the greedy price with respect to JN . Finally, define the ‘revenue’ function

r∗,Nt = ate
−π∗,Nt /rπ∗,Nt

bt
. We then have, via an application of Lemma 6,

JN (x, a, b) = Ez,π∗,N

[∫ τN

0
e−αtr∗,Nt dt

]
+ Ez,π∗,N

[
e−ατNJN (xτN , aτN , bτN )

]
= Ez,π∗,N

[∫ τN

0
e−αtr∗,Nt dt

]
Note that this immediately yields:

JN (x, a, b) ≤ J∗(x, a, b) ≤ J∗a/b(x) ≤ re−1(ã+ x̃)
αb̃

.

Now, for an arbitrary π ∈ ΠB, and the corresponding revenue function r, we have (again, via
Lemma 6)

JN
′
(x, a, b) ≥ Ez,π

[∫ τN′

0
e−αtrtdt

]
+ Ez,π

[
e−ατN′JN

′
(xτN′ , aτN′ , bτN′ )

]
= Ez,π

[∫ τN′

0
e−αtrtdt

]
In particular, using the price function π = π∗,N for b ≤ N and 0 otherwise, yields,

(10) JN
′
(x, a, b) ≥ Ez,π∗,N

[∫ τN

0
e−αtr∗,Nt dt

]
= JN (x, a, b)

The same argument, applied to JN , with the price function π∗,N
′
, yields

Ez,π∗,N′

[∫ τN

0
e−αtr∗,N

′

t dt

]
≤ JN (x, a, b)

Finally, noting that on {τN ′ > τN}, τN ≥ N − b, we have

Ez,π∗,N′

[∫ τN′

τN

e−αtr∗,N
′

t dt

]
≤ r ã+ x̃

b̃
exp(−α(N − b))

Adding the two preceding inequalities, yields

JN
′
(x, a, b)− r ã+ x̃

b̃
exp(−α(N − b)) ≤ JN (x, a, b).

Since JN
′
(x, a, b) ≥ JN (x, a, b) by (10), the result follows.

2

This yields as a corollary the following result:

Lemma E.3. limN→∞ J
N exists on Sx̃,ã,b̃, is bounded, and solves system (9)

Proof: From Lemma E.2, we have limN→∞ J
N (x, a, b) exists and is bounded for all (x, a, b) ∈ S.
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We posit that this limit is a solution to system (9). First note that by the continuity of

f(x, a, J, b) ≡ inf
p∈[0,B]

[
eγpαJ(x, a)− a

b
p+

a

b
(J(x− 1, a+ 1)− J(x, a))

]
in J , we have:

lim
N→∞

f(x, a, JN , b) = f(x, a, lim
N→∞

JN , b)

for each x, a, b. It remains for us to show that

lim
δ→0

lim
N→∞

JN (x, a, b+ δ)− JN (x, a, b)
δ

exists and equals limN→∞ dJ
N (x, a, b)/db. Note however by the Mean Value Theorem that

JN (x, a, b+ δ)− JN (x, a, b)/δ = dJN (x, a, b)/db+RN

where

|RN | ≤ sup
b′∈[b,b+δ]

dJN (x, a, y)/dy|y=b′ − inf
b′∈[b,b+δ]

dJN (x, a, y)/dy|y=b′

= sup
b′∈[b,b+δ]

f(x, a, JN (x, a, b′), b′)− inf
b′∈[b,b+δ]

f(x, a, JN (x, a, b′), b′)

But JN (x, a, b) converges uniformly to its limit on [b, b + δ] by Lemma E.2, and f is uniformly
continuous on [b, b+ δ] being a continuous function restricted to a compact set, so that

lim sup
N

|RN | ≤ sup
b′∈[b,b+δ]

f(x, a, J∗(x, a, b′), b′)− inf
b′∈[b,b+δ]

f(x, a, J∗(x, a, b′), b′)

Finally, by the continuity of J∗ in b,

lim
δ→0

lim sup
N

|RN | = 0

Similarly,
lim
δ→0

lim inf
N
|RN | = 0

This completes the proof. 2

The previous Lemma constructs a bounded solution to (9). We now show that this solution is
in fact a solution to the original HJB Equation (HJ)(z) = 0 for z ∈ Sx̃,ã,b̃.

Lemma E.4. Let J̃ be a bounded solution to (9). Then, J̃ is a solution to (HJ)(z) = 0 for
z ∈ Sx̃,ã,b̃.

Proof: We show the claim by demonstrating that the greedy price (in ΠB) with respect to J̃ is
in fact attained in [0, B). We begin by proving a bound on such a greedy price. Let πb ∈ ΠB be

the greedy price with respect to J̃ , and τ = inf{t : Nt = x0}. Letting r̃t = ate
−πb

t /rπb
t

bt
, we have, via
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Lemma 6,

J̃(z) = Ez,πb

[∫ τ

0
e−αtr̃tdt

]
+ Ez,πb

[
e−ατ J̃(zτ )

]
= Ez,πb

[∫ τ

0
e−αtr̃tdt

]
≤ J∗(z)

≤ re−1(ã+ x̃)
αb̃

.

Now let J̃δ be the solution to (9) when the discount factor is α(1+δ/b). Let πb,δ be the corresponding

greedy price and r̃δt = ate
−πb,δ

t /rπb,δ
t

bt
. We then have from Lemma 6 and using the fact that J̃(x, a, b+

δ) = J̃δ(x, a, b),

J̃(x, a, b+ δ) = Ez,πb,δ

[∫ τδ

0
e−α(1+δ/b)tr̃δt dt

]

≥ Ez,πb

[∫ τ

0
e−α(1+δ/b)tr̃tdt

]
It follows that

J̃(z)− J̃(x, a, b+ δ) ≤ Ez,πb

[∫ τ

0
(e−αt − e−α(1+δ/b)t)r̃tdt

]
≤
∫ ∞

0
(e−αt − e−α(1+δ/b)t)

re−1(a+ x)
b

dt

so that
d

db
J̃(z) ≥ −rα

b

e−1(a+ x)
bα2

Putting the two bounds together yields

(11) J̃(x− 1, a+ 1, b)− J̃(z) +
b

a

d

db
J̃(z) ≥ −re

−1(ã+ x̃)
αb̃

− re−1(ã+ x̃)
ãb̃α

Now observe that the greedy price πb ∈ Π with respect to J̃ is given by

p =
(
r − J̃(x− 1, a+ 1, b) + J̃(z)− b

a

d

db
J̃(z)

)+

which by (11) is in [0, B), so that we have that J̃ is, in fact, a solution to (HJ)(z) = 0 for z ∈ Sx̃,ã,b̃.
2

E.2 Proofs for Theorems E.1 and E.2

Lemma E.5. For J ∈ J , and π ∈ Π, let

Aπ,zJ(z) = lim
t>0,t→0

e−αtEz,π[J(z(t))]− J(z)
t

.
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We have:

Aπ,zJ(z) = e−π(z)/r a

b

(
J(z′)− J(z) +

b

a

d

db
J(z)

)
− αJ(z)

Proof: As in Theorem T1 in Section VII.2 of Bremaud (1981), one may show for J ∈ J , and an
arbitrary z0 ∈ Sx̃,ã,b̃,

J(zt) =J(z0) +
∫ t

0

[
bs
as

d

dbs
J(zs) + J(xs − 1, as + 1, bs)− J(zs)

]
as
bs
e−ps/rds

+
∫ t

0
[J(xs− − 1, as− + 1, bs−)− J(zs−)] (dNs −

as
bs
e−ps/rds)

It is not hard to show that that Ns − as
bs
e−ps/r is a zero-mean σ(zs, ps) martingale, so that we may

conclude

e−αtE[J(zt)]− J(z0) =

e−αtE

[∫ t

0

[
bs
as

d

dbs
J(zs) + J(xs − 1, as + 1, bs)− J(zs)

]
as
bs
e−ps/rds

]
+ (e−αt − 1)J(z0)

Dividing by t and taking a limit as t→0 yields, via bounded convergence, the result. 2

Lemma E.6. (Verification Lemma) If there exists a solution, J̃ ∈ J to

(HJ)(z) = 0

for all z ∈ Sx̃,ã,b̃, we have:

1. J̃(·) = J∗(·)

2. Let π∗(·) be the greedy policy with respect to J̃ . Then π∗(·) is an optimal policy.

Proof:
Let π ∈ Π be arbitrary. By Lemma 6,

Jπ(z0)− J̃(z0) =E
[∫ τ

0
e−αsHπJ̃(zs)ds

]
≤0

(12)

with equality for π∗(·), since Hπ∗ J̃(z) = (HJ̃)(z) = 0 for all z ∈ Sx̃,ã,b̃. 2

Now we have shown the existence of a bounded solution, J̃ to (HJ)(z) = 0 on Sx̃,ã,b̃ in the
previous section, so that the first conclusion of the Verification Lemma gives

Theorem D.1. The value function J∗ is the unique solution in J to HJ = 0.

The second conclusion and (12) in the Verification Lemma give

Theorem D.2. A policy π ∈ Π is optimal if and only if HπJ∗ = 0.

17



References

Bremaud, P. 1981. Point Processes and Queues: Martingale Dynamics. 1st ed. Springer-Verlag.

Rogers, L.C.G, David Williams. 2000. Diffusions, Markov Processes, and Martingales: Volume 1, Founda-
tions. Cambridge University Press.

18


	Proofs for Section 3
	Proofs for Section 4
	Proofs for Section 6
	Auxiliary Results for Section 6
	Existence and Uniqueness of solutions to the HJB equation
	Existence of Solutions to the HJB Equation
	Proofs for Theorems E.1 and E.2


