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Online Appendix

Proof of Lemma 1

Proof: Recall that, in view of discussion above, the probability Q is identical to the blocking probabilities

in the corresponding loss network model described above. That is, Q = P(
∑M ′

k=1 Xk = C).

Next we use the result of Burman et al. (1984), who characterized the stationary distribution for general

loss network models (see Theorem 2 in Burman et al. (1984)). In fact, the result of Burman et al. (1984)

implies that the stationary distribution of the corresponding loss network model can be expressed through

the counterpart system with no capacity constraints. That is, consider an infinite capacity system that

faces Poisson streams of requests/customers of class 1, . . . ,M ′, with respective rates λ1, . . . , λM ′ and ser-

vice time distributions (not necessarily exponential) with respective means µ1, . . . , µM ′ , and accept all the

requests/customers. In particular, for each i = 1, . . . ,M ′, let Yi be the stationary number of class-i customers

being served in the infinite capacity system. Then, for each n = 0, . . . ,C, we have P
(∑M ′

k=1 Xk = n
)

=

P
(∑M′

k=1 Yk=n

)

P(∑M′
k=1 Yk≤C)

. Characterizing probability Q using variables Y1, . . . , YM ′ is very useful since the they are

independent of each other, and for each i = 1, . . . ,M ′, the random variable Yi follows a Poisson distribution

with parameter ρi = λiµi. Thus, we get that P =
∑

y∈Y(C)
ρ
y1
1

y1! ...
ρ
yM′
M′

yM′ !

∑C
n=0

∑
y∈Y(n)

ρ
y1
1

y1! ...
ρ
yM′
M′

yM′ !

, where we define Y(n) = {y ∈

ZM ′
+ :

∑M ′
j=1 yj = n}.

Now, by using identity
∑

y∈Y(n)

ρ
y1
1

y1!
. . .

ρ
yM′
M′

yM′ ! = (ρ1+···+ρM′ )n

n!
, for each n = 0, . . . ,C, in conjunction with

the expression for the probability Q obtained above, we get Q =
(ρ1+···+ρM′ )C

C!∑C
n=0

(ρ1+···+ρM′ )n
n!

. Next, consider function

f(z) = zC/C!∑C
k=0 zk/k!

. By examining its derivative, it is straightforward to check that f(z) is increasing in

z on (0,C]. This and Constraint (2) imply that Q ≤ g(C) =
CC

C!∑C
n=0

Cn
n!

. First, observe that g(1) = 0.5. To

conclude the proof, it is sufficient to show that g(C) is decreasing for all C and that it goes to 0 as C

grows to infinity. First, by using a well-known identity (see Section 6.5 of Abramowitz and Stegun (1974))
∑C

n=0 e−C Cn

n!
= Γ(C+1,C)

C!
(where Γ(a,x) ,

∫∞
x

e−tta−1dt is the incomplete Gamma function), we express

g(C +1) =
e−C CC

C!
+ [e−(C+1) (C+1)(C+1)

(C+1)!
− e−C CC

C!
]

∑C

n=0 e−C Cn

n!
+ [

∑C+1

n=0 e−(C+1) (C+1)n

n!
−∑C

n=0 e−C Cn

n!
]
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=
e−C CC

C!
+ [e−(C+1) (C+1)(C+1)

(C+1)!
− e−C CC

C!
]

∑C

n=0 e−C Cn

n!
+ [Γ(C+2,C+1)

(C+1)!
− Γ(C+1,C)

C!
]
. (1)

Next, from recurrence Γ(C + 2,C + 1) = (C + 1)Γ(C + 1,C + 1) + (C + 1)(C+1)e−(C+1) and inequality

Γ(C +1,C +1)−Γ(C +1,C)≥−CCe−C (Abramowitz and Stegun (1974)), we derive a lower bound for

the second term in the denominator of (4), Γ(C+2,C+1)

(C+1)!
− Γ(C+1,C)

C!
, by

Γ(C +1,C +1)−Γ(C +1,C)+ (C +1)Ce−(C+1)

C!
≥ −CCe−C +(C +1)Ce−(C+1)

C!
,

which implies that g(C + 1)≤ e−C CC

C! −[e−C CC

C! −e−(C+1) (C+1)(C+1)

(C+1)!
]

∑C
n=0 e−C Cn

n! −[e−C CC
C! −e−(C+1) (C+1)(C+1)

(C+1)!
]
≤ g(C), where the last inequality

follows from inequality a−x
b−x

≤ a
b

that holds for 0 < x < a < b.

Finally, by utilizing the Stirling approximation, x! =
√

2πxx+1/2e−x+ θ
12x , for some θ ∈ (0,1)

(Abramowitz and Stegun (1974)), we obtain
CC

C!∑C
k=0

Ck
k!

∼
√

2
π

1√
C

. This concludes the proof of the lemma.

Analysis of the price-driven customer arrivals case

For the model with price-driven demand we use the following nonlinear program (NLP1):

max
α1,...,αM ,p1,...,pM

M∑
i=1

piαiρi(pi) (2)

s.t.
M∑
i=1

αiρi(pi)≤C (3)

0≤ αk ≤ 1, ∀ 1≤ i≤M

0≤ pk, ∀ 1≤ i≤M.

As before, for each i = 1, . . . ,M , define ρi(pi) = λi(pi)µi. In particular, it can be verified that any optimal

solution of (NLP1) has only nonnegative prices. Also, observe that for any fixed prices p1, . . . , pM , the corre-

sponding solution of α1, . . . , αM has the same knapsack structure defined in Section 2 above. Let (p∗, α∗) =

(p∗1, . . . , p∗M , α∗1, . . . , α
∗
M) be the corresponding optimal solution. Note that if one can solve (NLP1) and

obtain the solution (p∗, α∗) then one can construct a similar CSP that will be amenable to the same perfor-

mance analysis discussed in Section 2.1 above. However, solving (NLP1) directly may be computationally
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hard. Next, we show that under relatively mild assumptions imposed on the functions λ1(p1), . . . , λM(pM),

one can reduce (NLP1) to an equivalent nonlinear program that is more tractable; we denote it by (NLP2).

(By equivalent we mean that they have the same set of optimal solutions.) Consider (NLP2) as follows:

max
p1,...,pM

M∑
i=1

piρi(pi) (4)

s.t.
M∑
i=1

ρi(pi)≤C (5)

0≤ pk, ∀ 1≤ i≤M.

It can be readily verified that as long as ρi(pi) is nonnegative (and decreasing) it is always optimal to have

nonnegative prices, so the nonnegativity constraints can be dropped.

LEMMA 1. The programs (NLP1) and (NLP2) are equivalent.

Proof: First, we show that for each solution p = (p1, . . . , pM) of (NLP 2), we can construct a solution of

(NLP1) with the same objective value. Specifically, consider solution (p′, α′), such that p′ = p and α′i = 1

if and only if piρi(pi) > 0. It can be verified that the resulting solution is feasible for (NLP1) and has the

same objective value.

Next, we show how to map optimal solution (p∗,α∗) of (NLP1) to a feasible solution of (NLP2) with

the same objective function. For each i = 1, . . . ,M ′ − 1, set pi = p∗i , and for each i = M ′ + 1, . . . ,M set

pi = p∞. It is clear that, for each i 6= M ′−1, the resulting contributions to the objective value and Constraint

(8) are the same as in (NLP1). Consider now possibly fractional αM ′ . The respective contribution of class

M ′ to the objective value is α∗M ′p∗M ′ρM ′(p∗M ′). Similarly, the contribution to Constraint (8) is α∗M ′ρM ′(p∗M ′).

Thus, it is sufficient to show that there exists a price pM ′ such that pM ′ρM ′(pM ′)≥ α∗M ′p∗M ′ρM ′(p∗M ′) and

ρM ′(pM ′)≤ α∗M ′ρM ′(p∗M ′).

Since p∗M ′ρM ′(p∗M ′) ≥ α∗M ′p∗M ′ρM ′(p∗M ′), by the properties of λM ′(pM ′), we know that there exists

p̄ ∈ [p∗M ′ , P∞) such that p̄ρM ′(p̄) = α∗M ′p∗M ′ρM ′(p∗M ′). Note that p̄ ≥ p∗M ′ , and, therefore, we obtain

p∗M ′ρM ′(p̄) ≤ p̄ρM ′(p̄) = α∗M ′p∗M ′ρM ′(p∗M ′). We conclude that ρM ′(p̄) ≤ α∗M ′ρM ′(p∗M ′), which concludes

the proof of this lemma.
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Lemma 2implies that instead of solving (NLP1) we can, instead, solve (NLP2). However, (NLP2)

is computationally more tractable and can be solved relatively easy in many scenarios. Specifically,

Lagrangify (dualize) Constraint (8) with some Lagrange multiplier Θ and consider the unconstraint prob-

lem maxpi∈[Θ,p∞)

∑
1≤i≤M(pi −Θ)ρi(pi), which is separable in p1, . . . , pM ′ . In fact, one aims to find the

minimal Θ for which the resulting solution satisfies Constraint (8). This can be done by applying bi-section

search on the interval [0, p∞]. The complexity of this procedure depends on the complexity of maximizing

(pi −Θ)ρi(pi) for each 1 ≤ i ≤M . It is not hard to check that there are at least two tractable cases: (i)

ρi(pi) is a concave function on [0, p∞), for each 1≤ i≤M ; (ii) ρi(pi) is convex, but piρi(pi) is a concave

function on [0, p∞), for each 1≤ i≤M .


