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Appendix A: Marginal Backlogging Cost Accounting Approach - Numerical Example

To provide more intuition, we illustrate the new backlogging cost accounting through a simple
example. Suppose that the order capacity is 5 in all periods, L = 0 and α = 1. Assume that the
inventory position at the beginning of period 3 was x3 = 3, and that we have ordered q3 = 3, q4 =
5, q5 = 4 and q6 = 2 units in periods 3, 4, 5 and 6, respectively. Now say that the demands
were d3 = 3, d4 = 3, d5 = 5 and d6 = 11 in periods 3, 4, 5 and 6, respectively. In particular, the
accumulated demand over periods [3,6], d[3,6], is equal to 22. This implies that in period 6 we had a
shortage of 5 units, each of which incurred a penalty cost of pt at the end of period 6. Out of these
5 units of shortage at the end of period 6, we associate a backlogging penalty of 3 units of shortage
with period 6 (the unused slack capacity in this period is 3), a penalty of 1 unit of shortage with
period 5 (the unused slack capacity in this period is 1), no cost is associated with period 4 since
we ordered up to capacity, and finally the penalty of 1 units of shortage is associated with period
3 (d[3,6] − (3 + 3 + 5 + 5 + 5) = 1). In other words, w36 = 1, w46 = 0, w56 = 1 and w66 = 3. This
example illustrates how we backtrack the ‘source’ of each unit of shortage and its corresponding
backlogging cost incurred in period t, and associate it as forced backlogging cost to past periods.
If L > 0, then we start the backtracking in period t−L, since only orders in periods earlier than
t−L+1 could have arrived by time t.

Appendix B: Experimental Design

In this appendix we give a detailed description of the scenarios that form the basis of the experi-
ments done in Section 6 The space of potential parameter settings for this study is very large. In
addition to parameters describing the inventory system, there are many parameters that describe
the manner in which forecasts of demand evolve over time. A fully comprehensive study is beyond
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the scope of this paper. Our goal is to study a broad range of potential application settings, with
emphasis on the demand and forecasting processes.

The experimental design is oriented around a Base Case and six sets of scenarios, each of which
expands the Base Case in an interesting dimension. In each set of scenarios we vary specific input
parameters. The first three of these scenario sets study first-order effects, in this case, trends and
seasonality patterns in the demand. The final three scenario sets study second order effects by
varying the probability model that governs the variance of the demand and of the forecast errors,
and the correlations that exist between them.

We begin by reviewing the structure, and some of the notation, of the MMFE model. Then we
discuss the Base Case. After that we describe the manner in which the parameters of the Base
Case are varied, in each of the six scenario sets.

The MMFE Model Hurley et al. (2006) described the MMFE model of forecast evolution. In
the multiplicative version of the MMFE, for every pair of times s, t, 0 ≤ s ≤ t ≤ T , 1 ≤ t, there
is a forecast Dst of the demand that will occur in period t, which was generated at the end of
period s, i.e., at the beginning of period s + 1. The actual demand is Dt = Dtt, observed at the
end of period t. We assume that forecasts are unbiased, so that Dst = E[Dt|Fs+1]. There is a
forecast horizon H ≤ T . The corporate forecasting process generates forecasts that extend H time
periods into the future. Therefore, Dst 6= Ds−1,t if t < s+H, because in that case Dst was effected
by the forecasting process that occurred at the end of period s. However, if t ≥ s + H then the
end-of-period-s forecasting process did not consider the period-t demand, and Ds,t = Ds−1,t. At the
beginning of the time horizon we are given the initial set of forecasts, d0 = (d0,t : 1≤ t≤ T ). (In
this case we use lower case because these forecasts have already been observed). Seasonality and
trend are introduced into the model my choosing the vector d0 appropriately.

We model the process by which forecasts are created as follows. The period-s update vector is
γs = (γst : s≤ t < s+H). At the end of time period s the update vector γs is observed, and the mul-
tiplicative MMFE model updates forecasts using the formula dst = γst ds−1,t for t = s, s + 1, ..., s +
H − 1, and by dst = ds−1,t for t≥ s + H. In our experiments γs = eεs , where the H - dimensional
random vector εs is normally distributed with mean −1

2
diag(Σs) and variance-covariance matrix

Σs, and γs has a multivariate lognormal distribution whose mean is a vector of ones. Σs ∼Σ and
γs ∼ γ are both stationary over time.

In the multiplicative MMFE model, it is not hard to show that at the end of period s, given the
current information set fs+1 and forecast vector ds = (ds,t : s≤ t≤ T ), the future demands (Dtt :
s < t≤ T ) have a conditional distribution that is multivariate lognormal, with easily-computable
parameters. Three of our six scenario sets study second order effects, which we create by using
different variance-covariance matrices Σ.

The Base Case In the Base Case our holding and backorder costs per unit per period are
stationary, equal to ht = 1 and pt = 10. All experiments are conducted for two different lead times:
L = 0 and L = 4. Therefore, to facilitate comparisons between different scenarios, costs are not
counted during the first four time periods. Note that when L = 4, in the first four time periods the
costs incurred are determined by decisions made in the past, and are not influenced by our choice
of policy. There is neither trend nor seasonality in the Base Case, so the initial demand forecast is
flat, with d0 = (400,400, . . . ,400). The time horizon has length T = 40, and the horizon over which
the user actively generates forecasts has length H = 12. This implies that at all times s, the first
13 elements of the forecast vector ds will be different from each other, but the 13-th element and
every subsequent element will be equal to 400.

In the Base Case, we have constant learning, meaning that all of the entries on the diagonal of
Σ are equal. The diagonal elements are selected so that for t≥ 12, the coefficient of variation of
the period-t demand Dtt, seen from the beginning of time period 1, is 0.75.

The off-diagonal entries of the covariance matrix Σ determine the degree of correlation between
the updates that are observed in a given time period, say, time period s. The Base Case assumes
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that there is some correlation between these updates, modeled by having non-zero, positive values
in the first off-diagonal of Σ. Consequently, in the Base Case, if the forecast for the demand in
month t will go up in period s (i.e., if Dst > Ds−1,t), then the forecast for demand in month t + 1
is likely to increase in period s as well (i.e., P (Ds,t+1 > Ds−1,t+1) > 0.5). However, Dst > Ds−1,t

does not tell us anything about the forecast Ds,t+2 for demand in month t + 2. The values of the
non-zero off-diagonal elements are chosen to give a correlation coefficient of 0.5 for each pair of
adjacent forecast updates. That is, for each s and each t, s≤ t≤ s+H − 2, the update factors γst

and γs,t+1 observed in period s have correlation coefficient 0.5, but γst and γs,t+2 are stochastically
independent.

Product Launch Scenarios In this set of scenarios we study the effect of rising demand, as
might be encountered at a product launch. Again, only the initial forecast vector d0 is varied. For
comparison with the base case, we ensure that the mean of the values in d0 is 400. We consider
upward demand trends of +5, +10 and +20 per period. In addition, we consider two examples in
which the demand rises in a steeper, non-linear manner, mid-way through the horizon; these are
generated using an appropriately scaled normal CDF curve. The five initial forecast vectors are
plotted in Figure 1.
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Figure 1 Initial forecast vectors used in Product Launch Scenarios.

End-of-Life Scenarios Here, we study scenarios associated with products that are in an end
of life situation, namely those with decreasing initial forecast vectors. Essentially, these are the
reverse of the Product Launch scenarios; we have initial forecast vectors with forecasted demand
decreasing by 5,10 and 20 per period. We also consider two products whose demands have steeper
drop-off curves, generated using the normal complementary CDF curve. In addition, we study a
total demand crash, in which the demand is forecast to crash to 0 midway through the time horizon.
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Seasonality Scenarios In the seasonality study, we use the common base-values described above
for all parameters except for the initial forecast vector d0. We conduct experiments with two forms
of seasonality, one defined via a sinusoidal function and the other via a step function. In both cases,
the maximum value attained is 700 and the minimum is 100. This allows us to compare results
more easily with the base case, because the mean of the entries in the initial forecast vector is 400
in all cases.

By the cycle length, we mean the number of time periods between two consecutive high-points.
We consider cycle lengths with values 2, 4 and 8. For example, for the step-function with period
4, we have d0 = (700,700,100,100,700,700,100,100, . . . ).

The above scenario sets test the effect of varying d0, the initial forecast vector. In the final three
scenario sets, we focus instead on varying Σ. In all of these, we take d0 = (400,400, . . . ,400).

Coefficient of Variation Scenarios In this scenario set, we study the effect of varying the mag-
nitude of the variance in the demands and the forecasts. Note that for t≥H = 12, at the end of
time period t−H, we have Dtt = Γt dt−H,t , where Γt is random and has the same distribution as

Γ = ΓH = ΠH
i=1 γ

H+1−i,H
= exp

(
H∑

i=1

ε
H+1−i,H

)
. (1)

The εH+1−i,H ’s are independent normal random variables, with mean such that E[eε
H+1−i,H ] = 1,

and with variance σii, the i-th diagonal element of Σ, our forecast update matrix. (Note that
σii is a variance, not a standard deviation). Thus, Γ is log-normal, with mean one and variance
e(
PH

i=1 σii) − 1. The coefficient of variation of Γ, and of Dtt for t≥H, is [e(
PH

i=1 σii) − 1]1/2. In the
Base Case this number is 0.75. In the scenarios where we investigate the effect of variance, we scale
the entries of Σ such that the coefficient of variation of Γ takes specific values, namely 0.5, 0.7, 1,
2, 4, and 8. This corresponds to different levels of demand variability.

Time of Learning Scenarios If s≤ t≤ s + H then the logic behind equation (1) above indicates
that at the end of period s, the random variable (Dtt|dst) has mean 1 and variance e(

Pt−s
i=1 σii)− 1.

Therefore we use (
∑t−s

i=1 σii), which in the Base Case ranges from 0 to 0.446, to measure the portion
of the total variability in Dtt that is still unresolved in period s. In Figure 2 we plot (

∑t−s

i=1 σii)
as a function of t− s, for 0≤ t− s≤H. The different curves represent four different possibilities
for the way in which variability is resolved. In the Base Case we have constant learning, meaning
that all of the entries in diag(Σ) are equal, and the curve is a straight line. When the diagonal of
Σ has relatively large values in the lower right portion of the matrix, the plot is convex, and the
unresolved uncertainty is low when s is close to t. This corresponds to early learning. Conversely,
when the values in the diagonal of Σ are weighted towards the upper right corner of the matrix we
have late learning, the plot is concave, and most of the uncertainty about the true value of Dtt is
resolved in periods s that are close to t. We also consider the setting in which there is more weight
in the center of the diagonal of Σ than at the extremes. In this case most of the learning takes
place near the middle of the forecast horizon.

We construct variance-covariance matrices Σ to correspond with these four cases: constant, early,
late and mid-horizon learning. In all cases, the values of Σ are scaled to ensure that the coefficient
of variation of Γ, and of Dtt for t≥ 12, remain constant at 0.75.

Correlation Scenarios In this scenario set we test the effect of different types of correlation
between the updates. We vary correlation in two ways. First, we set the number of non-zero off-
diagonals of our 12x12 matrix, Σ, to 0 (which corresponds to no correlation), 1, 4 and 8. Secondly,
the sign of the off-diagonal elements can be all positive, all negative, or entries alternating between
positive and negative. (The base case corresponds to 1 off-diagonal with non-zero elements which
are all positive.) As in the base case, the diagonal elements of Σ are all equal (the constant learning
case), and the coefficient of variation of Γ is 0.75.
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Figure 2 Cumulative sum of the diagonal elements of Σ for constant, early, late and mid-horizon learning.

Table 1 summarizes the scenarios we study. The number of scenarios for each set is given in
parentheses after the set name; we see that there are 38 in total. We run each of these with lead
times L = 0,4. In addition, the 6 seasonality-based scenarios were run with L = 8. That makes
a total of 38 × 2 + 6 = 82 scenario - lead time pairs. For each of the pairs, we ran N = 1,000
independent trials.

Appendix C: Extensions of the Dual-Balancing Policy

Integer-Valued Demands We now discuss the case in which the demands are integer-valued ran-
dom variables, and the order in each period is also restricted to an integer. A simple, illustrative
example of the Dual-Balancing policy with integer-valued demands is found in Appendix A. In
the integer-valued demand case, in each period s, the functions HB

s (qB
s ) and Π̃B

s (qB
s ) are originally

defined only for integer values of qB
s . We now define these functions for any value of qB

s by inter-
polating piecewise linear extensions of the integer values. It is clear that these extended functions
preserve the convexity and monotonicity properties discussed in the previous (continuous) case.
However, it is still possible (and even likely) that the value q′s that balances the functions lBs and
π̃B

s is not an integer. Instead we consider the two consecutive integers q1
s and q2

s := q1
s + 1 such

that q1
s < q′s < q2

s . In particular, q′s := λq1
s + (1− λ)q2

s for some 0 < λ < 1. We now order q1
s units

with probability λ and q2
s units with probability 1−λ. This constructs what we call a randomized

Dual-Balancing policy.
Observe that at the beginning of time period s the order quantity of the Dual-Balancing policy is

still a random variable QB
s = Q′

s with support {q1
s , q

2
s}= {q1

s(fs), q2
s(fs)}, which is a function of the



Levi at al.: Approximation Algorithms for Capacitated Stochastic Inventory Control Models
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Table 1 Scenario codes

Topic Description

Product Launch (5)
Increment by I per period, I ∈ {5,10,20}
Increasing scaled normal CDF curve
Steeper increasing scaled normal CDF curve

End-of-Life (6)

Decrement by I per period, I ∈ {5,10,20}
Decreasing scaled normal CDF curve
Steeper decreasing scaled normal CDF curve
Demand crash

Seasonal (7)
Initial forecast vector is flat
Sinusoidal periodicity with cycle length n, n∈ {2,4,8}
Step-function periodicity with cycle length n

Coeff. of Var. (6) Coefficient of variation equals β = 0.5,0.7,1,2,4,8

Learning Rate (4)

Constant learning
Late learning
Early learning
Mid-horizon learning

Correlation (10)

All off-diagonal elements of Σ are 0
First n off-diagonals of Σ have positive entries, n∈ {1,4,8}
First n off-diagonals of Σ have negative entries
First n off-diagonals of Σ have entries alternating positive and negative

observed information set fs. We would like to show that this policy admits the same performance
guarantee of 2. For each t = 1, . . . , T −L, let Zt be again the random balanced cost of the Dual-
Balancing policy in period t. Focus now on some period s. For a given observed information set
fs ∈Fs we have for some 0≤ λ = λ(fs)≤ 1,

zs = E[HB
s (Q′

s)|fs] = λE[HB
s (q1

s)|fs] + (1−λ)E[HB
s (q2

s)|fs] := E[HB
s (λq1

s +(1−λ)q2
s)|fs],

and

zs = E[Π̃B
s (Q′

s)|fs] = λE[Π̃B
s (q1

s)|fs] + (1−λ)E[Π̃B
s (q2

s)|fs] := E[Π̃B
s (λq1

s +(1−λ)q2
s)|fs].

The second equality (in each of the two expressions above) is a formal statement of the fact that
we extended the domains of HB

s (qB
s ) and Π̃B

s (qB
s ) from integer to real values using piecewise linear

interpolation. By the definition of the algorithm we have,

λE[HB
s (q1

s)|fs] + (1−λ)E[HB
s (q2

s)|fs] = λE[Π̃B
s (q1

s)|fs] + (1−λ)E[Π̃B
s (q2

s)|fs].

It is now readily seen that, for each period s and each fs ∈ Fs, we again have E[HB
s (Q′

s) +
Π̃B

s (Q′
s)|fs] = 2zs, i.e., E[HB

s (Q′
s) + Π̃B

s (Q′
s)|Fs] = 2Zs. This also implies that Lemma ?? is still

valid.
Now define the sets TH and TΠ in the following way. Let TH = {t : XB

t + Q2
t ≤ Y OPT

t }, and
TΠ = {t : XB

t +Q2
t > Y OPT

t }. Observe that for each period s, conditioned on some fs ∈Fs, we know
deterministically xB

s , qB
2 and, if the optimal policy is deterministic, we also know yOPT

s . Therefore,
we know whether s∈ TH or s∈ TΠ. If the optimal policy is also a randomized policy, we condition
not only on fs but also on the decision made by the optimal policy in period s. Moreover, if s∈ TH ,
then, with probability 1, Y B

s ≤ Y OPT
s , and if s ∈ TΠ, then, with probability 1, Y B

s ≥ Y OPT
s . This

implies that also Lemmas ?? and ?? are still valid. The following theorem is now established (the
proof is identical to that of Theorem ?? above).
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Theorem C.1 The randomized Dual-Balancing policy has a worst-case performance guarantee of
2, i.e., for each instance of the capacitated periodic-review stochastic inventory control problem,
the expected cost of the randomized Dual-Balancing policy is at most twice the expected cost of an
optimal solution, i.e, E[C(B)]≤ 2E[C(OPT )].

Stochastic Lead Times In this section, we consider the more general model where the lead time
of an order placed in period s is some nonnegative integer-valued random variable Ls. However, we
assume that the random variables L1, . . . ,LT are correlated, and in particular, that s+Ls ≤ t+Lt

for each s ≤ t. In other words, we assume that any order placed at time s will arrive no later
than any other order placed after period s. This is a very common assumption in the inventory
literature, usually described as “no order crossing”.

Similar to Levi et al. (2007), we next describe how to extend the Dual-Balancing policy and the
analysis of the worst-case expected performance to this more general setting. For each t = 1, . . . , T ,
let St be the latest period for which an order placed in that period arrives before time t. In other
words, St := max{s : s + Ls ≤ t}. Now modify the definition of the random variables Wst (for each
s≤ t) to be

Wst := min{11(s≤ St)Q̄s,11(s≤ St) (D([s,t]−(Xs +Qs +
∑

j∈(s,St]

uj))+}.

Similar to the discussion in Section 3 above, we can write

Wst = 11(s≤ St)


(D[s,t]− (Xs +Qs +

∑

j∈(s,St]

uj))+− (D[s,t]− (Xs +
∑

j∈[s,St]

uj))+


 ,

and

Wst = 11(s≤ St)


(Dt−NIt−

∑

j∈(s,St]

Q̄j)+− (Dt−NIt−
∑

j∈[s,St]

Q̄j)+.




We again define the forced marginal backlogging cost in period s as Π̃s =
∑

t≥s ptWst. It is straight-
forward to check that we can still express the cost of each feasible policy P as C(P ) =

∑
t(Ht +Π̃t).

In each period, we again balance the conditional expected marginal holding cost against the con-
ditional expected forced marginal backlogging cost. It is readily verified that the same analysis
described in Section 4.1 is still valid.

Theorem C.2 The Dual-Balancing policy provides a performance guarantee of 2 for the capac-
itated periodic-review stochastic inventory control problem with stochastic lead times and non-
crossing orders.
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