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Abstract

Actors and associates often match on a small set of dimensions that matter most for the re-
lationship at hand. In so doing, they are exposed to unanticipated social influences because
counterparts have more interests, attitudes, and preferences than would-be contacts considered
when they first chose to pair. This implies that some apparent social influences (those tied
to the rationales for forming a relationship) are endogenous to the matching process, while
others (those that are incidental to the formation of the relationship) may be exogenous, thus
enabling causal estimation of social influences on exogenous-to-the-match attributes. We label
as “partially deliberate” social matching that occurs on a small set of actor attributes, and we
present empirical methods for identifying influence effects when relationships follow this gener-
ative logic. In a dataset tracking the training and professional activities of academic biomedical
scientists, we show that two factors, geography and scientific focus, are very important to the
match between scientists-in-training and their postdoctoral mentors. Although they do not
match on it, young scientists then adopt their advisers’ orientations toward commercial science
as evidenced by adviser-to-advisee transmission of patenting behavior. We demonstrate this in
two-stage models that account for the endogeneity of matching, first using inverse probability
of treatment weights (a “selection on observables” approach), then using Heckman-style sample
selection estimators (a “selection on unobservables” approach). We also draw on qualitative
accounts of how candidates matched to their advisers, which are recorded in oral histories taken
from the scientists in the data. Overall, we present a theory and methods to establish evidence
of social influence when tie formation is only partially deliberate.

Keywords: matching, social influence, social networks, postdoctoral training, patents, sociol-
ogy of science.
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1 Introduction

People select partners in relationships for many reasons. They match based on similarities in

sociodemographic characteristics, spatial locations, interests, and referrals from trusted as-

sociates. Substantial bodies of theory suggest that many relationships arise from a matching

process in which individuals pair on a limited number of high-priority dimensions. Although

the importance of any particular factor will differ across particular pairs, settings, and types

of relationships, the actual ties that emerge from the vast set of possibilities often do so

because individuals are complementary on a small set of meaningful characteristics.

Though we often match on salient attributes, in totality people possess very many charac-

teristics. This prevalent aspect of social matching creates randomness in the social influence

process and, therefore, offers a strategic research site. If people deliberately match on a

subset of carefully considered (or merely convenient) dimensions, we are then exposed to

unanticipated social influences when we encounter the views and tastes that never entered

our calculus when we chose a particular interaction. In other words, if two people connect

because they are compatible on some attributes X, it is likely that additional character-

istics Z, which were not evaluated when the choice was made to develop the relationship,

are then transmitted from one contact to the other. For example, if two people strike up

a companionship because they work at the same establishment, share a love of opera, and

have similar-aged children (Xs), one member of the pair may later convince the second to

volunteer at the local animal shelter, or of the health benefits of exercise (Zs). Importantly,

the two socially transmitted behaviors, volunteer work and exercise, did not contribute to

the original formation of the match. In a general framework, if each actor is construed as

a vector of discrete attributes, the fact that matching takes place on sub-segments of these

attribute vectors rather than their entireties implies an opportunity to identify causal social

influences across non-matched-on attributes.1

In an empirical illustration of this theory, we examine postdoctoral candidates and fac-

ulty advisers. We study Pew and Searle Scholars (hereafter, “Scholars”), a set of prominent,

young, academic life scientists. Exploiting an extensive quantitative database and a qualita-

1Readers may be concerned at this point that there is correlation across the elements of individual
attribute vectors, which will confound estimates of social influence. We will present technical details below,
but it poses no challenge for the empirical strategy if the elements of X and Z are correlated as long as
matching only takes place on the Xs. Thus, our primary methodology is suitable to situations in which
individuals match on primary sociodemographic variables (e.g., ethnicity, age, and education) and are then
exposed to unanticipated social influences in attitudes that may be correlated with age attributes, such as
political views or preferences for certain types of leisure activities.
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tively rich oral history archive, we find that two factors (the Xs) often spur matches between

postdoc candidates and their advisers: compatible scientific interests and geographic loca-

tion. In a second-stage analysis, we then show that whether a Scholar’s postdoctoral adviser

was a patenter (the exposure effect, Z) during or before (but not after) the time the Scholar

joined the adviser’s lab has a large effect on the advisee’s likelihood of patenting later in his

or her career. By estimating this effect in two-stage models that account for the endogeneity

of adviser-advisee pairings, and by relying on the oral histories, we show that postdoctoral

candidates do not appear to consider their advisers’ patenting behavior when establishing

the match. Therefore, the evidence suggests that the transmission of patenting behavior

truly is a causal social influence, rather than stemming from common commercial interests

or other latent similarities that underlie the initial candidate-adviser match.

The primary contributions of the paper are a theory, method, and illustration of partially

deliberate social matching. A further contribution concerns the substantive findings of the

specific empirical case, which joins a burgeoning literature on sociological questions at the in-

terface of academic and commercial science (e.g., Etzkowitz 1998; Evans 2010; Murray 2010;

Owen-Smith and Powell 2001a; Owen-Smith and Powell 2004; Stuart and Ding 2006). The

cornerstone of the theoretical assertion is that people are complex and multi-dimensional.

Therefore, at the time of inception of a new relationship, we cannot know all of a would-be

counterpart’s attributes, attitudes, tastes, and preferences. Moreover, when individuals are

faced with even a relatively small number of features in a choice context, the literature on

the psychology of choice demonstrates that subjects employ strategies to eliminate attributes

from consideration to reduce the complexity of the decision. By extension, when we estab-

lish a new relationship, people are unlikely to know—and match on—the full complement

of an associate’s political views, musical tastes, cultural preferences, skills and knowledge,

friendships, attitudes, and so forth. Moreover, given the immense number of potential con-

nections that might occur and the short time horizons over which many relationships gestate,

individuals often follow a boundedly rational, satisficing approach in the initial selection of

associates. This theoretical assertion directly implies an empirical approach to identifying

causal social influences in settings in which such “partially deliberate” matching occurs and

data on pairings and outcomes are available.

To preview the empirical analysis in the paper, we have a four-pronged approach to the

challenge of showing that Scholars match to advisers on a few primary attributes (geography,

scientific interest), but a secondary dimension (adviser patenting) that does not shape the

likelihood of a match subsequently does influence Scholar behavior. First, we code 62 com-
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prehensive “oral histories” of Pew Scholars and find that none of the 62 transcripts mention

would-be advisers’ commercial activities as a factor in their selection of postdoctoral fel-

lowship. Conversely, the oral histories consistently describe scientific topic and geography

as drivers of the matches that form. Second, we estimate dyad-level matching regressions

between Scholars and postdoc advisers. These regressions both show that Scholar-adviser

pairing is independent of advisers’ commercial activities, and they strongly reinforce the

qualitative evidence that geography and scientific focus are core to the matching calculus.

Third, after generating estimates of the probability that protégés match to specific advis-

ers, we then employ a variant of propensity score estimation (Imbens 2000) to assess the

post-match effect of advisers’ commercial orientation on Scholar patenting. Because the

assumptions of propensity score estimators could be violated in these data, we implement

a fourth analysis: we use Heckman’s (1979) two-stage estimator in which we regard the

observation of only actual (versus potential, but never-formed) Scholar-adviser matches as

an instance of a sample selection problem. This approach is valid only if there are one or

more instrumental variables that predict pairing between Scholars and advisers but can be

legitimately excluded from the outcome equation. We have collected two instrumental vari-

ables that allow us to recover estimates of advisers’ influence on Scholars’ behavior even in

the presence of residual selection on unobserved factors.

2 Social Influence in Partially Deliberate Matches

The study of social influence is of primary concern in sociology. It is foundational in the

social networks literature (e.g., Marsden 1981; Friedkin 1993), in social psychology (e.g.,

Hogg and Abrams 2002), and in the literature on diffusion (e.g., Coleman, Katz, and Menzel

1957). It is also relevant in many other areas of sociological inquiry, including socialization

processes (Stouffer 1949; Merton 1957) and institutional theory (DiMaggio and Powell 1983).

Because social influence is a theoretical edifice in multiple subfields of the discipline,

a growing chorus of authors has critiqued the empirical literature for its inattention to

the challenge of establishing evidence of causal social influences in observational data (e.g.,

Winship and Morgan 1999; Van den Bulte and Lilien 2001; Mouw 2003; Reagans, Zuckerman,

and McEvily 2007; Stuart and Sorenson 2009; Aral, Muchnik, and Sundararajan 2009; Shalizi

and Thomas 2010). The principle empirical challenge arises because the outcomes that

interest researchers often are endogenous to the factors that spur the formation of social ties.

Indeed, early contributors to the literature noted that the mutual selection of like-minded
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individuals into relationships mimics a social influence process in observational data, even

when no such process occurs (Kandel 1978; Newcomb 1961). Thus, the mechanisms of social

matching, most notably homophily, often masquerade as social influence. Moreover, this

is not merely an academic distinction: the two processes, social influence and homophily,

generally have different implications for policies and strategies to influence social outcomes.

Whether one is interested in the diffusion of health behaviors, the spread of agricultural

technologies, or the commercialization of academic science, alternative mechanisms have

different implications for the dynamics of influence and the interventions that may impact

them. Therefore, it is important that we attempt to distinguish between these processes,

and to attempt to pinpoint the precise mechanisms of social influence.

Contrasting the mechanisms of homophily and social influence belies the fact of a tem-

poral separation in the two. For the most part, homophily concerns how ties come to be;

social influence often occurs after relationships are in place.2 Beginning with the former—

the inception of new relationships—a rich body of work has illuminated the guiding hand of

social similarity in social interaction. Lazarsfeld and Merton (1954) and Blau (1977) develop

the social foundations that lead us to anticipate homophilous interaction. In current work

on the subject, it is very well documented that social relationships cluster among categori-

cally similar individuals who share a core set of ascribed attributes and status characteristics

(McPherson, Popielarz, and Drobnic 1992; McPherson, Smith-Lovin, and Cook 2001), al-

though the relative contribution of preference-based or opportunity-based motives for social

similarity continues to animate empirical work.

The literature on homophily closely aligns with research on the spatial geography of re-

lationships. Because chance interactions are more likely between spatially co-located actors

and the cost of maintaining relationships is higher at a distance, social interaction depends

on geographic nearness. In relationships as varied as marriages (Bossard 1932), workplace

collaborations (Allen 1977), board directorships (Kono et al. 1998), and investment syn-

dicates (Sorenson and Stuart 2001), proximity is a main determinant of the likelihood of

interaction.3

2Of course, this is a simplification. Social influence also occurs in the absence of direct relationships, as
when prominent individuals’ shape the opinions and views of others.

3In addition to a shared interest in the origins of social relationships, the intertwining of work on ho-
mophily and propinquity stems from the fact that geographic proximity and social similarity co-occur. If
neighborhoods are racially segregated, for example, then as long as residential propinquity has some im-
pact on the friendships that form in society, it will appear as if people have a preference for within-race
interactions. (Of course, it may be precisely a preference to affiliate with same-race companions that gives
rise to racial segregation of neighborhoods, but this need not be true.) Stated differently, if we randomly
choose a pair of geographically proximate individuals and compare them to a randomly chosen dyad in which

4



A common denominator across these lines of work is that relationships do not emerge ran-

domly from the vast set of feasible ties. The non-randomness in social relationships, whether

driven by peoples’ proclivity toward homophilous interaction or any other mechanism of at-

tachment, is one source of the empirical difficulty in distinguishing a true social influence

from its possible correlates. Namely, regularities in the formation of social relationships—

what we might think of as the rules that generate the network data we record as observers

of the social world—can lead to the appearance of social influence even when it does not

occur. This challenge is marked.

In addressing this issue, we begin with an assumption. Our premise is that actors often

strike up matches based on a small set of important characteristics for the relationship at

hand. This is particularly likely to be true of casual ties in which a premium is placed

on convenience (Feld 1981), but we believe it to be true even when actors seek significant,

instrumental relationships. In most instances of social matching, we contend that actors

do not optimize partner selection over a high-dimensional attribute space. Rather than

arising from an algorithmic search across a vast sample of potential partners’ individuating

characteristics, matching typically occurs on just a few factors that matter most to would-be

connections. People often halt their search for a partner when they find one who is judged to

be suitable enough. If this is a fair characterization of the process of relationship inception

in some contexts, the central assertion in the paper is this: when actors form relationships

based on characteristics X but do not match on other attributes Z, we can study social

transmission along an attribute Z in a context that may be relatively untainted by the process

leading to the assignment of actors to matches.

Why is it reasonable to postulate that people form relationships according to the logic

of partially deliberate matching? Much of the answer lies in the psychology literature that

evaluates how people make complex choices. As a decision maker confronts a greater num-

ber of options or as the information about available options increases, people respond in

two ways: they entertain fewer of the feasible choices, and they process a reduced fraction

of the total information available (Hauser and Wernerfelt 1990; Iyengar and Lepper 1999).

Thus, as complexity increases, subjects invoke simplifying strategies (cf. Payne 1982; Payne,

Bettman, and Johnson 1993). Timmermans (1993), for example, compares the decision-

making strategies people use when presented with three, six, or nine choices. Even in a

stylized setting that greatly simplifies many real-world decision-contexts, Timmermans finds

members are located at a significant distance, the former pair is more likely to exhibit social similarities than
the latter pair.
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that the fraction of participants who employed “elimination strategies” increased monoton-

ically with the size of the choice set. In contrast, the use of available information decreased

with the number of options presented.

The finding of a reduction in the amount of available information that is considered as the

complexity of a choice increases resembles Simon’s (1947) notion of satisficing: boundedly

rational individuals typically search until they identify a satisfactory choice, rather than

maximize over complicated decision spaces. The gist of the literature is that people simply

stop in decision contexts when they achieve a “good enough” result. Moreover, there is

also evidence that when faced with a choice that is difficult, individuals place a premium

on making a decision that is compatible with a line of reasoning that grounds a compelling

narrative (Shafir, Simonson, and Tversky 1993). In describing how people choose between

complex but equivalent alternatives, Shafir et al. (1993) write “. . . people seem to be following

a choice mechanism that is easy to explain and justify: choosing according to the most

important dimension provides a better reason for choice.” As decision makers, we appear

to be concerned with the post-choice narrative we can formulate, which is how we justify

difficult choices to ourselves and others.

While psychologists have focused on how people make decisions, sociologists and economists

often travel in the opposite direction: they often model observed choices to infer partner se-

lection strategies. This returns us to the literature on homophily. In this body of work,

it is striking the extent to which basic dimensions of geographic proximity and the cor-

nerstone elements of sociodemographic similarity drive the inception of new relationships,

across multiple contexts. In a nice illustration, Marmaros and Sacerdote (2006) investigate

the formation of friendships among incoming freshmen on a college campus. Their study is

novel and empirically persuasive because it models friendships in a newly forming network.

They find that micro-geography and race are the dominant factors in how people select new

friends. A few other measures of similarity, such as whether the two members of a potential

friendship are both varsity athletes, also have positive (but lesser) effects on matches in this

study. Notably, Marmaros and Sacerdote conclude that individuals do not search across the

campus to widen their pool of potential friends; rather, they quickly settle into relationships

with others who were randomly assigned to the same physical space. Similar results pep-

per the sociology literature: spatial proximity, race, gender, socioeconomic class, age, and

a few other factors appear to be pervasive determinants of the relationships we choose (cf.

McPherson, Smith-Lovin, and Cook 2001).
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To recapitulate, the experimental literature in psychology establishes that individuals

employ information reduction and choice elimination strategies to manage the enormous

complexity of challenging decision contexts. When confronting such decisions, we are known

to satisfice: because it is costly and infeasible to make assessments over all potentially

relevant considerations, individuals default to choices based on a more limited and higher-

priority set of characteristics. We believe that the parallel to these findings at the macro level

is the sociological work on a relatively narrow range of sociodemographic and physical-world

similarities that appear to underlie the creation of many new associations. These arguments

underlie our proposition that people match on a subset of their full attribute vectors.

3 Context: Adviser-Advisee Pairings for Postdoctoral

Fellows

Social scientists have had a long-running interest in postdoctoral fellows. Because of their

prevalence, postdocs are integral to the fabric of laboratory life (Knorr-Cetina 1999). The

postdoc system also reinforces the status ordering in science. Not only are next-generation

scientific leaders more likely to complete postdocs with the elite of the current generation,

but from an adviser’s standpoint, successfully placing postdocs is itself a core dimension of

status accrual in science (Long, Allison, and McGinnis 1979). The postdoctoral period is also

considered to be a primary locus of socialization in the profession (Hagstrom 1965). It is the

time when young scientists engage in anticipatory socialization in preparation for the role of

laboratory head. More generally, apprentices undergo long periods of exposure to the general

professional values and more idiosyncratic opinions and scientific “styles” of their particular

mentors (Zuckerman 1977). Because of the significant duration of the postdoctoral training

period (Stephan and Ma 2005) and the direct interdependence of the work, apprentices are

deeply exposed to the attitudes, behaviors, and styles of mentors—and they are likely to be

highly susceptible to these influences.

In light of postdoctoral fellows’ essential role in scientific production, one might expect

formalized institutions to govern the matching between candidates and advisers. In reality,

the market for postdocs is not orderly. There is no central clearinghouse to pair candidates to

available positions. Indeed, the postdoc hiring process might be regarded as the antithesis of

the highly structured National Resident Matching Program, which matches graduate medical

residents to available positions on a single day.
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3.1 Study Population: Pew & Searle Scholars

Among academic life scientists, we study individuals who have been selected as Pew Scholars

or Searle Scholars. These awards are granted to “young investigators of outstanding promise

in the basic and clinical sciences relevant to the advancement of human health.”4 Unlike

other accolades such as the Nobel Prize, these awards are granted on the basis of the future

promise of nominees’ research agendas, rather than their past achievements. When the

awards are bestowed, recipients have minimal track records of independent research.

PS Scholars are broadly distributed across US research institutions. This is a function

of the eligibility requirements for the Award—the right to nominate Scholars is granted to

institutions. In 2007, for example, the Pew Foundation solicited a single nominee from each

of 148 US research institutions. Twenty Pew Scholars were ultimately selected from these

nominees. For Searle Scholars, 120 universities nominated 182 newly appointed assistant

professors, 15 of whom were selected. Since the inauguration of the program, a per-year

average of 35 Scholars has been named.

For a number of reasons, PS Scholars are an attractive group for our analysis. First,

because the Award is granted at the time that scientists begin their independent academic

careers, we can construct a prospective dataset vis-à-vis the commercial orientation of the

Scholar after s/he enters an independent research career. Second, the emphasis of the

Award on the “advancement of human health” means that the research trajectories of most

PS Scholars will straddle the academic-industry boundary; many Scholars will engage in

potentially commercializable research, but not all will choose to pursue this aspect of their

work. The decision to patent a scientific discovery in this group is likely to be as influenced

by scholarly priorities and values as it is by the commercial significance of the underlying

research.

Lastly, there is one important advantage of studying the population of Pew Scholars

specifically. Each recipient of a Pew Scholar Award is asked to participate in an oral history,

with interviews conducted and transcribed at the cessation of the Award period. These

transcripts, which we describe in detail next, are rich accounts of scientists’ professional

experiences and values. As well, these texts provide detailed accounts of the rationales for

Award-winners’ career choices.

4Quoted from the Pew Scholars Program Description at http://www.pewtrusts.org/; accessed 4/27/14.
These awards confer significant status to recipients, but the monetary component is generally insufficient to
change the recipient’s scientific research trajectory.
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3.2 Oral Histories

The Pew Scholar Oral History and Archives Project has collected the life histories of more

than 200 Pew Scholars. The expressed purpose of these histories is to record, “. . . the lives

of scientists . . . many of them explore issues related to the Scholars childhood, college expe-

riences, time training in various labs, their time as a PI, and broader social, political, and

cultural issues related to science.”5

The oral histories help us to understand candidates’ decisions to pursue postdoc positions

with particular mentors. Because the insights gained from these documents inform the

matching equation in the statistical analyses, we will first report findings from them. As

we will see, the oral histories buttress the argument that matches are fashioned around a

limited set of dimensions.

We randomly chose 62 interview transcripts to read, which ranged in length from 98 to 411

pages. To analyze these documents, we first read five volumes to inductively generate criteria

that were cited by Scholars as being important in the search for a postdoctoral adviser.

These categories were scientific focus, geography, adviser scientific status, and interpersonal

rapport. Given the focus here, we then added a fifth category, commercial considerations,

although none of the original five interviews expressed a preference for matching on this

criterion.

A coder then read each transcript to identify the sections describing the graduate and

postdoctoral period. For each transcript, the coder indicated if a given category was cited

as a determinant for pursuing a particular position. The coder then excerpted relevant

quotations, and also recorded any additional factors that fell outside the five primary cate-

gories. For example, Susan Birren, who received a Pew Award in 1996, earned her doctorate

from UCLA and then became a postdoc at CalTech. In describing her search for a postdoc

position, Dr. Birren recalled,

“He [husband] had been in his postdoc for a couple of years, didn’t want to leave, and
so I again looked locally, and also ended up at Caltech. . . At that point professionally,
I was looking for a change, because what I had been doing as a graduate student was
pretty straightforward transcriptional regulation . . . So I talked to several people and
ended up going to David Anderson’s lab. He was a developmental neuroscientist . . . it
seemed like a major problem that you could spend a long time working on.”6

5http://www.chemheritage.org/discover/collections/oral-histories
6Susan J. Birren, interview by William Van Benschoten at Brandeis University, Waltham, Massachusetts,

2-4 August 2004 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript #0459)
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From these and related passages, the coder determined that this Scholar sought a particular

postdoctoral adviser based on geographic constraints and scientific interest.

Findings from the oral histories are presented in Table 1, which records the percent of

Scholars who describe the attribute on each row as a critical factor in pursuing a particu-

lar postdoctoral adviser. The single, ubiquitous consideration in selecting an adviser was

scientific focus. Only three Scholars did not mention scientific interest as a major factor in

seeking a position in a particular mentor’s laboratory, and these were due to exceptional

circumstances.7 Although scientific interest did not always imply that trainees intended to

continue in their current line of research—some individuals, such as Dr. Birren, used the

postdoc period to pivot scientific trajectories—the majority of Scholars hoped to build on

areas of expertise they had developed during graduate school.

More than half of the Scholars singled out geography as a major factor in their search.

In 19 cases (31%), Scholars reported that geography was a binding constraint. In these

instances, family considerations, most often regarding a partner’s career, limited a Scholar’s

search to a particular region. For example, Nancy Hollingsworth received a PhD from the

University of Washington and limited her postdoc search to the Seattle region:

“We [Hollingsworth and partner] were together when I was 25, and as I was beginning
to finish, I set up my postdoc to stay in Seattle so that we could stay together. So I
arranged to go to Gerry Smith’s lab at the Fred Hutchinson Cancer Center.”8

In another 14 cases (23%), individuals cited a strong personal preference to reside in a

particular area, rather than a binding family constraint. All told, 33 of 62 oral histories

stated that geographic limitations or preferences loomed large in their search for postdoc

positions.

A third factor that garnered frequent mention is a potential adviser’s scientific pres-

tige. For example, Mark Kamps reported that he first heard about his postdoctoral adviser

through a fellow graduate student:

“I remember Anna. . . wanted to go to David Baltimore’s lab as a postdoc. She was
really focused on that . . . So I said, ‘Who’s David Baltimore?’ and Anna said, ‘Oh,

7For example, one Pew Scholar was scheduled to train under David Baltimore. One month prior to the
start of the fellowship, Baltimore accepted the presidency of Rockefeller University and moved from Boston
to NYC. Baltimore then arranged for this particular Scholar to train under (fellow Nobel Prize winner)
Phillip Sharp at MIT.

8Nancy M. Hollingsworth, interview by William Van Benschoten at the State University of New York at
Stony Brook, Stony Brook, New York, 11-13 November 2002 (Philadelphia: Chemical Heritage Foundation,
Oral History Transcript #0465)
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David this and that. Oh, and he’s got a Nobel Prize, and he worked on one of the
kinases’ . . . So I should have known his name.”

With his interest piqued, Mark Kamps reached out through his informal network:

“So I asked Inder Verma, who was a scientist at the Salk institute, if I could meet with
David [Baltimore] when he was coming out to give a talk. And Inder said, ‘Sure.’”9

Across the interview transcripts, scientific interest and geographic considerations are the

two criteria that are foremost in candidates’ minds when they search for advisers. In a

smaller proportion of cases, adviser status and interpersonal attraction were also decision

criteria.10 These results closely coincide with those of prior surveys of the motivations for

postdoctoral adviser choice (Nerad and Cerny 1999).

Two additional points are relevant to our argument. First, there is a complete absence

from the oral histories of any mention of the commercial aspects of science when selecting

advisers. There was no instance in which any of the 62 informants reported considering

future commercial activities—such as the opportunity to patent, to gain connections with

industry, to work alongside an adviser who has connections in industry, or any other form of

engagement with commercial-sector entities—when choosing a postdoctoral adviser. Second,

when we decompose the postdoc adviser choice into categories of relevant factors, the data

tally to the numbers presented in Table 1. However, the table does not convey the overall

impression one forms when reading the oral histories in their entirety. From these documents,

it appears that the confluence of quite a few elements of chance contour the career experiences

of Pew Scholars. Rather than working backward from well-defined career objectives to a

search for an optimal match, the process individuals follow to find a postdoc mentor is one

of local search in delimited scientific and geographic spaces, coupled with the intervention of

chance encounters. While the search and matching process is not entirely random, neither

does it seem to encompass a large number of reported dimensions. For this reason, we believe

the matching process conforms to our notion of “partial deliberateness.”

At this point, readers may be concerned that this is because interviewees considered it

unsavory or counter-normative to discuss the commercial aspects of science. Given prevailing

9Mark P. Kamps, interview by Andrea R. Maestrejuan at the University of California, San Diego, San
Diego, California, 10-12 February 1998 (Philadelphia: Chemical Heritage Foundation, Oral History Tran-
script #0437)

10Although adviser status was far from a universal concern (only 15% of Scholars explicitly stated that
they sought an adviser based upon his/her prestige), we suspect that this is due to the fact that many
individuals in the dataset considered only high-status advisers, and did not view prestige differences among
the very select members in their consideration set to be germane to their decisions.
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academic norms, it is possible that Scholars had—but were reluctant to share—commercial

aspirations when choosing postdoc advisers. Although we cannot rule out any explanation

for the lack of reference to commercial motivations in the postdoc matching process, a num-

ber of the oral histories did specifically address the subject of academic patenting. In one

third of the histories, Scholars were directly asked for thoughts regarding their own patent-

ing activities (if applicable) and the interplay between commercial interests and academic

science. Although scientists’ perceptions of the social value of patenting varied greatly, all

Scholars’ responses appeared to be candid. In no instance did a Scholar decline to respond

to the question, and in most cases, Scholars were explicitly positive about the scientific and

professional benefits of patents. Therefore, we believe at least some Scholars would have

discussed their commercial interests if they recalled them to be germane in the search for an

adviser.

4 Sample, Data, and Quantitative Methods

4.1 Sample

We have identified the names of all Pew or Searle Scholars since the inception of the awards

(1981 for Searle and 1985 for Pew Awards) until year 2000. All told, we began with 583

Scholars.11 Individuals are captured in our sampling frame when they receive the Award.

To conduct the analyses, however, we require information on both graduate school and

postdoc advisers. We therefore search backward in time to identify all advisers for these

583 Scholars. Ultimately, this process reduced the analyzable sample to 489 Scholars; the

remaining individuals were MDs who did not have identifiable graduate school advisers.

These 489 Scholars apprenticed as postdocs in the laboratories of 333 unique advisers.

4.2 Methods

Estimating the causal effect of mentors’ influence on Scholar career outcomes must address

the basic selection problem that adviser “assignment” is non-random. Our specific concern

11642 Scholarships had been awarded at the time of data collection. From this population, we dropped
57 individuals from disciplines that are peripheral to biomedicine, such as population biology and clinical
psychology. The rate of patenting in the dropped group was similar to the retained sample, but because we
rely on the PubMed database to construct many of the covariates, we limited the sample to Scholars for
whom the vast majority of publications were indexed in PubMed. We also dropped one individual due to a
precipitous retirement and another who succumbed to cancer within two years of receiving his Award.
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is that if—contrary to the self-reports in the oral histories—scientists-in-training choose

whether they intend to pursue commercial science during graduate school, then commercially

oriented graduate students will seek postdoc positions in the laboratories of like-minded

advisers, and vice-versa. Matching on a taste for commercial science could produce a spurious

association between postdoc adviser commercial propensity and Scholar career outcomes in

any estimation approach that does not account for the endogeneity of the outcome to bases

for forming matches. Therefore, standard statistical techniques, which assume that mentor

assignment is exogenous, may not recover causal effects.

We contend that postdoc-adviser pairing is indeed deliberate, but only partially so be-

cause of the heavy influence of the primary factors highlighted in Table 1. In addition to

using the oral histories to better understand the matching process, we employ two statistical

approaches that account for matching to estimate a causal effect of adviser influence. First,

we use a variant of propensity score estimation, which is known as a “selection on observ-

able” approach because it is valid only under the untestable assumption that the outcome of

interest is independent of assignment to treatment conditional on observed factors. Second,

non-random matching between Scholars’ and advisers can be considered to be an instance of

a sample selection problem because we witness actual matches but do not observe potential

matches that did not—but could have—occured. Framing the problem this way, we can

analyze the data in Heckman’s (1979) two-stage sample selection framework, in which the

first stage is a binary choice matching equation consisting of observed and counterfactual

matches, and the second stage examines the probability of Scholar patenting as a function

of postdoc adviser behavior.

Selection on observables: Inverse Probability of Treatment Weights (IPTW).

Consider a scenario in which each Scholar i (I = 1, . . . , N) is assigned a mentor j from

a pool of J potential mentors. One can think of mentor assignment as a multi-valued

treatment T ∈ 1, . . . , J (cf. Imbens 2000). In the pre-assignment period, we measure Xk
i ,

a set of prognostic factors for assignment to a particular match. These prognostic factors

will be dyad-level covariates that influence the likelihood that Scholar i pairs to adviser j.

The outcome of interest yi is then measured at a subsequent time. In our case, treatment

occurs when a Scholar matches with an adviser who patents prior to or during the time the

Scholar is a trainee in the mentor’s lab. The outcome we study is whether the Scholar files

for a patent later in his/her career.

Let yki be the value of y that would have been observed had Scholar i been assigned to

mentor k. In this framework, assignment may be counterfactual, i.e., k 6= j; the Scholar

13



need not be paired with his/her own mentor. To reliably estimate the average treatment

effect, we require matches to be unconfounded : Scholars-adviser pairs must be statistically

independent of yki conditional on observable factors X. The term “unconfoundedness” was

coined by Rubin (1990) to refer to the situation in which conditioning on a fixed set of

covariates removes all bias in comparisons between treated and control cases, thus allowing

for a causal interpretation of the covariate-adjusted treatment effect. In other words, the

uncofoundedness assumption states that treatment is conditionally random; given observed

factors X, treatment is not confounded by unobserved covariates, which is to say that there

are no omitted variables that affect both assignment to treatment and outcomes. Formally,

we write the unconfoundedness assumption:

T ⊥ yki | X for all i and k

In addition to the assumption that treatment condition is random within subpopulations

defined by values of the covariates, we must also assume that, for all included values of the

covariates, the likelihood of being matched to any particular mentor is positive. Formally,

this assumption is known as common support. The intuition is that it is necessary to

observe both treated and non-treated cases that correspond to particular values of X. The

assumption of common support can be formally written as:

0 < Prob(yki = 1|X = x) < 1

Intuitively, given a value X = x, it must be possible to estimate both E[yi|Xi = x, Ti = 1]

and E[yi|Xi = x, Ti = 0], which we can do only if there are observations in both the treatment

and control groups at each value of X.

Both of these assumptions are non-trivial. The unconfoundedness assumption is not

testable and it places strong demands on the data generating process. We know that tech-

niques assuming selection-on-observables perform best when it is possible to include a com-

prehensive list of covariates to model the probability of assignment to treatment (Dehejia

and Wahba 2002). In many samples, determinants of this nature are not available. How-

ever, we have chosen a study population for which we were able to carefully investigate and

measure pre-treatment variables that we believe to be most likely to confound comparisons

between units assigned to different treatment conditions. As a result, we believe that the

unconfoundedness assumption provides a reasonable starting point in our context.

The common support assumption is testable. It implies that we should limit our compar-

isons to sets of values for which there is sufficient overlap in the match probabilities between
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actual and counterfactual matches (Barber, Murphy, and Verbitsky 2004). Below, we will

provide graphical evidence that the region of common support is very wide in our specific

case.

We model the effect of a particular adviser trait, patenting, on the mean of yk conditional

on assignment and exogenous Scholar characteristics Z, as:

E[yki |Zi, PATENTk] = β0 + β
′

1Zi + β2PATENTk (1)

where PATENTk is an indicator variable capturing whether the Scholar would have been

exposed to that particular trait had s/he, possibly contrary to the fact, been assigned to

mentor k. Imbens (2000) shows that under the assumption of unconfoundedness, β2, the

causal effect of adviser patenting, is identified and can be recovered by estimating:

E[yji |Zi, PATENTj] = β0 + β
′

1Zi + β2PATENTj (2)

by weighted least squares or weighted maximum likelihood (depending on the distribution

of y), where the weights correspond to the inverse probability that i is assigned to his/her

actual adviser j. Note that (2) differs from (1) in that the observed assignment j and

outcome yj have been substituted for the counterfactual assignment and outcome (k; yk).

A second difference is that the expectation in (1) is taken over the sample of all possible

dyads. In other words, it includes all realized matches between Scholars and advisers as well

as counterfactual matches. In contrast, all variables in (2), the second-stage regression, are

only defined for the sample of actual mentor-trainee dyads.

The implementation of this estimation technique is straightforward. Under unconfound-

edness, selection bias can be removed by weighting the regression by

wi =
1

Prob(Ti = j|Xj
i )

(3)

The denominator of wi is the conditional probability that a Scholar was assigned his or her

actual mentor j. Assume that all relevant factors determining matches are observed and

included in X. Then, weighting by wi effectively creates a pseudo-population of Scholars in

which X no longer predicts assignment and the causal association between adviser patenting

and the outcome variable is unchanged from the original population.12 We refer to β2 when

12We can now return to a previous point: if the unconfoundedness assumption of IPTW estimation is
met, it poses no problem for causal influence if the social influence variables Z are correlated with the
matching variables X. This is because in the pseudo-population of Scholars (i.e., Scholars weighted by the
inverse probability of treatment), the Xs are uncorrelated with mentor assignment. Therefore, so too is any
function of X, or the projection of some other variable Z on the vector X. This is true by the assumption
of unconfoundedness.
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equation (1) is weighted by wi as the Inverse Probability of Treatment Weighted (IPTW)

estimator of β2.

We face a specific challenge in estimating the weights in the data. The treatments consid-

ered here are assignments to particular mentors. These are qualitatively distinct treatments

that are devoid of any logical ordering. A natural approach would be to estimate the prob-

ability of assignment to each specific mentor in a multinomial logit or probit framework.13

This is not feasible in our case, since the population of mentees and the population of po-

tential mentors are of similar size (489 and 333 respectively).

As a result, we do not model the probability that a mentee matches with a specific

mentor. Rather, we model the probability of pairing with his or her own mentor. The

difference is subtle, but important. Concretely, we estimate a single probit regression that

pools the observations corresponding to each actual matches (n = 489) with the observations

corresponding to the counterfactual matches (n = 12, 286):

Prob(Ti = k) = α0 + α1X
k
i + δt (4)

where Prob(Ti = k) = 1 for actual Scholar-adviser matches and = 0 for all counterfactual

pairs, Xk
i includes dyad-level covariates predicting matches between Scholars and advisers,

and δt represents match year indicator variables. Of course, equation (4) is of substantive

interest in its own right; it reveals correlates of postdoc-mentor pairings.

One issue with this modeling choice is that it fails to constrain the match probabilities

for a given mentee to sum to one. Rather, it simply guarantees that the sum of match

probabilities for the entire mentee sample will sum to one. Therefore, to construct weights

for the second stage, we normalize the fitted probabilities that emerge from this specification

by dividing them by the sum of probabilities for all matches (actual or counterfactual) for

each mentee.14 Formally:

wi =

∑
k∈Ji Prob(Ti = k|Xk

i )

Prob(Ti = j|Xj
i )

(5)

where Ji is the set of potential postdoctoral advisers for Scholar i. IPTW estimation is very

simple to implement, but the unconfoundedness assumption is a strong one, and its validity

cannot be tested. As a result, we also utilize an alternative approach.

13This is the approach adopted by Huang et al. (2005), who first model the probability that an asthma
patient will match to a given physician group, before asking whether this choice natters for health outcomes.

14The correlation between the normalized and “raw” weights is 0.99. Through visual inspection of Epanech-
nikov kernel densities for the two distributions, we have also verified that there are no worrisome differences
in the upper tails of the normalized and raw IPT weight distributions. We conclude from this that the
renormalization does not alter the character of the pseudo-population.
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Selection on unobservables: Heckman selection correction. Although the oral histo-

ries suggest that commercial opportunities do not drive the choice of postdoctoral mentors,

there still may be a residual factor that influences both mentor assignment and contact with

the commercial sector once a Scholar has secured an independent position. The existence of

any such unobserved factor would undermine the validity of the IPTW estimates. A potential

alternative to IPTW to estimate a causal social influence is to isolate quasi-random factors

that shape the matching process, and to rely solely on this variation to estimate the effect of

treatment. To implement this approach, we require instrumental variables—quantities that

are relevant for assignment, in that they strongly predict pairing, but can be assumed to be

orthogonal to unobserved determinants of the outcome of interest, and therefore legitimately

excluded from the outcome regression.

We propose two exclusion restrictions in our setting. The first is the proximity between

Scholars’ undergraduate institutions and the universities where they might become postdoc-

toral fellows. The logic for this instrument comes from the findings in the oral history: we

anticipate that geography will drive postdoc matching in a manner that is independent of

the propensity to patent. The second exclusion restriction is shared nationality between the

Scholar and a potential mentor, conditional on being born outside the US. Here, we believe

that common birth country and native language will promote mutual awareness and interest

in matching. The relevance of these instruments ultimately is an empirical question, and

we will provide below statistical evidence that these two variables predict the likelihood of

specific Scholar/mentor pairings. The validity of the instruments, respectively, rests on the

assumptions that (1) Scholars’ choice of undergraduate institution does not reflect later-

career commercial dispositions; and (2) national background is not systematically correlated

with commercial activities. We believe these assumptions to be plausible in this setting, and

we will describe a number of robustness tests that bolster them.

Neither of these instruments is relevant for the full sample of Scholars because they

generate variation in pairing in two distinct subpopulations. Specifically, shared national

background with a potential postdoc adviser cannot explain variation in pairing among US-

born Scholars, since in that subpopulation, this variable measures only whether the adviser is

foreign-born. Conversely, for foreign-born Scholars, variation in proximity between postdoc

institutions and one’s undergraduate university is unlikely to be informative. Therefore, we

will perform the sample selection analysis separately on these two subpopulations, and there

is no presumption that the different instruments should yield identical treatment effects.
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We assume that Scholar-adviser pairings arise from an unobserved matching process,

during which some matches are accepted, while others are not. The specific form of endo-

geneity that concerns us is that we observe only the realized matches, and not those that

were possible but never came to be. Formally, we assume the existence of the underlying

relationship:

yki = β0 + β
′

1W
k
i + β2PATENTk + εik (6)

The dependent variable, however, is only observed for realized pairing (i.e., we do not observe

later-career patenting behavior for Scholars who were “assigned” to any mentor other than

their actual postdoc adviser). We model the probability of a match—the selection equation—

as follows:

Prob(Ti = j) = α0 + α1X
j
i + δt + ηij (7)

where Prob(Ti = j) = 1 for realized matches between Scholars and advisers and = 0 for

counterfactual matches, and η and ε are both assumed to be standard normal random

variables with correlation coefficient ρ. yji is observed if and only if α0 +α1X
j
i + δt + ηij > 0.

Just as in the first stage of the IPTW regressions [equation (4)], in order to estimate

the sample selection equation arising from this data generating process, we create a sample

of mentor-Scholar matches that might have occurred. This allows us to correct for sample

selection by first estimating the probability that Scholar-mentor matches and then the like-

lihood that the Scholar will patent, conditional on the existence of the match. In effect,

we are drawing a sample of mentor-Scholar pairs that chose not to match. Since we cannot

know the “true” rejection rate of matches in our sample, we perform robustness checks by

varying the degree to which we sample counterfactual matches relative to realized ones.

While the selection model is formally identified through the nonlinearity of the selection

equation, it is well known that relying on functional form assumptions to estimate average

treatment effects in the Heckman framework provides poor identification (LaLonde 1986).

In our case, non-parametric identification relies on the two exclusion restrictions discussed

above. In practice, shared national background and proximity to undergraduate institution

will be included in the vector of variables X in the first-stage selection equation (6), but

excluded from the vector of variables W in the outcome equation (6). To implement the

Heckman approach, we have adopted a parametric approach, that of Probit with sample

selection (Van de Ven and Van Praag 1981). We also explore a more flexible, semipara-

metric approach (Newey, Powell, and Walker 1990; Gerfin 1996). Because our substantive
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conclusions are unaffected by the estimation technique, we limit a detailed exposition of the

semi-nonparametric approach to an online Appendix (Part II).

There are two noteworthy differences between the IPTW and Heckman analyses. First, in

contrast to IPTW, the Heckman framework does not require the assumption of unconfound-

edness. It does, however, depend on the validity and relevance of the exclusion restrictions.

The attractiveness of the latter approach is its ability to identify the causal effect of men-

tor imprinting even in the presence of residual selection based on unobservable influences.

Second, the Heckman sample selection and IPTW approaches are unlikely to yield identical

coefficient estimates because they produce different measures of a treatment effect. Under

unconfoundedness, IPTW identifies the average treatment effect. In contrast, instrumental

variables estimators identify the local average treatment effect; that is, an effect only relevant

for the cases whose behavior changes because of the instruments.

4.3 Data Construction

Our analysis relies on four primary data sources. First, we requested CVs from all Scholars

to identify dates of training periods, degrees, advisers, and undergraduate institutions.15

Second, we supplemented the information on graduate school training with the Proquest

Dissertation Abstracts database. Third, we obtained patents by matching scientist names

to data US patent office data.16 Fourth, to construct measures of scientific outputs and

content, we collected all 251,800 papers published by PS Scholars and their graduate and

postdoc advisers appearing in the PubMed database.

First-stage dyad-level covariates. As described in the methods section, we analyze two

dependent variables, each at a different level of analysis. In the first stage, we model the

occurrence of a match in a dataset of realized and counterfactual ties between Scholars i and

eligible postdoc mentors k. In the second stage, we analyze the discrete time hazard that

Scholar i files for a patent in year t as a function of whether the Scholar was exposed to a

patenting postdoc adviser.

We run the dyad regression in a dataset with all 489 actual adviser-advisee matches, along

with many counterfactual pairs. We create the counterfactuals by pairing each Scholar in

the year that s/he began postdoc training with every adviser who mentored a Scholar in that

15For non-responders, we exhaustively searched public databases to reconstruct career histories. No Schol-
ars were dropped due to a non-response to our CV request.

16We collect all issued patents through 2007. Both Scholar and adviser names were matched to the USPTO
on a case-wise basis to correct for numerous misspellings in the database.
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year. For instance, in the year 1990, 25 individuals who later received a Pew or Searle Scholar

Award started their postdocs, and these individuals joined the labs of 23 distinct postdoc

advisers (two advisers, Douglas Melton and Charles Zuker, each mentored two future PS

Scholars that year). For this year, we create a dyad-level dataset consisting of the 25 actual

matches and the 550 potential matches that did not occur.

There are two reasons to define the risk set of counterfactual dyads by creating hypo-

thetical pairings with other, active mentors in a given year. First, this definition of the risk

set insures that all potential postdoc mentors are actively engaged in advising in the year

in which a graduating Scholar searches for a position. Second, as the descriptive statistics

will indicate, the postdoc advisers to PS Scholars are remarkably accomplished scientists.

This implies that the appropriate set of potential advisers for these individuals is not the

average academic biomedical scientist chosen at random; it comprises the elite members of

the profession. By restricting the set of counterfactual matches to other active PS Scholar

mentors, we believe we create a representative sample of the members of Scholars’ actual

choice sets. Likewise, we believe that the postdoc candidates in the sample are representative

of the quality of the individuals who are legitimate contenders for positions in the labs of

the elite mentors in the data. Moreover, as we will report below, this sample selection choice

will meet the assumption of common support.

Building on the findings from the oral histories, we assess whether scientific interest, ge-

ography, social status and commercial interests influence matching in mentor-trainee dyads.

The ideal approach would be to have direct measures of graduate students’ scientific trajecto-

ries and commercial aspirations. Because we cannot survey Scholars at the time of matching,

we instead use bibliometric data to proxy for scientific foci and commercial orientation. The

challenge with this approach, however, is that at the time matching occurs graduate students

have yet to establish a track record of independent research, which is what generates the

bibliometric data. To address this problem, we instead measure detailed characteristics of

Scholars’ graduate school advisers, which we then assign to Scholars themselves. The idea is

that graduate school advisers have a meaningful impact on the development trajectories of

the students they train, and therefore PhD advisers’ characteristics proxy for the scientific

trajectories of their students. Specifically, we measure the level of scientific similarity be-

tween a given Scholar’s PhD adviser in the year the Scholar earns his/her doctorate, and all

potential postdoc advisers in the dataset in that year. We also generate two measures of the

similarity/dissimilarity between Scholars’ graduate advisers and potential postdoc advisers

in the commercial orientation of research.
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Graduate/postdoc adviser scientific similarity. To assess the scientific similarity be-

tween focal Scholar i and potential Postdoc Mentor j, we use Medical Subject Heading

(MeSH) keywords. MeSH headings are expert-curated keywords comprising the National

Library of Medicine’s controlled vocabulary thesaurus. There are approximately 25,000 key-

words to index journal articles in PubMed. Given all actual graduate advisers’ and all

potential postdoc advisers’ publications, we generate for each dyad in each year t a count

of the number of overlapping, unique MeSH keywords, which we denominate by the sum of

the two advisers’ total MeSH headings. This quantity—the proportion of common scientific

keywords in each graduate-postdoc adviser dyad—is a symmetric measure of scientific simi-

larity. To allow for a flexible specification of scientific proximity in the regressions, we then

generate four dummy variables corresponding to each quartile of the distribution of scien-

tific overlap. We anticipate that a Scholar is more likely to match with a postdoc adviser

when his/her graduate adviser works in the same scientific area(s) as does the potential

postoc mentor. Thus, we anticipate scientific similarity between actual graduate advisers

and potential postdoc mentors will predict student exchange.

Graduate/postdoc adviser commercial similarity. Before describing the specific mea-

sures of commercial similarity between graduate students and potential postdoc advisers,

it is important to restate a central assumption of our measurement strategy. We assume

that, if graduate students give significant thought to commercial science, then it will be the

case that students who complete their PhD studies under the supervision of commercially

oriented graduate advisers will be more likely to themselves hold an interest in commercial

science. Therefore, if commercial interests enter into the equation in the search for postdoc

advisers, students who are matriculating from commercially oriented graduate mentors will

be more likely to pair to postdoc advisers of like mind. Specifically, if commerce invades

the matching process, we expect to observe greater proximity in the respective commercial

orientations of graduate ⇒ postdoc adviser pairs that mentor the same student, relative

to pairs that do not exchange a student. If there is no indication of adviser matching on

commercial science, we will take it as evidence that this dimension falls outside the matching

calculus.

The evidence gleaned from the oral histories suggests that commercial science is not a

significant factor in matching, and therefore (in our measurement strategy) we will not in fact

observe its transmission from graduate advisers to graduate students. This begs an important

question: why do we hypothesize that postdoc advisers’ patenting behavior will transmit to

mentees, but we simultaneously do not anticipate a similar social influence in graduate
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school? The answer lies in the differing roles of the graduate student and the postdoc in the

scientific process. Graduate students and postdocs have broadly similar career objectives,

which is to publish high-profile papers. However, the two types of personnel play different

roles in the laboratory. Graduate students often have minimal laboratory experience. In our

highly selective cohort, these students might be described as clever, but not yet wise. They

lack the experience and craft necessary to choose and execute a research program, and are

as-yet unfamiliar with the ecosystem of journals and reviewers.

By contrast, postdocs have much more experience and, in many respects, become sea-

soned scientists before they complete their training. In the majority of cases, middle-term

and more senior postdocs have brought a number of research projects to fruition. Building

on this experience, postdocs are able to be strategic with regards to the scientific trajectory

of their career. Preparing for the transition to run their own laboratory is often front-of-mind

for postdocs.

Given the differences between these two roles, we anticipate that graduate students are

unlikely to be influenced by the commercial practices of their advisers, whereas postdocs

may be. Why? First, in the hierarchical structure of academic laboratories (the largest of

which employ dozens of students, postdocs, and technicians), postdocs spend much more time

directly working with the lab head than do graduate students. Second, postdocs are mentored

in many facets of scientific careers, whereas graduate students are more narrowly focused

on conducting bench science. For example, postdocs must learn to handle managerial issues

including laboratory personnel, grant raising, and, in the case of this paper, the possibility

of engaging in entrepreneurial activities. Acquiring these “advanced” skills typically is not

on the mind of most graduate students, who participate at a lower level of the organization.

Finally, postdocs are much more likely to work with the PI to set the laboratory’s research

agenda. In so doing, they gain exposure to the problem space that drives the research agenda

and, in more commercially oriented labs, they are likely to join conversations about patenting

alongside the traditional scientific outputs of papers and conference presentations.

Turning to the covariates, we construct two measures of Scholars’ graduate advisers’

similarities in commercial science to eligible postdoc mentors. First, for each graduate and

postdoc adviser, we create an indicator equal to one if the adviser was listed as an inventor

on one or more patents applied for prior to the year that the Scholar transitions from the

graduate to the postdoc adviser’s lab. For all potential Scholar-postdoc adviser matches,

we then create three dummy variables: graduate and potential postdoc adviser both hold

patents; PhD adviser patents but eligible postdoc adviser does not; and potential postdoc
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adviser patents but graduate adviser does not. The omitted category is that neither adviser

patents. If we find a statistically significant coefficient on any of these patenting similarity

covariates, it would indicate assortative (or disassortative) matching on commercial inclina-

tion. Small and statistically insignificant coefficients would support our claim that matching

does not occur based on commercial interests.

In a second measure of compatibility in commercial interests, we use MeSH keywords to

account for the underlying “patentability” of each scientist’s research. The idea behind this

measure is that scientists who choose to work in particularly patentable fields of research are

more likely to be oriented toward commercial science. Specifically, we adopt the approach

followed by Stuart and Ding (2006) and Azoulay, Ding, and Stuart (2009) to identify the

time-varying, inherent patentability of each MeSH keyword. We collected all keywords used

in the papers of the 9,000 academic life scientists with the highest NIH grant totals (excluding

PS Scholars). We then matched these scientists to the inventor rosters on all US patents

and identified all scientist-years in which members of this set had patented. MeSH keywords

associated with either patenting or non-patenting scientists were then assigned a weight

proportional to their frequency of occurrence in the patenting sample relative to their overall

occurrence. A higher weight indicates that a given MeSH keyword is more prevalently used

in the articles of patenting scientists than in those of non-patenters.17

We apply these weights to the keywords on all articles of graduate and postdoc advisers in

all years prior to the current one to construct a time-changing variable, research patentability,

which is the average patentability of each scientist’s keyword vector prior to each year. We

then convert this to three indicator variables: graduate and potential postdoc adviser both

in the top quartile of research patentability; graduate adviser is top quartile but potential

postdoc adviser is not; and potential postdoc adviser is top quartile but graduate adviser

is not. The omitted category is that neither adviser is in the top quartile. Once again, if

we find statistically significant effects on any of these indicator variables, it would indicate

assortative matching on commercial inclinations. Statistically insignificant coefficients would

support our claim that Scholars do not match to postdoc advisers on the basis of commercial

focus of their respective scientific trajectories.

Scholar/postdoc adviser geographic proximity. We construct an array of measures of

the spatial proximity of Scholars and advisers. Two dummies indicate the relative location

17We collect all issued patents through 2007. The names of all 9,000 scientists were matched to the USPTO
and hand-checked to correct for numerous misspellings in the database. Further details on the construction
of these keyword weights can be found in the online Appendix (Part I).
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of a postdoc adviser vis-à-vis a Scholar’s graduate school program. One indicates when the

Scholar and an eligible postdoc adviser are at the same university, and a second indicates

when the Scholar and potential postdoc adviser are located in the same state.

Next, we have coded the state of the undergraduate institution of each Scholar who com-

pletes secondary education in the US. We then create an indicator variable equal to one if a

potential postdoc adviser is located in the same state as the Scholar’s undergraduate insti-

tution. Obviously, this variable only captures variation within the subpopulation of Scholars

with a baccalaureate degree from a US university. Finally, we generate two covariates that

gauge commonality in birth country. The first variable equals one when a Scholar and an eli-

gible adviser are born in the same, non-US country. For comparative purposes (and because

the oral histories lead us to suspect that matching on birth country will be stronger for those

born outside the US), we construct a similar covariate indicating that the US is the com-

mon birth country. As described in the methods section, undergraduate university/adviser

location match and same, non-US birth country are the two exclusion restrictions in the

Heckman-style analyses. We expect both covariates to influence the likelihood of matching

but to be exogenous with respect to Scholars’ later-career probability of patenting.18

Graduate/postdoc adviser status similarity. The oral histories show that a number

of Scholars sought high-status advisers. We implicitly account for status-based matching

through the construction of the risk set in the dyadic dataset; because the counterfactual

matches are exclusively formed between a Scholar’s graduate adviser and all of the actual

advisers of PS Scholars in a given year, only high-status postdoc advisers populate the risk

set for potential matches. To capture any residual status matching in the data, however,

we include a polynomial function of publication differences between graduate advisers and

potential postdoc mentors.

Dependent variable. We match the patent output of the Scholars and their advisers to

the records of the US Patent and Trademark Office (USPTO), and their publication output

to PubMed, which is maintained by the National Library of Medicine. One must remember

that the bulk of the output of the academics we study is in publications, rather than patents.

Over 60 percent of the Scholars never apply for a patent, and the majority of those who do

18It is possible that there is a correlation between certain ethnicities and the propensity to patent. However,
even in the presence of this correlation, the Heckman selection equation actually is a matching model in
which we predict the likelihood that a would-be postdoc i matches to a potential mentor j. Therefore, the
instrument is not the nationality or ethnicity of the candidate per se; rather, it is whether the candidate and
the postdoc adviser share the same national origin.
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patent have only one or two inventions to their credit. The primary dependent variable is

the rate of patenting in the post-training careers of Scholars, as a function of the treatment

effect of training under a commercially oriented postdoc adviser.

Additional controls. We coded the gender of all Scholars and postdoc advisers from CVs

and websites. We include a female indicator in the second-stage patenting regressions, and

we add to the first-stage matching equation dummies designating that the Scholar and po-

tential adviser are the same gender, and both are female. Because the norms regarding

commercializing academic science have changed between 1980 and 2000 (Owen-Smith and

Powell 2001b), we anticipate temporal effects. All regressions therefore include cohort indi-

cator variables.19 As proximity to clinical practice may promote academic entrepreneurship,

we include an indicator for joint degree holders, MD/PhD = 1 (Stuart and Ding 2006).

5 Results

We begin with a description of the individuals in the dataset. The median Scholar received

his award in 1991. He is male and holds a PhD in biology. He began his doctoral studies in

the early 1980s and received his doctorate in 1986. Between 1986 and 1991, he trained in

a five-year postdoc. Because they begin their assistant professorships in different years, the

Scholars in the dataset are “at risk” of patenting for different periods of time. The modal

Scholar is observed for 19.4 years and 35 percent file for one or more patents before the data

are right censored.

Table 2 presents summary statistics for graduate and postdoc advisers. The table illus-

trates the achievements of this group.20 Almost half of the graduate advisers are members

of the US National Academy of Sciences (NAS), with significant representation of Howard

Hughes Medical Institute (HHMI) members and a few Nobel Laureates. These membership

tallies increase for postdoc advisers. Amazingly, more than 1 in 8 postdoc advisers were No-

bel Prize winners by year 2008. A significant proportion of advisers also have patented. On

closer inspection, advisers who train multiple Scholars clearly are among the most prominent

scientists of their generation (Table 3). Prolific advisers are all members of the NAS, with

an increased representation of Nobel Laureates.

19We also tracked the year-by-year employment of each Scholar to create an extensive list of controls for
employer characteristics, including university-level patenting and NIH grant totals.

20Adviser statistics are presented at the Scholar-adviser level. Advisers who train multiple Scholars there-
fore are counted multiple times so that the reported averages reflect the mean exposure of the mentees in
the data.
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Multivariate results: the pairing process. Table 4 presents the determinants of matches

between Scholars and postdoctoral advisers from probit regressions at the adviser/Scholar

level of analysis (12,775 pairs, of which 489 are realized).21 The specification in column (1)

includes all controls and the measures of alignment in commercial interests between graduate

and potential postdoc advisers. Consistent with the oral histories, the regressions fail to

uncover any evidence of matching on commercial interest, whether assessed by graduate and

postdoctoral advisers’ patenting histories, or by the patentability of research. Specifically,

patenting graduate advisers are no more likely to send their students to patenting postdoc

advisers than they are to non-patenting ones. Likewise, advisees of graduate mentors in

the top quartile of the research patentability distribution are no more or less likely to join

the labs of postdoc advisers who have conducted patentable research. When combined with

findings from the oral histories, we conclude that Scholars and postdoc advisers do not match

on orientations toward commercial science.

In column (2) we add the covariates that assess common scientific interests between

Scholars graduate and eligible postdoc advisers. As described, we include a flexible spec-

ification of indicator variables designating the three bottom quartiles of scientific overlap.

Again consistent with the oral histories, the effects on the measures of scientific proximity

are strong and highly statistically significant. Specifically, compared to a potential pairing

in which a Scholar’s graduate and would-be postdoc advisers are in the top quartile of the

distribution of overlaps in scientific keywords, the matches in the bottom quartile of the

overlap distribution are 93 percent less likely to occur. This finding indicates that graduate

advisers are much more likely to send their PhD students to the laboratories of scientifically

similar postdoc mentors.

The results for spatial geography appear in column (3). We find strong evidence of

geographic sorting, with actual pairings more likely to involve a postdoctoral adviser from

the Scholar’s PhD-granting institution. Similarly, net of the propensity to remain at their

current universities, Scholars are more likely to match to mentors at other universities within

the same state.22 These results persist in column (4), which includes the most comprehensive

21In these regressions, person-level variables, such as postdoc adviser publication count, have negligible
effects. In a dyad-level model with year dummies to absorb across-period differences in the ratio of actual-
to-counterfactual observations, node-level covariates only will be meaningfully identified to the extent that
some actors are involved in more than one dyad in a given year. In our data structure, this is impossible by
construction; all Scholars match to a single postdoc adviser. Postdoc and graduate advisers do sometimes
mentor two eventual Scholars in a single year, but we account for this effect directly in the regressions
(coefficient not reported).

22With a significantly larger population of Scholars, one could imagine a nested-logit modeling approach
that brings the estimates of match probabilities in closer alignment with the evidence of geographic matching
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set of covariates; this specification is the one used to create the weights in the IPTW analysis

reported below.

Finally, recall that although 15 percent of the oral histories explicitly cite the status of a

potential postdoc adviser as a consideration in the search for a mentor, the sampling method-

ology (as confirmed in Tables 2 and 3) limits the risk set to prominent advisers. Nonetheless,

in each of the matching regressions we include the sum and difference in publication counts

for the graduate and postdoctoral adviser, as well as the square and cube of these variables.

We do not report their coefficients because we failed to uncover any systematic pattern of

matching on relative publication counts.

The assumption of common support. Figure 1 displays the distribution of match

probabilities, separately for the cases that correspond to actual pairs and for the cases that

correspond to counterfactual assignments. Inspection of the histograms shows that the region

of common support is extremely wide. In fact, it is so wide that even for the least and most

likely actual matches, we are able to find counterfactual matches with similar odds.

From a substantive perspective, this overlap between the two distributions is unsurprising.

Almost all Scholars and advisers work in somewhat related subfields of biology. In other

words, the types of counterfactuals contemplated in these matching equations do not involve

pairing physicists and biologists. Rather, a scientifically distant pairing in the data might

include a molecular biologist working with worms as a model organism, matched to one who

does mouse genetics. Empirically, these pairings are infrequent in the data, but they occur.

To provide further evidence that it is reasonable to conceive of the mentors in the data as

a cohesive population through which our Scholars could match, we have characterized fully

the coauthorship network in the group of postdoc mentors. This network exhibits a high

degree of closure; among the 333 postdoc advisers, only 32 have no coauthors within the

network, and 80 percent of these isolates are based outside North America.

Validating the exclusion restrictions for the Heckman-style analysis. Table 5 pro-

vides evidence pertaining to the exclusion restrictions for the Heckman selection correction.

The baseline specification is column (4) in Table 4. (We do not report the coefficients corre-

sponding to the commercial variables because they are small in magnitude and statistically

insignificant; these covariates, however, are included in the specifications.) We separately

gleaned from the oral histories. Specifically, with enough data, one could model the process of matching as
unfolding within geographic regions. With a sample of fewer than 500 Scholars, however, we can only specify
a single matching equation, which we saturate with covariates based on the oral histories.
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analyze the determinants of pairing for Scholars who come from outside the US and for those

who attended US-based undergraduate institutions. In column (1), we find that among the

121 foreign-born Scholars, there is a greater propensity to match with a postdoctoral adviser

from the same country. To the extent that homophily based on national origin is orthogonal

to Scholars’ commercial leanings, this result can be used as an instrument to disentangle

mentors social influences from selection effects. A counterargument is that individuals from

particular countries might have systematically greater proclivities to engage in commercially

relevant science, while also displaying a greater tendency to create native-language matches.

We single out Chinese Scholars (mainland-born) because a recent study (Gaulé and Piacen-

tini 2013) found that native Chinese graduate students in chemistry both are more likely

to train with a Chinese PI for their PhD and that they are more productive than domes-

tic students. Column (2) in Table 5 replicates our matching equation in the subsample of

foreign-born Scholars that exclude those born in mainland China. The results are qualita-

tively similar in this smaller sample.

Column (2) shows that, among US Scholars, there is a propensity to match with a

postdoctoral lab located in the same state as one’s undergraduate institution. One concern

with relying on this source of variation for identification is that students who attended

colleges located in “biotech-heavy” states acquire their taste for commercially relevant science

before graduate school, maybe through exposure to the local entrepreneurial ecosystem,

internships, etc. If that were the case, the effect of doing one’s postdoc in the same state

would be expected to influence patenting outcomes directly, and not only through one’s choice

of mentor. The exclusion restriction would be clearly invalid in that case. This concern is

why we included column (4) in Table 5: our results hold even when we exclude California, a

state in which 56 (15.2%) of our American-born Scholars went to college and which has been

an important locale in the birth and development of the biotechnology industry.23 We will

assume that this pattern of geographic attachment is uncorrelated with residual commercial

dispositions, and we will use this variable to identify the causal effect of adviser patenting

in the subsample of US Scholars.

IPTW results. The first three columns in Table 6A report results of postdoc adviser

patenting on Scholars’ propensity to patent using inverse probability of treatment weights.

Observations are Scholar-years in which the Scholar holds a faculty position and the specifi-

23We cannot exclude all the “biotech-heavy” states (CA, MA, WA, PA, NY, MD), since they account for
193 (52.4%) of the sample of American-born Scholars by college location. But columns (3) and (4) include
state-specific intercepts for these six states.
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cation is a discrete-time hazard of the first patenting event. The variable of central interest is

a dummy indicating whether the Scholar’s postdoc mentor had patented before the Scholar

completed training. In column (1), we present the “näıve” estimates that do not include

weights to adjust for the matching process. The coefficient implies that patenting is indeed

subject to adviser “imprinting”; the hazard of patenting is 69 percent higher for Scholars

whose postdoc advisers were patenters. Column (2) inversely weights each observation by

the fitted probabilities from column (4) in Table 4 to perform IPTW estimation. Under

unconfoundedness, inversely weighting Scholar observations by the probability of pairing

with mentors creates a pseudo-population of Scholars in which the dyad-level observables no

longer predict mentor assignment, but the causal association between adviser patenting and

Scholar behavior remain unchanged from the original population.

To our surprise, the magnitude of the coefficient on postdoc adviser patenting in the

IPTW results (column 2) is more than two-thirds larger than the näıve estimate. This

seems surprising given that we have already empirically shown that commercial interests—

at least to the extent that they are captured by observable covariates—do not influence the

matching process. Why, then, might the coefficient on adviser patenting increase in the

IPTW regressions?

Effectively, the weights inflate the importance of Scholars with “unlikely” mentors, given

observables. In turn, each observation’s weight is most influenced by the covariates that

have the greatest effect on the probability of a Scholar-adviser match, and in both the oral

histories and the dyad regressions, scientific proximity between graduate and postdoctoral

mentors’ research interests is the dominant predictor of pairing. Thus, the larger effect of

the mentor’s influence on the Scholar’s likelihood of patenting in the IPTW estimates likely

results from up-weighting the contribution of Scholars with postdoctoral mentors whose

research significantly differs from Scholars’ specializations in graduate school.

We verify this conjecture in column (3). In this specification, weights are computed

using the fitted probabilities from column (3) in Table 4, which omits the measures of shared

scientific interests. When we recalibrate the weights, the magnitude of the IPTW estimate is

much reduced, and only slightly larger than the “naive” estimate in column (2). The presence

of this shift has a substantive interpretation: it indicates that Scholars who change scientific

foci—those who select postdoc advisers who differ in scientific focus from their graduate

advisers—appear to be more susceptible to the influence of their postdoctoral mentors. Or,

stated differently, Scholars with less-well defined scientific interests upon completion of their

PhDs are more likely to adopt the commercial orientation of their postdoctoral advisers.
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The unexpected finding that scientific distance is associated with a larger treatment effect

requires further investigation. Specifically, it becomes important to investigate whether the

results are solely driven by a subset of scientific field switchers, who may differ from the

general population of postdocs. We undertake two, additional assessments of this issue. First,

we run regressions in which we drop from the sample Scholars in the top percentile, ventile,

and decile of the distribution of IPT weights, respectively. The (unreported) coefficient

estimates of a patenting postdoc mentor do decrease when we drop these scientists from the

sample, but the magnitudes of the social influence effects remain large, and very similar to

the ?nave? estimates obtained in column (1) (i.e., the specification that does not weight the

observations by the inverse probability of treatment).

Second, we compare the career-long level of scientific focus for postdoc candidates who

bridge a greater expanse of scientific distance to those who remain close to their existing

areas of emphasis. We conduct this analysis to address the concern that a significant scientific

change between these two phases of training is a harbinger of a more migratory style of science

over the course of a scientific career. In particular, could it be that high-IPT-weight Scholars

are consummate dilettantes who will continue to experiment with various topics throughout

their full careers, thus increasing the odds that they will eventually stumble on areas where

patenting is a natural byproduct of their scientific research? Or, does their scientific profile

stabilize once they emerge from their postdoctoral fellowship?

To shed light on this question, we consider each Scholar’s entire corpus of work as in-

dependent researchers. We assemble all subsequent-to-postdoc, last-authored publications,

for which we assume the focal scientist is the principal investigator. Using the MeSH key-

words that tag these last-authored publications, we compute an index of scientific focus:

one minus the Herfindahl index over unique keywords (we compute this measure with and

without weights for each keyword’s frequency of use). Figure X provides a scatterplot of

the Herfindahl against the log of IPT weight, together with the implied regression line in

the cross-section (using data on all the 489 Scholars this time). As can be readily observed,

the relationship is weak, and if anything “wrong signed”: the higher the inverse probabil-

ity of treatment weight, the more concentrated is the distribution of keywords that tag the

Scholar’s publications in his/her role as laboratory head.

From these two analyses, we conclude that the central IPTW social influence finding is

not a mere artifact of the scientific field switchers in the data.
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Comparing the effect of assignment on publication vs. patent output. Having

established the basic social influence result, we next ask whether adviser patenting has any

effect on other Scholar-level career outcomes, such as publication and citation rates. The

motivation for these analyses is that if postdoc adviser patenting affects career outcomes that

are unrelated to commercial activities, we might worry that mentor patenting has an effect

only because it captures some unobserved dimension of Scholar talent that makes scientists

more likely to succeed, whether in the commercial or open science spheres. Columns (4)

and (5) of Table 6A report, respectively, näıve and IPTW estimates from quasi-maximum

likelihood (QML) Poisson regressions of Scholars’ annual publication rates. These results

indicate that there is absolutely no effect of adviser patenting on the rate of publication

output. Table 6B proceeds in the same vein, this time concentrating on the impact of the

Scholars’ published research as measured by citations, both in subsequent scientific journals

(most of which stem from articles written by other academics) and in subsequent patents

(most of which stem from patents assigned to commercial firms). Both citation measures

exclude self-citations. Once again, we find that the social influence of mentor patenting is

highly specific: having trained with a patenting postdoc adviser increases the rate at which

a Scholar’s research is cited in future patents, but not in future papers.24

Heckman sample selection results. Recall that we use two exclusion restrictions to

implement the Heckman procedure. The first, shared national background between Scholar

and adviser, is most relevant for foreign-born Scholars. The second variable, whether the

Scholar’s undergraduate and potential postdoc advisers’ institutions are in the same state,

is most relevant for the subsample of US-born Scholars. As a result, we perform separate

analyses on these two subsamples.

Results are in Table 7. The estimation sample for the second-stage regressions in the

Heckman procedure is just the 2007 cross-section,25 and the specification is a Probit with

sample selection (Van de Ven and Van Praag 1981). Columns (1), (2), and (3) ignore the

prior mentor selection stage and report näıve estimates for the overall, US, and foreign-

born samples, respectively. The social influence effect of adviser patenting is statistically

significant in all cases. Columns (4) and (5) report the adjusted results using the Heckman

selection correction. In both subsamples, this does not dramatically shift the magnitude of

the effect of mentor patenting, though the coefficient is only statistically significant at the 10

24In unreported analyses, we also find that adviser patenting has no effect on NIH grant funding outcomes
for these Scholars.

25It is not possible to estimate the outcome equation in pooled cross-sections as we do in the IPTW
regressions.
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percent level in the sample of Scholars with US undergraduate degrees. In fact, consistent

with our overarching claim that matching is only partially deliberate, likelihood ratio tests

indicate that the estimates of ρ, the correlation between the error terms in the selection and

outcomes equations, is not statistically different from zero in either column (4) or column (5).

In other words, in accordance with our understanding of the matching process in this context,

the Heckman results indicate that the selection process in which Scholars match to mentors

can be safely ignored in the analysis of the probability that Scholars patent later in their

careers.

Robustness checks. The difficulty in establishing causality in our setting is that advisee-

adviser matching is purposeful. To address this issue, the two statistical techniques we

have employed rely on different assumptions. IPTW estimation hinges on unconfoundedness

and the sample selection method depends on the validity of the exclusion restrictions. It is

reassuring that the two techniques yield qualitatively similar results, but to further buttress

the causal interpretation of the effect of adviser imprinting on Scholars’ incidence of later-

career patenting, we conduct five robustness checks.

First, as reported in the previous section, we undertake a form of a falsification test—we

examine whether adviser patenting influences other career outcomes. We find it does not.

Second, we test the sensitivity of the IPTW estimate to assumptions about the composition

of the risk set in the matching equation. Third, we examine the relative propensities of

patenting versus non-patenting Scholars to continue along the scientific trajectories of their

postdoc advisers. Fourth, we investigate whether adviser patenting after the Scholar departs

from the adviser’s lab influences the likelihood of Scholar patenting. Finally, we revisit the

oral histories in an effort to determine whether the lack of discussion of commercial interests

in the adviser search process results from Scholars’ reluctance to disclose their preferences

on this issue because of the taboo associated with commercial science.

We begin with the sensitivity of adviser patenting to changes in the construction of the

counterfactual dyads in the first-stage analysis. The coefficients in Table 6A and 6B are

based on a risk set of counterfactual matches to other postdoc advisers who were active

mentors in the year the Scholar transitioned to a postdoctoral fellowship. Here, we expand

the set of counterfactual matches. First, we construct pairings between Scholars in year t

and all postdoc advisers in either the current, preceding or subsequent year (i.e., we define

the potential postdoc adviser dyads using a three-year moving window centered on the

Scholar’s graduation year). This results in 36,010 counterfactual dyads. Second, we further

expand the set of potential adviser matches in year t to include any adviser who previously
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mentored one or more PS Scholars. This results in 95,251 counterfactual matches. We then

re-estimated the IPTW-adjusted effect of adviser patenting in these two datasets and found

that the coefficient varied only slightly from that in Table 6, column (2).26 Thus, within the

tolerances we can explore without collecting a great deal of additional data, the results are

insensitive to alternative methods of constructing the risk set of non-occurring dyads.

Third, our findings show that exposure to a patenting postdoc adviser significantly in-

creases a Scholar’s subsequent propensity to patent. Some readers still may worry that this

propensity merely reflects the adoption by the Scholar of the focus of an adviser’s research,

but not the social transmission of advisers’ stance toward patenting.27 To address this in-

terpretation, we examine whether Scholars who exhibit similar commercialization behaviors

to their postdoc advisers are demonstrably more similar to their advisers’ scientific trajec-

tories than Scholars who deviate from past mentors’ behavior with respect to patenting. We

generated the MeSH keyword overlap (our measure of scientific proximity) between postdoc

advisers’ publications at the time the Scholar departed from their laboratories and Scholars’

subsequent publication stocks at the 5th, 10th, and 15th years of their independent careers.

The idea is to compare the relative scientific proximity of former postdocs who adopt their

advisers’ stance on patenting to those who deviate from it. Specifically, are trainees of

patenting advisers who themselves patent later in their careers more scientifically proximate

to their advisers than trainees of patenting advisers who do not themselves patent, and there-

fore depart from their adviser’s behavior? Conversely, are trainees of non-patenting advisers

who do not patent later in their careers more scientifically proximate to their advisers than

trainees of non-patenting advisers who do patent, and thus deviate from adviser behavior?

If the findings are driven by the differential transmission of advisers’ research interests, we

would expect to see less keyword overlap between those Scholars who deviate from their

postdoc advisers patenting behavior than those whose future actions conform to those of

their advisers. This would suggest a scientific explanation for the core finding, rather than

a sociological one.

Representative data for 15 years after the Scholar completed his postdoc are presented

in box-and-whisker plots in Figure 2. We report the distribution of scientific similarity

scores between postdoc advisers and Scholars broken out by whether or not the adviser

26We also re-estimated the baseline IPTW model in Table 6, column (3) after trimming observations in
the highest and lowest 5 percent of the IPT-weight distribution. This attenuates the IPTW-induced increase
in the postdoc adviser patenting coefficient relative to the näıve estimate, with no decrease in statistical
significance.

27Recall that the Scholar patenting regressions in Table 6 already address this concern by directly control-
ling for the flow and stock of the patentability of each Scholar’s research.

33



was a patenter and whether the Scholar becomes a patenter. The informative comparisons

are between the two distributions within adviser type; that is, are patenting trainees of

patenting advisers more scientifically similar to them than are non-patenting advisees? We

see no evidence for this in Figure 2 or in any formal comparisons of distributions we have

examined. In other words, the “inheritability” of scientific focus is constant across pairs in

which advisees do/don’t adopt the patenting practices of their advisers.

The fourth robustness test also addresses the question of whether the effect of patenting

advisers represents a true social influence, versus just a transmission of advisers’ scientific fo-

cus. In this analysis, we limit the sample to postdocs who trained under advisers who had yet

to patent prior to the time the postdoc left their labs. In the regressions of Scholar patenting

in this restricted sample, we then include a time-changing indicator variable that switches

on if and when the Scholar’s former postdoctoral mentor starts applying for patents (results

available in the online appendix, Part III). Reassuringly, the coefficient for this indicator

variable is much smaller in magnitude than its counterpart in Table 6A, and statistically

insignificant. If post-training-period adviser patenting had an effect, it would indicate that

patenting is transmitted even without direct exposure to advisers’ behavior, which would be

cause for concern that unobserved scientific factors drive the result. The fact that firsthand

exposure is required buttresses our claim that the core result is a causal social influence.

6 Discussion and Conclusion

The paper’s central theoretical claim is that when actors connect based on a small set of

attributes X, it is often the case that some additional characteristic Z, which was never

considered when a choice was made to develop a relationship, becomes socially transmitted.

We develop the psychological and sociological foundations of a theory we call partially de-

liberate matching, and we present a set of empirical methods that are generally useful for

uncovering causal social influence effects in observational data.

We present two central empirical findings. First, in scientists’ autobiographical accounts

and in a novel database, we show that Pew and Searle Scholars match to their postdoctoral

advisers based on two primary factors: scientific compatibility and geography. Second, the

causal social influence effect is that postdoctoral advisers’ patenting behavior is transmitted

to their trainees. Through the use of inverse probability of treatment-weighted estimations

and an instrumental variables approach, as well as from knowledge of the matching process

gained from scientists’ oral histories, we demonstrate that the social influence of advisers
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on trainees is real; it is not endogenous to trainee-adviser matching dynamics. Moreover,

the social influence effect is statistically large. To put the magnitude into a sociological

reframe, we find (Table 6A) that female scientists in academe are much less likely than men

to patent. However, if a female postdoc by chance matches with a patenting adviser, the

adviser’s estimated influence on her probability of later-career patenting almost fully offsets

the very large, negative effect of gender.

On one hand, the findings from the second-stage analysis are to be expected; few will be

surprised that the attitudes of the most important mentor in a period of advisees’ intensive

professional development matter, especially in a training period as lengthy as a postdoctoral

fellowship. However, the interesting finding is not the lasting influence of the mentor, but

that the consequent is unanticipated by the antecedent. Specifically, advisees are signifi-

cantly influenced by advisers on a dimension that appears not to have been accorded much

thought at the time they initiated the search for a mentor. The development of scientists’

commercial orientations does not appear to follow predetermined career objectives that di-

rect the search for an adviser. Rather, the end result seems to arise by chance; Scholars

conduct a local search for an adviser in bordered scientific and geographic spaces. Whether

or not an adviser is a commercialist is largely orthogonal to the search process, but it is rel-

evant to the development of the advisee’s career. In this way, chance exposures to patenting

advisers appear to induce transition points in individuals’ careers.

This core empirical result also dovetails with the literature on career sequences (e.g.,

Abbott 2001; Abbott and Hrycak 1990; Stovel, Savage, and Bearman 1996). Our findings

suggest that the mentors one encounters early in a career have consequences not only along

the anticipated dimensions that give rise to mentorship dyads, but they also cause unplanned

career trajectories. In this sense, the findings expose one type of “turning point” in aca-

demic scientists’ careers (Abbott 1997; Elder 1985). This result is interesting not simply

because postdocs’ career paths are shaped by the professional relationships they form, but

because on the dimension on which we assess mentors’ influence, the matches we study are

neither deliberately created nor are they the outcomes of a standard assortative matching

process. Therefore, despite the agency displayed in the creation of these important profes-

sional relationships, the consequences of the ties actors form extend well beyond the narrower

rationales that first drove their creation. However strategic actors may be in forming ties,

healthy doses of bounded rationality and incomplete information prevent interacting parties

from predicting ahead of time the myriad ways in which they may come to influence one

another.
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The fact that matching is only partially deliberate opens avenues for the unforeseen trans-

mission of attitudes and behaviors. In the majority of instances, unanticipated exposures are

of insignificant consequence. All of us can recruit to mind instances in which an associate

shared some unexpected point of view that had nothing to do with how our relationship with

that individual came into being—but was also inconsequential for how we think and behave.

In certain circumstances, however, the attributes to which we are unexpectedly exposed can

matter. Particularly when these exposures take place in the context of relationships with

long durations or with notable status or experience differentials between partners, chance ex-

posures can fundamentally change individuals’ points of view. In long-running, asymmetric

relationships (such as those between protégés and postdoc advisers), the length of interaction

provides ample opportunity for the standard pathways of influence to take hold. And when

these experiences occur in the process of professional development as we have seen in this

study, they may result in turning points that reorient actors’ career trajectories.

We do believe that the theory or partially deliberate matching generalizes to other set-

tings. For instance, Marmaros and Sacerdote (2006) show that friendship formation on a

college campus depends on random assignment to residence halls. This precisely sets up

the pre-conditions for social influences given under partially deliberate matching. Another

context in which our approach may be useful is analyses of social influences in relationships

with online origins. There is increasing sociological interest in the types of relationships that

are formed online, which run the gamut from romantic relationships (Wimmer and Lewis

2010) to open source communities (Piskorski and Gorbatai 2013) to social structures within

online games (e.g., Burt 2012; Torfason 2012). In each of these cases, the dimensionality for

matching is limited to a narrow band of information that each potential interactant presents,

but these relationships often blossom into richer and more multiplex forms of interaction.

In fact, we believe that partially deliberate matching may permeate the sociology of the

digital economy, as many social relationships in online markets arise from a limited set of

compatibilities, but evolve into wider pipes.

In general terms, we conclude with four conditions that may be necessary for researchers

to document causal social influence in contexts of partially deliberate matching. (i) An

ability to gather qualitative evidence that reveals the attributes that are most relevant for

social matching. In its effect, the role of qualitative evidence is to provide the researcher

with a theory of the data generating process. Such a theory is essential for to support the

unconfoundedness assumption, which is untestable in the quantitative data and justifiable

only when the researcher has a rich understanding of how matches come to be. (ii) Matching
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regressions that validate the qualitative evidence. (iii) IPTW regressions to recover the causal

effect of a putative social influence on unselected attributes. (iv) Ideally, additional variation

in the data (other dependent variables, the timing of events) that can be exploited to rule

out the plausibility of results driven by latent homophily. These conditions are a tall order,

but so it goes to establish persuasive, causal evidence of social influence in observational

data.
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Table 1 
Summary of Oral Histories: Determinants for Postdoc Adviser Choice
Category (%/N)  Representative Quotes
1. Science (95%/59)  
Extension of Prior 
Knowledge 
 

[Emerson; pp. 149-150] “Well, I wanted to expand on my graduate 
work in that I wanted to add the element of chromatin structure to 
the study of gene regulation... Gary Felsenfeld was the king of 
chromatin.”  

Moving Away from Base [Greenberg; pp. 44-45] “Basically, at Harvard, we had really no 
exposure to plant research. It was really the chance reading of an 
article from Ausubel’s lab where they talked about this plant, 
Arabidopsis, that I work on now… if one wanted to study 
adaptation to the environment… one could do it in a plant, and 
then it would get around all the ethical problems that I had with 
killing a lot of animals.”  

Moving Towards Frontier  [Horowitz; pp. 73] “…after my work on murine leukemia viruses, I 
wanted to work on oncogenes because it became really apparent 
while I was doing my graduate work that that’s where the action was 
for most human cancers.”  

2. Geography (53%/33)  
Personal Constraints [Horowitz; pp. 73] “… my wife, Barbara, decided she wanted to 

work for him [Bernard Fields at Harvard]. She applied and was 
pretty much quickly accepted so it then became necessary for me to 
find a postdoc in Boston.”    

Personal Preferences [Julius, pp. 203] “… by the time my time was up there, I was ready 
to leave. Berkeley can be a very sort of uniform-seeming 
community… I was ready to see what living on the East Coast was 
like again…”  

3. Adviser Status 
(15%/9) 

[Hirano, pp. 29] “Tim Mitchison was another young assistant 
professor at that moment. But he did a very famous discovery when 
he was in graduate school. And he was very young, but he was 
already famous. And it was clear he was one of the brightest cell 
biologists at his age…”  

4. Interpersonal 
Rapport (12%/7) 

 [Jardetzky; pp. 58] “And he [Don Wiley] was an incredible person, 
and just sitting with him for an hour, I realized that that was where 
I wanted to be. I just wanted to be working with somebody like that 
who had that kind of insight, that kind of drive, that kind of creative 
energy. He was a really impressive guy.”  

5. Commercial 
Opportunities (0%/0) 

N/A 
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Table 2: Descriptive Statistics 
Panel A: Scholar Characteristics (N = 489) 
 Mean Std. Dev Min. Max.
Female .233 .423 0 1
US .753 .432 0 1
MD/PhD .133 .340 0 1
Highest degree year 1986 4.88 1973 1998
Year of First Academic Appt.  1990 5.20 1977 2000
Member of the Natl. Academy of Sciences .061 .240 0 1
Howard Hughes Medical Investigator .161 .368 0 1
Nobel Laureate .002 .045 0 1
Cmltv. Nb. of Publications 70.71 49.02 11 381
Cmltv. Nb. of Citations in Publications .039 .273 0 4
Cmltv. Nb. of Citations in Patents .027 .161 0 1
Patenter .360 .480 0 1
Cmltv. Nb. of Patents 1.37 4.13 0 57
Patentability Stock .516 .574 0 4.49
Note: Citation information is current as of 2008. Publication and patent cumulative counts are computed as of the end of 
the year 2007, which coincides with the end of the observation period for all Scholars. Citations in publications is the 
total number of (forward) citations in publications made to all of the Scholar’s publications. Citations in patents is the 
total number of (forward) citations in patents made to all of the Scholar’s publications. Patenter is an indicator variable 
denoting whether the Scholar has applied for at least one patent by the end of 2007. Patentability stock is a measure of 
the underlying “patentability” of a Scholar’s research.  

 
Panel B: Graduate Adviser Characteristics (N = 489)
 Mean Std. Dev Min. Max. 
Female .067 .251 0 1 
Member-NAS .411 .493 0 1 
Member-HHMI .123 .328 0 1 
Nobel Laureate .063 .244 0 1 
At end of Scholar training  
Cmltv. Nb. of Publications 88.61 81.40 1 513 
Patenter  .194 .396 0 1 
Cmltv. Nb. of Patents .620 2.54 0 45 
Patentability Stock .151 .246 0 2.48 
Note: 415 unique graduate advisers 
 
Panel C: Postdoc Adviser Characteristics (N = 489)
 Mean Std. Dev Min. Max. 
Female .061 .240 0 1 
Member-NAS .601 .490 0 1 
Member-HHMI .321 .467 0 1 
Nobel Laureate .135 .342 0 1 
At end of Scholar training  
Cmltv. Nb. of Publications 108.42 100.89 0 729 
Patenter  .438 .497 0 1 
Cmltv. Nb. of Patents 2.08 5.41 0 73 
Patentability Stock .433 .508 0 3.13 
Note: 333 unique postdoc advisers 
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Table 3: Characteristics of Prolific Advisers 
Graduate Advisers with Four or More Trainees 

# of 
Trainees 

Name Nobel HHMI NAS Research Program 

4 Eric Davidson No No Yes Sea Urchin Development 

4 Robert Baldwin No No Yes Protein Folding 

4 Gunter Blöbel Yes Yes Yes Yeast Nuclear Transport 

5 David Botstein No No Yes Yeast Genetics 

5 Philip Sharp Yes No Yes RNA Splicing 

5 Jack Szostak Yes Yes Yes Yeast Chromosomes 

 

Postdoc Advisers with Five or More Trainees 
# of 

Trainees 
Name Nobel HHMI NAS Research Program 

5 Ronald Davis No No Yes Molecular Immunology 

5 Harold E. Varmus Yes No Yes Viral Oncology 

6 Marc Kirschner No No Yes Developmental Biology 

6 Stanley Falkow No No Yes Microbial Pathogenesis 

6 Robert Tjian No Yes Yes Biochemistry of Transcription 

6 H. Robert Horvitz Yes Yes Yes C. elegans Development 

6 Randy Schekman Yes Yes Yes Yeast Vesicle Transport 

8 Thomas Cech Yes Yes Yes Transcription and Splicing 

8 Gerald Rubin No Yes Yes Fruitfly Genetics 

8 Thomas Maniatis No No Yes MolecularGene Regulation 

9 Richard Axel Yes Yes Yes Molecular Olfaction 

11 David Baltimore Yes No Yes Molecular Virology 
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Table 4: Determinants of Pairing by Scholars and Potential 
Postdoc Mentors (Probit, All Scholars) 
 (1) (2) (3) (4) 

Grad/Postdoc Mentors Keyword Overlap 
(Bottom Quartile) 

 -1.173**  -1.182** 
 (0.079)  (0.078) 

Grad/Postdoc Mentors Keyword Overlap 
(Second Quartile) 

 -0.746**  -0.751** 
 (0.062)  (0.062) 

Grad/Postdoc Mentors Keyword Overlap 
(Third Quartile) 

 -0.481**  -0.482** 
 (0.055)  (0.055) 

Grad & Postdoc Mentors at same 
university 

  0.328** 0.368** 
  (0.090) (0.097) 

Grad & Postdoc Mentors in same state, 
different university 

  0.140* 0.144* 
  (0.063) (0.067) 

Scholar & Postdoc of the same gender 0.011 0.032 0.012 0.035 
(0.049) (0.052) (0.050) (0.052) 

Scholar & Postdoc both female 0.051 -0.014 0.044 -0.020 
(0.135) (0.135) (0.138) (0.139) 

Grad & Postdoc Mentors both patent 0.114 0.094 0.099 0.075 
(0.085) (0.091) (0.086) (0.093) 

Only Grad Mentor patents -0.074 -0.090 -0.084 -0.101 
(0.074) (0.077) (0.074) (0.077) 

Only Postdoc Mentor patents -0.003 -0.048 -0.005 -0.049 
(0.035) (0.039) (0.036) (0.040) 

Grad & Postdoc Mentors both in top 
quartile of research patentability 

-0.043 -0.156 -0.044 -0.161 
(0.096) (0.099) (0.097) (0.100) 

Only Grad Mentor in top quartile of 
research patentability 

-0.033 -0.022 -0.036 -0.025 
(0.069) (0.073) (0.070) (0.073) 

Only Postdoc Mentor in top quartile of 
research patentability 

0.014 -0.036 0.018 -0.034 
(0.044) (0.048) (0.044) (0.048) 

Constant 
-1.340** -0.603** -1.337** -0.605* 
(0.183) (0.241) (0.183) (0.241) 

Log likelihood -2,042 -1,888 -2,034 -1,879 

Observations 12,775 12,775 12,775 12,775 

# of Scholars 489 489 489 489 

# of Postdoc Mentors 333 333 333 333 

Note: Estimates are displayed as raw coefficients. All models include Scholar-cohort dummies, and an indicator variable if 
the grad or postdoc adviser had sent/received multiple students within that cohort-year. All models also include the sum 
and absolute difference of grad and postdoc adviser publication counts, as well as the square and cube of this variable 
(coefficient estimates not reported). For Grad/Postdoc Mentors Keyword Overlap, the excluded quartile corresponds to 
the dyads that are most scientifically similar. 
 
Robust standard errors, clustered at the postdoc mentor level reported in parentheses below each coefficient estimate. 
† significant at 10%; * significant at 5%; ** significant at 1%.   



46 
	

Table 5: Determinants of Pairing by Scholars and Potential 
Postdoc Mentors (Probit, by Subsample) 

 (1) (2) (3) (4) 

Subsample 
Only 

Foreign 
Scholars 

Only Foreign 
Scholars–excl. 

Chinese 

Only 
US 

Scholars 

Only US 
Scholars–

excl. 
Califormia 

Scholar & Postdoc Mentor born in 
same foreign country 

0.803** 0.880***   
(0.215) (0.224)   

Undergrad & Postdoc university in 
same state 

  0.212** 0.263** 
  (0.076) (0.098) 

Grad/Postdoc Mentors Keyword 
Overlap (Bottom Quartile) 

-1.322** -1.318*** -1.177** -1.292** 
(0.166) (0.189) (0.096) (0.109) 

Grad/Postdoc Mentors Keyword 
Overlap (Second Quartile) 

-0.977** -1.025*** -0.696** -0.689** 
(0.139) (0.154) (0.070) (0.076) 

Grad/Postdoc Mentors Keyword 
Overlap (Third Quartile) 

-0.486** -0.441*** -0.481** -0.473** 
(0.102) (0.115) (0.063) (0.072) 

Grad & Postdoc training at same 
university 

0.450** 0.397* 0.285* 0.272* 
(0.163) (0.170) (0.119) (0.124) 

Grad & Postdoc training in same state, 
different university 

0.348* 0.172 0.039 0.099 
(0.139) (0.160) (0.082) (0.089) 

Scholar & Postdoc Mentor are of the 
same gender 

0.002 -0.046 0.044 0.025 
(0.113) (0.123) (0.058) (0.062) 

Scholar & Postdoc Mentor are both 
female 

0.151 -0.050 -0.143 -0.099 
(0.286) (0.350) (0.189) (0.221) 

Constant -0.689 -0.789 -0.563† -0.208 
(0.577) (0.766) (0.316) (0.411) 

Log likelihood -441 -338 -1,421 -1,198 

Observations 3,097 2,404 9,678 8,201 

# of Scholars 121 93 368 312 

# of Postdoc advisers 333 333 333 333 

Note: Estimates are displayed as raw coefficients. All models include Scholar-cohort dummies, and an indicator variable if 
the grad or postdoc adviser had sent/received multiple students within that cohort-year. All models also include the sum 
and absolute difference of grad and postdoc adviser publication counts, as well as the square and cube of this variable 
(coefficient estimates not reported). For Grad/Postdoc Mentors Keyword Overlap, the excluded quartile corresponds to 
the dyads that are most scientifically similar. Models (3) and (4) include undergraduate university state indicator 
variables for MA, CA, WA, NY, MD, NJ, and PA (the states in which the great bulk of biotech entrepreneurship are 
located). None of the coefficients on these indicators is significant, and those results are not shown. 
 
Robust standard errors, clustered at the postdoc mentor level reported in parentheses below each coefficient estimate. 
† significant at 10%; *significant at 5%; ** significant at 1%. 
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Table 6A: Impact of Postdoc Mentor Patenting on Scholar 
Patenting Propensity and Publication Rates 
Dependent Variable Scholar First Patenting Event Scholar Publ. Count 

Model Discrete-Time Hazard Rate QML-Poisson 

IPT Weights No Yes 

Yes–excl. 
scientific 
distance 

covariates 

No Yes 

 (1) (2) (3) (4) (5) 

Postdoc Mentor was a 
patenter 

0.535** 0.854** 0.521** -0.023 -0.006 
(0.171) (0.208) (0.177) (0.042) (0.045) 

Research Patentability 
Flow, no lag 

4.178** 4.910† 4.071** 3.893** 4.264** 
(1.299) (2.705) (1.408) (0.524) (0.513) 

Research Patentability 
Stock (lagged one year) 

1.013* 0.230 1.007† 0.538** 0.538** 
(0.478) (0.686) (0.532) (0.068) (0.065) 

Female 
-0.716** -0.923** -0.856** -0.127** -0.077 
(0.241) (0.295) (0.256) (0.046) (0.056) 

MD/PhD 
0.478* 0.630* 0.501* 0.186** 0.170** 
(0.224) (0.297) (0.227) (0.051) (0.055) 

Log(University NIH $) 
-0.234* -0.127 -0.281** -0.012 -0.003 
(0.096) (0.137) (0.101) (0.026) (0.025) 

Log(University Patents) 
0.095 0.071 0.115 0.016 -0.011 

(0.072) (0.102) (0.077) (0.020) (0.026) 

Constant 
-1.692 -3.669 -1.347 0.116 -0.070 
(1.852) (2.559) (1.935) (0.821) (0.750) 

Log-pseudolikelihood -677 -39,801 -46,137 -14,059 -792,137 

Observations 5,250 5,250 5,250 6,587 6,587 

# of Scholars 489 489 489 489 489 

# of postdoc advisers 333 333 333 333 333 

Note: Estimates are displayed as raw coefficients. All models include Scholar-cohort dummies, and a full suite of 
calendar-year indicator variables (not reported). Research patentability is a measure of the underlying patentability of 
a Scholar’s research, derived from the publication and patent records of 9,000 life scientists (see Appendix I). 
 
Robust standard errors, clustered at the postdoc mentor level reported in parentheses below each coefficient estimate. 
† significant at 10%; * significant at 5%; ** significant at 1%. 
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Table 6B: Impact of Postdoc Mentor Patenting on Scholar 
Citations in Publications or Patents  

Dependent Variable 
Scholar Citations in 
Publications from 

Publications 

Scholar Citations in 
Patents from 
Publications 

Model QML-Poisson Logit 

IPT Weights No Yes No Yes 
 (1) (2) (3) (4) 
Postdoc Mentor was a 
patenter 

-0.041 0.005 0.329** 0.366** 
(0.084) (0.121) (0.091) (0.111) 

Research Patentability 
Flow, no lag 

3.818** 4.276** 32.695** 26.621** 
(0.526) (0.551) (2.066) (4.366) 

Research Patentability 
Stock (lagged 1-year) 

0.814** 0.786** -0.092 0.098 
(0.066) (0.084) (0.207) (0.338) 

Female 
-0.360** -0.363** -0.117 -0.172 
(0.087) (0.104) (0.106) (0.129) 

MD/PhD 
0.142 0.064 0.139 0.202 

(0.096) (0.098) (0.144) (0.154) 

Log(University NIH $) 
-0.042 0.011 -0.036 -0.071 
(0.054) (0.069) (0.063) (0.068) 

Log(University Patents) 
0.028 0.023 0.015 0.007 

(0.041) (0.049) (0.045) (0.051) 

Constant 
3.793** 2.673* -4.508** -4.688** 
(1.105) (1.287) (1.420) (1.404) 

Log-pseudolikelihood -1,240,426 -6,7328,843 -3,414 -203,187 

Observations 6587 6587 6579 6579 

# of Scholars 489 489 489 489 

# of postdoc advisers 333 333 333 333 

Note: Estimates are displayed as raw coefficients. All models include Scholar-cohort dummies, and a full suite of 
calendar-year indicator variables (not reported). Research patentability is a measure of the underlying patentability of 
a Scholar’s research, derived from the publication and patent records of 9,000 life scientists (see Appendix I). Citations 
to publications in patents are rare, relative to the incidence of citations to publications in publications. As a result, we 
collapse the flow of citations in patents for a Scholar in a given year (a count random variable) into an indicator 
variable (equal to one for at least one citation to publications in patents in a given year). 
 
Robust standard errors, clustered at the postdoc mentor level reported in parentheses below each coefficient estimate. 
† significant at 10%; * significant at 5%; ** significant at 1%. 
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Table 7: Cross-Sectional Probit Model of Scholar Patenting with 
Sample Selection 

Subsample 
All 

Scholars 
US 

Scholars 
Foreign 
Scholars 

US 
Scholars 

Foreign 
Scholars 

Model Probit 
Probit with Sample 

Selection (Van de Ven and Van 
Praag 1981) 

Exclusion Restrictions N/A N/A N/A 

Undergrad 
& Postdoc 
University 
in Same 
State 

Both Scholar 
& Postdoc 
from Same 

Foreign 
Country 

(1) (2) (3) (4) (5) 

Postdoc Mentor was a 
Patenter 

0.343** 0.323* 0.556* 0.296† 0.565* 
(0.132) (0.157) (0.268) (0.163) (0.230) 

Research Patentability 
Stock 

0.467** 0.346** 1.082** 0.344* 1.004* 
(0.119) (0.129) (0.287) (0.149) (0.390) 

Female -0.597** -0.466** -0.852** -0.465† -0.705* 
(0.156) (0.179) (0.326) (0.201) (0.360) 

MD/PhD 0.323† 0.489* -0.420 0.501* -0.393 
(0.182) (0.214) (0.426) (0.246) (0.361) 

Log(University NIH $) -0.134† -0.099 -0.457** -0.088 -0.420* 
(0.074) (0.067) (0.164) (0.071) (0.180) 

Log(University Patents) 0.059 0.030 0.284† 0.025 0.264 
(0.058) (0.062) (0.166) (0.063) (0.159) 

Constant  
1.996 1.393 5.975* 1.289 6.626** 

(1.258) (1.195) (2.383) (1.661) (2.305) 

atanh(ρ) -0.213 -0.650 
   (1.065) (0.632) 

Log-pseudolikelihood -266 -199 -56 -1,642 -507 

Observations (Scholars) 489 368 121 368 121 

Nb. of Postdoc Mentors 333 262 102 333 333 

Potential Dyads       9,678 3,097 
Note: Research Patentability, university patents and university NIH funding are measured as of 2007—the end of our 
observation period. Models (2) and (4) include eleven cohort indicator variables. Models (3) and (5) include four cohort 
indicator variables. All models also include on the right-hand side all the covariates in the matching equations (cf. Models (1) 
and (2) in Table 5, which reports estimates for the first-stage matching equations). Though these covariates are included, we 
do not report the corresponding estimates since they are not of substantive interest in the second-stage outcome equations. 
 
Robust standard errors, clustered at the postdoc mentor-level reported in parentheses below each coefficient estimate. 
† significant at 10%; * significant at 5%; ** significant at 1%. 
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Figure 1: Distribution of Match Probabilities 

 
Note: The histograms above depict the distribution of (normalized) match probability for the 489 Scholars × 333 
postdoctoral advisers, broken down between 489 actual matches and 12,286 counterfactual matches. 

 

 

Figure 2: Scholar and Postdoc Adviser Scientific Proximity—By 
Adviser Patenting 

 
Note: Representative box and whiskers plot for the proportion of postdoc adviser (year t) and Scholar (year t + 15) 
MeSH keyword overlap; t is the last year of Scholar training. 296 Scholars are presented. 
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Appendix I
Keyword Weights and Patentability Score

Not all research performed by Pew/Searle Scholars is of commercial interest, or susceptible to being patented.
This could be either because the research is focused on the elucidation of fundamental biological mechanisms,
or because the research, even if applied, occurs in an area where commercial applications are difficult to
envisage (e.g., population biology). For each scientist, we construct a time-varying score that seeks to
control for variation in the inherent patentability of their research.

The essential inputs into the computation of this score are Medical Subject Heading [MeSH] terms. MeSH
terms constitute a controlled vocabulary maintained by the National Library of Medicine that provides a
very fine-grained partition of the intellectual space spanned by the biomedical research literature. There are
26,581 descriptors in the 2012 MeSH edition (new terms are added to the dictionary as scientific advances
are made). Almost every publication in PubMed is tagged with a set of MeSH terms (between 1 and 103 in
the current edition of PubMed, with both the mean and median approximately equal to 11). Importantly
for our purposes, MeSH keywords are assigned to each scientific publication by professional indexers and not
by the authors themselves.

The construction of the research patentability (RP) score proceeds in two steps. First, we compute time-
varying MeSH-level weights that capture the extent to which each individual keyword j is associated with
patentable research at time t. Second, we apply these keywords to the body of work for each scientist i
active in year t. We describe both steps in detail below.

Step 1: Computation of the weights
The essence of the weighting scheme we develop is that a keyword is weighted more heavily (i.e., be deemed
more “patentable”) when it appears disproportionately often in publications whose authors have already
patented in the past. A requirement is therefore to have a large population of scientists for whom both the
bibliome and the patentome are well characterized. One such population is the set of Pew/Searle Scholars.
However, it seems desirable for the publications of the scientists that are the focus of the analysis NOT to
influence the calculation of the sts. We therefore use as a reference population a set of 12,159 elite, US-based
academic life scientists for which Azoulay, Graff Zivin, and Sampat (2012) have assigned publications and
patents using an exhaustive, manual hand-coding process (cf. Appendices A, B, and C, pp. 145-149).1

With these preambles in mind, wjt the patentability weight for each keyword j in year t is defined as:

wjt =

∑
s∈Ip

t

msjt∑
k mskt∑

s∈Inp
t
msjt

where msjt denotes the number of times keyword j has appeared in articles published up to year t by
scientist s, Ipt is the subset of scientists in our sample that have already applied for one or more patents as
of year t, and Inpt is the subset of scientists in our sample that have not yet applied for any patent as of year
t.

To create the numerator of wjt, we first create a row-normalized matrix with each scientist in the patenting
regime listed in a row and each of the keywords used to describe their papers up to year t listed in a column.
The sjth cell in the matrix, [msjt/

∑
kmskt], corresponds to the proportion of keywords for scientist s that

corresponds to keyword j. We then take the column sums from this matrix, i.e., we sum the contributions
of individual patenting scientists for keyword j. Turning next to the denominator, we proceed in a similar
manner, except that the articles considered only belong to the set of scientists who have not applied for
patents as of year t. The numerator is then deflated by the frequency of use for j by non-patenters.

The weights wjt are large for keywords that have appeared with disproportionate frequency as descriptors
of papers written by scientists already in the patenting regime, relative to scientists not yet in the patenting

1The fraction of patenters in this population is slightly lower than in the Pew/Searle Scholar population (33% vs. 36%).
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regime. wjt = 0 for all keywords that have never appeared in the titles of papers written by scientists that
have patented before t.

Step 2: Computation of the RP score
We now turn to the sample of interest, the set of 489 Pew/Searle Scholars. For each scientist i in the dataset,
we produce a list of MeSH keywords in the individual’s papers published in year t, calculate the proportion
of the total represented by each keyword j, apply the appropriate keyword weight wj,t−1, and sum over
keywords to produce a composite score. The resulting variable increases in the degree to which keywords in
the titles of a focal scientist’s papers have appeared relatively more frequently in the titles of other academics
who have applied for patents. This score is entered in the regressions to control for the research patentability
of scientists’ areas of specialization.

To illustrate the construction of the research patentability measure, Table A1 lists some representative
keywords, along with their patentability weights in the year 2000.
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Appendix II
Semiparametric Estimation of the Sample Selection Model

The parameters of discrete-choice models are typically estimated by maximum likelihood (ML) after imposing
assumptions on the distribution of the underlying error terms. If the distributional assumptions are correctly
specified, then parametric ML estimators are known to be consistent and asymptotically efficient. However,
departures from the distributional assumptions may lead to inconsistent estimation. This problem has
motivated the development of several semiparametric estimation procedures which consistently estimate the
model parameters under less restrictive distributional assumptions.

Probit model with sample selection. Consider a bivariate binary-choice model with sample selection
where the indicator Y1 is always observed, while the indicator Y2 is assumed to be observed only for the
subsample of n1 observations (with n1 < n) for which Y1 = 1. The model can be written as:

Y ∗j = αj + βT
j Xj + εj j = 1, 2 (8)

Y1 = 1(Y ∗1 ≥ 0) (9)

Y2 = 1(Y ∗2 ≥ 0) if Y1 = 1 (10)

where α1 and α2 are intercept terms, β1 and β2 are [1× k1] and [1× k2] column vectors, respectively.

When the latent regression errors ε1 and ε2 have a bivariate Gaussian distribution with zero means, unit
variances, and correlation coefficient ρ, Model (1)-(3) is known as a bivariate probit model with sample se-
lection. Unlike the case of full observability, the presence of sample selection has two important implications.
First, ignoring the potential correlation between the two latent regression errors may lead to inconsistent
estimates of θ2 = (α2, β2) and inefficient estimates of θ1 = (α1, β1). Second, identifiability of the model
parameters requires imposing at least one exclusion restriction on the two sets of exogenous covariates X1

and X2.

Construction of the log-likelihood function for joint estimation of the overall vector of model parameters θ =
(θ1, θ2, ρ) is straightforward after noticing that the data identify only three possible events: (Y1 = 1, Y2 = 1),
(Y1 = 1, Y2 = 0), and (Y1 = 0). Let φ(.) denote the standardized Gaussian distribution function and
Φ(., ., ρ) denote the bivariate Gaussian distribution function with zero means, unit variances, and correlation
coefficient ρ. The log-likelihood function for a random sample of n observations is

L(θ) =

n∑
i=1

Yi1Yi2lnπi11(θ) + Yi1(1− Yi2)lnπi10(θ) + (1− Yi1)lnπi0(θ1) (11)

where:

π11(θ) = Prob(Y1 = 1, Y2 = 1) = Φ(µ1, µ2, ρ)

π10(θ) = Prob(Y1 = 1, Y2 = 0) = φ(µ1)− Φ(µ1, µ2, ρ)

π01(θ) = Prob(Y1 = 0, Y2 = 1) = φ(µ2)− Φ(µ1, µ2, ρ)

π00(θ) = Prob(Y1 = 0, Y2 = 0) = 1− φ(µ1)− φ(µ2)− Φ(µ1, µ2, ρ)

π0 = π00 + π01

µj = αj + βT
j Xj j = 1, 2

The ML estimator θ̂ maximizes the log-likelihood function in (4) over the parameter space Θ = Rk1+k2+2

×]−1; 1[. We implement this estimator — also called the probit model with sample selection in the literature
(Van de Ven and Van Praag 1981) — to produce the estimates presented in Table 7.

Semi-nonparametric estimation (SNP). The semi-nonparametric approach of Gallant and Nychka
(1987), originally proposed for estimation of density functions, was adapted to estimation of univariate
and bivariate binary-choice models by Gabler, Laisney, and Lechner (1993).
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The basic idea of SNP estimation is to approximate the unknown densities of the latent regression errors by
Hermite polynomial expansions and use the approximations to derive a pseudo-ML estimator for the model
parameters. The semiparametric specification of the log-likelihood functions have the same form as (4), with
the probability functions replaced by:

π11(θ1,θ2) = 1− F1(−µ1)− F2(−µ2) + F (−µ1,−µ2)

π10(θ1,θ2) = F2(−µ2)− F (−µ1,−µ2)

π01(θ1,θ2) = F1(−µ1)− F (−µ1,−µ2)

π00(θ1,θ2) = F (−µ1,−µ2)

where Fj is the unknown marginal distribution of εj in eqn. (1), and F is the unknown joint distribution of
(ε1,ε2). Following Gallant and Nychka (1987), the unknown joint density f is approximated by a Hermite
polynomial expansion:

f∗(x1, x2) =
1

S
[P (x1, x2)]2φ(x1)φ(x2) (12)

where φ(.) is the standardized gaussian density, P (x1, x2) is a polynomial of order r = (r1, r2), and S is a
normalizing constant that ensures that f∗ integrates to 1.

Adopting the SNP approximation to the density of the latent regression errors does not guarantee that they
have zero mean and unit variance. The zero-mean condition implies that some location restriction needs to
be imposed on either the distributions of the error terms, or the systematic part of the model. As a result, we
set the two intercept coefficients α1 and α2 to their parametric estimates. The Probit with sample selection
and its SNP equivalent do not yield estimates that are directly comparable because the SNP approximation
does not have unit variance. However, one can still compare the ratio of the estimated coefficients across
the two models.

SNP estimators can be obtained by maximizing the pseudo log-likelihood function (4) in which the unknown
distribution functions F , F1, and F2 are replaced by their approximations F ∗, F ∗1 , and F ∗2 . As shown
by Gallant and Nychka (1987), the resulting pseudo-ML estimator is

√
n-consistent provided that both r1

and r2 increase with the sample size. In practice, we select the values of r1 and r2 through a sequence of
likelihood-ratio tests.

Application to the mentor/Scholar data. Table A2 presents semi-nonparametric estimates which mirror
the parametric estimates displayed in Table 7. No coefficients estimates are reported for the constant term,
since these are set at the value implied by the equivalent parametric model in each column, as explained
above. Asymptotic properties of the SNP estimators require that the degree r of the Hermite polynomial
expansion increases with the sample size. In particular, SNP generalizes the Probit model only if R ≥ 3
(see Gabler et al. [1993]). In our application, many more observations are available to identify µ1 than are
available to identify µ2. As a result, in Models 4 and 5, the order of the Hermite polynomial is four for the
matching step, but only three for the outcome equation.2

We cannot compare the coefficient estimates presented in Table 7 with those presented in Table A3 because
of the normalization necessary to estimate the SNP models (cf. De Luca 2008). However, we use the delta
method to compute the ratio of the coefficient corresponding to postdoc adviser patenting with the coefficient
corresponding to the research patentability score, and we compare the value of this ratio with its Table 7
counterpart. In all five columns, the magnitudes for the ratio are very similar (though some of the estimates
are fairly imprecise). We conclude that the results of the Probit models in Table 7, despite the strong
distributional assumption on which they rely, imply substantive conclusions that are in line with those that
can be drawn from the more involved semi-nonparametric estimation routine.

2The results of likelihood-ratio tests indicate that higher order terms are not necessary.
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Appendix III
Impact of the Timing of Patenting Onset for the Postdoc Mentor

Our empirical approach presumes that the onset of patenting is a meaningful milestone in an academic life
scientist’s evolving research trajectory. In addition, our theoretical argument only applies to this setting
if attitudes towards commercializable research in general, and the decision to patent in particular, can be
imprinted on a junior researcher by his mentor during the time of his/her training period.

One possible falsification check is to verify that our imprinting result disappears, or is at least attenuated,
when the postdoctoral mentor starts patenting only after the Scholar has left his/her lab to start an in-
dependent career. This is explored in Table A3, which is largely patterned after Models (1) and (2) of
Table 6A. The first two columns of Table A3 use the entire Scholar sample, and include one additional
covariate: an indicator variable equal to one if the postdoc mentor started patenting after the departure of
the Scholar. In other words, the effect of the key covariate of interest (onset of mentor patenting before or
during the training period) should now be interpreted as relative to the background patenting hazard for
Scholars advised by mentors who never in the past patented, nor will patent at any point in the future.
Model (1) ignores the endogeneity of matching, while Model (2) weights the model with the same inverse
probability of treatment weights used in Model (2) of Table 6A. As can be observed, the magnitudes for
the covariate of interest increase slightly in these new specifications (relative to what can be observed in
Table 6A). Moreover, the coefficients for the post-training patenting onset are much smaller in magnitude
and not significantly different from zero.

Models (2) and (4) propose a small variant of the same idea. After dropping from the sample the Scholars
who were imprinted by their mentor during the training period, we simply contrast the Scholars whose
mentors patent after their departure with the Scholars whose mentors have never, and will never patent.
Once again, we find that the effect for the delayed onset indicator variable is small in magnitude, and
imprecisely estimated.

To summarize, the specificity of the effect we estimate with respect to the precise timing for the onset of
mentor patenting buttresses our claim that the estimates presented in Tables 6A correspond to a true social
influence which necessitate close interaction in the mentor’s lab.
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Table A1: Sample Patentability Weights in the year 2000 
  

Frequency 
of Use by 
Patenting 
Scientists 

Frequency 
of Use by 

Non-
Patenting 
Scientists 

MeSH 
Keyword 
Weight 

Group 1  
 Telomerase 275 68 2.1407 
 Adenovirus E1 Proteins 12 2 2.9214 
 Growth Cones 10 3 12.9760 
 Myelin P0 Protein 10 1 79.5711 
 Heterocyclic Compounds with 4 or More Rings 5 1 92.3742 
Group 2  
 Yersinia pseudotuberculosis 15 24 0.0767 
 Anemia, Megaloblastic 9 11 0.1604 
 Vitamin K 153 166 0.4466 
 Small Ubiquitin-Related Modifier Proteins 3 3 0.5259 
 Genes, p53 508 547 0.7281 
Group 3  
 Satellite Viruses 1 59 0.0100 
 Bacteriophage P22 1 49 0.0118 
 Chlamydomonas 5 283 0.0124 
 Autistic Disorder 19 675 0.0141 
 Twins, Dizygotic 5 232 0.0203 
Note: To illustrate the construction of MeSH keyword weights, we have chosen representative keywords in three 

categories. Group 1 keywords are typical of those that appear frequently in the work of patenting scientists, 
and infrequently in the work of non-patenting scientists. These keywords receive high patentability weights. 
Group 2 comprises keywords that occur frequently in the journal articles of both patenting and non-patenting 
scientists. Keywords in this group garner intermediate weights. Group 3 contains keywords that are very 
common in the research of non-patenting scientists but uncommon in the work of patenters. In consequence, 
these keywords receive low weight. 
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Table A2: Semi-Nonparametric Estimation, with and without Sample 
Selection 

Subsample 
All 

Scholars 
US 

Scholars 
Foreign 
Scholars 

US 
Scholars 

Foreign 
Scholars 

Model 
SNP Estimator 

(Gabler et al. 1993) 
SNP Estimator with Sample 

Selection (De Luca 2008) 

Exclusion Restrictions N/A N/A N/A 

Undergrad 
& Postdoc 
University 
in Same 
State 

Both Scholar 
& Postdoc 
from Same 

Foreign 
Country 

(1) (2) (3) (4) (5) 
1: Postdoc Mentor was a 
Patenter 

0.253† 0.696 0.571 0.266 0.750* 
(0.141) (0.441) (0.365) (0.188) (0.298) 

2: Research Patentability Stock 
0.368 0.883** 0.969* 0.296* 2.276* 

(0.354) (0.200) (0.425) (0.142) (0.908) 

Female 
-0.391* -0.754* -0.876† -0.455† -1.127† 

(0.187) (0.370) (0.475) (0.241) (0.584) 

MD/PhD 
0.342 0.738† -0.407 0.635† 0.044 

(0.582) (0.387) (0.422) (0.357) (0.478) 

Log(University NIH $) 
-0.175* -0.064 -0.346** -0.123* -0.459** 

(0.072) (0.127) (0.112) (0.057) (0.049) 

Log(University Patents) 
0.082 -0.047 0.221† 0.086 0.421* 

(0.156) (0.292) (0.118) (0.092) (0.182) 

1/2 [Parametric, from Table 7] 0.773 0.963 0.586 0.856 0.563† 
(0.352) (0.610) (0.298) (0.565) (0.299) 

1/2 [Semi Non-Parametric] 0.686 0.788† 0.589* 0.898 0.330† 
(0.480) (0.443) (0.287) (0.743) (0.179) 

 0.172 -0.113 

Order of Hermite Polynomial 3 3 3 3;4 3;4 

Log-pseudolikelihood -266 -200 -60 -1,639 -495 

Observations (Scholars) 489 368 121 368 121 

Nb. of Postdoc Mentors 333 262 102 333 333 

Potential Dyads       9,678 3,097 
Note: Research patentability, university patents and university NIH funding are measured as of 2007—the end of our observation 
period. Models (2) and (4) include eleven cohort indicator variables. Models (3) and (5) include four cohort indicator variables. All 
models also include on the right hand side all the covariates in the matching equations (cf. Models (1) and (2) in Table 5, which 
reports estimates for the first stage matching equations). Though these covariates are included, we do not report the corresponding 
estimates since they are not of substantive interest in the second stage outcome equations. We also do not report the coefficients 
for the bases of the Hermite polynomial extension. 
 
Robust standard errors, clustered at the postdoc mentor level reported in parentheses below each coefficient estimate. 
†significant at 10%; *significant at 5%; **significant at 1%. 
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Table A3: Exploring the Impact of the Timing of Patenting Onset 
for the Postdoc Mentor 
 (1) (2) (3) (4) 

Subsample All Scholars 
Excl. Mentors who 
started patenting 
prior or during  

IPT Weights No Yes No Yes 
Postdoc Mentor started patenting before (or during) 
the Scholar’s affiliation with his/her lab 

0.672** 0.971**   
(0.212) (0.268)   

Postdoc Mentor starts patenting after the Scholar’s 
departure 

0.267 0.210 0.220 0.145 
(0.230) (0.304) (0.236) (0.335) 

Research Patentability Flow, no lag 4.173** 4.883† 6.406* 1.629 
(1.303) (2.709) (3.228) (3.315) 

Research Patentability Stock (lagged 1-year) 1.010* 0.220 0.119 0.044 
(0.474) (0.686) (0.582) (0.661) 

Female -0.721** -0.926** -0.956** -1.053* 
(0.242) (0.293) (0.366) (0.469) 

MD/PhD 0.460* 0.611* 1.014** 1.290** 
(0.221) (0.297) (0.258) (0.331) 

Log(University NIH $) -0.220* -0.111 -0.278† -0.110 
(0.097) (0.138) (0.165) (0.212) 

Log(University Patents) 0.092 0.068 0.142 0.052 
(0.073) (0.102) (0.121) (0.178) 

Constant  -2.078 -4.061 -0.917 -2.911 
(1.897) (2.620) (2.949) (3.579) 

Log-pseudolikelihood 5250 5250 3,003 3,003 
Observations (Scholars) -676 -39,781 -343 -18,007 
Nb. of Postdoc Mentors 489 489 264 264 

Note: Discrete-time hazard rate models, with estimates are displayed as raw coefficients. All models include Scholar-
cohort indicator variables, and a full suite of calendar-year indicator variables (not reported). Research patentability is 
a measure of the underlying patentability of a Scholar’s research, derived from the publication and patent records of 
9,000 life scientists (see Appendix I). 
 
Robust standard errors, clustered at the postdoc mentor level reported in parentheses below each coefficient estimate. 
† significant at 10%; * significant at 5%; ** significant at 1%. 




