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The authors test methods, based on cognitively simple decision rules,
that predict which products consumers select for their consideration sets.
Drawing on qualitative research, the authors propose disjunctions-of-
conjunctions (DOC) decision rules that generalize well-studied decision
models, such as disjunctive, conjunctive, lexicographic, and subset
conjunctive rules. They propose two machine-learning methods to
estimate cognitively simple DOC rules. They observe consumers’
consideration sets for global positioning systems for both calibration and
validation data. They compare the proposed methods with both machine-
learning and hierarchical Bayes methods, each based on five extant
compensatory and noncompensatory rules. For the validation data, the
cognitively simple DOC-based methods predict better than the ten
benchmark methods on an information theoretic measure and on hit
rates. The results are robust with respect to format by which
consideration is measured, sample, and presentation of profiles. The
article closes with an illustration of how DOC-based rules can affect
managerial decisions.
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Consideration decisions are managerially important. For
example, General Motors has invested heavily in product
design and quality; in 2007, Buick tied Lexus for the top

spot in J.D. Power and Associates’ vehicle dependability
ranking, and in 2008, Buick was the top U.S. brand in Con-
sumer Reports. However, roughly half of U.S. consumers
(64% in California) will not even consider a Buick. Because
the typical consumer considers fewer than 10 vehicles when
shopping for a new vehicle, top managers at General Motors
are interested in understanding how consumers decide
which 10 of the 350-plus make–model combinations to con-
sider further. To direct strategies, they would like to model
the features consumers use to screen products for further
consideration. They would like a model that can forecast
changes in consideration as a function of changes in prod-
uct lines or changes in the features that are emphasized in
marketing activities.
Two-stage, consider-then-choose decision rules are par-

ticularly relevant in the automobile market, but modeling
and forecasting such decision rules is of general interest.
When consumers face a large number of alternative prod-
ucts, as is increasingly common in today’s retail and Web-
based shopping environments, they typically screen the full
set of products down to a smaller, more manageable consid-
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write J, L, and F as dependent (e.g., Lf). The models and
estimation can (and do) handle such dependency, but the
notation is cumbersome. Let xjfl = 1 if profile j has feature f
at level l; otherwise, xjfl = 0. Let be the binary vector (of
length LF) describing profile j. Let yhj = 1 if we observe that
respondent h considers profile j; otherwise, yhj = 0. Let h
be the binary vector describing respondent h’s consideration
decisions.

Noncompensatory Decision Rules

Commonly studied noncompensatory rules include
disjunctive, conjunctive, lexicographic, elimination-by-
aspects, and subset conjunctive rules (e.g., Gilbride and
Allenby 2004, 2006; Jedidi and Kohli 2005; Montgomery
and Svenson 1976; Ordóñez, Benson, and Beach 1999;
Payne, Bettman, and Johnson 1988; Yee et al. 2007). Subset
conjunctive rules generalize disjunctive and conjunctive
rules (Jedidi and Kohli 2005). For consideration decisions,
they also generalize lexicographic rules and deterministic
elimination-by-aspects because any implied ranking of
products by lexicographic feature-level orders is indetermi-
nate if only the consideration decision is observed (Hogarth
and Karelaia 2005; Johnson, Meyer, and Ghose 1989;
Montgomery and Svenson 1976; Payne, Bettman, and John-
son 1988; Tversky 1972).
Disjunctive rules. In a disjunctive rule, a profile is con-

sidered if at least one of the features is at an “acceptable”
(or satisfactory) level. Let ahfl = 1 if level l of feature f is
acceptable to respondent h; otherwise, ahfl = 0. Let be the
binary vector of acceptabilities for respondent h. A disjunc-
tive rule states that respondent h considers profile j if

.
Conjunctive rules. In a conjunctive rule, a profile is con-

sidered if all the features are at an acceptable level. (Con-
junctive rules usually assume a larger set of acceptable lev-
els than disjunctive rules, but this is not required.) Because
the use in each rule is clear in context, we use the same
notation: In a conjunctive rule, respondent h considers pro-
file j if .
Subset conjunctive rules. In a subset conjunctive rule, a

profile is considered if at least S features are at an accept-
able level. Using the same notation, respondent h considers
profile j if . A disjunctive rule is a special case in
which S = 1, and because can never exceed F, a con-
junctive rule is a special case in which S = F. We denote
subset conjunctive rules by Subset(S). (Subset conjunctive
rules are mathematically equivalent to “image-theory” rules
in organizational behavior [see Ordóñez, Benson, and
Beach 1999].)

Additive and q-Compensatory Decision Rules

Perhaps the most pervasively studied decision rules are
additive rules. In an additive rule, consumers consider a
profile if its “utility” is above some threshold, Th, which
accounts for search and processing costs. If is the vector
of partworths for respondent h, then h considers profile j if

. For estimation, we model errors in the decisions.
Many researchers have demonstrated that an additive part-

worth rule can mimic lexicographic, subset conjunctive, and
conjunctive rules (e.g., Jedidi and Kohli 2005; Kohli and
Jedidi 2007; Olshavsky and Acito 1980;Yee et al. 2007). To
explore whether a model might predict better if it is con-
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eration set, which they then evaluate further (e.g., Bronnen-
berg and Vanhonacker 1996; DeSarbo et al. 1996; Hauser
and Wernerfelt 1990; Jedidi, Kohli, and DeSarbo 1996;
Mehta, Rajiv, and Srinivasan 2003; Montgomery and Sven-
son 1976; Payne 1976; Roberts and Lattin 1991; Shocker et
al. 1991; Wu and Rangaswamy 2003). Consideration sets
for packaged goods typically comprise 3–4 products rather
than the 30–40 products on the market (Hauser and Werner-
felt 1990; Urban and Hauser 2004). Forecasting considera-
tion sets can explain approximately 80% of the explainable
uncertainty in consumer decision making (assuming equally
likely choice within the consideration set; Hauser 1978). In
complex product categories, research suggests that at least
some consumers use noncompensatory decision processes
when evaluating many products and/or products with many
features (e.g., Payne, Bettman, and Johnson 1988, 1993).
In this article, we explore machine-learning algorithms

based on noncompensatory decision rules that model con-
sumers’ decisions in the consideration stage of a consider-
then-choose process. We measure consideration directly for
a moderately complex product, handheld global positioning
systems (GPSs), and assuming a general form of noncom-
pensatory decision rules, we attempt to model the noncom-
pensatory patterns that best predict consumers’ considera-
tion decisions. The general form, disjunctions of
conjunctions (DOC), is motivated by qualitative data and
nests several previously studied rules. We argue further that
modeling and controlling for cognitive simplicity enhances
predictive ability.
We compare the DOC-based machine-learning algo-

rithms with two sets of benchmarks. The first set includes
alternative machine-learning algorithms that assume either
compensatory decision rules or previously published non-
compensatory decision rules. The second set includes hier-
archical Bayes (HB) methods for the same compensatory
and noncompensatory rules. In this product category, the
proposed DOC-based machine-learning methods predict
consideration sets better than the benchmarks using two
metrics—hit rates and an information-theoretic measure. In
almost all comparisons, predictions are significantly better
statistically.
We demonstrate that the basic conclusions are robust with

respect to format by which consideration is measured (four
formats tested), sample (a German representative sample
versus a U.S. student sample), and presentation of profiles
(pictures versus text). We close by illustrating how the mod-
eled noncompensatory patterns affect managerial decisions
differently than additive decision rules.

NOTATION AND ESTABLISHED DECISION RULES

We focus on data in which respondents are asked to indi-
cate which of several product profiles (32 in our experi-
ments) they would consider. Respondents are free to select
any size consideration set. In some formats, respondents
classify each profile as considered or not considered; in
other formats, they do not need to evaluate every profile.
We explore situations in which features are described by

finitely many levels. Let j index the profiles, l index the lev-
els, f index the features (sometimes called “attributes” in the
literature), and h index the respondents. Let J, L, F, and H
be the corresponding numbers of profiles, levels, features,
and respondents. For ease of exposition only, we do not
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aspect. A pattern is a conjunction of aspects or their nega-
tions, such as (B&W screen $399). We define the size,
s, of a pattern as the number of aspects in the pattern. For
example, (B&W screen $399) has size s = 2. If p
indexes patterns, we say that a profile j matches pattern p if
profile j contains all aspects (or negations) in pattern p.
We study rules in which a respondent considers a profile

if the profile matches one or more target patterns. Because
each pattern is a conjunction, these logical rules are disjunc-
tions of conjunctions. These DOC rules generalize disjunc-
tive rules (disjunctions of patterns of size 1), conjunctive
rules (patterns of size F), and subset conjunctive rules (pat-
terns of size S).1
Let whp = 1 if pattern p is one of the patterns describing

respondent h’s decision rule, and let mjp = 1 if profile j
matches pattern p. Otherwise, whp and mjp are zero. Let
and be the corresponding binary vectors with length
equal to the number of allowable patterns in a DOC rule. A
DOC rule implies that respondent h considers profile j if and
only if .

Cognitive Simplicity

The DOC rules generalize previously proposed noncom-
pensatory decision rules, but they might be too general. For
example, any profile can be described by a pattern of size F.
Thus, any consideration set of size n can be fit perfectly
with a disjunction of n conjunctions of size F. Fortunately,
experimental evidence suggests that consumers make con-
sideration decisions with relatively simple rules that enable
them to make good decisions while avoiding excess cogni-
tive effort (e.g., Bettman, Luce, and Payne 1998; Bröder
2000; Gigerenzer and Goldstein 1996; Gigerenzer, Todd,
and the ABC Research Group 1999; Hogarth and Karelaia
2005; Martignon and Hoffrage 2002; Payne, Johnson, and
Bettman 1988, 1993; Shugan 1980; Simon 1955). This per-
spective of simple, efficient, search-and-evaluation rules is
consistent with economic theories of consideration-set for-
mation that posit that consumers balance search costs with
the option value of utility maximization (Hauser and Wern-
erfelt 1990; Roberts and Lattin 1991). To capture this “cog-
nitive simplicity,” we define DOC(S) rules as the set of
DOC rules with maximum pattern length S. In addition, we
either limit the number of patterns, P, or penalize DOC rules
that have large P.

MACHINE-LEARNING APPROACHES TO IDENTIFY
DOC PATTERNS

For a set of respondents and profiles, the basic data we
observe are whether a respondent considers a profile (yhj).
We attempt to identify the patterns that predict best how
respondent h evaluates profiles. Using a calibration sample,
we seek patterns such that whenever we observe
that profile j is considered and such that when-
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∨strained to be compensatory, we follow Bröder (2000) and
Yee and colleagues (2007), who specify a q-compensatory
model by constraining the additive model so that no fea-
ture’s importance is more than q times as large as another
feature’s importance. (Hogarth and Karelaia [2005] and
Martignon and Hoffrage [2002] use related constraints. A
feature’s importance is the difference between the maxi-
mum and the minimum partworths for that feature.)

DOC

To study consideration-set decisions, we began with a
qualitative study that used in-depth interviewing of 39 auto-
mobile consumers who were asked to describe their consid-
eration decisions for 100 real automobiles balanced to mar-
ket data. All interviews were videotaped, and the videos
were evaluated by independent judges who were blind to
any hypotheses about consumers’ decision rules (Hughes
and Garrett 1990; Perreault and Leigh 1989). Most respon-
dents made consideration decisions rapidly (89% averaged
less than 5 seconds per profile), and most used noncompen-
satory decision rules (76%). Typically, consumers used
conjunctive-like criteria defined on specific levels of fea-
tures. However, some consumers would consider an auto-
mobile if it satisfied at least one of multiple conjunctive cri-
teria (i.e., a disjunction of two or more conjunctions).
For example, the following respondent considered auto-

mobiles that satisfied either of two criteria. The first crite-
rion is clearly conjunctive (good styling, good interior
room, excellent mileage). The second criterion allows for
cars that are “hot rods,” which usually have poor interior
room and poor mileage.

[I would consider the Toyota Yaris because] the styling
is pretty good, lot of interior room, mileage is supposed
to be out of this world.

I definitely [would] consider [the Infinity M-Sedan],
though I would probably consider the G35 before the
“M”. I like the idea of a kind of a hot rod.

Depth interviewing is, by necessity, based on a small
sample. From the sample, we could not determine whether
multiple conjunctions were pervasive or limited to a subset
of consumers. However, qualitative interviewing in the
handheld GPS category also identified some consumers
who used multiple conjunctions. A respondent might be
willing to consider a GPS with a black-and-white (B&W)
screen if the GPS was small and the screen was high resolu-
tion, but this same respondent would require a color screen
on a large GPS. Such rules can be written as logical pat-
terns: (B&W screen small size high resolution) ∨ (color
screen large size), where is the logical “and” and ∨ is
the logical “or.” Patterns might also include negations ( );
for example, a consumer might accept a B&W screen as
long as the GPS is less than the highest price of $399:
(B&W screen $399).

Formal Definition of DOC Rules

To study this phenomenon further, we formalize these
qualitative insights with a class of decision rules that gener-
alizes previously-proposed rules. Following Tversky
(1972), we define an aspect as a binary descriptor, such as
“B&W screen.” A profile either has or does not have an

∨
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1In the Web Appendix (http://www.marketingpower.com/jmrjune10), we
formally demonstrate that (1) disjunctive rules, subset conjunctive rules of
pattern length 1, and DOC rules of maximum pattern length 1 are equiva-
lent; (2) conjunctive rules and subset conjunctive rules of pattern length F
are equivalent and a subset of the DOC rule; and (3) subset conjunctive
rules of pattern length S can be written as DOC rules, but there are DOC
rules of maximum pattern length S that cannot be written as subset con-
junctive rules of pattern length S.

http://www.marketingpower.com/jmrjune10
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Mathematical Programming (DOCMP)

Because we seek the binary vector, , that best matches
patterns in the calibration data, we formulate an integer pro-
gram such that whp must be either 0 or 1 for all p. For
respondent h, we define false positives, FPh( ), as the
number of profiles predicted to be considered but observed
as not considered, and we define false negatives, FNh( ),
as the number of profiles predicted to be not considered but
observed to be considered. In its most basic form, the inte-
ger program (DOCMP) would choose the that mini-
mizes the sum of false positives and false negatives for
respondent h.
We enforce cognitive simplicity (complexity control) by

limiting the search to patterns of length S or less and by
penalizing pattern length, P. We include shrinkage with
terms proportional to the sum of false positives and false
negatives in the sample (sum over all respondents). For-
mally, the objective function is as follows:

Note that DOCMP is equivalent to a set-covering problem
and, thus, is an NP-hard problem (Cormen et al. 2001).
Fortunately, efficient greedy approximation algorithms have
been developed and tested for this class of problems (Feige
1998; Lund and Yannakakis 1994). Alternatively, DOCMP
can be solved approximately with a linear-programming
relaxation in which we first allow to be continuous on
[0, 1] and then round up any positive whj that is above a
threshold (see Hastie, Tibshirani, and Friedman 2003, and
the references therein). In our estimations, we use both the
greedy and the relaxation methods, choosing the solution
that provides the best value of the objective function (using
calibration data only, no data from the validation profiles).
The DOCMP requires three exogenous parameters: γM,

which tells us how much to penalize a lack of sample-level
fit; γc, which tells us how much to penalize the number of
patterns; and S, which sets the maximum pattern length.
One method to select these parameters is leave-one-out
cross-validation (e.g., Cooil, Winer, and Rados 1987; Efron
and Tibshirani 1997; Evgeniou, Pontil, and Toubia 2007;
Hastie, Tibshirani, and Friedman 2003; Kearns and Ron
1999; Kohavi 1995; Shao 1993; Toubia, Evgeniou, and
Hauser 2007; Zhang 2003). Specifically, for potential val-
ues of the exogenous “tuning” parameters, we leave out one
profile from the calibration data, estimate , predict
consideration for the left-out profile, and choose “tuning”
parameters to minimize prediction errors on the holdout
profiles. (No data from any holdout or validation
observations are used in leave-one-out cross-validation.)
In the data, neither the leave-one-out cross-validation nor

out-of-sample predictions are particularly sensitive to the
choice of “tuning” parameters within ranges that roughly
match a priori beliefs. Such robustness is consistent with
Evgeniou, Pontil, and Toubia (2007). Specifically, we can
choose any γM that is an arbitrarily small number such that
sample-level consideration is used only to break ties among
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ever we observe that profile j is not considered. (Recall that
and are binary.)
The number of allowable DOC(S) patterns grows rapidly

with S. For example, with the 16 binary features in the
empirical test, there would be 32 patterns for S = 1, 512 for
S = 2, 4992 for S = 3, and 34,112 for S = 4. There would be
approximately 20 million patterns of length S = 10. With
only 32 binary observations (consider versus not consider),
there is serious concern about overfitting because the vec-
tor, , which we attempt to estimate, has a length equal to
this large number of allowable patterns.
Machine learning is particularly suited to this pattern-

matching task. Qualitative interviews suggest that it is not
unreasonable for patterns to be up to length S = 4, which
requires that we search more than 34,000 patterns to find
those that best fit the data. Although we might place priors
on each pattern and use Bayesian methods, we have not yet
been able to develop a Bayesian representation in which the
posterior is robust with respect to exogenously set priors for
the large number of parameters. We leave exploration of
Bayesian DOC models to further research.
Rather than producing posterior probabilities of pattern

inclusion, we seek binary indicators of whether a pattern is
in the best-fit solution. If the data are too noisy or the solu-
tion space is too large (even if we control for cognitive sim-
plicity), predictions could overfit the data and predict poorly.
To be sensitive to this concern, we compare models using
predictive tests in which respondents face an entirely new
set of profiles and report consideration for those profiles.

Cognitive Simplicity and Complexity Control

Although we used cognitive simplicity to motivate small
S and P, such constraints or penalties have an alternative
interpretation within machine learning—namely, complex-
ity control (e.g., Cucker and Smale 2002; Evgeniou, Bous-
sios, and Zacharia 2005; Hastie, Tibshirani, and Friedman
2003; Langley 1996; Vapnik 1998). Limiting the complex-
ity of a model often reduces in-sample overfitting and
enhances out-of-sample prediction. Both the behavioral
explanation and the complexity-control motivation are con-
sistent with the DOC(S) models—we cannot rule out either
with the data in this study.

Sample Shrinkage

To further distinguish among potential patterns, we use
data from the entire sample to help select patterns for
respondent h. In an analogy to shrinkage, which enhances
accuracy in HB models (e.g., Rossi and Allenby 2003), we
favor patterns that fit the largest subset of respondents.
Although shrinkage alone is sufficient motivation for use in
our models, shrinkage is consistent with behavioral theories
that suggest that simple rules have evolved because they
work well in the general environment in which a sample of
consumers often make decisions (e.g., Chase, Hertwig, and
Gigerenzer 1998). These researchers hypothesize that con-
sumers continue to use similar (simple) rules when faced
with new decisions.
We now briefly summarize two machine-learning meth-

ods. Detailed equations are available in the Web Appendix
(http://www.marketingpower.com/jmrjune10).
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Disjunctions of Conjunctions 489

patterns. For γc, cross-validation (and predictive tests) varies
little in the range γc ∈ [1, 4.5]. Similarly, we can select a
cognitively simple S to be within ranges that we observe in
qualitative interviews (S ~ 2, 3, 4). We report S = 4 for ease
of exposition.

Logical Analysis of Data (LAD-DOC)

Logical analysis of data (LAD), which attempts to
distinguish “positive” events from “negative” events, is
another approach to generate patterns (Boros et al. 1997;
Boros et al. 2000). We control cognitive simplicity by
limiting the search to at most P patterns of at most size S.
We define positive patterns as patterns that match at least
one considered profile but no nonconsidered profile.
Following the “bottom-up” approach that Boros and
colleagues (2000) describe, we begin by generating minimal
patterns of length one that match some considered profiles.
If such patterns are not contained in any nonconsidered
profile, they are positive patterns. Otherwise, we add
aspects to the patterns one by one until we generate positive
pattens, or until we reach maximum length (S). Next, we
use a greedy algorithm to identify up to P positive patterns
that best fit the data, breaking ties first by giving preference
to shorter patterns and then patterns that are positive most
often in the sample. The union of these positive patterns is a
DOC rule. Thus, LAD-DOC provides a contrast to DOCMP.
It is simpler to formulate and takes less time to run, but it
shares the characteristics of selecting patterns that best fit
the data subject to cognitive simplicity (S, P) and shrinkage
(break ties to fit sample-level consideration). A potential
weakness is that the implementation of LAD focuses pri-
marily on avoiding false positives (in the calibration data)
rather than a combination of false positives and false nega-
tives. For comparability to DOCMP, we set S = 4 and P = 2,
but out-of-sample predictions are comparable for P ~ 2, 3,
or 4 and S ~ 4 or 5.

BENCHMARKS

As benchmarks, we choose five decision rules. We esti-
mate these rules with both machine-learning and HB meth-
ods. The decision rules are as follows:

1. Additive partworth rules,
2. Additive q-compensatory rules,
3. Disjunctive rules,
4. Conjunctive rules, and
5. Subset conjunctive rules.

The machine-learning estimations use objective func-
tions comparable to Equation 1. For the additive and q-
compensatory rules, we penalize the sum of the partworths
rather than the number of patterns. Detailed formulations are
available in the WebAppendix (http://www.marketingpower.
com/jmrjune10).
The HB methods mimic extant methods to the greatest

extent possible. For the additive and q-compensatory rules,
we use standard HB choice-based conjoint formulations
adapted to the dependent variable (consideration versus not).
We use rejection sampling to enforce the q-compensatory
constraint (e.g., Allenby, Arora, and Ginter 1995). For sub-
set conjunctive rules, we modify an algorithm that Gilbride
and Allenby (2004) developed. The modifications reflect
differences in data and generalization (S = 1 or F in Gilbride

and Allenby [2004]). As data, we observe consideration
directly, while it is a latent construct in Gilbride and
Allenby’s formulation. To address unordered multilevel fea-
tures, we do not impose constraints that levels within a fea-
ture are ordered. Detailed HB formulations are available
in the Web Appendix (http://www.marketingpower.com/
jmrjune10).
For the subset conjunctive rules, we select S = 4 to be con-

sistent with the DOC rules. (Predictive tests for other values
of S are available on request.2) In addition to detailed for-
mulations, the Web Appendix (http://www.marketingpower.
com/jmrjune10) also contains simulations that compare
some of the benchmarks with DOC-based methods on syn-
thetic data.3

EMPIRICAL APPLICATION: GPS

We chose to study GPSs because the number of features
and brands available is sufficiently large that we might
expect some noncompensatory decision rules. Figure 1
illustrates 16 features that consumers use to evaluate hand-
held GPSs. We chose these features as the most important
on the basis of two pretests of 58 and 56 consumers, respec-
tively. Of the features, 10 are represented by text and icons,
and the remaining 6 are represented by text and visual cues.
Using the 16 features, we generated an orthogonal design

of 32 GPS profiles.4 We then developed four alternative for-
mats to measure consideration. We developed these respon-
dent task formats on the basis of qualitative pretests to
approximate the shopping environment for GPSs. Each
respondent task format was implemented in a Web-based
survey and was pretested extensively with more than 55
potential respondents from the target market. At the end of
the pretests, respondents found the tasks easy to understand
and reported that the task formats were reasonable represen-
tations of the handheld GPS market.
We invited two sets of respondents to complete the Web-

based tasks: a representative sample of German consumers
who were familiar with handheld GPSs and a U.S.-based
student sample. We first describe the results from the pri-
mary format using the German sample of representative
consumers. We then discuss the other formats, the student
sample, and a text-only version.
Figure 2 provides screenshots in English and German for

the basic format. A “bull pen” is on the far left. As respon-
dents move their cursor over a generic image in the bull pen,
a GPS appears in the middle panel. If respondents click on
the generic image, they can evaluate the GPS in the middle
panel and decide whether to consider it. If they decide to
consider the GPS, its image appears in the right panel.
Respondents can toggle between current consideration sets
and their current nonconsidered sets. There are many ways

2The basic relative comparisons with DOC-based models are similar for
S ~ 1, 2, 3, or 4.
3The simulations are consistent with intuition and with empirical results

in the domain suggested by the empirical data. For example, when the data
are generated with a particular decision rule, the estimation models that
assume that decision rule tend to predict (out of sample) best.
4To make the task realistic and to avoid dominated profiles (Johnson,

Meyer, and Ghose 1989), we manipulated price as a two-level price incre-
ment. Profile prices were based on this increment plus additive feature-
based costs. We return to the issue of orthogonal designs at the end of this
section.

http://www.marketingpower.com/jmrjune10
http://www.marketingpower.com/jmrjune10
http://www.marketingpower.com/jmrjune10
http://www.marketingpower.com/jmrjune10
http://www.marketingpower.com/jmrjune10
http://www.marketingpower.com/jmrjune10
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they can change their mind—for example, putting a GPS
back or moving it from the consideration set to the noncon-
sidered set, or vice versa. In this format, respondents con-
tinue until all GPSs are evaluated.

Before respondents made consideration decisions, they
reviewed screens that described GPSs in general and each
of the GPS features. They also viewed instruction screens
for the consideration task and instructions that encouraged
incentive compatibility. Following the consideration task,
respondents ranked profiles within the consideration set
(these data are not used in this article) and then completed
tasks designed to cleanse their memory. These tasks
included short brainteaser questions that directed respon-
dents’ attention away from GPSs. Following the memory-
cleansing tasks, respondents completed the consideration
task a second time but for a different orthogonal set of
GPSs. These second consideration decisions are validation
data and are not used in the estimation of any rules.
Respondents were drawn from aWeb-based panel of con-

sumers maintained by the GfK Group. Initial screening
eliminated respondents who had no interest in buying a GPS
and no experience using a GPS. Respondents who com-
pleted the questionnaire received an incentive of 200 points
(or punkte, in accordance with GfK) toward general prizes
and were entered into a lottery in which they could win one
of the GPSs (plus cash) that they considered. This lottery
was designed to be incentive aligned, as in Ding (2007) and
Ding, Grewal, and Liechty (2005). (Respondents who com-
pleted only the screening questionnaire received 15 punkte.)
In total, 2320 panelists were invited to answer the screen-

ing questions. The incidence rate (percentage eligible) was
64%, the response rate was 47%, and the completion rate
was 93%. Respondents were assigned randomly to one of
the five task formats (the basic format in Figure 2, three
alternative formats, and a text-only format). After eliminat-
ing respondents who had null consideration sets or null non-
considered sets in the estimation task, we retained 580
respondents. The average size of the consideration set (esti-
mation data) for the task format in Figure 2 was 7.8 profiles.
There was considerable variation among respondents (SD =
4.8 profiles). The average size of the consideration set in the
validation task was smaller (7.2 profiles) but not signifi-

Figure 1
FEATURES OF HANDHELD GPSs

Figure 2
CONSIDERATION TASK IN ONE OF THE FORMATS (ENGLISH

AND GERMAN)
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cantly different. Validation consideration-set sizes had an
equally large standard deviation (4.8 profiles).

PREDICTIVE TESTS

Criteria to Compare DOCMP, LAD-DOC, and the
Benchmarks

Hit rate is an intuitive measure that is used commonly
when comparing predictive ability. However, with average
consideration sets at approximately 7.2 of 32 (22.5%), a null
model that predicts that no GPSs will be considered will
achieve a hit rate of 77.5%. Thus, we follow Srinivasan
(1988), Srinivasan and Park (1997), and Payne, Bettman,
and Johnson (1993, p. 128) and report the percentage
improvement relative to a random-prediction null model.
Percentage improvement is a linear transformation of hit
rate, but it is easier to interpret.
More critically, the apparent strong performance of “pre-

dict nothing considered” suggests that we gain insight with
statistics that reward models that actually try to predict con-
sideration. The ability to predict the consideration-set size
can reject bad models, but it is not sufficient to evaluate a
good model. A null model of random prediction (propor-
tional to calibration consideration-set size) predicts the vali-
dation consideration-set size accurately but achieves a low
hit rate of 65.3% and provides no useful information (0%
relative hit rate improvement).
Instead, we consider a statistic that is sensitive to false

positive predictions, false negative predictions, and pre-
dicted consideration-set sizes in the validation data. In par-
ticular, we use the Kullback-Leibler divergence (K-L),
which measures the expected gain in Shannon’s information
measure relative to a random model (Chaloner and
Verdinelli 1995; Kullback and Leibler 1951; Lindley
1956).5 The K-L percentage is 0% for both the random null
model and the “predict nothing considered” null model. It is

100% for perfect prediction. The K-L percentage rewards
models that predict the consideration-set size correctly and
favors a mix of false positives and false negatives that
reflect true consideration sets over those that do not. It dis-
criminates among models even when the hit rates might oth-
erwise be equal. Together, the three statistics—hit rate, rela-
tive hit rate improvement, and the K-L percentage—provide
a means to assess relative predictive ability (DOC-based
models versus the benchmarks).

Predictive Comparison of DOCMP, LAD-DOC, and the
Benchmarks

Table 1 summarizes the ability of each estimation method
to predict consideration for the validation task. Focusing on
the comparison of DOC-based models with the benchmarks,
we find that DOC-based predictions are best or not signifi-
cantly different than best on both hit rates and K-L percent-
age measures and better than all benchmark estimation
methods on both measures. Furthermore, LAD-DOC pre-
dicts slightly better than DOCMP, but the difference is not
significant.
Among the benchmarks, the additive-rule models predict

well, with the machine-learning version predicting signifi-
cantly better than the HB version on both hit rate and K-L
percentage (t = 2.6, p < .02; t = 3.7, p < .01, respectively).
While the DOC-based methods are best or not significantly
different than best on all comparisons, the machine-learning
additive model is within 1–2 percentage points on hit rate.6
This is consistent with prior results on the robustness of the
linear model for empirical data (e.g., Dawes 1979; Dawes
and Corrigan 1974) and consistent with the ability of an
additive rule to nest some noncompensatory rules.

Table 1
EMPIRICAL COMPARISON OF ESTIMATION METHODS (REPRESENTATIVE GERMAN SAMPLE, TASK FORMAT IN FIGURE 2)

Overall Relative Hit Rate K-L Divergence
Estimation Method Hit Rate (%) Improvement (%) Percentage (%)

HB Benchmarks
Conjunctive (S = 16) 77.7 35.6 6.2
Disjunctive (S = 1) 66.7 3.8 17.8
Subset conjunctive (S = 4) 75.4 29.0 24.7
q-Compensatory 73.4 37.6 14.6
Additive 78.5 38.0 15.0

Machine-Learning Benchmarks
Conjunctive (S = 16) 52.6 –36.8 13.3
Disjunctive (S = 1) 77.5 35.6 8.1
Subset conjunctive (S = 4) 73.7 24.3 6.3
q-Compensatory 76.2 31.3 6.3
Additive 80.6 44.0 23.0

DOC-Based Estimation Methods
DOCMP (S = 4) 81.9* 47.8* 32.0*
LAD-DOC (S = 4, P = 2) 82.2* 48.6* 34.6*

*Best or not significantly different than the best at the .05 level.
Notes: Hit rate is the number of profiles predicted correctly, divided by 32.

6We find that LAD-DOC is significantly better than the best (machine-
learning) additive model on both hit rate and K-L divergence (t = 2.4, p <
.02; t = 4.6, p < .01), and DOCMP is better, but not quite significantly so,
on hit rate and significantly better on K-L divergence (t = 1.9, p = .06; t =
4.1, p < .01). One reason the additive model does less well on the K-L per-
centage is that it underpredicts the consideration-set size. We examine the
predictive ability of the additive model further in the next section.

5Formulae for K-L percentage for consideration-set prediction are avail-
able in the Web Appendix (http://www.marketingpower.com/jmrjune10).
K-L acts for 0-versus-1 predictions much like U2 does for probabilistic pre-
dictions (Hauser 1978).

http://www.marketingpower.com/jmrjune10


resolution of the design, and if there were no errors, we
should be able to identify DOC patterns accordingly. How-
ever, when profiles are removed, aspects may no longer be
uncorrelated, and patterns may not be defined uniquely. As
a mild test, we reestimated three models—DOCMP,
machine-learning additive, and HB additive—with only 17
of the 32 most popular profiles (Numbers 16 and 17 were
tied). The results show that DOCMP remained significantly
better on the K-L percentages and best or not significantly
different than best on hit rates, even though we are now esti-
mating the models with approximately half the observations
per respondent.
Until the issue of optimal DOC consideration experimen-

tal designs is resolved, the performance of DOC-based esti-
mation methods remains a conservative predictive test.
Improved or adaptive experimental designs might improve
performance.

Summary of Empirical Results

The DOC-based estimation appears to predict hit rates
well and to provide information (K-L percentage) about
consideration decisions on validation data. Predictions
appear to be better with DOC-based estimation than with any
of the other five decision rules for both machine-learning and
HB estimation, though an unconstrained machine-learning
additive model (which can represent some noncompen-
satory rules) comes close. Some of this improvement is due
to cognitive simplicity.

TARGET POPULATION, TASK FORMAT, AND PROFILE
REPRESENTATION

We examine hypotheses that the predictive ability is
unique to the task format, to the GfK respondents, or to the
way we present profiles. We discuss each in turn.

Variations in Task Formats

With the format analyzed in the previous section, respon-
dents must evaluate every profile (“evaluate all profiles”).
However, such a restriction may be neither necessary nor
descriptive. For example, Ordóñez, Benson, and Beach
(1999) argue that consumers screen products by rejecting
products they would not consider further. Because choice
rules are context dependent (e.g., Payne, Bettman, and
Johnson 1993), the task format could influence the propen-
sity to use a DOC rule.
To examine context sensitivity, we tested alternative task

formats. One format asked respondents to indicate only the
profiles they would consider (“consider only”); another
asked respondents to indicate only the profiles they would
reject (“reject only”). The tasks were otherwise identical to
“evaluate all profiles.” We also tested a “no-browsing” for-
mat, in which respondents evaluated profiles sequentially
(in a randomized order). Representative screenshots for
these formats, as well as feature introduction screenshots
and instruction screenshots, are available in the WebAppen-
dix (http://www.marketingpower.com/jmrjune10).
The predictive results mimic the results in Table 1.8 On

the K-L percentages, both DOC-based estimation methods
were significantly better than all benchmarks on all four for-
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Estimations based on the DOC generalization predict sig-
nificantly better than the noncompensatory benchmarks,
suggesting that the generalization improves predictions for
at least some of the respondents.7 The unconstrained addi-
tive models, which can represent both q-compensatory and
many of the noncompensatory models, predict better than
the q-compensatory models on both measures, significantly
so for the machine-learning algorithms (for hit rates, t = 2.1,
p < .04; for K-L, t = 9.4, p < .01). At the level of the individ-
ual respondent, some respondents are fit much better with
an unconstrained model, and some are fit much better with
a q-constrained model. Further research might investigate
correlates of these individual differences.
For brevity, we do not elaborate further on comparisons

among the benchmarks themselves. The data are available
for readers who want to explore machine learning, HB, or
other methods for the benchmark rules.

Empirical Evidence Is Consistent with Cognitive Simplicity

Although DOCMP and LAD-DOC are designed to favor
cognitive simplicity, unconstrained estimation could con-
ceivably predict better. We reestimated DOCMP with the γs
equal to zero and LAD-DOC without the S and P con-
straints. For both models, the hit rates are significantly bet-
ter for the penalized/constrained estimation (p < .01 versus
75.7% DOCMP without γs; p < .01 versus 80.4% LAD-
DOC without constraints, respectively). Cognitive simplic-
ity also improves the K-L percentage, but the improvements
are not quite significant (p < .16 versus 29.6%; p = .07 ver-
sus 32.5%, respectively, for unconstrained DOCMP and
LAD-DOC). These results are consistent with a hypothesis
that predictions improve when cognitive simplicity is
enforced, though the marginal significance for K-L percent-
ages suggests that the cognitive simplicity hypothesis is
worth further testing in other contexts.
Despite the large number of potential patterns, DOC-

based estimation chose relatively simple rules for the data.
The LAD-DOC predictions do not improve significantly,
and often degrade, as we increase either pattern length (S)
or the number of patterns (P). For DOCMP, 7.1% of the
respondents are represented as using two patterns; the
remainder are represented with a single pattern. The
increased flexibility of the DOC-based estimation methods
seems to improve predictive ability relative to alternative
noncompensatory rules and their corresponding estimation
methods, even though only 7.1% of the respondents are
modeled with two patterns.

Sensitivity to Orthogonal Designs

Significant research in marketing exists on efficient
experimental designs for choice-based conjoint experiments
(Arora and Huber 2001; Huber and Zwerina 1996; Kanni-
nen 2002; Toubia and Hauser 2007), but we are unaware of
any research on efficient experimental designs for consider-
ation decisions or for the estimation of cognitively simple
DOC rules. When decisions are made with respect to the
full set of 32 profiles, aspects are uncorrelated up to the

7We note the poor performance of the machine-learning subset conjunc-
tive model with S = 16. With S = 16 and a goal of choosing 0 versus 1 for
whp, the subset conjunctive integer program tends to overfit the calibration
data.

8Tables for the other formats are available in the Web Appendix
(http://www.marketingpower.com/jmrjune10).

http://www.marketingpower.com/jmrjune10
http://www.marketingpower.com/jmrjune10
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rates—and again, the additive machine-learning method
does as well on hit rate but not the K-L percentage. We can-
not distinguish with the data whether this is a text-only
effect or a result consistent with the analyses of the other
formats. Notably, there is no significant difference in hit
rates or K-L percentages between picture representations
and text representations for either DOCMP or LAD-DOC.

Summary of Robustness Tests

The relative predictive ability of the tested methods
appears to be robust with respect to the following:

•Format of the respondent task (evaluate all profiles, considera-
tion only, rejection only, or no browsing),
•Respondent sample (representative German versus U.S. stu-
dent), and
•Presentation of the stimuli (pictures versus text).

MANAGERIAL IMPLICATIONS AND DIAGNOSTICS

We were motivated to study consideration-set decisions
with a managerial challenge: How can a firm increase the
likelihood that its products will be considered?We hope that
by estimating DOC-based models, we might gain insight to
help a firm enhance consideration. If the improved predic-
tive ability of DOC-based models holds up to further test-
ing, market-response simulators using DOC-based models
might be more accurate than market-response simulators
based on conjunctive, disjunctive, subset conjunctive,
q-compensatory, or additive-rule decision rules (for a dis-
cussion of using predictive models to evaluate strategies, see
Geisser 1993). To illustrate how models affect managerial
decisions differently, we compare the simulated value of
feature improvements between estimated DOC rules and
estimated additive rules. (The data are available for readers
who want to explore other comparisons.)

Changes in Market Share as a Function of Feature
Improvements

Ofek and Srinivasan (2002, p. 401) propose that a value
of a feature should be defined as “the incremental price the
firm would charge per unit improvement in the product
attribute (assumed to be infinitesimal) if it were to hold mar-
ket share (or sales) constant.” In DOC rules, features and
price levels are discrete; thus, we modify this definition
slightly. We compute the incremental improvement in mar-
ket share if a feature is added for an additional $50 in price.
Because this calculation is sensitive to the base product, we
select the features of the base product randomly. We illus-
trate two of the many differences between DOC rules and
additive rules. In both situations, the recommended mana-
gerial decision depends on whether consumers consider
products using the estimated DOC rules or the estimated
additive rules.
Example 1. The DOC rules predict that consideration

share will increase if we switch to the Garmin GPS and
raise the price by $50, but compensatory rules predict that
consideration share will decrease. To understand this differ-
ence intuitively, we recognize that the estimated DOC rules
imply that 12% of the respondents screen on brand, and of
those, 82% screen on Garmin. The remaining respondents
screen on other features. With an additive partworth rule,
54% of the respondents have slightly higher partworths for

mats. On hit rate, at least one of the DOC-based estimation
methods was best on all formats, significantly better than all
benchmarks for the majority of the formats (three of four),
and significantly better than nine of the ten benchmarks for
the remaining format. On hit rate, the only estimation
method that did not differ significantly from a DOC-based
estimation method on that one format was the machine-
learning additive model—a result similar to that which we
observed in Table 1. To test DOC-based methods further, we
merged the data from the four formats and compared
DOCMP and LAD-DOC hit rates with the additive
machine-learning method. When the hit rate data are
merged, both DOCMP and LAD-DOC predict significantly
better than the additive machine-learning method (t = 4.4,
p < .01; t = 3.0, p < .01).
As the evaluation cost theory of consideration-set forma-

tion predicts, respondents considered fewer profiles when
the relative evaluation cost (for consideration) was higher:
4.3 profiles in “consider only,” 7.8 in “evaluate all,” and
10.6 in “reject only.” As the theory of context dependence
predicts, the propensity to use a second DOC pattern varied
as well. In addition, disjunctions were more common when
consideration sets were larger: 0% for “consider only,” 7.1%
for “evaluate all,” and 9.8% for “reject only.” Although the
data cannot distinguish whether these differences are due to
the size of the consideration set or due to differential evalua-
tion costs induced by task variation, they illustrate how the
predictive tests complement more direct (but possibly more
intrusive) experimental measures.

U.S. Student Sample Versus Representative German Sample

We replicated the evaluate-all-profiles GPS measurement
with a sample of MBA students at a U.S. university. Stu-
dents were invited to an English-language Web site (e.g.,
first panel of Figure 1). As incentives, and to maintain
incentive compatibility, they were entered in a lottery with
a 1-in-25 chance of winning a laptop bag worth $100 and a
1-in-100 chance of winning a combination of cash and one
of the GPSs that they considered. The response rate for U.S.
students was lower (26%), and on average, consideration-
set sizes were larger. Despite the differences in sample,
response rate, incentives, and consideration-set size, DOCMP
and LAD-DOC predicted validation data best (or were not
significantly different than the best) on both hit rates and K-L
percentages. (Again, the best benchmark was the additive
machine-learning model. Lower sample sizes for the U.S.
sample made it more difficult to distinguish differences.)

Text-Only Versus Visual Representation of the GPS Profiles

The profile representations in Figure 1 were designed by
a professional graphic artist and were pretested extensively.
Pretests suggested which features should be included in the
JPEGs and which features should be included as satellite
icons. Nonetheless, it is possible that the relative predictive
ability of the estimation methods depends on the specific
visual representations of the profiles. To examine this
hypothesis, we included a task format that was identical to
the task in “consider all profiles,” except that all features
were described by text rather than pictures, icons, and text.
Again, the DOC-based estimation methods are the best pre-
dictive methods—significantly better on K-L percentages
and best or not significantly different than the best on hit



the Magellan GPS. With DOC rules, the advantage to
Garmin comes from the 12% who screen on brand, but with
additive rules, the advantage to Magellan comes a little from
all the respondents in the sample.
Example 2. Additive rules predict that “extra bright” is

the highest-valued feature improvement, yielding an 11%
increase for the $50 price. However, the DOC rules predict
a much smaller improvement (2%) because many of the
respondents who screen on extra bright also eliminate GPSs
with the higher price.

Diagnostic Summaries of DOC Rules

Diagnostic summaries of additive partworths have been
developed through decades of application. Recent develop-
ments have added heterogeneity with corresponding chal-
lenges in how best to summarize heterogeneity to managers.
Diagnostic summaries of noncompensatory decision rules
are relatively nascent. Academics and practitioners are still
evolving the best way to summarize such rules for managers.
This challenge is exacerbated for DOC rules. Even with

cognitive simplicity (S = 4), there are 34,112 potential DOC
patterns. Listing each pattern that matches consideration in
a sample of respondents is not nearly as diagnostic as the
feature-improvement simulations, which aggregate across
identified patterns. As a first attempt, we examined sum-
maries of first- and second-order inclusion. (Gilbride and
Allenby [2004] and Yee and colleagues [2007] report first-
order inclusion.) For example, the mini-USB port appeared
in at least one DOC conjunction for 36% of the respondents.
Extra-bright displays (25%) and color displays (21%) were
the next-highest contributors. With second-order inclusions,
for example, respondents who want a long battery life also
want a mini-USB port (50%) and a color display (40%).
Such first- and second-order conjunctive inclusions provide
insight that complements DOC model–based market-
response simulators. As in the market-response simulations,
these simple diagnostics vary from what might be inferred
from additive partworths.
We hope that such diagnostic information combined with

market-response simulators will help managers evaluate
product line changes and marketing activities. With more
experience, researchers might develop more intuitive ways
to summarize DOC patterns for managers.

SUMMARY AND FUTURE DIRECTIONS

Consideration sets have become relevant to managerial
decisions in many product categories, and whenever there
are many products available and/or products are described
by many features and levels, extant research suggests that
consumers use noncompensatory decision rules to make
consideration decisions. Research further suggests that such
decision rules are often cognitively simple. We hope we
have contributed to these literature streams.
Drawing on qualitative research, we propose a generali-

zation of established noncompensatory decision rules:
DOC. We posit further that DOC rules will be cognitively
simple and that models that attempt to represent cognitively
simple DOC rules will predict better than models that do
not. We examine two machine-learning estimation methods,
DOCMP and LAD-DOC, and compare predictions with five
decision-rule models as implemented by both machine-
learning and HB estimation methods.
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The preponderance of the empirical evidence in this arti-
cle suggests that DOC rules and both estimation algorithms
are worth further investigation. Both are significantly better
on K-L percentages for all ten benchmarks, all four respon-
dent task formats, German and U.S. data, and both highly
visual and text-only stimuli. We obtain the same perspective
with hit rates with one important exception. The machine-
learning additive method does almost as well for some for-
mats, a result that is consistent with the known robustness
of the additive model and with ability of the additive model
to represent some noncompensatory decision rules.
The results must be considered hypotheses for further

testing. The handheld GPS category has many features, and
at the time of testing, it was relatively new to the respon-
dents. This provided a “proof-of-concept” test for DOC-
based methods. In more familiar or simpler categories, addi-
tive models might suffice. Conversely, more complex
categories, such as automobiles, might favor DOC rules.
We chose two methods to estimate DOC rules. There are

likely others. For example, decision trees can also represent
DOC rules (Breiman et al. 1984; Currim, Meyer, and Le
1988). If researchers can develop a way to model cognitive
simplicity on decision trees, this approach might prove
promising. If features are continuous, DOC rules are similar
to specific interactions in a multilinear decision rule (Bord-
ley and Kirkwood 2004; Mela and Lehmann 1995). With
sufficient creativity and experimentation, researchers might
extend finite-mixture, Bayesian, simulated maximum likeli-
hood, Markov, or kernel estimators to estimate cognitively
simple continuous DOC analogs (Evgeniou, Boussios, and
Zacharia 2005; Hauser and Wisniewski 1982; Mela and
Lehmann 1995; Rossi and Allenby 2003; Swait and Erdem
2007).
Finally, we focused on the consideration stage of a

consider-then-choose rule. The DOC rules might also apply
to the choice stage. A model that is DOC in the first stage
and compensatory in the second stage might also be investi-
gated. There is a rich history in marketing of two-stage
models in which consideration is a latent, unobserved con-
struct (e.g., Andrews and Srinivasan 1995; Gensch 1987;
Gilbride and Allenby 2004; Siddarth, Bucklin, and Morri-
son 1995; Swait and Erdem 2007). We believe that DOC
rules combined with cognitive simplicity could complement
these lines of research.
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