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hen is it better to use agent-based (AB) models, and when should differential equation (DE) models be

used? Whereas DE models assume homogeneity and perfect mixing within compartments, AB models
can capture heterogeneity across individuals and in the network of interactions among them. AB models relax
aggregation assumptions, but entail computational and cognitive costs that may limit sensitivity analysis and
model scope. Because resources are limited, the costs and benefits of such disaggregation should guide the
choice of models for policy analysis. Using contagious disease as an example, we contrast the dynamics of a
stochastic AB model with those of the analogous deterministic compartment DE model. We examine the impact
of individual heterogeneity and different network topologies, including fully connected, random, Watts-Strogatz
small world, scale-free, and lattice networks. Obviously, deterministic models yield a single trajectory for each
parameter set, while stochastic models yield a distribution of outcomes. More interestingly, the DE and mean
AB dynamics differ for several metrics relevant to public health, including diffusion speed, peak load on health
services infrastructure, and total disease burden. The response of the models to policies can also differ even when
their base case behavior is similar. In some conditions, however, these differences in means are small compared
to variability caused by stochastic events, parameter uncertainty, and model boundary. We discuss implications
for the choice among model types, focusing on policy design. The results apply beyond epidemiology: from
innovation adoption to financial panics, many important social phenomena involve analogous processes of
diffusion and social contagion.
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Introduction

Spurred by growing computational power, agent-
based (AB) modeling is increasingly applied to
physical, biological, social, and economic problems
previously modeled with nonlinear differential equa-
tions (DEs). Both approaches have yielded impor-
tant insights. In the social sciences, agent models
explore phenomena from the emergence of segrega-
tion to organizational evolution to market dynam-
ics (Schelling 1978, Levinthal and March 1981, Carley
1992, Axelrod 1997, Lomi and Larsen 2001, Axtell
et al. 2002, Epstein 2006, Tesfatsion 2002). Differ-
ential and difference equation models, also known
as compartmental models, have an even longer his-
tory in social science, including innovation diffusion
(Mahajan et al. 2000) and epidemiology (Anderson
and May 1991).

When should AB models be used, and when are
DE models appropriate? Each method has strengths
and weaknesses. The importance of each depends on
the model purpose. Nonlinear DE models can easily
encompass a wide range of feedback effects, but typ-
ically aggregate agents into a relatively small number
of states (compartments). For example, innovation
diffusion models may aggregate the population into
categories including unaware, aware, in the market,
adopters, and so on (Urban et al. 1990, Mahajan
et al. 2000). However, within each compartment,
people are assumed to be homogeneous and well
mixed; the transitions among states are modeled as
their expected value, possibly perturbed by random
events. In contrast, AB models can readily include
heterogeneity in individual attributes and in the net-
work structure of their interactions; like DE models,
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AB models can be deterministic or stochastic and can
capture feedback effects.

The granularity of AB models comes at some cost.
First, the extra complexity significantly increases com-
putational requirements, constraining the ability to
conduct sensitivity analysis. A second cost of agent-
level detail is the cognitive burden of understanding
model behavior. Linking the behavior of a model to its
structure becomes more difficult as model complexity
grows. Finally, limited time and resources force mod-
elers to trade off disaggregate detail and the breadth
of the model boundary. Here model boundary stands
for the richness of the feedback structure captured
endogenously in the model (Meadows and Robinson
1985, Sterman 2000). For example, an agent-based
demographic model may portray each individual sep-
arately, but assume exogenous fertility and mortality;
such a model has a narrow boundary. In contrast, an
aggregate model may lump the entire population into
a single compartment, but model fertility and mortal-
ity as functions of food per capita, health care, pol-
lution, norms for family size, etc., each of which, in
turn, are modeled endogenously; such a model has
a broad boundary. DE and AB models may in prin-
ciple fall anywhere on these dimensions of disaggre-
gation and scope. In particular, there is no intrinsic
limitation that prevents AB models from incorporat-
ing behavioral feedback effects or encompassing a
broad model boundary. In practice, however, where
time, budget, and computational resources are lim-
ited, modelers must trade off disaggregate detail and
breadth of boundary. Choosing wisely is central in
selecting appropriate methods for any problem.

The stakes are large. Consider potential bioterror
attacks. Kaplan et al. (2002) used a deterministic non-
linear DE model to examine smallpox attack in a
large city, comparing mass vaccination (MV), in which
essentially all people are vaccinated after an attack,
to targeted vaccination (TV), in which health officials
trace and immunize those contacted by potentially
infectious individuals. Capturing vaccination capac-
ity and logistics explicitly, they conclude MV signif-
icantly reduces casualties relative to TV. In contrast,
using different AB models, Eubank et al. (2004) and
Halloran et al. (2002) conclude TV is superior, while
Epstein et al. (2004) favor a hybrid strategy. The many
differences among these models make it difficult to
determine whether the conflicting conclusions arise
from relaxing the perfect mixing and homogeneity
assumptions of the DE (as argued by Halloran et al.
2002) or from other assumptions such as the size of
the population (ranging from 10 million for the DE
model to 2,000 in Halloran et al. 2002 to 800 in Epstein
et al. 2004), other parameters, or boundary differ-
ences such as whether capacity constraints on immu-
nization are included (Koopman 2002, Ferguson et al.

2003, Kaplan and Wein 2003). Kaplan and Wein (2003)
and Kaplan et al. (2003) show that their DE model
closely replicates the Halloran et al. (2002) AB results
when simulated with the Halloran et al. parameters,
including vaccination rates, population, and initial
attack size, concluding that parameterization accounts
for the different conclusions, not differences in mixing
and homogeneity.

Here we carry out controlled experiments to com-
pare AB and DE models in the context of contagious
disease. We choose disease diffusion for four reasons.
First, the dynamics of contagion involve important
characteristics of complex systems, including posi-
tive and negative feedbacks, time delays, nonlinear-
ities, stochastic events, and individual heterogeneity.
Second, network topologies linking individuals are
important in the diffusion process (Davis 1991, Watts
and Strogatz 1998, Barabasi 2002, Rogers 2003), pro-
viding a strong test for differences between the two
approaches. Third, the DE paradigm is well devel-
oped in epidemiology (for reviews see Anderson and
May 1991 and Hethcote 2000); AB models also have
a long history (e.g., Abbey 1952) and have recently
gained momentum (for reviews see Newman 2002,
2003 and Watts 2004).

Finally, diffusion is a fundamental process in diverse
physical, biological, social, and economic settings.
Many diffusion phenomena in human systems involve
processes of social contagion analogous to infectious
disease, including word of mouth, imitation, and net-
work externalities. From the diffusion of innovations
to rumors, financial panics, and riots, contagion-like
dynamics, and formal models of them, have a rich
history in the social sciences (Bass 1969, Watts and
Strogatz 1998, Mahajan et al. 2000, Barabasi 2002,
Rogers 2003). Insights into the advantages and disad-
vantages of AB and DE models in epidemiology can
inform understanding of diffusion in many domains
of concern to social scientists and managers.

Our procedure is as follows. We develop a stochas-
tic AB version of the classic SEIR model, a widely used
nonlinear deterministic DE model. The DE divides the
population into four compartments: susceptible (S),
exposed (E), infected (I), and removed (R). In the AB
model, each individual is separately represented and
must be in one of these four states. Both the AB
and DE models use the same parameters. Therefore,
any differences in outcomes arise only from relax-
ing the restrictive assumptions of the DE model. In
practice, DE modelers add compartments to capture
heterogeneity in individuals and their contact net-
works, for example, disaggregating by biological or
behavioral attributes (e.g., differences in age or con-
tact frequencies), or by location (as in patch models;
see, e.g., Riley 2007). Here we use the classic SEIR
model to maximize potential differences between the
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two approaches. We run the AB model under five
widely used network topologies (fully connected, ran-
dom, small world, scale-free, and lattice) and test each
with homogeneous and heterogeneous individuals.
We compare the resulting diffusion dynamics on a
variety of metrics relevant to public health, including
cumulative cases, peak prevalence, and the speed the
disease spreads (the time available for health officials
to respond).

The most obvious difference between the models
we compare is that, for given parameters, the stochas-
tic AB model generates a distribution of outcomes,
while the deterministic DE generates a single path
representing the expected trajectory under the mean-
field approximation for contacts between infectious
and susceptible individuals. Further, due to chance
events, the epidemic never takes off in some real-
izations of the stochastic model. Deterministic mod-
els, whether DE or AB, cannot generate this mode
of behavior. Capturing outcome variability in the
DE paradigm requires moving to a stochastic com-
partment model, an intermediate method between
deterministic models and the full stochastic AB
representation. More interesting are differences due to
network topology and individual heterogeneity. On
average, diffusion slows as contact networks become
more tightly clustered compared to the DE. On aver-
age, heterogeneity accelerates the initial take-off, as
highly connected individuals quickly spread the dis-
ease, but reduces overall diffusion as these same indi-
viduals quickly exit the infectious pool.

In a second set of tests, we also examine the ability
of the DE model to capture the dynamics of each net-
work structure in the realistic situation where param-
eters are poorly constrained by biological and clinical
data. Epidemiologists often estimate potential diffu-
sion, for both novel and established pathogens, by
fitting models to the aggregate data as an outbreak
unfolds (Dye and Gay 2003, Lipsitch et al. 2003, Riley
et al. 2003). Calibration of innovation diffusion and
new product marketing models is similar (Mahajan
et al. 2000). We mimic this practice by treating the
AB simulations as the “real world” and fitting the DE
model to them. On average, the fitted models closely
match the individual AB realizations under all net-
work topologies and heterogeneity conditions tested.
However, the estimated parameters are biased in the
highly clustered and heterogeneous cases. Further, the
ability to fit such data does not imply that the AB and
calibrated DE models will respond to policy interven-
tions in the same way, demanding caution in their
use. When different models yield different inferences
about policies, it is important to identify the assump-
tions responsible to guide data collection, to improve
the models, and to select the most appropriate model
for the purpose at hand.

The implications of the differences across models
depend on the purpose of the analysis. Here we focus
on the policy context. Policymakers face a world of
time pressure, inadequate data, and limited knowl-
edge of parameters such as pathogen virulence, trans-
missibility, incubation latency, treatment efficacy, etc.
Further, the appropriate boundary for analysis is often
unclear: resources for vaccination and treatment may
be limited; an outbreak, whether natural or triggered
by bioterror, may alter the behavior of the public and
first-responders, endogenously disrupting the contact
networks that feed back to condition disease spread
through processes of risk amplification and attenua-
tion (Kasperson et al. 1988, Glass and Schoch-Spana
2002). Hence, we consider whether the differences in
mean behavior between DE and AB models are large
relative to the uncertainties policymakers face. We
also consider how these differences in mean behavior
might affect the assessment of the costs and benefits,
and hence the optimality, of policies.

The mean behavior of different models may be
significantly different in the statistical sense, yet be
small relative to the variation in output caused by
uncertainty about parameters, model boundary, and
stochastic events (McCloskey and Ziliak 1996). For
example, consider the variability in outcomes gener-
ated by a stochastic AB model. Each realization of the
model will differ: some exhibiting fast diffusion, some
slow; some with many individuals afflicted, some
with fewer, depending on the chance nature of con-
tacts between infectious and susceptible individuals.
An ensemble of many simulations generates the dis-
tribution of possible epidemics, but only one will be
observed in a particular outbreak. Several questions
may now be asked.

One important question is whether the expected
values of key metrics differ in different models. For
example, does the mean value of peak prevalence
under a scale-free network differ from the value gen-
erated by the corresponding deterministic compart-
ment model? By running a sufficiently large number
of simulations, sampling error can be made arbitrar-
ily small, and any differences in the mean behavior of
the models will be highly statistically significant.

Another question is whether the differences among
means are significant from the point of view of policy-
makers seeking appropriate responses to a potential
outbreak. Models with similar “base-case” behavior
can have similar or different responses to policies,
and, conversely, models with different base behav-
iors may nevertheless yield the same inferences about
policy impacts. Differences in policy response across
models can be statistically significant, yet small rel-
ative to uncertainty in parameters, network struc-
ture, individual attributes, and model boundary.
Policymakers must assess the practical significance of
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each model assumption given the likely range of out-
comes generated by all sources of uncertainty, not
only uncertainty caused by random events.

The results document a number of differences
between the DE and mean AB dynamics. The results,
for both the base-case and calibrated DE models, also
show that the differences between the deterministic
compartment model, with its assumptions of homoge-
neous individuals and perfect mixing, and the mean
behavior of the stochastic AB models are often small
compared to the variability in AB outcomes caused
by chance encounters among individuals, at least
for the public health metrics examined here. How-
ever, cost/benefit assessments of policy interventions,
and hence the optimal policy, can depend on net-
work structure and model boundary, underscoring
the importance of sensitivity analysis across these
dimensions.

The next section reviews the literature comparing
AB and DE approaches. We then describe the models,
the design of the simulation experiments, and results,
closing with implications and directions for future
work.

A Spectrum of Aggregation

Assumptions

AB and DE models should be viewed as regions in a
space of modeling assumptions, not as incompatible
modeling paradigms. Aggregation is one dimen-
sion of that space. Models can range from lumped
deterministic differential equations (also called
deterministic compartmental models), to stochastic
compartmental models, in which the continuous
variables of the DE are replaced by counts of discrete
individuals, to event history models, where the
states of individuals are tracked but their network
of relationships is ignored, to models with explicit
contact networks linking individuals (e.g., Koopman
et al. 2001, Riley 2007).

A few studies compare AB and DE models.
Axtell et al. (1996) call for “model alignment”
or “docking” and illustrate with the Sugarscape
model. Edwards et al. (2003) contrast an AB model
of innovation diffusion with an aggregate model,
finding that the two can diverge when multiple
attractors exist in the deterministic model. In epi-
demiology, Jacquez and O’Neill (1991) and Jacquez
and Simon (1993) analyze the effects of stochasticity
in individual-level susceptible-infectious-susceptible
(SIS) and susceptible-infectious (SI) models, finding
some differences in mean behavior for small popula-
tions. However, the differences practically vanish for
homogeneous populations above 100. Similarly, Gani
and Yakowitz (1995) examine deterministic approxi-
mations to stochastic disease diffusion processes, and

find a high correspondence between the two for larger
populations. Greenhalgh and Lewis (2001) compare a
stochastic model with the deterministic DE version in
the case of AIDS spread through needle sharing, and
find similar behavior for those cases in which the epi-
demic takes off.

Heterogeneity has also been explored in models
with different mixing sites for population subgroups.
Anderson and May (1991, Chap. 12) show that the
immunization fraction required to quench an epi-
demic rises with heterogeneity if immunization is
implemented uniformly, but falls if those most likely
to transmit the pathogen are the focus of immu-
nization. Ball et al. (1997) and Koopman et al
(2002) find expressions for cumulative cases and epi-
demic thresholds in stochastic susceptible-infectious-
recovered (SIR) and SIS models with global and
local contacts, finding that the behavior of deter-
ministic and stochastic DE models can diverge for
small populations, low basic reproduction rates (R,),
or highly clustered contact networks where trans-
mission occurs in mixing sites such as schools and
offices. Keeling (1999) formulates a DE model that
approximates the effects of spatial structure when
networks are highly clustered. Chen et al. (2004)
develop AB models of smallpox, finding the dynam-
ics generally consistent with DE models. In sum, AB
and DE models of the same phenomenon sometimes
agree and sometimes diverge, especially when com-
partments contain smaller populations. Multiple net-
work topologies and heterogeneity conditions have
not been compared, and the practical significance of
differences in mean behavior relative to uncertainties
in stochastic events, parameters, and model boundary
has not been explored.

Model Structure

The SEIR model is a deterministic nonlinear dif-
ferential equation model in which all members of
a population are in one of four states—susceptible,
exposed, infected, or removed. Contagious individu-
als can infect susceptibles before they are “removed”
(i.e., recover or die). The exposed compartment cap-
tures latency between infection and the emergence
of symptoms. Depending on the disease, exposed
individuals may become infectious before symptoms
emerge, and can be called early-stage infectious. Typ-
ically, such individuals have more contacts than those
in later stages because they are asymptomatic.

SEIR models have been successfully applied to
many diseases. Additional compartments are often
introduced to capture more complex disease lifecy-
cles, diagnostic categories, therapeutic protocols, pop-
ulation heterogeneity and mixing patterns, birth or
recruitment of new susceptibles, loss of immunity,
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etc. (see Anderson and May 1991, Murray 2002). In
this study, we maintain the standard assumptions of
the classic SEIR model (four stages, fixed popula-
tion, permanent immunity). The DE implementation
of the model imposes several additional assumptions,
including perfect mixing and homogeneity of individ-
uals within each compartment and mean-field aggre-
gation (the flows between compartments equal the
expected value of the sum of the underlying proba-
bilistic rates for each individual). To derive the dif-
ferential equations, consider the rate at which each
infectious individual generates new cases:

¢, * Prob(contact with susceptible)

* Prob(transmission/contact with susceptible), (1)

where the contact frequency c;, is the expected num-
ber of contacts between infectious individual i and
susceptible individual s; homogeneity implies c;, is
a constant, denoted cg, for all individuals i, s. If the
population is well mixed, the probability of contact-
ing a susceptible individual is simply the proportion
of susceptibles in the total population, S/N. Denoting
the probability of transmission given contact between
individuals i and s, or infectivity, as i;, (which, under
homogeneity, equals i;s for all i, 5), and summing over
the infectious population yields the total flow of new
cases generated by contacts between the I and S pop-
ulations, ¢;s *i;g* I % (S/N). The number of new cases
generated by contacts between the exposed and sus-
ceptibles is formulated analogously, yielding the total
infection rate, f:

f = (cesipsE + ci5i5I) (S/N). (2)

To model emergence and recovery, consider these to
be Markov processes with certain transition probabil-
ities. In the classic SEIR model, each compartment is
assumed to be well mixed so that the probability of
emergence (or recovery) is independent of how long
an individual has been in the E (or I) state. Denoting
the individual hazard rates for emergence and recov-
ery as € and §, the mean emergence time and disease
duration are then 1/& and 1/, respectively. Summing
over the E and I populations and taking expected val-
ues yields the flows of emergence and recovery:

e=¢E and r=24I. (3)

The full model is thus

ds dE dl dR
E:—f, E:f_e, E:e—r, EZV. (4:)

Equation (3) implies the probabilities of emergence
and recovery are independent of how long an indi-
vidual has been in the E or I states, respectively, and
results in exponential distributions for the residence

times in these states. Exponential residence times are
not realistic for most diseases, where the probabil-
ity of emergence and recovery is initially low, then
rises, peaks, and falls. Note, however, that any lag
distribution can be captured through the use of par-
tial differential equations, approximated in the ordi-
nary differential equation (ODE) paradigm by adding
additional compartments within the exposed and
infectious categories (Jacquez and Simon 2002). For
simplicity, we maintain the assumption of a single
compartment per disease stage of the classic SEIR
model.

The AB model relaxes the perfect mixing and
homogeneity assumptions of the DE. Each individ-
ual j€(1,...,N) is in one of the four states S, E, I,
or R. The individual state transitions f[j], e[j], and
r[j] equal one at the moment of infection, emergence,
and recovery, respectively, and zero otherwise, and
depend on individual attributes such as contact fre-
quencies and on the chances of interaction with oth-
ers as specified by the contact network. The aggregate
flows f, e, and r over any interval dt are the sum
of the individual transitions during that interval. The
online supplement (provided in the e-companion)!
details the formulation of the AB model and shows
how the DE model can be derived from it by assum-
ing homogeneous agents and applying the mean-field
approximation.

A central parameter in epidemic models is the basic
reproduction number, R,, the expected number of
new cases each contagious individual generates
before removal, assuming all others are susceptible.
The base-case parameters yield R, =4.125 (Table 1),
similar to diseases like smallpox, R, = 3-6 (Gani and
Leach 2001), and SARS, R, =~ 2-7 (Lipsitch et al. 2003,
Riley et al. 2003). The base value provides a good
opportunity to observe potential differences between
DE and AB models: diseases with R, <1 pose little
risk to public health, while those with R, > 1, e.g.,
measles, cause a severe epidemic in (nearly) any net-
work. The AB models use the same infectivities and
expected residence times, and we choose individual
contact frequencies so that mean total contact rates
in each network and heterogeneity condition are the
same as the DE model. We set the population N =
200, all susceptible except for two randomly chosen
exposed individuals. Although small compared to set-
tings of interest in policy design, e.g., cities, the effects
of random events and network type are likely to
be more pronounced in small populations (Gani and
Yakowitz 1995), providing a stronger test for differ-
ences between the DE and AB models. A small popu-
lation also reduces computation time, allowing more

! An electronic companion to this paper is available as part of
the online version that can be found at http://manscijournal.
informs.org/.



Rahmandad and Sterman: Comparing Agent-Based and Differential Equation Models

Management Science 54(5), pp. 998-1014, ©2008 INFORMS 1003

Table 1 Base-Case Parameters

Parameter (dimensionless) Parameter Units
Infectivity, exposed Ies 0.05 Total population N 200 Person
Infectivity, infectious i 0.06 Contact rate, exposed Ces 4 1/Day
Basic reproduction rate Ry 4125 Contact rate, infectious Cs 1.25 1/Day
Average links per node k 10 Average incubation time 1/¢ 15 Day
Prob. of long-range links (SW) Pew 0.05 Average duration of illness 1/8 15 Day
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Scaling exponent (scale-free) Y 2.60

Note. The online supplement provides full details for the AB simulations.

extensive sensitivity analysis. The DE has four state
variables; computation time is negligible for all N.
The AB model has 4N state variables and must also
track interactions among the N individuals, implying
that computation time can grow at rates up to O(N?),
depending on the contact network. We report sensi-
tivity analysis of R, and N below. The online supple-
ment includes the models and full documentation.

Experimental Design

We vary both the network structure of contacts among
individuals and the degree of individual heterogene-
ity in the AB model, and compare the resulting
dynamics to the DE. We implement a full factorial
design with five network structures and two hetero-
geneity conditions. In each of the 10 conditions, we
generate an ensemble of 1,000 simulations of the AB
model, each with different realizations of the ran-
dom variables determining contacts, emergence, and
recovery. Because the parameters in each simulation
are identical to the DE model, differences in outcomes
can only be due to differences in network topol-
ogy, heterogeneity among individuals, or the discrete,
stochastic treatment of individuals in the AB model.

Network Topology
The DE model implemented here assumes perfect
within-compartment mixing, implying any infectious
individual can meet any susceptible individual with
equal probability. Realistic networks are far more
sparse and clustered. We explore five different net-
work structures: fully connected, random (Erdos and
Renyi 1960), small world (Watts and Strogatz 1998),
scale-free (Barabasi and Albert 1999), and lattice
(where contact only occurs between neighbors on a
ring). We parameterize the model so that all networks
(other than the fully connected case) have the same
mean number of links per node, k =10 (Watts 1999).
The fully connected network corresponds to the
perfect mixing assumption of the DE model. The ran-
dom network is similar except people are linked with
equal probability to a subset of the population. To
test the network most different from the perfect mix-
ing case, we also model a one-dimensional ring lattice
with no long-range contacts. With k =10, each person

contacts only the five neighbors on each side. The
small world and scale-free networks are intermediate
cases with many local and some long-distance links.
These widely used networks characterize a number
of real systems (Watts 1999, Barabasi 2002). We set
the probability of long-range links in the small world
networks to 0.05, in the range used by Watts (1999).
We build the scale-free networks using the preferen-
tial attachment algorithm (Barabasi and Albert 1999)
in which the probability a new node links to exist-
ing nodes is proportional to the number of links each
node already has. Preferential attachment yields a
power law for the probability that a node has k links,
Prob(k) = ak~". Empirical studies typically show 2 <
v <3; the mean value of vy in our experiments is 2.6.

The fully connected and lattice networks are deter-
ministic, so every simulation of these cases has the
same network-governing contacts among individuals.
The Erdos-Renyi, small world, and scale-free cases
are random networks. Each simulation of these cases
uses a different realization of the network structure.
In realistic networks, the links among individuals
change through time even as overall topology can
remain stable (e.g., Kossinets and Watts 2006), intro-
ducing mixing that brings the AB model closer to the
assumptions of the compartment model. To maximize
the differences between the AB and DE conditions,
however, we assume the network realization in each
simulation is fixed. The online supplement details the
construction of each network.

Individual Heterogeneity
Each individual has four relevant characteristics:
expected contact rate, infectivity, emergence time, and
disease duration. In the homogeneous condition (H_),
each individual is identical with parameters set to the
values of the DE model. In the heterogeneous condi-
tion (H_), we vary individual contact frequencies.
Heterogeneity in contacts is modeled as follows.
Given that two people are linked (that they can come
into contact), the frequency of contact between them
depends on two factors. First, how often does each
use their links, on average: some people are gregar-
ious; others shy. Second, time constraints may limit
contacts. At one extreme, the frequency of link use
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may be constant, so that people with more links have
more total contacts per day, a reasonable approxima-
tion for some airborne infections and easily commu-
nicated ideas: a professor may transmit an airborne
virus or a simple concept to many people with a
single sneeze or comment, (roughly) independent of
class size. At the other extreme, if the time avail-
able to contact people is fixed, the chance of using
a link is inversely proportional to the number of
links, a reasonable assumption when transmission
requires extended personal contact: the professor can
only tutor a limited number of people each day. We
capture these effects by assigning individuals differ-
ent propensities to use their links, A[j], yielding the
expected contact frequency for the link between indi-
viduals 7 and j, c[i, j]:

c[i, j1=wx Ali] = AL/ (K[i] + k[j])7, ®)

where k[j] is the total number of links individual j
has, 7 captures the time constraint on contacts, and «
is a constant chosen to ensure that the expected con-
tact frequency for the population equals the value
used in the DE model. In the H_ condition, A[j] =1
for all j and 7 =1, so that expected contact frequen-
cies are equal for all individuals, independent of how
many links each has. In the H_, condition, A[j] is a
random variable and 7 = 0: individuals have different
contact rates and those with more links have more
contacts per day. We use a uniform distribution, A[j] ~
ufo.25,1.75].

Calibrating the DE Model

In practice, the parameters determining R, are often
poorly constrained by biological and clinical data. For
emerging diseases such as vCJD, BSE, and avian flu,
data are not available until the epidemic has already
spread. Parameters are usually estimated by fitting
models to aggregate data as an outbreak unfolds;
SARS provides a typical example (Dye and Gay 2003,
Lipsitch et al. 2003, Riley et al. 2003). Because R, also

depends on contact networks that are often poorly
known, models of established diseases are commonly
estimated the same way (e.g., Gani and Leach 2001).
To mimic this protocol, we treat each realization of
the AB model as the “real world” and estimate the
parameters of the DE to yield the best fit to the
cumulative number of cases. We estimate infectivity
(igs and i) and incubation time (1/¢) by nonlinear
least squares in a large set of individual AB real-
izations (see the online supplement). Results assess
whether calibrated compartment models can capture
the behavior of heterogeneous individuals in realistic
settings with different contact networks.

Results

For each experimental condition, we examine three
measures relevant to public health. The maximum
symptomatic infectious population (peak prevalence,
I..) indicates the peak load on the public health
infrastructure including health workers, immuniza-
tion resources, hospitals, and quarantine facilities. The
time from initial exposure to the maximum of the
infected population (the peak time, T,) measures how
quickly the epidemic spreads and therefore how long
officials have to deploy those resources. The fraction
of the population ultimately infected (the final size, F)
measures the total burden of morbidity and mortal-
ity. To illustrate, Figure 1 compares the base-case DE
model with a typical simulation of the AB model (in
the heterogeneous scale-free case). The sample scale-
free epidemic grows faster than the DE (T, =37 ver-
sus 48 days), has similar peak prevalence (I, = 27%),
and ultimately afflicts fewer people (F = 85%
versus 98%).

In this study, we focus on the practical significance
of differences between the mean output of the AB and
DE models. Specifically, we explore whether the dif-
ferences among models are large relative to the vari-
ability in outcomes for which policymakers should
plan and whether the differences alter the choice of

Figure 1 (Left) DE Model with Base Parameters (Table 1); (Right) Typical Simulation of the Equivalent AB Model with the Heterogeneous Condition
of the Scale-Free Network
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optimal policies. To begin, we conservatively consider
outcome variability arising only from stochastic inter-
actions among individuals. Specifically, suppose that
policymakers planning for a possible outbreak know
with certainty mean infectivity, incubation period, dis-
ease duration, network type, and all other parameters
conditioning contagion and diffusion, and that these
characteristics are unaffected by the course of the epi-
demic. In short, assume that policymakers possess a
perfect agent-based model of the situation, and lack
only knowledge of which individuals will, by chance,
encounter each other at any moment and transmit the
disease. As an example, suppose that the contact net-
work is characterized by a scale-free degree distri-
bution with known parameters, and that individuals
are heterogeneous in their behavior (but with known
distribution). For the hypothetical disease we exam-
ine, prevalence peaks on average after 44 days at a
mean of 23.9% of the population. In the deterministic
compartment model with the same parameters, preva-
lence peaks after 48 days at 27.1% of the population.
Given the large sample of AB realizations, these differ-
ences are statistically significant (p < 0.001), but they
are not practically significant. Unobservable stochas-
tic interactions among individuals means policymak-
ers, to be, for example, 95% confident resources will
be sufficient, must plan to handle an epidemic peak-
ing between 4 and 75 days after introduction, with
peak prevalence between 4% and 31.5% of the pop-
ulation. Of course, the deterministic model yields a
single trajectory representing the expected path under
the mean-field approximation. No responsible poli-
cymaker should plan for the mean epidemic with-
out considering uncertainty. To assess the range of
outcomes arising from the random nature of indi-
vidual interactions, policymakers using compartment
models would have to estimate the impact of uncer-
tainty by, for example, moving to a stochastic DE
representation. Such a model would be computation-
ally efficient relative to the full AB model, but would
still assume within-compartment mixing and homoge-
neous agents.

Policymakers should also consider how model
assumptions affect the optimality of interventions.
Consider, for example, a quarantine policy. Quaran-
tine should be implemented if its benefit/cost ratio
(e.g., the value of QALYs or DALYs saved and
avoided health costs relative to the costs of quarantine
implementation) is favorable and higher than that of
other policy options (including no action). Two mod-
els may yield similar estimates of epidemic diffusion,
yet respond differently to policies. In such cases, the
differences between the models may be of great prac-
tical significance even if their base-case behavior is
similar. We provide an example below.

Figure 2 shows the symptomatic infectious popula-
tion, I, in 1,000 AB simulations for each network and
heterogeneity condition. Also shown are the mean of
the ensemble and the trajectory of the base case DE
model. Table 2 reports results for the fitted DE mod-
els; Tables 3 and 4 compare the means of T,, I,,, and
F for each condition with both the base and fitted DE
models. Except for the lattice, the DE and mean AB
dynamics are qualitatively similar. Initial diffusion is
driven by positive feedback as contagious individu-
als spread the infection. The epidemic peaks when
the susceptible population is sufficiently depleted that
the mean number of new cases generated by conta-
gious individuals is less than the rate at which they
are removed from the contagious pool.

Departures from the DE model increase from the
connected to the random, scale-free, small world, and
lattice structures (Figure 2; Tables 3 and 4). The degree
of clustering explains some of these variations. In the
fully connected and random networks, the chance of
contacts in distal regions is the same as for neighbors.
The positive contagion feedback is strongest in the
connected network because an infectious individual
can contact everyone else, minimizing local contact
overlap. In contrast, the lattice has maximal cluster-
ing. When contacts are localized in a small region of
the network, infectious individuals contact their com-
mon neighbors repeatedly. As these people become
infected, the chance of contacting a susceptible and
generating a new case declines, slowing diffusion
on average, even if the total susceptible population
remains high.

In the deterministic DE model, there is always an
epidemic if R, > 1. Due to the stochastic nature of
interactions in the AB model, it is possible that no
epidemic occurs or that it ends early if, by chance,
the few initially contagious individuals recover before
generating new cases. As a measure of early burnout,
Table 3 reports the fraction of cases where cumu-
lative cases remain below 10%. (Except for the lat-
tice, the results are not sensitive to the 10% cutoff.
The online supplement shows the histogram of final
size for each network and heterogeneity condition.)
Early burnout ranges from 1.8% in the homogeneous
connected case to 6.8% in the heterogeneous scale-
free case. Heterogeneity raises the incidence of early
burnout in each network because there is a higher
chance that the first cases will have few contacts and
recover before spreading the disease. Network struc-
ture also affects early burnout. Greater contact cluster-
ing increases the probability that the epidemic burns
out in a local patch of the network before it can jump
to other regions, slowing diffusion and increasing the
probability of global quenching.

Consider now the differences between the DE and
AB cases by network type.
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Figure 2 Prevalence of Symptomatic Infectious Individuals (//N, %)
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Note. Panels show the envelopes comprising 50%, 75%, and 95% of 1,000 AB simulations for each network and heterogeneity condition, the mean of the AB

simulations, and the trajectory of the base-case DE model.

Heterogeneity results in smaller final size, F, in
all conditions: the mean reduction over all 10 condi-
tions is 0.10, compared to a mean standard deviation
across all conditions, &, of 0.19. Similarly, heterogene-
ity reduces T, in all conditions (by a mean of 9.5
days, with ¢ =26 days). Maximum prevalence also
falls in all conditions (by 1.5%, & =5.1%). In the H_,
condition, high-contact individuals tend to become
infected sooner, causing, on average, faster take-off
compared to the H_ case (hence, earlier peak times).

These individuals are also removed sooner, reducing
mean contact frequency, and hence the reproduction
rate, among those who remain compared to the H_
case. Subsequent diffusion is slower, peak prevalence
is smaller, and the epidemic ends sooner, yielding
fewer cumulative cases.

Fully Connected Network

The fully connected network corresponds closely to
the perfect mixing assumption of the DE. As ex-
pected, the base DE model closely tracks the mean of
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Table 2 Median Estimated Value of R, for the Calibrated DE Models
Connected Random Scale-free Small world Lattice
Parameter H_ H, H_ H, H_ H, H_ H, H_ H,

Implied Ry = Cgg * g/

Median 421 296  3.10
Teexig/0 @ 171 062 058

R? Median  0.999  0.999  0.999
4 0.025 0.049 0.017

2.54 3.15 2.27 3.35 2.54 1.61 1.35
0.52 0.66 0.64 0.88 0.66 0.81 0.55

0.999 0.999 0999 0998 0998 0985 0.987
0.050 0.016 0.039 0.040 0059 0.05 0.043

Note. R?, the square of the Pearson correlation coefficient, measures goodness of fit between each AB and calibrated DE simulation.

the AB simulations. In the H_ condition, T, Inaxs and
F in the base DE model fall well within the 95% con-
fidence interval defined by the ensemble of AB simu-
lations. In the H,, case, T, and I,,,, also fall within the

95% range, but F lies just outside the range encom-
passing 95% of the ensemble.

Random Network

The random network behaves much like the con-
nected case. The DE values of T, and [, fall within
the 95% outcome range for both heterogeneity con-
ditions. The value of F in the DE falls outside the

with infectious individuals compared to the perfect
mixing case.

Scale-Free Network

The scale-free network departs substantially from per-
fect mixing. Most nodes have few links, so initial take-
off is slower, but once the infection reaches a hub it
spreads quickly. The base DE values of T, and I, fall
well within the 95% outcome interval for both hetero-
geneity conditions. However, as the hubs are removed
from the infectious pool, the remaining nodes have
lower average contact rates, causing the epidemic to
burn out at lower levels of diffusion; the 95% range

for final size is 2% to 98% for H_ and 1% to 92% for
H_, while the base DE value is 98%.

95% range for both H_ and H_ because the sparse
contact network means more people escape contact

Table 3 Mean and Standard Deviation of Final Size, F, in (1) the AB, (2) Fitted DE Simulations, (3) Percentage of AB, and (4) Fitted DE Simulations
with F <0.10
Connected Random Scale-free Small world Lattice

H_ H. H_ H. H_ H, H_ H, H_ H,
(1) ABmean (¢) 0.97 (0.13) 0.90* (0.19) 0.92* (0.15) 0.86* (0.17) 0.92* (0.16) 0.80* (0.22) 0.92 (0.17) 0.83* (0.21) 0.65 (0.29) 0.51** (0.26)
(2) Fitted DE () 0.98 (0.07) 0.91 (0.17) 0.92 (0.15) 0.86 (0.18) 0.92 (0.15) 0.78 (0.25) 0.92 (0.17) 0.83 (0.22) 0.62 (0.28) 0.50 (0.26)
(3) AB %F <0.10 1.8 4.4 2.7 3.8 2.9 6.8 2.6 4.8 3.1 5.9
(4) Fitted DE 0.5 35 2.5 4.0 2.5 9.0 2.0 5.0 4.0 45

%F <0.10

*/** indicates that F in the base DE (0.98) falls outside the range encompassing 95% /99% of the AB simulations.
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Table 4 Peak Time and Peak Prevalence in 1,000 Simulations of the AB Model and Calibrated DE Models for Each Experimental
Condition
Connected Random Scale-free Small world Lattice
H_ H, H_ H, H_ H, H_ H, H_ H,
Peak time, 7, (days)
AB 49.8 44.9 52.8 495 60.6 43.6 86.5 83.6 84.4 75.2
AB o 10.8 124 134 14.2 16.7 15.2 315 36.4 57 50.9
Fitted DE p 51.3 49.6 56.6 58 62.9 47.0 82.1 83.2 102.8 90.5
Fitted DE o 9 21.3 21.3 37.7 23.2 24.6 25.2 34.3 77.8 79.7
Peak prev /. (%)
AB u 291 271 26.5 25.1 24.6 23.9 18.1* 16.5* 9.3+ 8.5
AB o 4.9 6.3 5.2 5.6 5.2 6.8 4.8 5.3 3.4 3.4
Fitted DE p 26.9 26.7 24.6 24.2 22.8 21.4 17 14.9 11 7.8
Fitted DE o 2.8 13.2 9.6 18.1 6.1 9.2 4.4 5 19.9 9.9

*/* indicates the base DE values (T, = 48 days and /,,, = 27.1%) fall outside the 95%/99% confidence bounds defined by the ensemble
of AB simulations.
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Small World Network

Small world networks are highly clustered and lack
highly connected hubs. Nevertheless, the presence of
a few long-range links is sufficient to seed the epi-
demic throughout the population (Watts and Strogatz
1998). Diffusion is slower on average compared to the
DE and the connected, random, and scale-free net-
works. The existence of a few randomly placed long-
range links also increases the variability in outcomes.
The 95% range for T, is 22 to 154 days for H_ (7 to
176 days for H,), easily encompassing the base DE
value. Slower diffusion relative to the DE causes peak
prevalence in the DE to fall outside the 95% interval
of AB outcomes for both H_ and H_,.. The main impact
of heterogeneity is greater dispersion and a reduction
in final size.

Ring Lattice Network

In the lattice, individuals only contact their k near-
est neighbors, so the epidemic advances roughly lin-
early in a well-defined wave of new cases trailed by
symptomatic and then recovered individuals. Such
waves are observed in the spread of plant pathogens,
where transmission is mostly local, although in
two dimensions more complex patterns are common
(Bjornstad et al. 2002, Murray 2002). Because the epi-
demic wave front reaches a stochastic steady state in
which removal balances new cases, the probability of
burnout is roughly constant over time, and I, is
lower, with the base DE value falling outside the 99%
range. For the same reason, mean final size is much
lower and peak time is longer than the base DE. Inter-
estingly, the variance is higher as well, so that in the
H_ condition, the DE values of F and Tp fall within
the 95% range of AB outcomes.

In sum, peak time in the uncalibrated base DE
model falls within the envelope encompassing 95% of
the AB simulations in all 10 network and heterogene-
ity conditions. Peak prevalence falls within the 95%
range in all but the small world and lattice. Final size,
however, is sensitive to clustering and heterogeneity,
falling within the 95% range in only three cases.

Calibrated DE Model

In practice, parameters such as R, and incubation
times are poorly constrained and are estimated by
fitting models to aggregate data. Table 2 summarizes
the results of fitting the DE model to 200 randomly
selected AB simulations in each experimental condi-
tion, a total of 2,000 calibrations. The median R? for
the fit to cumulative cases exceeds 0.985 in all sce-
narios. The mean values of F, T,, and I, in the cal-
ibrated DE fall within the range encompassing 95%
of the AB outcomes in all network and heterogeneity
conditions. The DE model fits well even though it is
clearly misspecified in all but the homogeneous fully

connected network. Why? As the network becomes
increasingly clustered and diffusion slows, the esti-
mated parameters adjust accordingly. Specifically, in
deterministic SEIR compartment models, R, and final
size are related by R, = —In(1 — F)/F (Anderson
and May 1991). Consequently, when contact cluster-
ing leads to smaller F, the estimated incubation time
or transmission rates must shift to yield a smaller
estimate of R,. The parameter estimates are biased
because deviations from their underlying values are
the only way the DE, with its within-compartment
homogeneity and mixing assumptions, can capture
the impact of heterogeneity and network structure.
Further, the close fit of the compartment model does
not imply that its response to policies will be the
same as that of the underlying clustered and heteroge-
neous network. The online supplement provides fur-
ther details.

Sensitivity to Population Size

We repeated the analysis for N =50 and 800 (see the
online supplement). The results change little over this
factor of 16. For most conditions, the rate of early
burnout falls in the larger population, so the final frac-
tion of the population infected is slightly larger (and
therefore closer to the value in the DE). Population
size has little impact on the other metrics.

Sensitivity to R,

We varied R, from 0.5 to 2 times the base value;
detailed results are reported in the online supplement.
Naturally, diffusion is strongly affected by R,. Some-
what surprisingly, however, over the range tested the
differences between the DE and mean AB outcomes
remain small relative to the 95% outcome range for
most of the metrics. Changes in R, have two offsetting
effects. First, the smaller the value of R, the larger
are the differences between the DE and means of the
AB trajectories. Second, however, the smaller R, the
greater the variation in outcomes within a given net-
work and heterogeneity condition caused by chance
encounters among individuals. Small values of R,
reduce the expected number of new cases each infec-
tious individual generates before removal. In effect,
the fraction of the contact network sampled by each
infectious individual is smaller, so the probability that
the epidemic will be seeded at multiple points in the
network decreases. In highly clustered and heteroge-
neous networks, the lower representativeness of these
small samples increases the difference between the
DE and the mean of the AB trajectories (for exam-
ple, more cases of early quenching will be observed).
For the same reason, however, individual realiza-
tions of the same network and heterogeneity condi-
tion will differ more with small R, increasing the
variance in outcomes for which policymakers must
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prepare. Similarly, larger R, reduces the differences
between the DE model and the means of the AB mod-
els, but also reduces variability in outcomes because
each infectious individual samples the network many
times before recovering. These offsetting effects imply
that, over the range examined here, the differences
between the DE and the mean behavior of the AB
models are relatively insensitive to variations in R,.

Sensitivity to Disease Natural History

In many diseases, the exposed gradually become
more infectious prior to becoming symptomatic. This
progression can be modeled by adding additional
compartments to the exposed stage with different
infectivities in each. In the classic SEIR model used
here, with only one compartment per stage, presymp-
tomatic infectivity is approximated by assuming the
exposed are contagious, though with i < ij5. To
test the impact of this assumption, we set ips=0,
adjusting i;s to keep R, at its base value. Results are
reported in the online supplement. As expected, dif-
fusion slows and the probability of early quenching
grows. However, the differences in the mean values
of the metrics across models generally remain small
relative to the 95% range of AB outcomes. Assum-
ing that exposed individuals are not contagious has
little impact on the differences between the DE and
mean AB behavior relative to the variability in AB
outcomes.

Policy Analysis and Sensitivity to Model Boundary
Another important question is whether the behavior
of the models differs in response to policy interven-
tions and expansion of the model boundary. While
comprehensive treatment of these questions is beyond
the scope of this paper, we illustrate by examining
the impact of actions that reduce contact rates. For
example, the 2003 SARS epidemic appears to have
been quenched through contact reduction (Wallinga
and Teunis 2004, Riley et al. 2003, Lipsitch et al.
2003). Contact reduction can arise from policies, e.g.,
quarantine (including mandatory isolation and travel
restrictions), and from behavioral feedbacks, e.g.,
social distancing, where individuals who fear infec-
tion reduce contacts with others. For simplicity, we
assume that contact rates fall linearly to a mini-
mum value as the total number of confirmed cases
(cumulative prevalence P =1 + R) rises.? Specifically,
we model the contact frequency c;, between infec-
tious persons, j € {E, I}, and susceptibles, s € {S}, as a

2Other policies, such as targeted immunization, can exploit the
structure of the contact network, if it is known, and generally
require an AB model, although some such policies can be approxi-
mated in DE models (e.g., Kaplan et al. 2003).

weighted average of the initial frequency, cj;, and the
minimum achieved under quarantine, C753

Cis = (1- q)cfs + chs' (6)
q=Min[1, Max(0, (P — R)/(P; = ).~ (7)

The impact of contact reduction, g, rises linearly as
cumulative prevalence, P, rises from a threshold, P,
to the level at which the effect saturates, P,. We set
Py=2and P, =10 cases. Neither social distancing nor
quarantine are perfect; we set the minimum contact
frequency, c?s = 0.15¢},. This value gradually reduces
R, in the DE model from 4.125 to ~0.6, roughly sim-
ilar to the reduction Wallinga and Teunis (2004) esti-
mate for the SARS epidemic.

As expected, contact reduction quenches the epi-
demic earlier. In the DE model, prevalence peaks
17 days sooner, I, falls from 27% to 4.4%, and
F falls from 98% to 19% of the population, greatly
easing the burden on public health resources. Con-
tact reduction has similar benefits in the AB cases.
The differences between the means of the metrics in
the AB models and their DE value are small rela-
tive to the variation in outcomes caused by stochas-
tic interactions in the AB models. The DE results fall
within the 95% outcome range for all three metrics
in all network and heterogeneity conditions, with one
exception: the value of F in the lattice (Table 5). How-
ever, as in the base case, clustering and heterogene-
ity cause some differences between the DE and mean
AB outcomes. Under contact reduction, heterogene-
ity increases mean F because high-contact individu-
als tend to be infected first, increasing the exposed
population relative to H_ before contact reduction
is triggered. In the base case, however, heterogene-
ity lowers F because early high-contact cases are also
removed early, lowering the reproduction rate. There-
fore, the mean reduction in F under contact reduction
is smaller in the heterogeneous cases.

Policies should be implemented if their cost-benefit
ratio is favorable compared to other options, includ-
ing no action. As a simple illustration, suppose that
the per-capita costs of mandatory contact reduction
policies, denoted C, are fixed and that the benefits
are linear in avoided cases, AF = E iy — Foolicy-
Ignoring uncertainty, and hence issues of policymaker
risk aversion, mandatory measures should be imple-
mented if bAF > C, where b is the benefit per avoided
case. In the scale-free case, AF =0.75 for the H_ case,
but falls to 0.59 in the H_ condition (see the online
supplement). For 0.59 < C/b < 0.75, whether manda-
tory measures are indicated depends on whether the
population is homogeneous or not. Uncertainty, non-
linear costs and benefits, or risk-averse policymakers
will change the width of this interval of policy sen-
sitivity, but not the principle that the choice among
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Table 5 Public Health Metrics Under Contact Reduction

Connected Random Scale-free Small world Lattice
Metric H. W, H.  H, H.  H, H. H, H_ H,
Final size F w0215 0249 0.157 0.201 0.148 0247 01412 0117 0.102* 0.099*

0.084 0.091 0.064 0.088 0.062 0.105 0.044 0.048 0.037  0.035

S

Peaktime 7, u 350  36.1 33.1 346 341 349 303 305 294 30.4
c 1563 159 148 167 157 181 135 142 13.5 14.6

Peak prev/, un 642 728 517 615 498 743 417 435 3.97 3.89
c 240 266 199 255 198 323 158 167 152 1.42

*/* indicates the DE simulation falls outside the 95%/99% confidence bound defined by the ensemble of AB
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simulations. The results for the DE model are F = 0.190, T, = 31.3 days, and /,,,, = 4.43%.

policies may be sensitive to network type, individual
heterogeneity, and other assumptions.

The size of the region of policy sensitivity also de-
pends on the model boundary. For example, if aware-
ness of the epidemic arising from, e.g., media reports
causes individuals to engage in social distancing
spontaneously, contacts will fall even without quar-
antine and travel restrictions, reducing the benefits of
mandatory measures. If spontaneous social distancing
reduces R, persistently below one, mandatory mea-
sures would not be needed to quench the epidemic
and would not be justified on cost-benefit grounds.
At the other extreme, if the public’s reaction to media
reports was panic and flight, increasing the risk of
long-range transmission, mandatory control measures
would have even higher benefits relative to their
costs. Thus, policymakers should carry out sensitivity
analysis not only over uncertainty in parameters,
network topology, and individual characteristics, but
over variations in the strength of behavioral feedback
effects, that is, over a wide model boundary. Addi-
tional resources for empirical work to reduce uncer-
tainty and to improve the model should be allocated
where they have the greatest value. Making such
judgments rationally requires the resources and time
to carry out sensitivity analysis for each policy option
across all relevant dimensions of uncertainty.

Discussion and Conclusions

Stimulated by advances in computation, agent-based
simulation is growing in popularity. Still, no matter
how powerful computers become, limited time, bud-
get, cognitive capabilities, and decision-maker atten-
tion mean modelers always face trade-offs: should
they disaggregate to capture the diverse attributes
of individuals, expand the model boundary to cap-
ture additional feedback processes, or keep the model
simple so that it can be analyzed thoroughly? Sim-
ple models can be analyzed thoroughly, but may
lack the structure needed to observe important

dynamics and fully inform policymakers. For exam-
ple, compartment models are computationally effi-
cient, but assume perfect mixing and homogeneity
within compartments. Agent-based models increase
computational requirements, constraining sensitivity
analysis, but easily capture the networks of relation-
ships among individuals and heterogeneity in their
attributes. By contrasting agent-based and compart-
ment models of epidemic diffusion, we assess the
importance of relaxing the perfect mixing and homo-
geneity assumptions.

As expected, network topology and individual
heterogeneity affect the dynamics. Higher cluster-
ing increases the overlap in contacts among neigh-
bors and therefore slows diffusion to other regions,
leading, on average, to lower peak prevalence and
higher peak times in the small world and lattice
networks. Heterogeneity in individual contact rates
causes slightly earlier mean peak times as high-
contact individuals rapidly seed the epidemic, fol-
lowed by lower diffusion levels as the high-contact
individuals are removed, leaving those with lower
average transmission probability and a smaller repro-
duction rate. These results are consistent with anal-
ysis of heterogeneity for SI and SIS models (Veliov
2005). Such dynamics were also observed in the HIV
epidemic, where initial diffusion was rapid in sub-
populations with high contact rates. Finally, in the
stochastic AB models, the epidemic fizzles out in a
small fraction of cases even though the underlying
parameters yield an expected value for the basic repro-
duction rate greater than one. The more highly clus-
tered and heterogeneous the population, the greater
is the incidence of early quenching. The deterministic
DE model cannot generate such behavior.

Before turning to implications, we consider limita-
tions and extensions. The experiments examined the
classic SEIR model. Further work should address the
robustness of results to common elaborations such
as loss of immunity, nonexponential distributions for
emergence and recovery, recruitment of new suscep-
tibles, nonhuman disease reservoirs and vectors, etc.
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Note, however, that by using the deterministic SEIR
model, with only four compartments, we maximize
the difference between the aggregation assumptions
of the DE and AB representations. In practical appli-
cations, DE models often disaggregate the population
more finely to account for clustering, heterogene-
ity, and other attributes that vary across individuals
(e.g., age, sex, location). AB models capture hetero-
geneity directly by assigning attributes to individuals.
Adding compartments to DE models allows model-
ers to approximate the heterogeneity and clustering in
a situation, while retaining the computational advan-
tages of the compartmental paradigm (Riley 2007).
A challenge for future work is optimally choosing the
number and definitions of compartments to capture
the impact of clustering and heterogeneity. Compar-
ing disaggregated DE models to AB models may be
useful in designing stochastic compartment models
that capture heterogeneity and network effects using
the fewest additional compartments, if the network
structure is known and stable.® Testing this proposal
is beyond the scope of this paper.

Although we examined a wide range of networks,
the AB models contain many parameters that could
be subject to additional sensitivity analysis, including
the mean number of links per node, the proba-
bility of long-range links (in the small world net-
work), and the scaling exponent (in the scale-free
case). Other dimensions of heterogeneity and other
networks could be examined, including networks
derived from field study (Ahuja and Carley 1999).
The number and distribution of the initially infec-
tious individuals can be varied. The robustness of
other policies with respect to network type, hetero-
geneity, and model boundary should be examined.
The boundary could be expanded to include endoge-
nously the many effects that alter contact rates and
network structure as an epidemic progresses (relaxing
the fixed-network assumption).

The deterministic DE model does not capture the
variability in outcomes caused by stochastic events
and yields a point value for any metric (for a given
set of parameters). The costs and benefits of options
facing policymakers, however, often depend on the
distribution of possible outcomes, not only expected
values. It is not appropriate to use the output from
a single run of a deterministic model to answer pol-
icy questions such as, “Is hospital capacity suffi-
cient to handle an outbreak?” Stochastic compartment
models, along with individual-level AB models, can
capture the distribution of outcomes generated by
random interactions among individuals and should
be tested against the full AB models. Indeed, given
the many sources of uncertainty in realistic settings, it

3 We thank an anonymous reviewer for this suggestion.

would be irresponsible to use a single set of assump-
tions in any model, deterministic or stochastic, com-
partment or agent-based. The outcome distributions
in the AB results reported here only capture uncer-
tainty arising from stochastic events; sensitivity to
parameters may be larger and should be examined.
For example, R, for smallpox is estimated to be in
the range 3-6 (Gani and Leach 2001). Varying R, over
that range in the DE (by scaling both contact rates,
cps and cyg, proportionately) causes F to vary from
94.1% t0 99.7%, I, to vary from 21.7% to 31.8%, and
T, to vary from 36 to 64 days, comparable to the dif-
ferences caused by relaxing the perfect mixing and
homogeneity assumptions of the compartment model.
Such uncertainty further highlights the importance
of wide-ranging parametric and structural sensitivity
tests for all models.

Finally, the results may inform phenomena beyond
epidemics. Processes of social contagion (imitation,
word of mouth, etc.) play important roles in many
social and economic phenomena, from marketing
to crowd behavior (Strang and Soule 1998, Rogers
2003). Models of diffusion in such contexts are sim-
ilar to the SEIR family, most notably the Bass (1969)
model and its extensions (e.g., Mahajan et al. 2000).
Moreover, modelers tackling policy issues related to
innovation and product diffusion face trade-offs in
the choice of modeling assumptions similar to those
studying epidemics (Gibbons 2004). We do not explic-
itly address the differences between AB and DE mod-
els in these contexts; such issues are an important
arena for future work.

The results demonstrate a number of differences
between the deterministic compartment model and
the individual-level models, and across the AB mod-
els with different network and heterogeneity assump-
tions. The significance of these differences depends
on the purpose of the model and specifics of the
situation. Here we focus on policy analysis where
resources are limited and policymakers must make
trade-offs among the level of detail, the breadth of the
model boundary, and the ability to carry out sensitiv-
ity analysis. As expected, the differences between the
mean behavior of the stochastic agent-based models
and the deterministic compartment model are sta-
tistically significant when the homogeneity and per-
fect mixing assumptions of the compartment model
are violated. However, these differences may have
little practical significance in some settings. In the
cases tested here, the differences in the peak burden
on public health resources and the time available to
deploy those resources between the DE and the mean
of the AB models are small relative to the variability
in outcomes caused by unobservable stochastic inter-
actions among individuals for the connected, random,
small world, and scale-free networks. The DE values
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of these metrics generally fall within the envelope
capturing 95% of the AB realizations, not only in the
base case but across a range of assumptions about
Ry, population size, and disease life cycle. The main
exception is the ring lattice, where there are no long-
range contacts. However, a pure lattice is unrealistic
in modeling human diseases due to the high mobility
of modern society (although it may be appropriate in
modeling immobile plant populations or where trans-
mission to humans arises only from geographically
constrained vectors).

Because parameters characterizing emerging (and
some established) diseases are poorly constrained,
epidemiologists typically fit models to aggregate data
for particular outbreaks. We tested the impact of this
protocol by treating each realization of the AB model
as the “real world” and fitting the DE model to
them. The calibrated compartment model captures the
dynamics well, with the median R? exceeding 0.985 in
all conditions. The means of the public health metrics
for the calibrated models fell within the 95% confi-
dence range defined by the ensemble of AB simu-
lations in all network and heterogeneity conditions
tested. These results suggest that simple DE mod-
els can capture a wide range of variation in net-
work structure and individual attributes. However,
the parameter values obtained by fitting the aggregate
model to the data from an AB simulation (and there-
fore from the real world) do not necessarily equal the
mean of the individual-level parameters governing
the interactions among individuals. Aggregate param-
eter estimates not only capture the mean of individual
attributes such as contact rates, but also the impact of
heterogeneity and network structure. Unless compart-
ment models are sufficiently disaggregated to cap-
ture the individual heterogeneity and clustering in the
actual contact network, the compartment model will
be misspecified and the parameter estimates biased
(See Table 2 and the online supplement Table EC.4).
Modelers often use both micro and aggregate data to
parameterize both AB and DE models. The estima-
tion results suggest that caution must be exercised in
doing so, and in comparing parameter values across
different models (Fahse et al. 1998). Further, as shown
in the online supplement, the ability to reproduce his-
torical data does not imply that calibrated compart-
ment models will respond to policies the same way
the AB models do.

AB models enable analysts to examine questions
not easily modeled in the DE paradigm, e.g., creating
and removing nodes and links to simulate random
failures or targeted attacks. AB models can show how
aggregate behavior emerges from interactions among
the elements of the system (e.g., Reynolds 1987),
allow for more realistic representation and analysis of

stochastic behavior in a population, and extend theo-
retical understanding by identifying instances where
DE representations cannot generate certain behaviors
(e.g., Shnerb et al. 2000).

Data availability significantly affects model choice.
AB models will be useful when data or the underlying
“physics” of a situation specify the network structure,
suggest it is critical in the results, and that structure is
stable over the time horizon of interest. Often, though,
data on contact networks and the distribution of indi-
vidual attributes are hard to obtain and highly uncer-
tain, requiring extensive sensitivity analysis to ensure
robust results.

In this study, we focus on the practical significance
of differences among models. We compare differences
in the mean values of important public health met-
rics in the different models relative to the uncertainty
in outcomes for which policymakers should prepare.
Another important measure of practical significance
is the impact of model type on the determination
of optimal policy. Two models may generate similar
base-case behavior, yet respond differently to poli-
cies; cost-benefit analysis may therefore lead to differ-
ent policy choices in different models. For example,
contact reduction, whether resulting from mandatory
quarantine or voluntary social distancing, reduces
the size and impact of the outbreak. However, the
results show that network type and individual het-
erogeneity affect the benefits of contact reduction.
Thus, for certain values of the costs and benefits, the
decision to implement mandatory control measures
such as quarantine will depend on the network struc-
ture of and contact heterogeneity within the popula-
tion. Similarly, the costs and benefits of policies will
depend on behavioral feedbacks such as the degree
of endogenous social distancing. Sensitivity analysis
over these and other sources of uncertainty is required
to assess the robustness of policy choices to model
assumptions.

Model complexity can be expanded in different
directions. Modelers can add detail, disaggregating
populations by location, individual attributes, and
relationship networks. Alternatively, they can expand
the model boundary to include feedbacks with other
subsystems. For example, the results reported here
assume fixed network structure, contact rates, and
infectivities. All are actually endogenous. As preva-
lence increases, people change their behavior. Social
distancing and safer practices disrupt contact net-
works, reduce contact frequencies, and cut the prob-
ability of transmission. From staying home, increased
hand washing, and use of masks (for SARS) to
abstinence, condom use, and needle exchange (for
HIV), endogenous behavior change lowers R, and can
have large effects on disease diffusion (Blower et al.
2000). Alternatively, behavior change may worsen
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an epidemic: people fleeing a disease make contact
tracing more difficult and may seed outbreaks in
remote areas; more effective treatments for HIV /AIDS
increase risky behaviors for some people (Lightfoot
et al. 2005). The impact of such feedback effects may
be larger than the impact of network structure and
individual heterogeneity and should not be excluded
in favor of greater detail. The contact reduction test
above illustrates. The drop in R, with cumulative
cases can be interpreted as endogenous social distanc-
ing. This feedback has a large impact on mean out-
comes compared to the differences between the DE
and mean AB outcomes. Expanding the boundary of
a model can have effects much greater than those
introduced by disaggregation from compartments to
individuals.

In a review entitled “Uses and abuses of mathemat-
ics in biology,” May (2004, p. 793) calls for balance in
model development:

Perhaps most common among abuses, and not always
easy to recognize, are situations where mathematical
models are constructed with an excruciating abun-
dance of detail in some aspects, whilst other important
facets of the problem are misty or a vital parameter is
uncertain to within, at best, an order of magnitude. It
makes no sense to convey a beguiling sense of “reality”
with irrelevant detail, when other equally important
factors can only be guessed at.

While further work is needed, the results reported
here may be useful to modelers seeking the appro-
priate balance among detail, scope, and the ability
to carry out sensitivity analysis over the inevitable
uncertainties we all face.

Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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