
Beyond Keywords: Tracking the evolution of conversational clusters
in social media

James P. Houghton
Michael Siegel
Stuart Madnick

Nobuaki Tounaka
Kazutaka Nakamura
Takaaki Sugiyama
Daisuke Nakagawa

Buyanjargal Shirnen

Working Paper CISL# 2016-13

October 2017

Forthcoming, Sociological Methods & Research

Cybersecurity Interdisciplinary Systems Laboratory (CISL)
Sloan School of Management, Room E62-422

Massachusetts Institute of Technology
Cambridge, MA 02142

Beyond Keywords: Tracking the evolution of
conversational clusters in social media

James P. Houghton1, Michael Siegel1, Stuart Madnick1,
Nobuaki Tounaka2, Kazutaka Nakamura2, Takaaki Sugiyama2,

Daisuke Nakagawa2, and Buyanjargal Shirnen2

1Massachusetts Institute of Technology, Cambridge, MA, USA
2Universal Shell Programming Laboratory Ltd., Tokyo, Japan

October 9, 2017

Abstract

The potential of social media to give insight into the dynamic evo-
lution of public conversations, and into their reactive and constitutive
role in political activities, has to date been underdeveloped. While
topic modeling can give static insight into the structure of a conver-
sation, and keyword volume tracking can show how engagement with
a specific idea varies over time, there is need for a method of analy-
sis able to understand how conversations about societal values evolve
and react to events in the world, incorporating new ideas and relat-
ing them to existing themes. In this paper, we propose a method
for analyzing social media messages that formalizes the structure of
public conversations, and allows the sociologist to study the evolution
of public discourse in a rigorous, replicable, and data-driven fashion.
This approach may be useful to those studying the social construc-
tion of meaning, the origins of factionalism and internecine conflict,
or boundary-setting and group-identification exercises; and has po-
tential implications for those working to promote understanding and
intergroup reconciliation.

1

1 Motivation

Social media suggests a tantalizing prospect for researchers seeking to un-

derstand how newsworthy events influence public and political conversations.

Messages on platforms such as Twitter and Facebook represent a high vol-

ume sample of the national conversation in near real time, and with the

right handling1 can give insight into events such as elections, as demon-

strated by [Huberty, 2013,Tumasjan et al., 2010]; or processes such as social

movements, as demonstrated by [Agarwal et al., 2014,DiGrazia, 2015]. Stan-

dard methods of social media analysis use keyword tracking and sentiment

analysis to attempt to understand the range of perceptions surrounding these

events. While helpful for basic situational awareness, these methods do not

help us understand how a set of narratives compete to interpret and frame

an issue for action.

For example, if we are interested in understanding the national conver-

sation in reaction to the shooting at Emanuel AME church in Charleston,

South Carolina on June 17, 2015, we could plot a timeseries of the volume

of tweets containing the hashtag #charleston, as seen in Figure 1. This

tells us that engagement with the topic spiked on the day of the news, and

then persisted for several days before returning to baseline. It does not tell

us that the initial spike may have been retellings of the details of the event

1The primary issues involve controlling for demographics. For examples of methods for
handling demographic concerns with social media data, see [Bail, 2015,McCormick et al.,
2015].

2

itself, with the tail comprised of interpretations and framings of the event in

the political discourse, the ways the event is interpreted by various groups,

or how these groups connect the event to their preexisting ideas about gun

violence. Additionally, it does not let us track continuing engagement with

the follow-on ideas stimulated by the original discussion.

Figure 1: Standard methods of social media analysis include keyword volume
tracking3(shown here), sentiment analysis, and supervised categorization

Alternate methods include assessing the relative ‘positive’ or ‘negative’

sentiment present in these tweets, or using a supervised learning categorizer

to group messages according to preconceived ideas about their contents, as

demonstrated by [Becker et al., 2011,Ritter et al., 2010,Zubiaga et al., 2011].

Such methods can give aggregated insight into the sentiment expressed, but

fail to uncover from the data the ways the events are being framed within

existing conversations.

3Data presented here (and in the remainder of this paper) is from a 1% random sample
of twitter messages. The number of messages listed in the y axis of this figure (and other
count based figures) represents volume within the sample. For an estimate of the overall
volume, multiply by 100.

3

Because they look at counts of individual messages and not at the re-

lationships between ideas, techniques which focus on volume, sentiment, or

category are unable to uncover coherent patterns of thought that signify a

society’s interpretation of the events’ deeper meanings. To interpret events,

individuals must make connections between an event and historical paral-

lels or concepts in the public discourse. It is thus the expressed connections

between ideas, not merely the ideas themselves, which must be tracked, cat-

egorized, and interpreted as samples from an underlying semantic structure.

Our approach inverts the investigation of structures of connected persons

observed in social networks, as demonstrated by [Zachary, 1977] or [Morales

et al., 2015], and instead investigates structures of connected ideas within

semantic networks.4

While the individual-level semantic networks which constitute personal

interpretation of events are fundamentally unobservable, messages sent by in-

dividuals encode samples of these connections in an observable format. These

individual-level samples can be aggregated to form a societal-level network

representing the superposition of active semantic network connections of the

society’s members. For the purpose of this paper, it is sufficient to note that

if structure is discernible in this aggregate then structure is implied within

the members, allowing that no one individual need represent more than a

subset of the aggregate structure.5

4For a theoretical discussion of semantic networks as representations of human knowl-
edge, see [Woods, 1975], [Mayer, 1995] and [Schilling, 2005], for a physiological description
see [Tulving, 1972] and [Collins and Quillian, 1969].

5The fact that macroscopic structures do exist in the aggregate representation is itself

4

One way to aggregate these connections is to look at a network of word

co-occurrences in social media messages, as has been demonstrated by [Co-

gan and Andrews, 2012,Smith and Rainie, 2014]. This technique represents

references to an event, to analogous historical events, and to other public

discourse concepts as nodes in a semantic network. Each message containing

two concepts contributes to the weight of an edge between these nodes. The

structure that results gives a macro-level aggregated sample of the micro-

level structures of meaning within individuals’ own minds. For example,

Figure 2 shows the network of hashtags formed around the focal concept of

the Charleston shooting, on June 18, 2015. Each hashtag in the conversa-

tion is represented as a point or ‘node’ in this diagram, and each message

containing a pair of hashtags contributes to the strength of the link or ‘edge’

connecting those two nodes.6

Within this example appear two distinct clusters of connected ideas. In

this case, the upper cluster represents a description of the shooting itself and

the human elements of the tragedy, and the lower cluster focusses on the

larger national-scale political conflicts to which the event relates. Within

each cluster, ideas relate to one another, and connections give context to

and comment upon one another. We might consider this the essence of

surprising. One could imagine that such an aggregate would resemble a random network,
and the fact that this is not the case suggests an underlying sociological process for the
social construction of meaning. A full description of how these processes may operate is
forthcoming by the first author.

6Here we use a cutoff threshold to convert a frequency-weighted set of connections into
an unweighted network diagram.

5

Figure 2: Coherent structures in the aggregate hashtag co-occurrence net-
work can serve as proxies for ‘conversations’ in the larger societal discourse,
and give insight into the structures of meaning within the minds of individual
members of that society

what is meant by a national conversation around a topic - a set of mutually

acknowledged statements of meaning. In contrast, across clusters we see

fewer connections between ideas, suggesting that the statements made within

one cluster do not inform or relate to those from the other. By examining the

structure of the semantic network, we begin to see that instead of one national

conversation reacting to the event, there are (at least) two conversations going

on, each strongly connected to itself, but only weakly relating to the other.

6

1.1 The contributions of this paper

We may hypothesize that how these conversations evolve and interact will

influence the social and political response to the event they describe. In

this paper we build on the qualitative example above, and present a formal

method for identifying conversational clusters, describing their structures,

and tracking their development over time. We present various methods for

visualizing conversational structure to give insight into how certain elements

form the central themes of a conversation while other elements circulate

on the margins. We show how overlapping conversational clusters may be

identified, and explore their relevance to discussions of factionalism and con-

sensus building. We then demonstrate a method for tracking the evolution

of these conversational clusters over time, in which clusters identified on one

day are compared with clusters emerging on subsequent days. This allows

us to identify how new concepts are being included into the discussion, and

quantitatively track engagement in full conversations as distinct from mere

references to keywords.

Formally representing elements of a conversation as being frequent vs.

rare, or central vs. marginal, and tracking how these metrics develop over

time, allows the sociologist to study the way new ideas obtain relevance. For

example, a central and well-connected topic may become prominent through

a process of amplification, or a related popular topic may become relevant

through a process of linking. These phenomena, which happen societally at

the level of individual terms, can then be studied as drivers of macro-level

7

phenomena such as factionalism, polarization, and realignment. By tying

the changes in conversation to changes in underlying social structures, the

narrative identity-forming and boundary-setting activities of groups may be

studied.

In the appendices to this paper we provide example scripts that save

those wishing to use these techniques from the burden of reimplementing

these algorithms. Due to the computation-intensive nature of this analysis,

we chose to implement the data manipulation algorithms in both Python and

Unicage shell scripts,7 for prototyping and speed of execution, respectively.

Descriptions of these scripts can be found in the appendices, along with

performance comparisons between the two languages.

2 Identifying Conversation Clusters

The network in Figure 2 represents connections individuals have made be-

tween hashtags.8 Each of the hashtags present in the dataset forms a node

in this network, and the relative strength of edges depends upon the num-

ber of times the pair occur together in a tweet, their ‘co-occurrence’, using

the method of [Marres and Gerlitz, 2014].9 To formally identify the clus-

7For a description of Unicage development tools, see [Tounaka, 2013]
8The attributes of these connections are not considered in this analysis, and may thus

be positive or negative, binding or exclusive.
9It is of course possible to conduct the analysis using the full set of words present in

a tweet, omitting stop-words, or focussing purely upon easily identifiable concepts. From
an analytical perspective, this has the effect of expanding the scale of the clusters, as a
broader range of concepts are included. Within this paper, we limit the analysis to hashtags
purely for the purposes of simplifying the presentation, and keeping visualizations to an

8

ters visually present in the diagram, we apply k-clique community detection

algorithms, implemented in the COS Parallel library developed by [Gregori

et al., 2013] and demonstrated in the appendices.

Clique percolation methods work to identify communities of well-connected

nodes within a network in a way that allows for the possibility of overlapping

or nested communities. The methods allow the analyst to create metrics that

identify communities based upon local network characteristics and are thus

invariant to network size or connectivity outside of the local community. As

the measured extent of a conversation should be determined by the content

and connectivity of that conversation, and not by the structure of unrelated

discussion, this method of community detection is for our purposes superior

to those based upon graph cutting or intersubjective distance measures.10

The K-clique percolation method suggests that communities are com-

posed of an interlocking set of cliques of size k, that is k nodes which are all

mutually connected to each other; and that the overlap of each clique with a

neighboring clique is (k-1). This ensures that each member of a community

is connected to at least (k-1) other mutually-connected nodes within the

community, and that any sub-communities are connected by a bridge of at

appropriate size. We are grateful to an anonymous reviewer for highlighting that a full
text analysis not only allows for a larger sample of messages to be observed within the
conversation, but is essential for researchers studying how concepts rise to prominence, as
the initial process of concept formation or linkage is likely to occur before the concepts are
institutionalized with a hashtag. A comparison of the full-text and hashtag-only analysis
is present in Appendix F.

10For a comparison of community detection algorithms and their features, see [Porter
et al., 2009].

9

least width k.

The metric k determines how strict the conditions are for membership in

a cluster, and thus drives cluster extent and boundaries. For example, high

values of k would impose strict requirements for interconnectedness between

elements of an identified conversation, leading to a smaller, more coherent

identified conversation, as seen in Figure 3. Each member of this cluster is

connected to at least 4 other members who are all connected to one another.

Figure 3: Clusters with higher k value are smaller and more tightly connected,
representing a more coherent or focused conversation

On the other hand, smaller values of k are less stringent about the re-

quirements of connectivity they put on the elements in the cluster, leading

to a larger, more loosely coupled group as seen in Figure 4, whose members

must be connected to at least two other mutually connected members of the

community.

When we apply these methods to word co-occurrence networks, the result

10

Figure 4: Clusters with lower k value are larger and less less tightly connected,
representing more diffuse conversation. They may have smaller clusters of
conversation within them

is a collection of sets of words which all form a conversational cluster. As the

extent and connectivity of the identified cluster is dependent upon the value

of k used to create it, by varying k we can identify closely connected subsets

that represent the central structures of the conversation, and occasionally

multiple subsets representing internal factions within the discussion.

As the algorithms depend only on the presence, not the strength of con-

nections within the conversation, information of the volume of messages mak-

ing a semantic connection can be encoded as a threshold weight w for inclusion

into the analyzed co-occurrence network. By varying w we can identify the

11

extent to which a connection is recognized by members of the population. To

demonstrate the utility of these parameters we explore their extrema. Clus-

ters that form with high values of k and low values of w may be considered

central to the conversation, but only by a minority of the population. Con-

versely, concepts contained only within clusters with high values of w and

low values of k are universally agreed to be marginally related to the focal

discussion.

3 Representing Conversational Clusters as Nested

Sets

Tight conversational clusters (high k) must necessarily be contained within

larger clusters with less stringent connection requirements (lower k). Per-

forming clustering along a range of k values allows us to place a specific

conversation in context of the larger discourse. It becomes helpful to repre-

sent these clusters as nested sets as seen in Figure 5, ignoring the node and

edge construction of the network diagram in order to display the nested and

interlocking relationships the conversations have with one another. In this

diagram, members of a 5-clique cluster are arranged (in no particular order)

within the darker blue box. These form a subset of a larger 4-clique cluster

which also includes a number of other concepts.

With this representation we see elements of the conversation that are

more well-connected and thus ‘central’ to the conversation, along with those

12

Figure 5: Converting networks to nested sets based upon k-clique clustering
simplifies presentation and analysis of various levels of conversation

relating to one another less tightly. Existing methods which look at volume

may suggest that ideas are central to a conversation if they are well repre-

sented in the sample. These methods lack the ability to analytically discern

that different topics are located within the core of different conversations.

Within the nested structure presented here, central topics are defined not by

their volume, but by the multiplexity of their connection with other concepts

which also form the core of the discussion, elements to which they relate and

whose meaning they are seen as essential to. Within the larger conversa-

tion, peripheral terms are less mutually interdependent, and less essential for

understanding.

Specifically, this method allows the qualitative observation of conversa-

tional clusters that we drew from Figure 2 to be formalized into an explicit

and analytically tractable structure. The upper cluster of our example is

highlighted here, and we show that this cluster is actually composed of a

more tightly connected set of central ideas referencing the event itself and

13

the immediate response it elicits, embedded within a broader set of ideas

additionally referencing the perpetrator and victims.11 In noting that the

abstractions of terrorism and racism are part of the center of this part of the

conversation, with the specific details closer to the margins, the sociologist

may wonder if this is because the event is seen primarily as an instance of

a more important phenomena than as an interesting occurrence in its own

right.

4 Tracking Conversations Chronologically

In order to track how elements of conversation weave into and out of the

general discourse over time, we need to be able to interpret how conversa-

tional clusters identified at one point in time relate to those in subsequent

intervals. We can do this in one of two ways.

The first method is to track the volume of co-occurrences identified in the

various conversational clusters identified on the first day of the analysis, as it

changes over subsequent days. This indicates how well the connections made

on the first day maintain their relevance in the larger conversation. Figure 6

shows how the connections made in conversational clusters on June 18th fall

in volume over the 10 days subsequent to the initial event, paralleling the

11This also reveals that ideas which at first seem related, such as ‘racism’ and ‘racist’
might hold different valences. This diagram would suggest that systemic racism attributed
to the event is more closely connected with other details of the conversation than is its
specific manifestation in the racist perpetrator. The robustness of these conclusions would
need to be explored by further varying the thresholds used to construct these clusters.

14

decay in pure keyword volume seen in Figure 1.

Figure 6: Tracking the volume of connections made in a single day’s clusters
(e.g. co-occurrences) reveals how the specific analogies made immediately
after the event maintain their relevance

The second method for tracking conversation volume over time takes into

account the changes that happen within the conversation itself. The funda-

mental assumption in this analysis is that while the words and connections

present in a conversation change, they do so incrementally in such a way as

to allow for matching conversations during one time period with those in the

time period immediately subsequent.12

[Palla et al., 2007] discuss how communities of individuals develop over

time and change. We can use the same techniques to track the continuity of

conversational clusters. The most basic way to do this is to count the overlap

12For an intuitive analogy, consider that a fraction of your favorite baseball team may
be replaced in any given year, but the ‘team’ persists. It would be easy to identify these
persisting teams by matching rosters from one season with those from the preceding and
subsequent seasons, even if particular players transfer to other teams in the league.

15

of elements of conversational clusters at time 1 and time 2, as a fraction of

the total number of elements between the two, and use this fraction as the

likelihood that each cluster at time 2 is an extension or contraction of the

time 1 cluster in question. From this we can construct a transition matrix

relating conversational clusters at time 1 with clusters at time 2.13

For instance, if we wish to understand the likelihood that the outermost

cluster illustrated in Figure 5 transitions to a subsequent cluster on June

19th, as visualized in Figure 7, we can count the number of words present

in both days (7: ‘terrorism’, ‘dylannroof’, ‘charlestonshooting’, etc...) and

divide by the total unique number of words in the clusters on both days

combined (19: adding ‘whitesupremacy’, ‘massmurder’, etc...), giving a value

of 0.37.14

This value forms the entry in our transition matrix with row 20150618-

cl1, and column 20150619-cl1, excerpted in Table 1. Other clusters which

are candidates for succeeding our focal cluster form other entries in the same

row. Other clusters from the first day and their candidates for transition

form the additional rows.

13In this analysis, we form clusters using all messages sent on a given day, and look at
transitions from day to day. This is appropriate as the underlying sociological process we
are interested in occurs at this timescale. For slower-changing conversations, it may be
useful to construct clusters by aggregating messages to the weekly or monthly level, and
computing transitions between these times

14To improve our estimates, we can take advantage of the fact that clusters that corre-
spond from time 1 to time 2 will participate in a larger cluster that emerges if we perform
our clustering algorithm on the union of all edges from the networks at time 1 and time
2. Omitting entries in the transition matrix which do not nest within this joint cluster
reduces the number of possible pairings across days, yielding a sparser and more specific
intra-day transition matrix.

16

Figure 7: A cluster from one day can be related to a cluster on the next day
with likelihood proportional to their shared elements

This transition matrix describes the similarity between a cluster in one

time-period (rows) and a corresponding cluster in the subsequent time-period

(columns). If a cluster remains unchanged from one time-period to the next,

the value at the location in the transition matrix with row index correspond-

ing to the cluster on the first day and column index corresponding to the

cluster on the second day will be equal to 1. On the other hand, if the clus-

ter breaks into two equal and fully separate groups, each of these will have a

value of .5 in their corresponding column, as for cluster 20150618-cl2 in the

table. When one of the groups is larger than the other, it will be given a cor-

respondingly higher value. If two overlapping clusters form by splitting the

original cluster, their combined values may exceed 1, as for cluster 20150618-

cl3, and if significant fractions of the original cluster are not present in any

subsequent cluster, the sum of all values for that row may be less than 1.

We should thus interpret the transition matrix not as a way to select the

single subsequent cluster out of many which represents the original cluster

17

Table 1: Clusters at t1 have some likelihood of continuing as clusters at t2

Cluster ID 20150619-cl1 20150619-cl2 20150619-cl3 20150619-cl4 . . .
20150618-cl1 0.37 0.02 0.0
20150618-cl2 . . . 0.5 0.5
20150618-cl3 0.65 0.75 . . .

.

transformed and brought forward in time. Instead the value should be in-

terpreted as the confidence that a subsequent cluster may be considered a

continuation of the original cluster. Thus by looking at the distribution of

values within a row in the transition matrix, we can identify situations in

which a conversation splits, or multiple conversations merge to form a single

larger conversation.

These dynamics point to underlying processes of polarization, factional-

ism, or reconciliation within the population engaging in the discussion. We

should expect that in the process of meaning-making with regards to an

event, the emergence of consensus should be characterized as a move to-

ward fewer clusters as some clusters merge and others fall out of the larger

discussion. Increasing polarization suggests the fission of conversations into

partially overlapping clusters, as individuals from each faction begin to talk

past one another, highlighting different aspects of the overarching conversa-

tion.

We can extend nested cluster diagram shown in Figure 5 to illustrate how

18

Figure 8: Weighted traces connect conversational clusters as they evolve day
to day

19

clusters transition from day to day. In Figure 8, weighted traces connect

conversations on June 18th to their likely continuations on June 19th, then

20th, and so on, with heavier traces implying greater continuity from day to

day.

In the first column of this figure, corresponding to June 18, 2015, we see

the conversation illustrated by Figure 5 in the context of a larger conversation

also including preexisting clusters of conservative politics, the 2016 election

cycle, and issues such as gun control and the Trans Pacific Partnership. In

this first day following the shooting, a tight conversational cluster relates

the details of the shooting: the event and its location (‘charlestonshooting’,

‘massmurder’, etc.), the victims (‘clementapinkney’, ‘emanuelame’), and the

perpetrator (‘dylannroof’). These we highlight in red. Using the language

of [Benford and Snow, 2000], we also see words representing early ‘diag-

nostic framing’; which define the event as a problem, explain the cause of

that problem, and attribute blame. These we highlight in orange (‘racism’,

‘terrorism’).

In the second column, corresponding to June 19th, concrete details of

the shooting no longer form a tight cluster, but references to the event

(‘charlestonshooting’) become more central to the conversation regarding

conservative politics, suggesting that a process of meaning-making is under-

way. References to existing ‘prognostic’ framings, which articulate appropri-

ate response strategies, likewise move more towards the core of the political

discussion as the (sadly) familiar responses to gun violence are brought out.

20

These we highlight in green (‘progun’, ‘gunfreezone’, ‘notonemore’).

In June 20, additional references to existing prognostic framings move into

the core of the conversation (‘momsdemand’), and new diagnostic framings

enter the larger conversation as details of the perpetrator’s motivation emerge

(‘confederate’, ‘whiteprivilege’, ‘confederateflag’). As calls are made for the

South Carolina state legislature to remove the Confederate flag from the state

capitol grounds, new prognostic framings enter the discussion (‘takeitdown’,

‘takedownthatflag’). In the fourth column, representing June 21st, diagnos-

tic and prognostic framings gel together in clusters linking the Confederate

flag to the Charleston shooting and racism, and to the Black Lives Matter

movement. A counterframing (‘alllivesmatter’, ‘gohomederay’) forms its own

overlapping conversational cluster.

On June 22, the shooting itself has become less tightly linked with politi-

cal discussion, as it is replaced with prognostic framings and calls to solidar-

ity actions (‘charlestonstrong’, ‘unitychaincharleston’, ‘bridgetopeace’). In

response to political pressure, the Confederate flag is removed from the state

capitol. On June 23rd, the tight clustering of prognostic framing linked with

the references to the shooting has dissipated, and the conversation returns

to its longer-term structure, with movement references again moving toward

the margins of the discussion.

Having explored the way the conversation that was formed in response

to the shooting evolved into a conversation about the state’s support for

symbols of racism, we can finally return to the original task of assessing

21

public engagement with the discussion. In figure 9 we show the volume

associated with each of the sub-conversations and some of the key terms

associated with their evolution. Here we observe that in shifting its emphasis

from a conversation about the event alone to a discussion with more political

relevance, overall engagement with the topic actually surpasses the original

discussion about the event on the first day.

This leads to the sociological conclusion that rather than the typical news

cycle, what we see in this case is actually the trigger of a small wave of social

activism linked to a larger social movement.

Figure 9: The average (1% sample) volume of messages in each evolving
cluster shows how engagement with the conversation (as opposed to specific
keywords) varies over time

22

5 Discussion and Conclusion

Through our analysis, it is clear that the ‘National Conversation on Racism’

that gained steam following the Charleston shooting was not a single dis-

cussion of a single set of issues. By structuring as a semantic network the

way various concepts built and reflected on one another, we recognized that

there may have been be multiple simultaneous but separate conversations

addressing different aspects of the tragedy. By examining the density of re-

lationships within each conversation, we found the central aspects of each

conversation. By tracking the evolution of these conversations over time, we

saw how events became linked to larger social issues, and how these links

drew on prior discussion to frame and suggest responses to the events. These

conclusions can only be drawn by understanding the links between the event

and its interpretations as they evolve over time.

The utility of social media analysis for sociological research can be ex-

tended well beyond the practice of tracking keyword volume, net post sen-

timent, or supervised classification. In particular, tracking conversational

clusters within a network of idea co-occurrences can give both structural un-

derstanding of a conversation, and insight into how it develops over time.

These tools can prove helpful to sociologists interested in using social media

to understand how world events are framed within the context of existing

conversations.

Follow-on work to this paper could attempt to separate the various con-

23

versational clusters according to the groups engaged in them, possibly using

information about the Twitter social network to understand if certain con-

versations propagate through topologically separate subgraphs, or if multiple

conversations occur simultaneously within the same interconnected commu-

nities. Such research would have obvious impact on our understanding of

framing, polarization, and the formation of group values.

6 Author’s Note

The appendices to this paper contain all of the code needed to collect nec-

essary data, generate the analysis, and and produce visualizations found

herein:

Appendix A Cluster Identification and Transition Analysis in Python

Appendix B Cluster Identification and Transition Analysis in Unicage

Appendix C Performance Comparison Between Python and Unicage Ex-

amples

Appendix D Data Collection Scripts

Appendix E Visualizations

Appendix F Comparison of hashtags-only analysis with full analysis

The full set of scripts, and associated documentation, can be found at

https://github.com/JamesPHoughton/twitter-cluster.

24

References

[Agarwal et al., 2014] Agarwal, S. D., Bennett, W. L., Johnson, C. N., and

Walker, S. (2014). A model of crowd enabled organization: Theory and

methods for understanding the role of twitter in the occupy protests. In-

ternational Journal of Communication, 8:646–672.

[Bail, 2015] Bail, C. A. (2015). Taming Big Data: Using App Technology to

Study Organizational Behavior on Social Media. Sociological Methods &

Research.

[Becker et al., 2011] Becker, H., Naaman, M., and Gravano, L. (2011).

Beyond Trending Topics: Real-World Event Identification on Twitter.

ICWSM.

[Benford and Snow, 2000] Benford, R. D. and Snow, D. a. (2000). Framing

Processes and Social Movements : An Overview and Assessment. Annual

Review Sociology, 26(1974):611–639.

[Cogan and Andrews, 2012] Cogan, P. and Andrews, M. (2012). Reconstruc-

tion and analysis of twitter conversation graphs. Proceedings of the First

ACM International Workshop on Hot Topics on Interdisciplinary Social

Networks Research.

[Collins and Quillian, 1969] Collins, A. M. and Quillian, M. R. (1969). Re-

trieval Time from Semantic Memory. Journal of Verbal Learning and Ver-

bal Behavior, 8:240–247.

25

[DiGrazia, 2015] DiGrazia, J. (2015). Using Internet Search Data to Produce

State-level Measures: The Case of Tea Party Mobilization. Sociological

Methods & Research.

[Gregori et al., 2013] Gregori, E., Lenzini, L., and Mainardi, S. (2013). Par-

allel k-clique community detection on large-scale networks. IEEE Trans-

actions on Parallel and Distributed Systems, 24(8).

[Huberty, 2013] Huberty, M. (2013). Multi-cycle forecasting of congressional

elections with social media. Proceedings of the 2nd workshop on Politics,

Elections and Data.

[Marres and Gerlitz, 2014] Marres, N. and Gerlitz, C. (2014). Interface

Methods: Renegotiating relations between digital research, STS and Soci-

ology.

[Mayer, 1995] Mayer, R. E. (1995). The Search for Insight: Grappling with

Gestalt Psychology’s Unanswered Questions. In Sternberg, R. J. and

Davidson, J. E., editors, The Nature of Insight, pages 1 online resource

(xviii, 618 p.)–1 online resourc.

[McCormick et al., 2015] McCormick, T. H., Lee, H., Cesare, N., Shojaie,

A., and Spiro, E. S. (2015). Using Twitter for Demographic and Social

Science Research: Tools for Data Collection and Processing. Sociological

Methods & Research.

26

[Morales et al., 2015] Morales, A. J., Borondo, J., Losada, J. C., and Ben-

ito, R. M. (2015). Measuring Political Polarization: Twitter shows the

two sides of Venezuela. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 25(3).

[Palla et al., 2007] Palla, G., Barabási, A., and Vicsek, T. (2007). Quantify-

ing social group evolution. Nature.

[Porter et al., 2009] Porter, M. a., Onnela, J.-P., and Mucha, P. J. (2009).

Communities in Networks. American Mathematical Society, 56(9):0–26.

[Ritter et al., 2010] Ritter, A., Cherry, C., and Dolan, B. (2010). Unsuper-

vised modeling of twitter conversations. In Human Language Technologies:

The 2010 Annual Conference of the North American Chapter of the ACL,

pages 172–180.

[Schilling, 2005] Schilling, M. A. (2005). A ”Small-World” Network Model

of Cognitive Insight. Creativity Research Journal, 17(2-3):131–154.

[Smith and Rainie, 2014] Smith, M. and Rainie, L. (2014). Mapping twitter

topic networks: From polarized crowds to community clusters.

[Tounaka, 2013] Tounaka, N. (2013). How to Analyze 50 Billion Records in

Less than a Second without Hadoop or Big Iron.

[Tulving, 1972] Tulving, E. (1972). Episodic and semantic memory.

27

[Tumasjan et al., 2010] Tumasjan, A., Sprenger, T., Sandner, P., and Welpe,

I. (2010). Predicting Elections with Twitter: What 140 Characters Reveal

about Political Sentiment. ICWSM.

[Woods, 1975] Woods, W. A. (1975). WHAT’S IN A LINK: Foundations for

Semantic Networks. Technical Report November.

[Zachary, 1977] Zachary, W. W. (1977). An Information Flow Model for

Conflict and Fission in Small Groups. Journal of Anthropological Research,

33(4):452–473.

[Zubiaga et al., 2011] Zubiaga, A., Spina, D., Fresno, V., and Mart́ınez, R.

(2011). Classifying trending topics: a typology of conversation triggers on

twitter. Proceedings of the 20th ACM international conference on Infor-

mation and knowledge management, pages 2461–2464.

28

This code takes messages that are on twitter, and extracts their hashtags. It then constructs a set of weighted
and unweighted network structures based upon co-citation of hashtags within a tweet. The network diagrams
are interpreted to have a set of clusters within them which represent 'conversations' that are happening in the
pool of twitter messages. We track similarity between clusters from day to day to investigate how conversations
develop.

These scripts depend upon a number of external utilities as listed below:

import	datetime
print	'started	at	%s'%datetime.datetime.now()

import	json
import	gzip
from	collections	import	Counter
from	itertools	import	combinations
import	glob
import	dateutil.parser
import	pandas	as	pd
import	os
import	numpy	as	np
import	datetime
import	pickle
import	subprocess

#load	the	locations	of	the	various	elements	of	the	analysis
with	open('config.json','r')	as	jfile:
				config	=	json.load(jfile)
print	config

Appendix A: Cluster Identification and Transition Analysis
in Python

Utilities

Data Files

We have twitter messages saved as compressed files, where each line in the file is the JSON object that the
twitter sample stream returns to us. The files are created by splitting the streaming dataset according to a fixed
number of lines - not necessarily by a fixed time or date range. A description of the collection process can be
found in Appendix D.

All the files have the format posts_sample_YYYYMMDD_HHMMSS_aa.txt where the date listed is the date
at which the stream was initialized. Multiple days worth of stream may be grouped under the same second, as
long as the stream remains unbroken. If we have to restart the stream, then a new datetime will be added to
the files.

#	Collect	a	list	of	all	the	filenames	that	will	be	working	with
files	=	glob.glob(config['data_dir']+'posts_sample*.gz')
print	'working	with	%i	input	files'%len(files)

Its helpful to have a list of the dates in the range that we'll be looking at, because we can't always just add one
to get to the next date. Here we create a list of strings with dates in the format 'YYYYMMDD'. The resulting list
looks like:

['20141101',	'20141102',	'20141103',	...	'20150629',	'20150630']

dt	=	datetime.datetime(2014,	11,	1)
end	=	datetime.datetime(2015,	7,	1)
step	=	datetime.timedelta(days=1)

dates	=	[]
while	dt	<	end:
				dates.append(dt.strftime('%Y%m%d'))
				dt	+=	step
				
print	'investigating	%i	dates'%len(dates)

The most data-intensive part of the analysis is this first piece, which parses all of the input files, and counts the
various combinations of hashtags on each day.

In this demonstration we perform this counting in memory, which is sufficient for date ranges on the order of

Supporting Structures

Step 1: Count hashtag pairs

weeks, but becomes unwieldy beyond this timescale.

#construct	a	counter	object	for	each	date
tallydict	=	dict([(date,	Counter())	for	date	in	dates])

#iterate	through	each	of	the	input	files	in	the	date	range
for	i,	zfile	in	enumerate(files):
				if	i%10	==	0:	#save	every	10	files
								print	i,
								with	open(config['python_working_dir']+"tallydict.pickle",	"wb")	as	picklefile:
												pickle.dump(tallydict,	picklefile)		
								with	open(config['python_working_dir']+"progress.txt",	'a')	as	progressfile:				
												progressfile.write(str(i)+':	'+zfile+'\n')
												
				try:
								with	gzip.open(zfile)	as	gzf:
												#look	at	each	line	in	the	file
												for	line	in	gzf:
																try:
																				#parse	the	json	object	
																				parsed_json	=	json.loads(line)
																				#	we	only	want	to	look	at	tweets	that	are	in	
																				#	english,	so	check	that	this	is	the	case.
																				if	parsed_json.has_key('lang'):
																								if	parsed_json['lang']	=='en':
																												#look	only	at	messages	with	more	than	two	hashtags,	
																												#as	these	are	the	only	ones	that	make	connections
																												if	len(parsed_json['entities']['hashtags'])	>=2:
																																#extract	the	hashtags	to	a	list	
																																taglist	=	[entry['text'].lower()	for	entry	in	
																																											parsed_json['entities']['hashtags']]
																																#	identify	the	date	in	the	message	
																																#	this	is	important	because	sometimes	messages	
																																#	come	out	of	order.
																																date	=	dateutil.parser.parse(parsed_json['created_at'])
																																date	=	date.strftime("%Y%m%d")	
																																#look	at	all	the	combinations	of	hashtags	in	the	set
																																for	pair	in	combinations(taglist,	2):
																																				#count	up	the	number	of	alpha	sorted	tag	pairs
																																				tallydict[date]['	'.join(sorted(pair))]	+=	1
																except:	#error	reading	the	line
																				print	'd',
				except:	#error	reading	the	file
								print	'error	in',	zfile

We save the counter object periodically in case of a serious error. If we have one, we can load what we've
already accomplished with the following:

with	open(config['python_working_dir']+"tallydict.pickle",	"r")	as	picklefile:
				tallydict	=	pickle.load(picklefile)
				
print	'Step	1	Complete	at	%s'%datetime.datetime.now()

Having created this sorted set of tag pairs, we should write these counts to files. We'll create one file for each
day. The files themselves will have one pair of words followed by the number of times those hashtags were
spotted in combination on each day. For Example:

PCMS	champs	3
TeamFairyRose	TeamFollowBack	3
instadaily	latepost	2
LifeGoals	happy	2
DanielaPadillaHoopsForHope	TeamBiogesic	2
shoes	shopping	5
kordon	saatc	3
DID	Leg	3
entrepreneur	grow	11
Authors	Spangaloo	2

We'll save these in a very specific directory structure that will simplify keeping track of our data down the road,
when we want to do more complex things with it. An example:

twitter/
			20141116/
							weighted_edges_20141116.txt
			20141117/
							weighted_edges_20141117.txt
			20141118/
							weighted_edges_20141118.txt
			etc...

We create a row for every combination that has a count of at least two.

In this code we'll use some of the iPython 'magic' functions for file manipulation, which let us execute shell

Step 2: Create Weighted Edge Lists

commands as if through a terminal. Lines prepended with the exclaimation point ! will get passed to the
shell. We can include python variables in the command by prepending them with a dollar sign $.

for	key	in	tallydict.keys():	#keys	are	datestamps
				#create	a	directory	for	the	date	in	question
				date_dir	=	config['python_working_dir']+key
				if	not	os.path.exists(date_dir):
								os.makedirs(date_dir)
				#replace	old	file,	instead	of	append
				with	open(config['python_working_dir']+key+'/weighted_edges_'+key+'.txt',	'w')	as	fout:	
								for	item	in	tallydict[key].iteritems():
												if	item[1]	>=	2:	#throw	out	the	ones	that	only	have	one	edge
																fout.write(item[0].encode('utf8')+'	'+str(item[1])+'\n')

Now lets get a list of the wieghed edgelist files, which will be helpful later on.

weighted_files	=	glob.glob(config['python_working_dir']+'*/weight*.txt')
print	'created	%i	weighted	edgelist	files'%len(weighted_files)
print	'Step	2	Complete	at	%s'%datetime.datetime.now()

We make an unweighted list of edges by throwing out everything below a certain threshold. We'll do this for a
range of different thresholds, so that we can compare the results later. Looks like:

FoxNflSunday	tvtag
android	free
AZCardinals	Lions
usa	xxx
كبلز	متحرره
CAORU	TEAMANGELS
RT	win
FarCry4	Games

We do this for thresholds between 2 and 15 (for now, although we may want to change later) so the directory
structure looks like:

twitter/

20141116/

th_02/

Step 3: Construct unweigheted edgelist

unweighted_20141116_th_02.txt

th_03/

unweighted_20141116_th_03.txt

th_04/

unweighted_20141116_th_04.txt

etc...

20151117/

th_02/

unweighted_20141117_th_02.txt

etc...

etc...

Filenames include the date and the threshold, and the fact that these files are unweighted edge lists.

for	threshold	in	range	(2,	15):
				for	infile_name	in	weighted_files:
								date_dir	=	os.path.dirname(infile_name)
								date	=	date_dir.split('/')[-1]
								weighted_edgefile	=	os.path.basename(infile_name)
								
								#create	a	subdirectory	for	each	threshold	we	choose
								th_dir	=	date_dir+'/th_%02i'%threshold
								if	not	os.path.exists(th_dir):
												os.makedirs(th_dir)
								
								#	load	the	weighted	edgelists	file	and	filter	it	to	
								#	only	include	values	above	the	threshold
								df	=	pd.read_csv(infile_name,	sep='	',	header=None,	
																									names=['Tag1',	'Tag2',	'count'])
								filtered	=	df[df['count']>threshold][['Tag1','Tag2']]
								
								#write	out	an	unweighted	edgelist	file	for	each	threshold
								outfile_name	=	th_dir+'/unweighted_'+date+'_th_%02i'%threshold+'.txt'
								with	open(outfile_name,	'w')	as	fout:	#replace	old	file,	instead	of	append
												for	index,	row	in	filtered.iterrows():
																try:
																				fout.write(row['Tag1']+'	'+row['Tag2']+'\n')
																except:
																				print	'b',

Now lets get a list of all the unweighted edgelist files we created

unweighted_files	=	glob.glob(config['python_working_dir']+'*/*/unweight*.txt')
print	'created	%i	unweighted	edgelist	files'%len(unweighted_files)
print	'Step	3	Complete	at	%s'%datetime.datetime.now()

We're using COS Parallel to identify k-cliques, so we feed each unweighted edge file into the
./maximal_cliques preprocessor, and then the ./cos algorithm.

The unweighed edgelist files should be in the correct format for ./maximal_cliques to process at this
point.

./maximal_cliques translates each node name into an integer to make it faster and easier to deal with,
and so the output from this file is both a listing of all of the maximal cliques in the network, with an extension
.mcliques , and a mapping of all of the integer nodenames back to the original text names, having

extension .map .

It is a relatively simple task to feed each unweighed edgelist we generated above into the
./maximal_cliques algorithm.

for	infile	in	unweighted_files:
				th_dir	=	os.path.dirname(infile)
				th_file	=	os.path.basename(infile)
				#operate	the	command	in	the	directory	where	we	want	the	files	created
				subprocess.call([os.getcwd()+'/'+config['maximal_cliques'],	th_file],	cwd=th_dir)	

maxclique_files	=	glob.glob(config['python_working_dir']+'*/*/*.mcliques')
print	'created	%i	maxcliques	files'%len(maxclique_files)
print	'Step	4a	Complete	at	%s'%datetime.datetime.now()

current_directory	=	os.getcwd()
for	infile	in	maxclique_files:
				mc_dir	=	os.path.dirname(infile)
				mc_file	=	os.path.basename(infile)
				subprocess.call([os.getcwd()+'/'+config['cos-parallel'],	mc_file],	cwd=mc_dir)

Step 4: Find the communities

Step 5: Once this step is complete, we then feed the .mcliques output files
into the cosparallel algorith.

http://sourceforge.net/p/cosparallel/wiki/Home/

community_files	=	glob.glob(config['python_working_dir']+'*/*/[0-9]*communities.txt')
print	'created	%i	community	files'%len(community_files)
print	'Step	5	Complete	at	%s'%datetime.datetime.now()				

The algorithms we just ran abstract away from the actual text words and give us a result with integer collections
and a map back to the original text. So we apply the map to recover the clusters in terms of their original words,
and give each cluster a unique identifier:

0	Ferguson	Anonymous	HoodsOff	OpKKK
1	Beauty	Deals	Skin	Hair	
2	Family	gym	sauna	selfie
etc...

Step 6: Translate back from numbers to actual words

#	we'll	be	reading	a	lot	of	files	like	this,	
#	so	it	makes	sense	to	create	a	function	to	help	with	it.
def	read_cluster_file(infile_name):
				"""	take	a	file	output	from	COS	and	return	a	dictionary
				with	keys	being	the	integer	cluster	name,	and	
				elements	being	a	set	of	the	keywords	in	that	cluster"""
				clusters	=	dict()
				with	open(infile_name,	'r')	as	fin:
								for	i,	line	in	enumerate(fin):
												#the	name	of	the	cluster	is	the	bit	before	the	colon
												name	=	line.split(':')[0]	
												if	not	clusters.has_key(name):
																clusters[name]	=	set()
												#the	elements	of	the	cluster	are	after	the	colon,	space	delimited
												nodes	=	line.split(':')[1].split('	')[:-1]	
												for	node	in	nodes:
																clusters[name].add(int(node))
				return	clusters								

current_directory	=	os.getcwd()
for	infile	in	community_files:
				c_dir	=	os.path.dirname(infile)
				c_file	=	os.path.basename(infile)
				
				#load	the	map	into	a	pandas	series	to	make	it	easy	to	translate
				map_filename	=	glob.glob('%s/*.map'%c_dir)
				mapping	=	pd.read_csv(map_filename[0],	sep='	',	header=None,	
																										names=['word',	'number'],	index_col='number')

				clusters	=	read_cluster_file(infile)
				#create	a	named	cluster	file	in	the	same	directory
				with	open(c_dir+'/named'+c_file,	'w')	as	fout:
								for	name,	nodes	in	clusters.iteritems():
												fout.write('	'.join([str(name)]+
																																[mapping.loc[int(node)]['word']	for	node	in	list(nodes)]+
																																['\n']))

print	'Step	6	Complete	at	%s'%datetime.datetime.now()

While we're at it, we'll write a function to read the files we're creating

def	read_named_cluster_file(infile_name):
				"""	take	a	file	output	from	COS	and	return	a	"""
				clusters	=	dict()
				with	open(infile_name,	'r')	as	fin:
								for	i,	line	in	enumerate(fin):
												name	=	line.split('	')[0]
												if	not	clusters.has_key(name):
																clusters[int(name)]	=	set()
												nodes	=	line.split('	')[1:-1]
												for	node	in	nodes:
																clusters[int(name)].add(node)
				return	clusters		

We want to know how a cluster on one day is related to a cluster on the next day. For now, we'll use a brute-
force algorithm of counting the number of nodes in a cluster that are present in each of the subsequent day's
cluster. From this we can get a likelihood of sorts for subsequent clusters.

We'll define a function that, given the clusers on day 1 and day 2, creates a matrix from the two, with day1
clusters as row elements and day2 clusters as column elements. The entries to the matrix are the number of
nodes shared by each cluster.

#brute	force,	without	the	intra-day	clustering
def	compute_transition_likelihood(current_clusters,	next_clusters):
				transition_likelihood	=	np.empty([max(current_clusters.keys())+1,	
																																						max(next_clusters.keys())+1])
				for	current_cluster,	current_elements	in	current_clusters.iteritems():
								for	next_cluster,	next_elements	in	next_clusters.iteritems():
												#the	size	of	the	intersection	of	the	sets
												transition_likelihood[current_cluster,	next_cluster]	=	(
																											len(current_elements	&	next_elements))	
				return	transition_likelihood

We want to compute transition matricies for all clusters with every k and every threshold. We'll save the matrix
for transitioning from Day1 to Day2 in Day1's folder. In many cases, there won't be an appropriate
date/threshold/k combination, so we'll just skip that case.

Step 7: Compute transition likelihoods

#this	should	compute	and	store	all	of	the	transition	likelihoods

for	current_date	in	dates[:-1]:
				next_date	=	dates[dates.index(current_date)+1]
				for	threshold	in	range(2,15):
								for	k	in	range(3,	20):

												current_file_name	=	config['python_working_dir']+'%s/th_%02i/named%i_communities.txt'
																																																																						threshold,	k)
												
												next_file_name	=	config['python_working_dir']+'%s/th_%02i/named%i_communities.txt'%
																																																																			threshold,	k)
												
												if	os.path.isfile(current_file_name)	&	os.path.isfile(next_file_name):	
																current_clusters	=	read_named_cluster_file(current_file_name)
																next_clusters	=	read_named_cluster_file(next_file_name)																											
												
																transition	=	compute_transition_likelihood(current_clusters,	
																																																											next_clusters)
																transitiondf	=	pd.DataFrame(data=transition,	
																																												index=current_clusters.keys(),
																																												columns=next_clusters.keys())

																transitiondf.to_csv(current_file_name[:-4]+'_transition.csv')
																

transition_files	=	glob.glob(config['python_working_dir']+'*/*/named*_communities_transition.csv'
print	'created	%i	transition	matrix	files'%len(transition_files)
print	'Step	6	Complete	at	%s'%datetime.datetime.now()

This code replicates the functionality found in appendix A one step at a time, using shell programming and the
Unicage development platform. Each of the scripts listed here is found at https:\github.com\ Removed for
Anonymity

This analysys process is separated to 7 steps. You can run each or all steps using the helper script
twitter_analysis.sh as follows:

$	twitter_analysis.sh	<start_step_no>	<end_step_no>

A key to the step numbers is:

1 - list_word_pairings.sh

2 - wgted_edge_gen.sh

3 - unwgted_edge_gen.sh

4 - run_mcliques.sh

5 - run_cos.sh

6 - back_to_org_words.sh

7 - compute_transition_likelihoods.sh

For example, to execute step4 to step6:
shell

$ twitter_analysis.sh 4 6

To execute step2 only:
shell

$ twitter_analysis.sh 2 2

To execute all steps:
shell

$ twitter_analysis.sh 1 7

Appendix B: Cluster Identification and Transition
Analysis in Unicage

Running these scripts

This script creates lists of hashtag pairs from json files.

Output: produces DATA/result.XXXX.

#!/bin/bash

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

tmp=/tmp/$$

mkdir	-p	${datad}

n=0

#	Process	zipped	files/
echo	${rawd}/posts_sample*.gz																																										|
tarr																																																																			|
while	read	zipfile;	do									
		n=$((n+1))
		echo	$zipfile	$n

		{
				zcat	$zipfile																																																								|
				${homed}/SHELL/myjsonparser	|
				#	1:	"time"	2:	timestamp	(epoch	msec)	3:	"hashtag"	4-N:	hashtags

				awk	'NF>5{for(i=4;i<=NF;i++)for(j=i+1;j<=NF;j++){print	$i,$j,int($2/1000)}}'	|
				#	list	all	possible	2	word	combinations	with	timestamp.	1:	word1	2:	word2	3:	timestamp	(epoch	sec)

				TZ=UTC	calclock	-r	3																																																								|
				#	1:	word1	2:	word2	3:	timestamp	(epoch	sec)	4:	timestamp	(YYYYMMDDhhmmss)

				self	1	2	4.1.8																																																							|
				#	1:	word1	2:	word2	3:	timestamp	(YYYYMMDD)

				msort	key=1/3																																																								|	

Step 1: list_word_pairings.sh

				count	1	3																																																												>	${datad}/result.$n
				#	count	lines	having	the	same	word	combination	and	timestamp	1:word1	2:word2	3:date	4:count

				#	run	5	processes	in	parallel
				touch	${semd}/sem.$n
			}	&
			if	[$((n	%	5))	-eq	0];	then
					eval	semwait	${semd}/sem.{$((n-4))..$n}
					eval	rm	-f	${semd}/sem.*	2>	/dev/null
			fi
done

wait

n=$(ls	${datad}/result.*	|	sed	-e	's/\./	/g'	|	self	NF	|	msort	key=1n	|	tail	-1)

#	Process	unzipped	files.
#				*There	are	unzipped	files	in	raw	data	dir(/home/James.P.H/data).
echo	${rawd}/posts_sample*																						|
tarr																																				|
self	1	1.-3.3																															|
delr	2	'.gz'																																|
self	1																																		|
while	read	nozipfile;	do									
		n=$((n+1))
		echo	$nozipfile	$n

		{
				cat	$nozipfile																																																							|
				${homed}/SHELL/myjsonparser	|
				#	1:	"time"	2:	timestamp	(epoch	msec)	3:	"hashtag"	4-N:	hashtags

				awk	'NF>5{for(i=4;i<=NF;i++)for(j=i+1;j<=NF;j++){print	$i,$j,int($2/1000)}}'	|
				#	list	all	possible	2	word	combinations	with	timestamp.	1:	word1	2:	word2	3:	timestamp	(epoch	sec)

				calclock	-r	3																																																								|
				#	1:	word1	2:	word2	3:	timestamp	(epoch	sec)	4:	timestamp	(YYYYMMDDhhmmss)

				self	1	2	4.1.8																																																							|
				#	1:	word1	2:	word2	3:	timestamp	(YYYYMMDD)

				msort	key=1/3																																																								|	
				count	1	3																																																												>	${datad}/result.$n
				#	count	lines	having	the	same	word	combination	and	timestamp	1:word1	2:word2	3:date	4:count

This script creates weighted edgelists from result.* and places them under yyyymmdd dirs.

Output: produces twitter/yyyymmdd/weighted_edges_yyyymmdd.txt

#!/bin/bash	-xv

#	wgted_edge_gen.sh	creates	weighted	edgelists	from	result.*
#	and	place	them	under	yyyymmdd	dirs.

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=/${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

#	TODO	debug
#datad=${homed}/DATA.mini
#workd=${homed}/twitter.mini

tmp=/tmp/$$

				#	run	5	processes	in	parallel
				touch	${semd}/sem.$n
			}	&
			if	[$((n	%	5))	-eq	0];	then
					eval	semwait	${semd}/sem.{$((n-4))..$n}
					eval	rm	-f	${semd}/sem.*	2>	/dev/null
			fi
done

#semwait	"${semd}/sem.*"
wait
eval	rm	-f	${semd}/sem.*	2>	/dev/null

rm	-f	$tmp-*

exit	0

Step 2: wgted_edge_gen.sh

#	error	function:	show	ERROR	and	exit	with	1
ERROR_EXIT()	{
		echo	"ERROR"
		exit	1
}

mkdir	-p	${workd}

#	count	the	number	of	files
n=$(ls	${datad}/result.*	|	gyo)

for	i	in	$(seq	1	${n}	|	tarr)
do	
				#	1:Tag1	2:Tag2	3:date	4:count	
				sorter	-d	${tmp}-weighted_edges_%3_${i}	${datad}/result.${i}
				[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT
done

#	listup	target	dates
echo	${tmp}-weighted_edges_????????_*						|
tarr																																							|
ugrep	-v	'\?'																														|
sed	-e	's/_/	/g'																											|
self	NF-1																																		|
msort	key=1																																|
uniq																				>	${tmp}-datelist
#	1:date(YYYYMMDD)

[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

for	day	in	$(cat	${tmp}-datelist);	do
		mkdir	-p	${workd}/${day}

		cat	${tmp}-weighted_edges_${day}_*				|
		#	1:word1	2:word2	3:count
		msort	key=1/2													|
		sm2	1	2	3	3															>	${workd}/${day}/weighted_edges_${day}.txt
		#	1:word1	2:word2	3:count

		[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

done

rm	${tmp}-*

exit	0

This script creates unweighted edgelists under the same dir sorted by threshold dirs.

Output: produces twitter/yyyymmdd/th_XX/unweighted_yyyymmdd_th_XX.txt

#!/bin/bash	-xv

#	unwgted_edge_gen.sh	expects	weighted	edgelists	
#	(weighted_edges_yyyymmdd.txt)	located	in
#	/home/James.P.H/UNICAGE/twitter/yyyymmdd
#	and	creates	unweighted	edgelists	under	the	same	dir
#	sorted	by	threshold	dirs.	

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

#	TODO	test
#datad=${homed}/DATA.mini
#workd=${homed}/twitter.mini

tmp=/tmp/$$

#	error	function:	show	ERROR	and	delete	tmp	files
ERROR_EXIT()	{
		echo	"ERROR"
		rm	-f	$tmp-*
		exit	1
}

#	setting	threshold	
seq	2	15	|	maezero	1.2																									>	$tmp-threshold
[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

#	creating	header	file
itouch	"Hashtag1	Hashtag2	count"	$tmp-header

Step 3: unwgted_edge_gen.sh

[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

#	create	list	for	all	pairs	of	thresholds	and	filenames
echo	${workd}/201[45]*/weighted_edges_*.txt										|
tarr																																																	|
joinx	$tmp-threshold	-																															|
#	1:threshold	2:filename
while	read	th	wgtedges	;	do
			echo	${wgtedges}
			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

			#	define	year-month-date	variable	for	dir	and	file	name
			yyyymmdd=$(echo	${wgtedges}	|	awk	-F	\/	'{print	$(NF-1)}')
			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT
			
			echo	${yyyymmdd}	th_${th}
			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

			#	create	threshold	dirs	under	twitter/YYYYMMDD
			mkdir	-p	$(dirname	${wgtedges})/th_${th}
			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

			cat	$tmp-header	${wgtedges}																							|
			#	output	lines	whose	count	feild	is	above	thresholds
			${toold}/tagcond	'%count	>	'"${th}"''													|	
			#	remove	threshold	feild
			tagself	Hashtag1	Hashtag2																									|
			#	remove	header
			tail	-n	+2	>	${workd}/${yyyymmdd}/th_${th}/unweighted_${yyyymmdd}_th_${th}.txt
			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

done
[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

#	delete	tmp	files
rm	-f	$tmp-*

exit	0

This script executes maximal_cliques to all unweigthed edges.

Step 4: run_mcliques.sh

Output: produces
- twitter/yyyymmdd/th_XX/unweighted_edges_yyyymmdd_th_XX.txt.map

- twitter/yyyymmdd/th_XX/unweighted_edges_yyyymmdd_th_XX.txt.mcliques

#!/bin/bash	-xv

#	run_mcliques.sh	executes	maximal_cliques	to	all	unweigthed	edges.
#	produce	unweighted_edges_yyyymmdd.txt.map	and	unweighted_edges_yyyymmdd.txt.mcliques

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

#	TODO	test
#datad=${homed}/DATA.mini
#workd=${homed}/twitter.mini

#	error	function:	show	ERROR
ERROR_EXIT()	{
echo	"ERROR"
exit	1
}

#	 (maximal_cliques)
LD_LIBRARY_PATH=/usr/local/lib:/usr/lib
export	LD_LIBRARY_PATH

#	running	maximal_cliques
for	unwgted_edges	in	${workd}/*/th_*/unweighted_*_th_*.txt
do
				echo	"Processing	${unwgted_edges}."
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT
				
				#	skip	empty	files
				if	[!	-s	${unwgted_edges}]	;	then
								echo	"Skipped	$(basename	${unwgted_edges})."
								continue
				fi	

				cd	$(dirname	${unwgted_edges})
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT

				${toold}/maximal_cliques	${unwgted_edges}
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT
				#	unweighted_edges_yyyymmdd.txt.map	(1:Tag	2:integer)
				#	unweighted_edges_yyyymmdd.txt.mcliques	(1...N:	integer	for	nodes	N+1:	virtual	node	-1)

				echo	"${unwgted_edges}	done."
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT
done

exit	0

This script executes cos using *.mcliques files to create communities.

Output: produces twitter/yyyymmdd/th_XX/N_communities.txt

Step 5: run_cos.sh

#!/bin/bash	-xv

#	run_cos.sh	creates	communities	using	*.mcliques	files.

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

#	error	function:	show	ERROR
ERROR_EXIT()	{
echo	"ERROR"
exit	1
}

#	 (cos)
LD_LIBRARY_PATH=/usr/local/lib:/usr/lib
export	LD_LIBRARY_PATH

#	running	cos
for	mcliques	in	${workd}/*/th_*/unweighted_*_th_*.txt.mcliques
do
				echo	"Processing	${mcliques}."
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT

				#	changing	dir	so	that	output	files	can	be	saved	under	each	th	dirs.
				cd	$(dirname	${mcliques})
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT

				${toold}/cos	${mcliques}
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT
				#	N_communities.txt	(1:community_id	2..N:	maximal_clique)
				#	k_num_communities.txt	(1:k	2:	number	of	k-clique	communities	discovered)

				echo	"${mcliques}	done."
				[$(plus	$(echo	${PIPESTATUS[@]}))	-eq	"0"]	||	ERROR_EXIT
done

exit	0

This script reverts integers in N_commnities.txt to original words using map file generated by
maximal_cliques .

Output: produces twitter/yyyymmdd/th_XX/namedN_communities.txt

#!/bin/bash	-xv

#	back_to_org_words.sh:	
#	use	map	file	generated	by	maximal_cliques	to	revert	integers	in	N_commnities.txt
#	to	original	words.

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

tmp=/tmp/$$

#	TODO	test
#datad=${homed}/DATA.mini
#workd=${homed}/twitter.mini

#	error	function:	show	ERROR	and	delete	tmp	files
ERROR_EXIT()	{
		echo	"ERROR"
		rm	-f	$tmp-*
		exit	1
}

echo	${workd}/*/th_*/[0-9]*_communities.txt					|
tarr																												|
ugrep	-v	'*'																							|

#	community threshold while

while	read	community_files;	do

Step 6: back_to_org_words.sh

:>$tmp-tran

			echo	${community_files}

			#	get	directory	path	of	target-file	
			dirname=$(dirname	${community_files})
			#	get	filename
			filename=$(basename	${community_files})

			#	read	a	community	file
			fsed	's/:/	/1'	${community_files}																				|
			#	1:	community	id	2..N:	integer	for	node

			#	remove	unnecessary	space	char	at	the	end	of	each	line
			sed	-e	's/	*$//'																																					|

			#	remove	lines	which	have	only	1	field	for	community	id
			gawk	'NF>1'																						|

			tarr	num=1																							|
			#	1:	community	id	2:	integer

			self	2	1																					|
			#	1:	integer	2:	community	id
			#	sort	by	field	1/2
			msort	key=1/2																																								|
			#	remove	the	same	records,	only	take	last	one	
			getlast	1	2																																										>	$tmp-tran
			#	1:	integer	2:	community	id

			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

			#	TODO:	for	debug
			cat	$tmp-tran

			#	Read	the	word-map	file
			cat	${dirname}/unweighted_*_th_*.txt.map													|
			#	1:	word	2:	integer
			self	2	1																																													|
			#	1:	integer	2:	word
			#	sort	by	field	1
			msort	key=1																																										|
			#	join	map	file	to	community	-tran
			join1	key=1	-	$tmp-tran																														|
			#	1:	integer	2:	word	3:	community	id

			self	3	2																																													|
			#	1:	community	id	2:	word
			yarr	num=1	>	${dirname}/named${filename}																										
			#	1:	community	id	2..N:	word1..N

			[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

done
[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

#	delete	tmp	files
rm	-f	$tmp-*

exit	0

This script will compute transition-likelihoods map files using named_N_communities.txt .

Output: produces twitter/yyyymmdd/th_XX/namedN_communities_transition.csv

#!/bin/bash	-xv

#	compute_transition_likelihoods.sh
#

homed=/home/James.P.H/UNICAGE
toold=${homed}/TOOL
shelld=${homed}/SHELL
rawd=/home/James.P.H/data
semd=${homed}/SEMAPHORE
datad=${homed}/DATA
workd=${homed}/twitter

tmp=/tmp/$$

#	TODO	test
#shelld=${homed}/SHELL/sugi_test
#datad=${homed}/DATA.mini
#workd=${homed}/twitter.mini

#	error	function:	show	ERROR	and	delete	tmp	files

Step 7: compute_transition_likelihoods.sh

ERROR_EXIT()	{
		echo	"ERROR"
		rm	-f	$tmp-*
		exit	1
}

#	
echo	${workd}/2*														|
tarr																										|
ugrep	-v	'*'																	|
sed	-e	's/\//	/g'													|
self	NF																							|
msort	key=1																	>	$tmp-date-dir-list
#	1:date(real	dir)

[$(plus	$(echo	"${PIPESTATUS[@]}"))	-eq	"0"]	||	ERROR_EXIT

fromdate=$(head	-1	$tmp-date-dir-list)
todate=$(tail	-1	$tmp-date-dir-list)

mdate	-e	${fromdate}	${todate}										>	$tmp-date-list
#	1:date

echo	${workd}/20??????/th*/named*_communities.txt			|
tarr																																																|
grep	-v	'*'																																								|
#	1:current_filename
self	1	1																																												|
fsed	's#/#	#2'																																						|
#	1:current_filename	...	NF-2:current_date	NF-1:"th_XX"	NF:"namedXX_communities.txt"
self	1	NF-2/NF																																						|
#	1:current_filename	2:current_date	3:"th_XX"	4:"namedXX_communities.txt"
mdate	-f	2/+1																																							|
#	1:current_filename	2:current_date	3:next_date	4:"th_XX"	5:"namedXX_communities.txt"
gawk	'{	print	$1,	"'${workd}'/"$3"/"$4"/"$5	}'						|
#	1:current_filename	2:next_filename
${shelld}/intersection
##	output	result	to	"${workd}/named*_communities_transition.work""	each	line.

#	create	map	file
echo	${workd}/20??????/th*/named*_communities_transition.work			|
tarr																																																												|
grep	-v	'*'																																																				|
while	read	filename;	do
						#	csv	file	name

						csv_filename=$(echo	$filename	|	sed	's/\./	/g'	|	self	1/NF-1	|	sed	's/	/./g'	|	gawk	'{	print	$0".csv"	}')

						#	create	map:	index=id(curr)	columns=id(next)
						maezero	1.3	2.3	$filename					|
						map	num=1x1	-																	|
						#	comvert	to	csv
						tocsv													>	${csv_filename}
done

#	delete	tmp	files
rm	${workd}/20??????/th*/named*_communities_transition.work
rm	-f	$tmp-*

exit	0

The scripts listed in appendices A and B were run on an 8 Core Intel 64 bit 3.2Ghz processor with 48gb ram,
for messages over the date range

Step Python Runtime Unicage Runtime

1. Counting Hashtag Pairs 38h:34m:33s 06h:21m:34s

2. Weighted Edgelists 00h:00m:10s 00h:03m:31s

3. Unweighted Edgelists 00h:13m:36s 00h:01m:36s

4. Maximal Clique Identification 00h:10m:13s 00h:01m:32s

5. k-Clique Percolation 00h:05m:45s 00h:01m:42s

6. Mapping back to Text 00h:19m:56s 00h:04m:29s

7. Computing transition likelihoods 00h:03m:15s 00h:11m:03s

Total time 39h:27m:28s 06h:45m:27s

Appendix C: Performance Comparison

The following scripts are used to collect twitter messages and store them in a format accessible to both python
and unicage. While a databasing system has its obvious advantages, this methodology is the paragon of
simplicity.

This script generates a properly signed URL for opening a twitter stream via curl

Appendix D: Data Collection Scripts

Curl URL Builder

"""	twitter_curl_url_builder.py	"""

import	oauth2	as	oauth
import	time

#	Set	the	API	endpoint
url	=	'https://stream.twitter.com/1.1/statuses/sample.json'

#	Set	the	base	oauth_*	parameters	along	with	any	other	parameters	required
#	for	the	API	call.
params	=	{
				'oauth_version':	"1.0",
				'oauth_nonce':	oauth.generate_nonce(),
				'oauth_timestamp':	int(time.time())
}

#	Set	up	instances	of	our	Token	and	Consumer.
token	=	oauth.Token(key='*****************************',
																				secret='**************************')
consumer	=	oauth.Consumer(key='***********************',
																										secret='********************')

#	Set	our	token/key	parameters
params['oauth_token']	=	token.key
params['oauth_consumer_key']	=	consumer.key

#	Create	our	request.	Change	method,	etc.	accordingly.
req	=	oauth.Request(method="GET",	url=url,	parameters=params)

#	Sign	the	request.
signature_method	=	oauth.SignatureMethod_HMAC_SHA1()
req.sign_request(signature_method,	consumer,	token)

print	req.to_url()

To use, at the command prompt:
shell

$ URL=$(python twitter_curl_kickstarter.py)

$ curl -get "$URL"

This script starts a curl process to get posts from twitter and saves them to 100000 post long files. We use the

Twitter Stream Opener

python script twitter_curl_url_builder.py to handle the oauth bits, as they can be complicated in
bash.

This script starts the stream, and watches to see if it fails. If so, it restarts the process after some amount of
time.

For a great description of the watchdog loop, see:
http://stackoverflow.com/questions/696839/how-do-i-write-a-bash-script-to-restart-a-process-if-it-dies

#!/bin/bash

URL=$(python	twitter_curl_url_builder.py)

curl	--get	"$URL"	|	split	-l	100000	-	../data/posts_sample_`date	"+%Y%m%d_%H%M%S"`_

echo	"`date`	Twitter	stream	broken	with	error:	${PIPESTATUS[0]}"	>>	tw_collect_log.txt

#	the	curl	should	go	on	indefinitely,	so	if	we	get	to	this	point,	an	error	has	occurred,	raise	a	nonzero	flag
exit	1

#!/bin/bash
reconnect_delay=600

until	./twitter_stream_opener.sh;	do
				echo	"`date`	Twitter	curl	process	interrupted.	Attempting	reconnect	after	$reconnect_delay	seconds"

				echo	"`date`	Twitter	curl	process	interrupted.	Attempting	reconnect	after	$reconnect_delay	seconds"	>>	tw_collect_log.txt

				sleep	"$reconnect_delay"

done

Twitter Stream Monitor

http://stackoverflow.com/questions/696839/how-do-i-write-a-bash-script-to-restart-a-process-if-it-dies

Visualizations will use the following python librarires:

import	pandas	as	pd
import	glob
import	datetime
import	itertools
import	matplotlib.pylab	as	plt

We define several helper functions to assist with reading the cluster files:

				def	read_named_cluster_file(infile_name):
								"""	take	a	file	output	from	COS	and	return	a	dictionary,	
								where	keys	are	the	name	of	a	cluster,	
								and	values	are	sets	containing	names	of	nodes	in	the	cluster"""
								clusters	=	dict()
								with	open(infile_name,	'r')	as	fin:
												for	i,	line	in	enumerate(fin):
																name	=	line.split('	')[0]
																if	not	clusters.has_key(name):
																				clusters[int(name)]	=	set()
																nodes	=	line.split('	')[1:-1]
																for	node	in	nodes:
																				clusters[int(name)].add(node)
								return	clusters		
				
				
				def	get_clusters_with_keyword(date,	threshold,	keyword):
								"""Get	clusters	from	the	dataset	that	include	the	keyword.
								Get	them	for	the	specified	date	and	threshold.
								
								date	:	string	in	yyyymmdd	format
								threshold	:	integer	above	2
								
								"""
								files	=	pd.DataFrame(glob.glob(date+'/th_%02i'%threshold+'/named*_communities.txt'),	columns
								files['clique_size']=files['filename'].apply(lambda	x:	int(x.split('named')[1].split('_'
								files.sort('clique_size',	ascending=False,	inplace=True)

Appendix E: Visualization

				
								outlist	=	[]
								
								for	index,	row	in	files.iterrows():
												clusters	=	read_named_cluster_file(row['filename'])
												for	index,	cluster_set	in	clusters.iteritems():
																outdict	=	{}
																if	keyword	in	cluster_set:
																				outdict['date']	=	date
																				outdict['threshold']	=	threshold
																				outdict['keyword']	=	keyword
																				outdict['elements']	=	cluster_set
																				outdict['k-clique']	=	row['clique_size']
																				outdict['name']	=	index
																				outdict['id']	=	str(date)+'_k'+str(row['clique_size'])+'_t'+str(threshold)+
																				outdict['size']	=	len(cluster_set)
																				outlist.append(outdict)
								return	pd.DataFrame(outlist)
				
				
				def	get_next_clusters(clustersdf,	min_likelihood=0):
								"""Returns	a	new	clustersdf	for	the	subsequent	day
								and	a	transition	matrix	between	the	input	and	output	clustersdf.
								
								min_likelihood	sets	a	lower	bar	on	the	chance	that	a	next-day	cluster	is	the
								same	as	the	previous-day	cluster"""
								
								outlist=[]				
								transitions	=	pd.DataFrame()
								for	i,	row	in	clustersdf.iterrows():
												current_date	=	row['date']
												next_date	=	dates[dates.index(current_date)+1]
												
												tr_file	=	'%s/th_%02i/named%i_communities_transition.csv'%(current_date,	
																																																																							row['threshold'],
																																																																							row['k-clique'])
												tr_matrix	=	pd.read_csv(tr_file,	index_col=0)
												
												shared_elements	=	tr_matrix.loc[int(row['name'])]
												candidate_names	=	shared_elements[shared_elements>0].index
												
												next_clusters_filename	=	'%s/th_%02i/named%i_communities.txt'%(next_date,
																																																																											row['threshold'],
																																																																											row['k-clique'])
												next_clusters	=	read_named_cluster_file(next_clusters_filename)

We define a class object to aggregate the information needed to generate a plot of the cluster:

																
												for	name	in	candidate_names:
																outdict	=	{'date':next_date,
																											'threshold':row['threshold'],
																											'elements':next_clusters[int(name)],
																											'k-clique':row['k-clique'],
																											'name':name,
																											'size':len(next_clusters[int(name)]),
																											'id':(str(next_date)+'_k'+str(row['k-clique'])+
																																	'_t'+str(row['threshold'])+'_i'+str(name))}
				
																total_elements	=	set(next_clusters[int(name)])	|	set(row['elements'])
																likelihood	=	1.0*shared_elements[name]/len(total_elements)	#normalizing	here...
																if	likelihood	>	min_likelihood:
																				outlist.append(outdict)
																				transitions.loc[row['id'],	outdict['id']]	=	likelihood
				
								return	pd.DataFrame(outlist).drop_duplicates('id'),	transitions.fillna(0)
				
				
				def	cluster_post_volume(cluster):
								"""	Returns	the	volume	of	posts	that	contribute	to	the	cluster,	
								by	combination.	This	is	a	dataframe	of	
								
								
								You	can	then	take	the	max,	min,	mean,	etc."""
								
								weighted_edgelist_file	=	'%s/weighted_edges_%s.txt'%(str(cluster.loc['date']),str(cluster
								df	=	pd.read_csv(weighted_edgelist_file,	sep='	',	header=None,	names=['Tag1',	'Tag2',	'count'
				
								collect	=	[]
								for	a,	b	in	itertools.combinations(list(cluster.loc['elements']),	2):
												count	=		df[((df['Tag1']==a)	&	(df['Tag2']==b))|((df['Tag1']==b)	&	(df['Tag2']==a))
												collect.append({'Tag1':a,	'Tag2':b,	'count':count})
												
								return	pd.DataFrame(collect)

				class	cluster_drawing(object):
								text_properties	=	{'size':12,
																											'fontname':'sans-serif',
																											'horizontalalignment':'center'}
								

								
								def	__init__(self,	contains,	uid=None):
												if	isinstance(contains,	(set,frozenset)):	#convenience	conversion	of	set	to	list.
																contains	=	list(contains)
																
												if	isinstance(contains,	list):
																self.is_leaf	=	False
																self.contents	=	[]
																for	element	in	contains:
																				if	isinstance(element,	basestring):
																								self.contents.append(cluster_drawing(element))
																				else:
																								self.contents.append(element)
																self.linewidth	=	1
												elif	isinstance(contains,	basestring):
																self.is_leaf	=	True
																#self.text	=	contains.encode('ascii',	'ignore')
																self.text	=	contains
																self.text	=	contains.decode('utf-8',	'ignore')
																self.linewidth	=	0
												
												self.bottom	=	0
												self.center	=	0
												self.pts_buffer	=	4
												self.uid	=	uid
												
								def	get_list(self):
												if	self.is_leaf:
																return	[self.text]
												else:
																return	[item	for	x	in	self.contents	for	item	in	x.get_list()]	#flat	list
												
								def	get_set(self):
												return	set(self.get_list())
												
								def	get_by_name(self,	name):
												if	self.is_leaf:	return	None
												
												if	self.uid	==	name:
																return	self
												else:
																for	x	in	self.contents:
																				obj	=	x.get_by_name(name)
																				if	obj	==	None:
																								continue

																				else:
																								return	obj
												return	None
								
								def	get_uids(self):
												if	self.is_leaf:
																return	[]
												else:
																uid_list	=	[item	for	x	in	self.contents	for	item	in	x.get_uids()]	#flat	list
																if	self.uid	!=	None:
																				uid_list.append(self.uid)
																return	uid_list
								
								def	score(self):
												"""Get	the	score	for	the	full	(recursive)	contents"""
												score=0
												this_list	=	self.get_list()
												for	word	in	set(this_list):
																indices	=	[i	for	i,	x	in	enumerate(this_list)	if	x	==	word]
																if	len(indices)>1:
																				score	+=	sum([abs(a-b)	for	a,	b	in	itertools.combinations(indices,	2)])	
												return	score
								
								def	order(self,	scorefunc):
												"""Put	the	contents	in	an	order	that	minimizes	the	score	of	the	whole	list"""
												if	not	self.is_leaf:
																best_score	=	10000000
																best_order	=	self.contents
																for	permutation	in	itertools.permutations(self.contents):
																				self.contents	=	permutation
																				new_score	=	scorefunc()
																				if	new_score	<	best_score:
																								best_score	=	new_score
																								best_order	=	permutation
																self.contents	=	best_order
				
																[element.order(scorefunc)	for	element	in	self.contents]
												
								
								def	set_height(self,	ax):
												if	self.is_leaf:
																#have	to	mockup	the	actual	image	to	get	the	width
																self.image_text	=	ax.text(0,	0,	self.text,	**self.text_properties)
																plt.draw()
																extent	=	self.image_text.get_window_extent()

																self.height	=	extent.y1	-	extent.y0						
												else:
																self.height	=	(sum([x.set_height(ax)	for	x	in	self.contents])	+	
																															(len(self.contents)+1)*self.pts_buffer)
												return	self.height
								
								def	set_width(self,	ax):
												if	self.is_leaf:
																#have	to	mockup	the	actual	image	to	get	the	width
																self.image_text	=	ax.text(0,	0,	self.text,	
																																															transform=None,	**self.text_properties)
																plt.draw()
																extent	=	self.image_text.get_window_extent()
																self.width	=	extent.x1	-	extent.x0	+	self.pts_buffer						
												else:
																self.width	=	max([x.set_width(ax)	for	x	in	self.contents])	+	2*self.pts_buffer
												return	self.width
																				
								def	set_center(self,	x):
												if	not	self.is_leaf:
																[child.set_center(x)	for	child	in	self.contents]												
												self.center	=	x
				
												
								def	set_bottom(self,	bottom=0):
												"""Sets	the	bottom	of	the	box.
												recursively	sets	the	bottoms	of	the	contents	appropriately"""
												self.bottom	=	bottom	+	self.pts_buffer
												
												if	not	self.is_leaf:
																cum_height	=	self.bottom
																for	element	in	self.contents:
																				element.set_bottom(cum_height)
																				cum_height	+=	element.height	+	self.pts_buffer
												
								def	layout(self,	ax):
												if	not	self.is_leaf:
																[child.layout(ax)	for	child	in	self.contents]
												
												plt.box('off')
												self.set_width(ax)
												self.set_height(ax)
												ax.clear()
												
								def	draw(self,ax):

We define several functions which intermediate between the visualization object and the clusters as they have
been imported:

												if	not	hasattr(self,	'width'):
																print	'Must	run	`layout`	method	before	drawing,	preferably	with	dummy	axis'
												
												if	self.is_leaf:
																self.image_text	=	ax.text(self.center,	self.bottom,	self.text,	
																																															transform=None,	**self.text_properties)
												else:
																[child.draw(ax)	for	child	in	self.contents]
																ax.add_patch(plt.Rectangle((self.center-.5*self.width,self.bottom),	
																																																		self.width,	self.height,
																																																		alpha=.1,	transform=None))
												ax.set_axis_off()

				def	make_elements(clustersdf,	k_min=0,	k_max=25,	order=False):		
				
								prev_elements	=[]
								for	k,	k_group	in	clustersdf.groupby('k-clique',	sort=False):
												if	k<k_min:	continue
												if	k>k_max:	continue
												elements	=	[]
												for	i,	row	in	k_group.iterrows():
																cluster_elements	=	row['elements']
																cluster_list	=	[]	#this	is	what	we	will	eventually	pass	to	the	class	initialization
																for	prev_element	in	prev_elements:
																				prev_set	=	prev_element.get_set()
																				if	prev_set	<=	cluster_elements:	#set	'contains'
																								cluster_elements	=	cluster_elements	-	prev_set
																								cluster_list	=	cluster_list	+	[prev_element]
				
																cluster_list	=	cluster_list	+	list(cluster_elements)
																elements.append(cluster_drawing(cluster_list,	row['id']))
				
												prev_elements	=	elements
												
								a	=	cluster_drawing(elements)
								if	order:
												a.order(a.score)
								return	a
																
								
								

Finally, we are ready to make a visualization:

				def	draw_transition(a,	b,	tr_matrix,	ax):
								for	a_id	in	a.get_uids():
												for	b_id	in	b.get_uids():
																try:
																				likelihood	=	tr_matrix.loc[a_id,	b_id]
																except	KeyError:	#	if	either	don't	show	up	in	the	transition	matrix,	they	don't	have	a	corresponding	cluster
																				continue	
																if	likelihood	>	0:
																				#print	a_id,	b_id,	likelihood
																				a_object	=	a.get_by_name(a_id)
																				b_object	=	b.get_by_name(b_id)
				
																				ax.plot([a_object.center+.5*a_object.width,	b_object.center-.5*b_object.width
																													[a_object.bottom,	b_object.bottom],	
																													color='b',	alpha=likelihood**2,	transform=None)
																				
																				ax.plot([a_object.center+.5*a_object.width,	b_object.center-.5*b_object.width
																													[a_object.bottom+a_object.height,	b_object.bottom+b_object.height]
																													color='b',	alpha=likelihood**2,	transform=None)
																				
								ax.set_axis_off()

				fig	=	plt.figure(figsize=(18,23))
				ax	=	plt.gca()
				ax_test	=	ax.twinx()
				
				prev_elements	=	None
				transition	=	None
				k_min=4
				
				current_df	=	cu.get_clusters_with_keyword(date='20150618',	threshold=5,	keyword='charleston'
				
				for	i	in	range(2):
								
								center	=	200*i+200
								bottom	=	120
								current_elements	=	cu.make_elements(current_df,	k_min=k_min)
								current_elements.layout(ax_test)
								current_elements.set_bottom(bottom)
								current_elements.set_center(center)
								current_elements.draw(ax)
				
								if	prev_elements	!=	None:
												print	i
												cu.draw_transition(prev_elements,	current_elements,	transition,	ax)
												
								prev_elements	=	current_elements
								current_df,	transition	=	cu.get_next_clusters(current_df,	min_likelihood=.2)
								datestr	=	dateutil.parser.parse(current_df['date'].iloc[0]).strftime('%B	%d	%Y')
								ax.text(center,	bottom,	datestr,	va='top',	ha='center',	transform=None,	fontsize=14)
				
				ax.set_axis_off()
				ax_test.set_axis_off()

In this paper we explored clusters formed using only the hashtags present in messages. Doing so reduces the
total number of messages that contribute to the network (as less than 10 percent of messages contain the
requisite 2+ hashtags) and the total number of connections made by each message. The smaller volume of
messages eases the computational burden to a level that should be manageable for those wishing to replicate
this analysis on a modern desktop computer. To further speed computation, consider increasing the threshold
for the number of messages which must be present for an edge to be represented in the semantic network.

As hashtags are a subset of all words found in a message, clusters built on hashtag cooccurrences contain a
subset of the words that would be found in the same weight and k-clique cluster constructed from the full
message. In order to use complete messages, the analyst should exclude stopwords, special characters, urls,
and platform specific markers. The analyst may choose to ‘stem’ each word, or to find the root of each word
such that, for instance, ‘shoot’, ‘shoots’, and ‘shooting’ all count toward the same total.

To give a sense for how results vary as the type of words included changes, the table below describes statistics
for two cases that a user may consider. In the first case, all words within a message are used to create edges
in the semantic network (excluding stopwords, URLs, and twitter-specific notation), with an inclusion threshold
of 20. The second case looks at Hashtags alone, with a threshold of 2. These present similar computational
burdens, and thus make for a pragmatic comparison.

Table 1: Statistics for June 16, 2015

Appendix F: Comparison of hashtags-only analysis with full
message analysis

Measure All Words (th: 20) Hashtags Only (th: 2) Ratio

Messages Used 1,324,115 104,931 12.7

Total Words 10,893 16,297 0.67

Total Edges 143,043 43,645 3.3

Mean Degree 13.13 2.67 4.9

Mean Edge Weight 62.9 6.0 10.5

Cliques 34,348 19,039 1.8

Clusters 548 3,945 0.14

Median k 7 4 NA

Max k 37 17 NA

Mean Cluster Size 33.7 9.9 3.4

The all-words analysis uses all (english language) messages in the dataset, approximately 13 times as many
as the hashtags-only analysis. Because of the filter, however, the total number of words present in its semantic
network is less than that of the hashtags-only set. This speaks to the long-tail of low-frequency connections
made in the dataset that are more aggressively pruned by the higher inclusion threshold.

As the number of connections suggested by a message scales as the square of the number of words it
contains, the mean degree of the all-words network is approximately five times that of the hashtags-only
network. Due to both the higher absolute number of edges and stronger pruning, the mean number of times a
connection appears in the dataset is an order of magnitude larger in the all-words case. The higher connectivity
of the all-words network implies a smaller number of larger, more tightly connected clusters.

	2016-13 cover page
	2016-13 Beyond-Keywords-Preprint-with-Appendices
	Beyond-Keywords-Preprint
	Appendix_A_Python_Example
	Appendix_B_Unicage_Example
	Appendix_C_Performance Comparison
	Appendix_D_Data_Collection_Scripts
	Appendix_E_Visualization
	Appendix_F_Compare_Hashtags_Full_Words

