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We study the relationship among productivity, management prac-
tices, and employee ability using German data combining manage-
ment practices surveyswith employees’ longitudinal earnings records.
Including human capital reduces the associationbetweenproductivity
and management practices by 30%–50%. Only a small fraction is
accounted for by the higher human capital of the average employee
at better-managed firms. A larger share is attributable to the human
capital of the highest-paid workers, that is, the managers. A similar
share ismediated through thepaypremiumsofferedbybetter-managed
firms. We find that better-managed firms recruit and retain workers
with higher average human capital.
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I. Introduction

In a typical four-digit manufacturing industry in theUnited States, estab-
lishments at the 90th percentile of total factor productivity (TFP) are about
twice as productive as those at the 10th percentile (Syverson 2004, 2011).
These very large differences in productivity between establishments are
highly persistent, contributing to significant disparities in economic perfor-
mance over time and across countries.1 They are also central to a growing
body of theoretical research in macroeconomics, industrial organization,
and trade. In labor economics, many studies find a strong connection be-
tween firm performance and average wages (see Van Reenen 1996 or, for
a review, Card et al. 2018, in this issue), suggesting that differences in firm
productivity could also help explain cross-sectional wage inequality. Fur-
thermore, several recent papers attribute a significant fraction of the growth
in wage inequality across individuals to growing differences between estab-
lishments.2 Since wage differences between firms are closely correlated with
performance differences, understandingwhat drives the dispersion in estab-
lishment performance could help us understand why inequality has risen so
sharply in recent decades.
As suggested by the seminal work of Ichniowski, Shaw, and Prennushi

(1997), a key correlate of plant-level productivity is the adoption of ad-
vancedmanagement practices, including employeemonitoring, financial in-
centives, and modern inventory control and workflow techniques.3 Bloom,
CESifo (Center for Economic Studies and Leibniz-Institut für Wirtschaftsfors-
chung an der Universität München) in Berlin, GRAPE (Group for Research in
Applied Economics), Harvard, National Bureau of Economic Research, Stanford,
and Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim. The Eco-
nomic and Social Research Council, the European Research Council, the Kauffman
Foundation, and the Alfred Sloan Foundation have provided financial support. We
received no funding from the global management consultancy firm (McKinsey) we
worked with in developing the survey tool. Our partnership with Pedro Castro,
Stephen Dorgan, and John Dowdy has been particularly important in the develop-
ment of the project. We are grateful to Daniela Scur and Renata Lemos for excellent
research assistance. Any opinions expressed in this paper are those of the authors
and do not necessarily reflect the views of the Deutsche Bundesbank or the Institute
for Employment Research. Contact the corresponding author, John Van Reenen, at
j.vanreenen@lse.ac.uk. Information concerning access to the data used in this paper is
available as supplementary material online.

1 For example, Bailey, Hulten, and Campbell (1992), Hsieh and Klenow (2009),
and Bartelsman, Haltiwanger, and Scarpetta (2013).

2 See Card, Heining, and Kline (2013) for Germany; Song et al. (2015) or Barth
et al. (2016) for the United States; and Faggio, Salvanes, and Van Reenen (2010) for
the United Kingdom.

3 In a prescient precursor of this paper, Ichniowski et al. (1997) conduct a robust-
ness test of their productivity regressions where they include multiple measures of
managerial ability on the right-hand side, such as a quadratic in tenure of the line
manager and site’s human resource (HR) manager or, even more rigorously, a full
suite of line and HR manager fixed effects. They find that their HR management

This content downloaded from 018.101.024.231 on October 18, 2018 08:17:23 AM
ll use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Management Practices, Workforce Selection, and Productivity S373

A

Sadun, andVanReenen (2016) construct an index of advanced practices that
they interpret as “managerial capital” and argue that it can account for on
average a fifth of the 90-10 firm-level spread of TFP within countries and
a third of the productivity gap between theUnited States (the highest-scoring
country) and 33 other nations. At the very micro level, Bloom et al. (2013)
find a large causal role for such management practices in a field experiment
with Indian textile plants.
While some management practices can directly affect productivity, many

others—like monitoring, goal setting, and use of incentives—are mediated
through employee decision-making and effort. If advanced management
practices are complementary with higher-ability employees, as seems plau-
sible, then one would expect firms that use these practices to systematically
alter both the skill composition of their workforce and the structure of their
pay system, potentially leading to a rise in differential sorting of higher- and
lower-skilled workers to more and less productive workplaces.4

In this paper, we formally investigate the extent towhichmanagement—as
proxied by an index of adoption of advanced management practices—influ-
ences measured productivity through the channels of workforce selection
and pay. Our empirical analysis exploits a unique database of middle-sized
German manufacturing plants included in the World Management Survey
(WMS; discussed in Bloom and Van Reenen 2007 and in Bloom et al. 2014),
linked to employee earnings records from the Integrated Employment Bi-
ographies (IEB) of the Institute for Employment Research. TheWMS pro-
vides detailed survey data on management practices and (through links to
the Orbis database) firm-level financial information. The IEB provides long-
itudinal data on earnings of workers who were employed at these plants, in-
cluding their pay at previous or subsequent employers, which we use to es-
timate person-specific measures of earnings capacity for each worker (i.e.,
worker effects) and plant-specific pay premiums for each workplace (i.e.,
establishment effects). The worker effects allow us to measure the quality
of workers’ skills at each plant as well as the relative quality of different em-
ployee subgroups. The pay premiums provide a summary measure of the
financial incentive system at each plant.
Analyzing these data through the lens of a simple model of firm-specific

productivity, we reach three main conclusions. First, plants with higher
management scores have higher average worker skills. Plant-specific mea-
sures of observed skills (e.g., the fraction of workers with a college degree)
system variable is robust to the inclusion of these, and the coefficients are little
changed. We will also find that our management practice variables have a robust
correlation with firm productivity, but the coefficient will be strongly attenuated
when conditioning on the quality of individual managerial human capital.

4 Milgrom and Roberts (1990) argue that modern manufacturing processes and
organizational methods are highly complementary, leading firms to adopt clusters
of practices.
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and of overall skills (as recovered from the person effects in a two-way fixed
effects model) have a strong correlation with measured productivity. Nev-
ertheless, only a limited fraction of the overall association of management
practices with productivity is mediated through average worker skills. A
more important channel is though the skills of the top quartile of employees
at a plant—a group that we interpret as the managers. Higher average skill
for this group has an independent influence on plant-level productivity
(controlling for average worker skills at the plant) and is positively correlated
with higher management practice scores. Overall, about one-sixth of the as-
sociation between productivity and higher management scores is mediated
through the average skill level of managers.
A secondfinding is that plants with highermanagement scores pay higher

wages relative to the market as a whole, controlling for the quality of their
workforce. Higher pay premiums account for another 13% of the associa-
tion of better management practices with productivity.5

A third finding is that better-managed firms are able to build up a supe-
rior stock of employees through selective hiring and attrition. In particular,
examining job inflows and outflows at the plants in our sample, we find that
those with higher management scores are more likely to recruit higher-
ability workers (measured by the permanent component in their earnings)
and are less likely to lay off or fire the highest-skilled workers.
Our paper contributes to at least four existing literatures. First, as noted

above we contribute to the growing literature on firm heterogeneity and
economic performance (e.g., the survey by De Loecker and Goldberg 2014).
Second, we try to understand the causes of the heterogeneity in manage-
ment practices and the link to workers’ skills (e.g., Feng and Valero 2015;
Lemos and Scur 2015; Bloom et al. 2016). Third, our finding that manage-
ment practices are more than simply the sum of the “atoms” of human cap-
ital of managers links to work on corporate culture by economists andman-
agement scholars (e.g., O’Reilly 1989; Guiso, Sapienza, and Zingales 2013,
2015). Finally, we contribute to the literature on the importance of manag-
ers for firm performance (e.g., Bertrand and Schoar 2003; Bennedsen et al.
2007).
The structure of the paper is as follows. Section II describes our empir-

ical framework, Section III the data, and Section IV the results. Some con-
cluding comments are offered in Section V. The online appendixes contain
more details about the data and many additional specifications and robust-
ness checks.
5 In principle, some of this could reflect longer hours or higher levels of perfor-
mance pay at well-managed firms, features we cannot directly observe in the IEB.
However, controlling for these factors in theWMS suggests that this is not the main
route.
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II. Empirical Models

A. Conceptual Framework

The classical approach to understanding productivity differences across
firms or plants is “reductionist”: after properly accounting for differences
in capital and other nonlabor inputs per worker, any remaining difference
in productivity at a given point in time is by definition ameasure of the qual-
ity (and/or effort) of theworkforce.6 Lucas (1978) offers amore sophisticated
version of this approach that accounts for firm heterogeneity. In his span-of-
control model, the talent of the entrepreneur/chief executive officer (CEO)
determines the productivity of the firm. More talented CEOs run larger
(or more complex) firms, so the relationship betweenmanagement and pro-
ductivity boils down to the talent of the CEO.
Although the Lucas (1978) model is powerful and parsimonious, we view

the focus on the CEO as overly narrow.Many iconic firms, such as Toyota,
GE, IBM, and Lincoln Electric, remain successful even after their CEOdies
and/or all of the original managers have left the firm. Management scholars
sometimes refer to this as firm “capability” or “corporate culture.”Building
on this idea, we view the quality of the workforce, the pay strategy of the
firm, and the adoption of advanced management practices as jointly endog-
enous choices that reflect the underlying quality of the management of the
firm. We ask to what extent the association between productivity and ad-
vanced management practices reflect the impact of higher human capital
of all employees at firms that adopt these practices or the higher human cap-
ital of the managers.
As a framework for our empirical analysis, we adopt a standard produc-

tion function approach that incorporates variation across firms in both TFP
and the quality of labor. Specifically, suppose that the value of the output of
firm j in period t,Yjt, depends on inputs of nonmanagement laborNjt, man-
agement laborMjt, intermediate inputs Ijt, and capitalKjt through a constant
returns-to-scale production function:

Yjt 5 vjt f QNjtNjt,QMjtMjt, Ijt,Kjt

� �
, (1)

where vjt represents TFP in period t andQNjt andQMjt are, respectively, the
productivity levels of nonmanagement workers and managers at the firm.
We think of better-managed firms as potentially selecting different types
of managers and nonmanagement workers and offering different incentive
packages—both of which could raise QMjt and QNjt. We also think of these
firms as adopting practices and management systems that directly increase
vjt.
6 Comparisons of productivity are also affected by differences in technology. See
Jorgenson (1991) for a brief history of productivity measurement and growth ac-
counting.
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Using a first-order approximation of the function f(.) and the assumption
that marginal products of the four inputs are equal to their factor prices, the
log of output can be expressed as

logYjt 5 s0 1 sN logNjt 1 sM logMjt 1 sI log Ijt 1 sK logKjt

1 sN logQNjt 1 sM logQMjt 1 log vjt 1 ejt,
(2)

where s0 is a constant; sN, sM, sI, and sK are the cost shares of nonmanagement
labor, management labor, intermediate inputs, and capital, respectively; and
ejt is an approximation error.7 If the employment share of managers in the
workforce is approximately constant across firms (as we implicitly assume
in our empirical analysis below), this expression can be usefully simplified.8

Letting Ljt 5 Njt 1 Mjt represent total employment, letting sL 5 sM 1 sN
represent the cost share of labor inputs, and defining Qjt as the geometric
average of the productivity levels of managers and nonmanagers,

Qjt ; QNjt

� �SN QMjt

� �SM

h i1=SL

: (3)

Equation (2) can be rewritten as

logYjt 5 s00 1 sL log Ljt 1 sI log Ijt 1 sK logKjt

1 sL logQjt 1 log vjt 1 ejt, (2 0 )

where s00 5 s0 1 sN logð1 2 mÞ 1 sM logm and m is the employment share
of managers. Notice that (to first order) the appropriately defined average
quality measure Qjt fully captures variation in the relative productivity of
both management and nonmanagement labor inputs.

B. Management and Productivity

To assess the effects of workforce quality on firm productivity, we need
to measure the skill composition of the workforce. The standard approach
to measuring labor quality, pioneered by Dennison (1962), is to classify
workers into subgroups based on observed characteristics (e.g., by white-
collar/blue-collar status or education) and control for the shares of workers
in each group. A limitation of this approach is that observed characteristics
explain only a small share of the variation in wages across workers or firms,
suggesting that there may be a lot of unobserved heterogeneity in the pro-

ð20Þ
7 Note that the s coefficients in this equation (including both the constant share
and the factor share) potentially vary with characteristics of the firm, such as indus-
try and size. In our models below, we control for many observed characteristics in
recognition of this fact.

8 Although we have some rough indicators of the proportion of managers in
firms, different firms tend to define whether an employee is a “manager” in differ-
ent ways, so we did not want to rely on this variable.
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ductivity of the workers at different firms.Moreover, the standard approach
cannot address the possible impact of wage-based incentives on the produc-
tivity of labor.
As an alternative, we build on the simple frameworkdeveloped byAbowd,

Kramarz, andMargolis (1999)—theAKMmodel—which decomposeswages
into worker- and establishment-specific components. Specifically, Abowd
et al. (1999) assume that the log of the wage received by worker i in period t
can be decomposed as

logwit 5 hi 1 wJ i,tð Þ 1 x0
itb 1 rit, (4)

where hi is an individual-specific pay component, x0
itb is a linear index of

time-varying individual characteristics (incorporating the effects of experi-
ence and calendar time),9 Jði, tÞ is an index function that gives the identity of
the workplace of individual i in period t, wj is a time-invariant wage premium
paid to all workers at workplace j, and rit is a residual pay component. In this
model, hi can be interpreted as a measure of worker i’s human capital, in-
corporating potentially observable factors (like education) as well as unob-
served attributes (like cognitive ability or ambition) that raise or lower the
worker’s productivity regardless of where they work. The pay premium wj

can be interpreted as a measure of the financial incentives associated with
continued employment at the firm. Abowd et al. (1999) show that under
a set of orthogonality assumptions the worker-specific and plant-specific
pay components in equation (4) can be estimatedwithout bias using ordinary
least squares.10

Card et al. (2013) show that the AKM model provides a relatively good
approximation of the structure of wages in Germany, with �R2 statistics of
around 90%. They also show that more and less skilled workers receive
approximately the same proportional wage premiums at a given establish-
ment—consistent with the simple additive structure of equation (4). More-
over, they argue that the assumptions needed for unbiased estimation of the
worker and establishment effects in the AKM model appear to be roughly
satisfied in Germany. In particular, the “match-specific” component of the
wage residual rit is small inmagnitude and uncorrelatedwith the direction of
mobility between firms. Given these findings and the fact that we use the
same IEB wage data in our analysis, we use the worker and establishment
9 We normalize the index x0
itb to be equal to 0 for individuals of age 40, so hi mea-

sures the permanent individual component of wages at roughly the peak of the life-
cycle wage profile.

10 The most controversial implication of these assumptions is that the residual
component of wages is uncorrelated with the entire sequence of firm identifiers
in a worker’s job history. As discussed by Card et al. (2013), this rules out mobility
based on a “match-specific” component of pay.
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effects estimated byCard et al. (2013) to summarize different workers’ abil-
ities and the strength of the financial incentives offered at different work-
places.11

Specifically, we use the average of the estimated worker effects for full-
time employees at a given establishment (ĥj) as a simple proxy for the aver-
age human capital of workers at the plant and the estimated wage premium
for full time male workers at the establishment ŵj as a proxy for the size of
the financial incentives offered by the firm.12 We assume that the average
productivity of labor inputs at the firm is affected by both factors as well
as by the adoption of advanced management practices (indexed by measure
Lj):

logQjt 5 r0 1 r1ĥj 1 r2  ŵj 1 r3Lj 1 ujt : (5)

Given the scaling of the person effects in equation (4), one might expect
that r1 ≈ 1. Since these effects are measured with error, however, and are
unavailable for part-time workers and trainees, we expect some attenuation
in the estimated value of r1.13 Themagnitude of the coefficient r2 is less clear.
If a firm that pays a 10% higher wage premium is rewarded with 10%higher
productivity, then r2 5 1. If, on the other hand, higher or lower wage pre-
miums have no effect on productivity, then r2 5 0.
TFP may be affected by the ability of the managers at a firm as well as by

the firm’s adoption of advanced management practices. We assume that
TFP (vjt) can be parameterized as

log vjt 5 l0 1 l1ĥMj 1 l2Lj 1 Jjt, (6)

where ĥMj is the mean value of the estimated person effects for the highest-
paidworkers at thefirm,whowe assume represent themanagers of thefirm.
Combining equations (20), (5), and (6) leads to the following model for out-
put:
11 Despite the apparent empirical success of the AKM framework, we note that
the estimated firm effects are at best a crude summary of the pay policy of a given
firm. Moreover, the estimation issues may be more difficult for certain types of
firms—e.g., those that are undergoing a management turnaround during the sample
period.

12 Since the IEB data do not include information on hours, Card et al. (2013) limit
their estimated models to full-time workers. More than 90% ofWest Germanmales
are full time, so this is not too restrictive. Among women, however, close to a third
work part time. As a result of this fact (and the lower participation rate of females),
the sample sizes underlying the estimates of Card et al. (2013) are about 80% larger
for men than for women, leading to less measurement error in the male effects. For
simplicity, we therefore use the establishment wage premiums for men.

13 Card et al. (2013) estimate the AKM model using data for full-time workers
between the ages of 20 and 60, so our average person effect estimates exclude part-
time workers, trainees, workers in so-called minijobs, and those under 20 or over
60.
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logYjt 5 s000 1 sL log Ljt 1 sI log Ijt 1 sK logKjt

1 p1ĥj 1 p2ŵj 1 p3ĥMj 1 p4Lj 1 e0jt,
(7)

where p1 5 sLr1, p2 5 sLr2, p3 5 l1, p4 5 sLr3 1 l2, and e0jt 5 ejt 1 sLujt 1
Jjt. Equation (7) is a standard log-linear three-factor production function,
augmented with four additional productivity factors: (1) a measure of the
average quality of the plant’s workforce (ĥj), (2) a measure of the average
wage premium received by workers at the firm (ŵj), (3) a measure of the av-
erage quality of managers at the firm (ĥMj), and (4) a measure of the use of
advanced management practices (Lj).
Since the factor inputs are endogenous, we also estimate log TFP specifi-

cation where we bring labor, capital, and intermediate inputs to the left-
hand side of the equation:

log TFPjt ; logYjt 2 sL logLjt 2 sI log Ijt 2 sK logKjt

5 s000 1 p1ĥj 1 p2ŵj 1 p3ĥMj 1 p4Lj 1 e0jt:
(8)

In our empirical analysis below, we compare estimates of equations (7)
and (8) to estimates of similar “reduced-form” specifications that exclude
the labor quality andwage premiummeasures and include only themanage-
ment practices variable. If advanced management practices, higher work-
force quality, and enhanced pay are complementary practices that tend to
be adopted as a package by better-managed firms, then we expect the coef-
ficient on advanced management practices to be larger in this alternative
specification, reflecting an “omitted variable” bias. We also consider con-
trolling for other factors that may influence productivity and workforce
quality in equations (7) and (8), such as firm age, industry, ownership type,
the degree of product market competition, and so on.
In addition to examining how the productivity-management relationship

changes after conditioning on employee ability and the firm-specific pay
premium, we also examine directly the cross-firm relationship between the
ability distribution and management practice scores. We first check whether
firmswith highmanagement practice scores employ people of above-average
ability, especially in managerial ability (the upper quartile of the within-firm
pay distribution). We then investigate the extent to which the positive corre-
lation between management practices and the average ability of the work-
force is due to selective recruiting and retention of higher-ability workers
by better-managed firms. We tackle this question by analyzing leavers and
joiners at the firms in our data between 2004 and 2009 (the dates when the
first and last management surveys took place). Using estimates of worker
ability based on data from the pre-2003 period, we ask whether the better-
managed firms disproportionately recruit and retain those of higher ability
(and find that they do).
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III. Data

Our empirical analysis combines data for the German firms in the WMS
with longitudinal earnings records from the Institute for Employment Re-
search (Dorner et al. 2010). In this section, we briefly describe the two un-
derlying data sets and our procedure for forming the matched WMS-IEB
database.

A. The WMS Database

TheWMSwas developed by Bloom and Van Reenen (2007) as an instru-
ment for eliciting reliable information on the use of key management prac-
tices. TheWMS relies on an interview-based evaluation tool that scores par-
ticipatingfirms from 1 (“worst practice”) to 5 (“best practice”) in three broad
areas.14 The first is monitoring: how well does the firm track what goes on
inside its plant(s) and use this for continuous improvement? The second is
goal setting: does the firm set appropriate targets, track closely aligned out-
comes, and take appropriate action if the two are inconsistent? A third area
is incentives/people management: does the firm promote and reward em-
ployees on the basis of performance and systematically try to hire and retain
the best employees?15

To obtain accurate responses, the WMS uses a double-blind protocol.
Responding plant managers are not informed that they are being scored
or shown the scoring grid. They are told only that they are being “inter-
viewed about management practices for a piece of work.” Likewise, WMS
interviewers are not given any information about the firm.
The interview script consists of open-ended questions rather than yes/no

queries or checklists. For example, thefirst question onmonitoring practices
is “Tell me how youmonitor your production process.”The questions con-
tinue, focusing on actual practices and examples, until the interviewer can
make an accurate assessment of the firm’s practices in a certain area. The full
interview script is reported in online appendix B.
The survey universe for theGerman component of theWMS consisted of

medium-sizedmanufacturingfirms (employing between 50 and 5,000work-
ers) selected from the Orbis database. Firms with less than 50 workers were
excluded from the universe because many small firms do not use (or need)
14 The survey tool used in the WMS was developed from a scorecard used by
McKinsey, an international management consulting company. Not all aspects of
management behavior are captured by theWMS. For example, Bertrand and Schoar
(2003) focus on CEO and chief financial officer management style, capturing, e.g.,
differences in strategy over mergers and acquisitions.

15 These practices are similar to those emphasized in earlier work on management
practices by, e.g., Ichniowski, Prennushi, and Shaw (1997) and Black and Lynch
(2001).
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advanced management practices. Large firms were excluded to ensure that
the responses from a single plant manager are broadly representative of
thefirm’s overall practices. The exclusion of largefirms alsomakes it unlikely
that the WMS interviewer would have any preconceived impressions about
the firm or its management practices.
The WMS survey is targeted at plant managers, who are typically senior

enough to have a good understanding of management practices but not so
senior as to be detached from day-to-day operations.16 To insure high re-
sponse rates and reliable answers, the WMS was conducted by MBA-type
students with some business experience and training. German firms in the
WMS were contacted prior to the survey with a letter of endorsement from
the Bundesbank, the independent German central bank. Moreover, inter-
viewees were never asked for financial data; instead, these data were ob-
tained directly from the Orbis database (which includes financial data for
both public and private firms). Finally, the interviewers were encouraged
to be persistent, so they typically conducted two interviews a day lasting
about 45 minutes each and spent the rest of their time contacting managers
to schedule interviews. These protocols helped yield a 58.6% response rate
inGermany, which was uncorrelated with the (independently collected) per-
formance measures.
German firms in the WMS were interviewed in four waves: 2004, 2006,

2009, and 2014. Since the estimatedworker andfirm effects are available only
for the years up to 2009, we only use the first three survey waves, which in-
cluded 365 medium-sized manufacturing firms, some of which were inter-
viewed two or three times (we cluster standard errors at the firm level to deal
with this).17

Our main measure of management quality was constructed by z-scoring
(normalizing to mean 0, standard deviation 1) the 18 individual questions in
the WMS, averaging them, and then z-scoring the average. This process
yields a management practice score with mean 0 and standard deviation 1.

B. Worker-Level Data from the IEB

The worker-level data used in our analysis come from the IEB database
maintained by the Institute for Employment Research. For each job lasting
16 The survey also collects information on a set of “noise controls” about the in-
terview itself, including the time of day and the day of the week the interview oc-
curred, characteristics of the interviewee, and the identity of the interviewer. We
check whether our results are robust to including these controls in our regression
analysis.

17 We also looked at the panel dimension of management practices within firms,
but the longitudinal aspect exists for a relatively small number of firms and there is
not enough real-time series variation (given measurement error) to identify any sig-
nificant relationships.
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a day or more in the German social security system, the IEB includes em-
ployee information, such as age, gender, and education; employer informa-
tion, such as industry and location; and job spell–based information on such
characteristics as full-time or part-time status, average daily wages, and oc-
cupation. It also includes information on benefit spells for workers who are
receiving regular unemployment benefits or unemployment assistance.Dor-
ner et al. (2010) providemore information on the sources of data used to cre-
ate the IEB data.
SectionA3of online appendixAdescribes howwemergefirms in theWMS

to establishments in the IEB data, primarily using the firm name and ad-
dress information in both data sets. Overall, we were able to link 361 of
the 365 firms in the WMS to an establishment identifier in the IEB. We
then searched the IEB database to identify all individuals who had worked
at one (or more) of the matched firms for at least one day between 2002 and
2009. We located a total of 251,872 workers who met this criterion. For
some of our descriptive correlations and for our analysis of productivity,
we constructed a panel data set using employee rosters as of June 30 to de-
fine the set of workers at a given firm in a given year.
To measure worker skills and the wage premiums offered by different

firms, we use the estimated worker and firm effects produced by Card et al.
(2013). They convert the job spell information in the IEB into a longitu-
dinal panel with information on a worker’s main job in each year and es-
timate a version of equation (4) by ordinary least squares. A limitation of
the IEB data is that there is no information on usual hours of work during
a job spell. For this reason, Card et al. (2013) limit their analysis to full-
time workers: no worker effects are available for part-time employees or
those who hold so-called minijobs.18 Henceforth, when we refer to “wages,”
the reader should bear in mind that we are referring to daily wages (rather
than the hourly wage). Another limitation of the IEB data is that daily wages
are censored for about 10%ofmen and2%ofwomen.Card et al. (2013) use a
Tobit model to allocate earnings for the censored cases. (A similar procedure
was used by Dustmann, Ludsteck, and Schönberg [2009], who also provide
some information on the quality of the Tobit approximation to the upper tail
of wages in Germany).
Card et al. (2013) estimated separate models for full-time male and female

workers aged 20–60 in four overlapping intervals: 1985–1991, 1990–1996,
1996–2002, and 2002–2009. For all of our analyses we use the worker effects
from the 1996–2002 interval, as this predates the measurement of manage-
ment in 2004 and beyond, except for the outflow analysis, for which we use
the 2002–2009 period.
18 They also exclude job spells where a worker is in training and spells worked by
individuals younger than 20, older than 60, or with less than 1 year of potential la-
bor market experience.

This content downloaded from 018.101.024.231 on October 18, 2018 08:17:23 AM
ll use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Management Practices, Workforce Selection, and Productivity S383

A

Overall, we have estimated person effects for 74% of all workers in the
matched WMS firms (98% of the relevant population of workers in these
firms—e.g., excluding part-timers and workers at firms in East Germany,
whichwere excluded byCard et al. [2013]). In allfirm-level models, we con-
trol for a quadratic function of the coverage ratio (the proportion of work-
ers in the firm for which we have employee fixed effects) to partially control
for any systematic sample-selectivity biases.
For our inflow and outflow analysis, we construct average information

by firm on workers who join a sample firm or leave a sample firm during
the period 2003–2009. Specifically, we focus on three types of joiners: job-
to-job joiners, who transition from some other firm to a sample firm with
no more than 2 months between the end of the previous job and the start
of the new job; joiners from unemployment, who transition from a spell
of registered unemployment to a sample firm with no more than 2 months
between the end of the unemployment spell and the start of the new job;
and all other joiners. The latter group includes new labor market entrants,
recent immigrants, peoplewho have been onmaternity leave, peoplemoving
from self-employment or a job in the civil service,19 and people with longer
gaps between their prior job or benefit spell. Likewise, we focus on three
types of leavers: job-to-job leavers, whomove to a newfirmwithin 2months
of leaving a sample firm; leavers to unemployment, who enter a spell of reg-
istered unemploymentwithin 2months of leaving a job at a sample firm; and
all other leavers.
We alsomatch in several other data sets to ourmergedWMS-IEB sample.

We use Orbis as a source for firm-level information on sales, intermediate
inputs (materials), and capital. From theOrganization for Economic Coop-
eration and Development (OECD) STAN data set we extracted industry-
level average data on gross output and labor costs, which we match to the
WMS plants at the three-digit level to estimate cost shares. We use the 2000–
2009 averages from the STAN data to approximately match the time period
of the management data.

C. Overview of the Matched WMS and IEB Data Set

Panel A of table 1 gives an overview of the key characteristics of the firms
included in our matched WMS-IEB sample (exact definitions of the vari-
ables are presented in online app. table A1). The firms are distributed across
15 of the 16 German federal states, with 13% in East Germany. On average,
sample firms have been in business for 64 years, employ 440 workers, and
pay a daily wage of just over €100. Twenty-seven percent of all workers at
these firms are female, and 12% have a university degree.
19 Self-employed workers and civil servants are excluded from the IEB.
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able 1
escriptive Statistics for Matched World Management Survey
MS)–Integrated Employment Biographies (IEB) Sample

A. Firms

Mean Median Minimum Maximum SD

rbis data:
Firm located in East Germany .13 .00 .00 1.00 .34
Log of book value of capital 9.89 10.18 2.71 13.82 1.69
Log of intermediate inputs 11.29 11.78 8.44 14.47 1.07
ECD data:
Intermediate input revenue
share (industry data) .67 .67 .57 .89 .05

Share of labor in revenue
(industry level) .23 .23 .04 .30 .04

MS data:
Firm age (years) 64.34 42.50 1.00 489.67 62.79
umber of competitors:
No competitors .01 .00 .00 1.00 .09
Less than five competitors .41 .00 .00 1.00 .49
Five or more competitors .59 1.00 .00 1.00 .59
wnership:
Family owned .23 .00 .00 1.00 .42
Founder owned .05 .00 .00 1.00 .21
Manager owned .03 .00 .00 1.00 .18
Nonfamily private owned .22 .00 .00 1.00 .42
Institutionally owned .13 .00 .00 1.00 .33
Other ownership .06 .00 .00 1.00 .25
Ownership unknown .28 .00 .00 1.00 .45
Management score .00 .06 23.25 2.68 1.00
B data:
Number of workers 440.02 238 1 6,971 642.90
Median daily wage (€) 101.58 99.51 37.21 172.60 28.46
Proportion of female workers .27 .22 .00 .89 .17
Share of employees with
university degree .12 .08 .00 .80 .13

B/CHK data:
CHK coverage (share of
employees with worker effects) .79 .87 .01 1.00 .25

Average employee ability
(CHK worker effects) .00 2.19 2 5.56 3.40 1.00

Average managerial ability
(CHK top-paidworker effects) .00 2.00 2 6.24 2.71 1.00

Firm wage fixed effect
(CHK pay premium) .00 .080 2 4.48 3.54 1.00
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Table 1 (Continued)

B. Employees

Inflows to Sample Firms
from the Specified
Labor Market State

Outflows from Sample
Firms to the Specified
Labor Market State

Unemployment 19,013 40,093
Jobs 70,675 75,023
Nonparticipation 32,748 17,584

Total 122,436 132,600

NOTE.—In panel A, the sample includes 361 firms from the 2004, 2006, and 2009 waves of WMS data
matched to IEB data on workers (590 firm-year surveys across all three waves). In panel B, the sample in-
cludes individuals in the IEB data who joined or exited firms in theWMS-IEB matched panel between 2003
and 2009. See online app. table A1 for more information on data sources and definitions. CHK 5 Card,
Heining, and Kline (2013).
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The merged revenue share data from the OECD STAN data set show
that intermediate inputs comprise a relatively high share of revenues (67%
on average), while labor costs account for 23% of revenues. Thus, labor
costs account for just over two-thirds of value added.
From the WMS we also have information on ownership structure—for

example, whether the firm is family owned, nonfamily privately owned, or
institutionally owned (typically by a local government or quasi-governmental
agency). The sample includes firms in a wide range of ownership types, in-
cluding about 23% that are family owned and 13% that are institutionally
owned. We condition on these ownership dummies throughout our analysis
and discuss differences between family-owned firms and other types of firms
in Section IV.C below.
Finally, the remaining rows of panel A show sample statistics for the

WMS management score and for the average estimated worker effects and
establishment-level wage premiums. For ease of interpretation, we stan-
dardize the estimated worker and firm effects to have mean 0 and standard
deviation 1, as we do with the management score.20 We have estimated em-
ployee fixed effects for just under four-fifths of the workers who can be
matched to a WMS firm.21
20 The estimated person and firm effects in an AKMmodel are identified only up
to a linear constant. Since the male and female models are estimated separately, the
person effects are normalized differently. We recenter the male and female effects to
have mean 0 across all firms in our sample, then average the person effects for males
and females, then standardize the resulting mean.

21 The coverage rate is lower in East Germany, where we can merge only the
worker effects of Card et al. (2013) for employees who were observed working
at a West German firm. We show that the results are robust to dropping all East
German firms.
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IV. Results

Descriptive analysis.—We begin our analysis of the relationship between
management quality, workforce selection, and productivity with some sim-
ple descriptive comparisons. Figures 1 and 2 show how the distributions of
wages and estimated employee effects, respectively, differ between firms
with relatively high management scores and other firms. To construct fig-
ure 1, we begin by finding the quintiles of daily wages for all workers who
are matched to a firm in the WMS sample. We then identified the “best-
managed firms”—those with management scores in the top 10% of firms
in the sample—and all other firms (i.e., those with management scores in
the bottom 90%) and calculated the fractions of workers in eachwage quin-
tile at the two groups of firms. As shown in the right-hand part of figure 1,
the best-managed firms have a relatively high share of workers in the top
wage quintile (26%) and a relatively low share in the bottom quintile (13.4%).
To construct figure 2, we followed the same procedure but used the esti-

mated employee effects, which proxy for the long-run human capital of the
workforce. The differences between the best-managed firms and all other
firms are a little different using this measure. The best-managed firms have
more workers in the top two quintiles than other firms but no fewer in the
bottom quintile. Instead, the gap is made up by a shortfall in the shares of
workers in quintiles 2 and 3 of the person effects—the middle part of the
skill distribution. As discussed in more detail below, figures 1 and 2 imply
thatfirmswithmore advancedmanagement practices have a somewhat lower
dispersion in daily wages but a wider dispersion in worker skills.22

More insight into the potential complementarity between advancedman-
agement practices and the human capital distribution of the workforce is
provided in figures 3 and 4. Figure 3 is a simple bin scatterplot of average
management scores (on the Y-axis) against the average human capital of
all employees in a firm, as measured by the average employee effect (on
the X-axis labeled “Average employee Fixed Effect”). There is clearly an
upward-sloping relationship. Figure 4 is a similar bin scatterplot using mea-
sures of management scores and mean employee effects that have been
residualized to control for the effect of firm size. The positive relationship
between management quality and the average human capital of the work-
force is particularly strong after controlling for firm size, which previous
work has shown is very strongly correlated withmanagement practice scores
(e.g., Bloom et al. 2014).
22 Card et al. (2013) show that over the past 3 decades establishments in West
Germany have becomemore specialized in terms of the distribution of occupations.
Contrary to our expectations, fig. 2 suggests that this tendency is not more pro-
nounced among middle-sized manufacturing firms with higher management scores.
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Next we examine the correlates of firm productivity. Figure 5 shows the
nonparametric relationship between labor productivity (measured by log
sales per worker) and the WMS management score. As noted by Bloom
andVanReenen (2007), there is a positive relationship between the two even
after controlling for firm size. Figure 6 presents an analogous scatterplot for
productivity and the average employeefixed effects. There is also a clear pos-
itive relationship here, motivating our question of whether the impact of
management practices on productivity is mediated through employee talent.
Interestingly, the relationship is quite convex, hinting at a greater role for the
skill level of managers in determining productivity, as specified in equa-
tion (6).23

Correlates of management practice scores.—To provide more contextual
information on the relationship between workforce quality and manage-
FIG. 1.—Fraction of workers of different wage quintiles in firms with low versus
high management scores. High-management-score firms are those in the top decile
of the World Management Survey management score, and low-management-score
firms are all other firms. We bin all workers into quintiles based on the overall dis-
tributions of wages (bin 1 5 lowest 20%; bin 5 5 highest 20%). We then tabulate
the fractions of workers in each quintile at firms with high management scores and
those with low management scores.
23 Kernel density plots of employee and managerial ability are presented in on-
line app. fig. A1, both overall and broken down by high and low WMS manage-
ment score firms.
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ment practices, we estimated a series of simple regression models, summa-
rized in table 2, that relate the management z-score at each firm to measures
of employee quality and other firm characteristics. All of the specifications
also control for firm size, the share of female workers, ownership status, the
number of competitors, firm age, three-digit industry, survey year, and lo-
cation in East Germany.24 The estimates in column 1 confirm the findings
from Bloom and Van Reenen (2007) that larger firms in Germany have sig-
nificantly higher management scores while family-owned firms have signif-
icantly lowermanagement scores (we discuss the familyfirm results inmore
detail in Sec. IV.C below).
FIG. 2.—Fraction of workers of different ability quintiles (as measured by AKM
bowd-Kramarz-Margolis] individual fixed effect) in firms with low versus high
anagement scores. High-management-score firms are those in the top decile of
e World Management Survey management score, and low-management-score
rms are all other firms. We bin all workers into quintiles based on the overall dis-
ibutions of worker ability (as measured by worker fixed effects; bin 1 5 lowest
0%; bin 55 highest 20%). We then tabulate the fractions of workers in each quin-
le at firms with high management scores and those with low management scores.
24 Note that to avoid losing observations due to missing values for the control
variables, we set missing values to the sample mean and include a dummy for an
imputed value. Only a handful of firms have missing data for most control vari-
ables, but 92 firms have missing data on capital (which is not included in table 2
but is used in later tables).

This content downloaded from 018.101.024.231 on October 18, 2018 08:17:23 AM
ll use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Management Practices, Workforce Selection, and Productivity S389

A

The model presented in column 2 of table 2 relates management scores to
mean employee quality and confirms the strong positive correlation sug-
gested in figures 3 and 4. The specification in column 3 focuses on mean
ability of the top quarter of employees, which we assume is a measure of
the human capital of the firm’s managers. The coefficient on “managerial
ability” is over a third larger than that on average employee ability (0.294
vs. 0.216). Column 4 enters both measures and shows that it is managerial
ability that matters more—the coefficient on average employee ability re-
mains positive but is statistically insignificant conditional on managerial
ability. As shown in column 5, this result is robust to controlling for another
measure of average human capital, the share of college-educated workers
at the firm. In online appendix table A2, we show that this finding is also ro-
bust to including other measures of observable human capital (experience,
age, and tenure). Overall, the specifications in table 2 confirm that the man-
agement practice scores and human capital (especially managerial ability) are
complementary in the sense that they covary together.
FIG. 3.—Correlation between management score and employee ability (not con-
trolling for firm size). The figure shows the bin scatter of management scores
against vigintiles of employee ability, as measured by the mean firm-level average
of estimated employee effects (from the period 1996–2002). Management scores
and employee ability are both standardized to have mean 0 and standard devia-
tion 1. FE 5 fixed effect.
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A. Quantifying the Channels Linking Management
Practices to Productivity

Analysis based on production function estimation.—We begin our analy-
sis of productivity in table 3 with a straightforward production-function
approach, as in equation (7). The basic specifications in columns 1–4 control
for labor inputs only, while themodels in columns 5 and 6 include labor and
capital inputs and those in columns 7–10 include labor, capital, and interme-
diate inputs.
Looking first at the specifications that exclude capital and intermediate

inputs, the estimates in column 1 show that the WMS management score
variable has a relatively large partial correlation with productivity (0.26)
when there are no controls for worker ability. This implies that a 1 standard
deviation increase in the management score is associated with a 30% (26 log
point) increase in labor productivity. The magnitude of this coefficient is
similar to the coefficient from a parallel specification fit to the overall WMS
sample covering 34 countries, reported by Bloom et al. (2016). The coeffi-
cient on the management score variable falls to 0.20 when we control for
FIG. 4.—Correlation between management score and employee ability, control-
ling for size. The figure shows the bin scatter of management scores against vigintiles
of employee ability, as measured by the mean firm-level average of estimated em-
ployee effects (from the period 1996–2002). Both variables are residualized by re-
gressing the underlying variable on ln(employment). FE 5 fixed effect.
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average employee ability (col. 2), to 0.15 when we control for both average
worker ability andmanagerial ability, and to 0.13whenwe add a further con-
trol for the share of college-educated workers.25 Thus, without taking ac-
count of variation in capital and intermediate inputs, one would conclude
that up to about one-half of the (relatively large) effect of management
scores on productivity is accounted for by the fact that firms with more-
advanced management practices hire better-quality workers—particularly
in the upper stratum of the skill distribution.

Column 5 of table 3 introduces a control for the book value of the cap-
ital stock. Despite the well-known limitations of book value–based capital
measures, this variable has a large positive coefficient that is relatively pre-
cisely estimated. Introducing capital into the production function leads to a
relatively large reduction (about 40%) in the coefficient on themanagement
score and to noticeable declines in the coefficients on average worker abil-
ity, managerial ability, and the fraction of college graduates. Nevertheless,
all four remain at least marginally significant.
FIG. 5.—Positive correlation between ln(labor productivity) and World Man-
agement Survey management scores. The figure shows the bin scatter of ln(sales
per worker) against vigintiles of management scores. Both variables are residualized
by regressing the underlying variable on ln(employment).
25 In this column, a standard deviation increase in management scores is associ-
ated with a 13% increase in productivity, which is similar to the findings of the In-
dian randomized controlled trials and nonexperimental regressions across all coun-
tries (Bloom et al. 2014).
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So far we have focused on the impact of measures of worker quality on
the measured effect of the managerial score variable. As discussed in Sec-
tion II, however, firm-specific pay policies may also affect productivity if
they are used by the firm to reward greater effort. Some descriptive evidence
on this mechanism is presented in figure 7. Figure 7A shows a bin scatterplot
relating the estimated firm-specific wage premiums to ln(sales per worker).
These are positively related, as has also been documented in other countries
(e.g., see Card, Cardoso, and Kline [2016] for Portugal and Abowd et al.
[1999] for France). Figure 7B presents a bin scatterplot of the wage premiums
against the WMS management scores. Again, there is a strong positive rela-
tionship, suggesting that firms that use advanced management practices tend
to pay higher wages to their workers relative to the outside labor market.
When we regress the firm fixed effects on management scores, we find a sig-
nificant and positive correlation, with or without the other controls (see
online app. table A7).
In column 6 of table 3, we introduce thefirm-specificwage premium as an

additional control. As expected given the scatterplots, the coefficient on this
variable is positive and significant. Its inclusion also leads to a further reduc-
tion in the effect of the management score variable (to 0.07).
FIG. 6.—Increasing productivity in employee ability, especially for high levels of
bility. The figure shows the bin scatter of ln(sales per worker) against vigintiles of
ean worker ability, as measured by mean employee fixed effects. Both variables
re residualized by regressing the underlying variable on ln(employment).
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Columns 7–10 of table 3 present estimates for production function spec-
ifications that control for labor, capital, and intermediate inputs (materi-
als).26 The baseline model in column 7 includes only the management score
variable and controls for factor inputs. Relative to the parallel specification in
column 1, the coefficient on management practices is reduced by around
four-fifths. Evidently, more advanced management practices are more likely
to be adopted byfirmswithmore capital intensive production techniques that
also use larger shares of intermediate inputs. Controlling for these factors,
Table 2
Correlations between Firm Management and Average Employee
and Managerial Ability

Management z-Score

(1) (2) (3) (4) (5)

Mean employee ability .216*** .029 2.093
(.078) (.090) (.112)

Mean managerial ability .294*** .277*** .258***
(.071) (.091) (.095)

ln(number of employees) .208*** .237*** .261*** .264*** .263***
(.046) (.049) (.048) (.050) (.050)

% of employees with college degree 1.022**
(.452)

Family 2.262** 2.223* 2.210 2.207 2.214*
(.131) (.132) (.129) (.130) (.129)

Founder 2.384 2.325 2.244 2.243 2.259
(.287) (.277) (.274) (.274) (.271)

Institution 2.240 2.239 2.245 2.244 2.249
(.184) (.181) (.177) (.178) (.180)

Manager 2.256 2.164 2.255 2.244 2.229
(.320) (.313) (.293) (.290) (.292)

Other 2.068 2.031 2.059 2.057 2.039
(.172) (.174) (.181) (.181) (.181)

Firms 354 354 354 354 354
Observations 588 588 588 588 588
26 Information on intermediate
Orbis, leading to a 30% reductio
variables, we decided not to try t
missing.
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FIG. 7.—Correlation between firm fixed effect (in wage equation) and World
Management Survey (WMS) management practice score and productivity. A, La-
bor productivity and firm fixed effect. B, WMS management score and firm fixed
effect. The figures show the bin scatter of ln(sales per worker) (A) or management
scores (B) against vigintiles of estimated firm-specific wage premium (“Firm FE”).
Both bin scatterplots control for firm size. FE 5 fixed effect.
S395
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the coefficient implies that a 1 standard deviation increase in management
practices is associated with a 4.3% increase in productivity. Column 8 adds
the two worker-ability measures to the three-factor production function.
Both variables are marginally significant, and their addition reduces the
management-TFP relationship to 0.035. In column 9, management prac-
tices and ability remain significant even conditional on the share of college-
educatedworkers. Finally, in column10we add in the estimatedfirm-specific
pay premium, which leads to a reduction in the point estimates for the effects
of the management score and worker-quality variables. With only 229 firms
included in the analysis, we have reached the limits of the data to distinguish
between the different channels.
The models summarized in table 3 use a simple average of the 18manage-

ment questions on the WMS survey as a measure of management practices.
Wehave checked the robustness of ourfindings byusing otherways of sum-
marizing the WMS questions, such as principal components and looking
at subsets of the question-specific scores. For example, online appendix ta-
ble A6 presents a series of models similar to the ones in table 3 but uses the
first principal component of all 18 questions. Overall, the results are qualita-
tively and quantitatively similar to those based on simple averages of the z-
scores.
Analysis based on TFP.—In table 4, we implement our preferred TFP

specification based on equation (8). This approach has the advantage rela-
tive to the production approach used in table 3 of moving the conventional
factor inputs (labor, capital, and materials) from the right-hand side to left-
hand side of the regression, reducing the effects of measurement errors and
endogeneity biases for these variables. Moreover, the coefficients on labor,
capital, and materials are allowed to vary across detailed subindustries ac-
cording to their respective cost shares. On the other hand, a TFP approach
assumes that the output elasticities with respect to the three-factor inputs
are equal to their factor shares, an assumption that may not be correct.
In general, the broad pattern of results in table 4 is similar to the pattern in

table 3. The more parsimonious specification, however, allows us to esti-
mate the key parameters more precisely. The first four columns of the table
present models where we exclude the firm size, industry, and ownership
controls, whereas the last four columns present models with these controls
included (as in table 3). As wemove from column 1 to column 2, we observe
that the controlling for employee quality reduces the management practice
coefficient by about a quarter. Controlling for managerial ability in column 3
reduces themanagement practice coefficient by another 14%, and controlling
for the firm wage premium in column 4 reduces it by another 16%. So alto-
gether the reduced-form association between TFP andmanagement is roughly
halved when we introduce these additional controls.
We repeat the specifications of columns 1–4 in the last four columns of

table 4 but include more extensive controls. The results show a qualitatively
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similar pattern, although the fraction of the management coefficient ex-
plained by the other controls is smaller (the original management associa-
tion of 0.048 is reduced by about 30% by the final column). Employee abil-
ity accounts for only 3%, managerial ability for 13%, and establishment
fixed effects in pay for a further 13%. The fraction accounted for by average
employee ability falls compared with the first four columns because we are
now controlling for the share of employees with a college degree through-
out. This suggests that in understanding the productivity-management
practice correlation, the unobserved component of human capital for aver-
age workers (recovered by the average of the AKM person effects for all
workers at the firm) matters less than the corresponding measure of human
capital for managers at the firm.
We summarize our estimation results and their implications for our sim-

ple structural model in table 5. Recall that the model consists of three equa-
tions:

i. equation (5), which relates overall workforce quality to average hu-
man capital (ĥj), the firm’s pay premium (ŵj), and observed manage-
ment practices (Lj) with coefficients r1, r2, and r3, respectively;
Table 4
Total Factor Productivity (TFP) Specifications

ln(TFP)

(1) (2) (3) (4) (5) (6) (7) (8)

Management
score .081*** .062*** .053*** .044** .048*** .047*** .041** .036**

(.021) (.020) (.019) (.018) (.018) (.017) (.017) (.017)
Mean employee
ability .176*** .113*** .103*** .198*** .141** .113*

(.025) (.034) (.033) (.060) (.058) (.060)
Mean managerial
ability .062* .059* .055 .052

(.035) (.034) (.034) (.034)
Firm effect
(in wages) .070*** .051**

(.018) (.020)
General controls No No No No Yes Yes Yes Yes
Firms 229 229 229 229 229 229 229 229
Observations 378 378 378 378 378 378 378 378
This c
ll use subject to Un
ontent dow
iversity of
nloaded f
 Chicago P
rom 018.1
ress Term
01.024.23
s and Con
1 on Octo
ditions (h
ber 18, 20
ttp://www.
18 08:17
journals.
NOTE.—All standard errors are clustered by firm (in parentheses under coefficients estimated by ordi-
nary least squares). Management score, managerial ability, and employee ability are all standardized.
TFP is measured by ln(sales) minus the cost-weighted ln(inputs), where inputs are labor, capital, and ma-
terials. All columns include industry dummies, year dummies, and firm size. General controls are a dummy
for East German firms, the share of female workers, five ownership dummies, dummies for numbers of
competitors, firm age, and a cubic in the coverage rate. Mean employee ability is the mean level of individual
fixed effect measured over the period 1996–2002. Mean managerial ability is employee ability in the top
quartile of the within-firm distribution.
* Statistically significant at the 10% level.
** Statistically significant at the 5% level.
*** Statistically significant at the 1% level.
:23 AM
uchicago.edu/t-and-c).



S398 Bender et al.

A

ii. equation (6), which relates TFP to managerial human capital ĥMj and
management practices with coefficients l1 and l2, respectively; and

iii. equation (8), which is a log-linearized three-factor production func-
tion with coefficients equal to the cost shares of the factors.

From the reduced-form coefficients associated with these three equations,
we can recover estimates of r1, r2, l1, and the composite management effect
sLr3 1 l2.
Table 5 shows the reduced-form parameter estimates and the associated

estimates of the structural parameters r1 and r2 from the basic TFP specifi-
cation in column 4 of table 4, the extended TFP specification in column 8 of
table 4, and the production function estimates in column 10 of table 3. Re-
assuringly, the estimated reduced-form and structural parameters are fairly
similar across these three specifications. The implied values of br1 (the effect
of higher average human capital on labor quality) are between 0.4 and 0.5,
the implied values of br2 (the effect of a higher pay premiumon labor quality)
are between 0.2 and 0.3, the implied values of l1 (the effect of a higher hu-
man capital of managers on TFP) are between 0.05 and 0.08, and composite
effects of (standardized) management ability on TFP are between 0.03 and
0.04.
While the estimates of the effect of workers’ average human capital on la-

bor quality (br1) are relatively large, they are still far below 1.0, which is the
expected effect if a 1% increase in the average person effect at a firm leads to
a 1% increase in labor quality. There are three likely explanations for the
gap. First, the worker effects are estimated with error. Second, the firm-
wide average skill measure excludes part-timers, trainees, and workers out-
T
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Symbol
(1)

Structural
Parameters

(2)

Reduced-Form
Coefficient

(3)

TFP
Basic
(4)

TFP
Full
(5)

Production
Function

(6)

anagement
score Lj sLr3 1 l2 p4 .044 .036 .029
ean employee
ability ĥj sLr1 p1 .103 .113 .058

br1 .447 .491 .439
ean managerial
ability ĥMj l1 p3 .059 .052 .082
irm effect
(in wages) ŵj sLr2 p2 .070 .051 .039
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side the 20–60 age range. Third, there is some slippage introduced by the
presence of multiplant establishments in our sample, since we merge firms
to only a single establishment in the IEB database.27We suspect that all three
factors lead to some attenuation in the measured effect of average worker
quality.
Our finding that higher firm-specific wage premiums contribute to aver-

age productivity, albeit less than proportionally, is also interesting. Taken at
face value, point estimates for br2 in the range of 0.20 to 0.30 suggest that
firms receive only a partial productivity offset from offering higher pay.
Again, we suspect that the estimates could be attenuated by measurement
errors in the AKM procedure and by slippage in the match between firms
and establishments.
Finally, the finding that average managerial quality has an independent

association with TFP, holding constant the average quality of the work-
force, provides empirical support for the channel emphasized in Lucas’s
(1978) original span-of-control model and many subsequent models of the
effect of managers on TFP. But the importance of management practices
over and above managerial ability is novel to our paper.
We also conclude from the pattern of coefficients on the management

practice variables (e.g., between cols. 1 and 4 in table 4) that the observed
association of productivity with management practices in simpler specifica-
tions represents a combination of direct and indirect effects via workforce
selection and pay practices. We turn in the next subsection to see whether
there is any direct evidence that some of the role of management practices
operates via selection.

B. Inflows and Outflows

We have shown that firms with a more highly skilled workforce—and in
particular more highly skilled workers in the top quartile of the pay distri-
bution—tend to have better management practices and higher productivity.
We now investigate in more detail how firms come to have higher-ability
employees by looking at the inflows and outflows of workers to our firms.
As background, panel B of table 1 shows the total numbers of individuals

we observe in the IEB data who join or leave one of the matched WMS
firms. In total, we observe 122,436 joiners and 132,600 leavers (roughly
350 joiners and leavers per firm, on average). Most inflows (58%) and most
outflows (57%) are job-to-job transitions, but substantial fractions of new
hires come fromunemployment (16%) and fromother sources (27%).Like-
27 The establishment identified in the IEB can actually combine two or more
plants if the plants are all in the same location and assigned the same narrow indus-
try code.
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wise, many job leavers exit to unemployment (30%) or to other destina-
tions (13%).28

Table 6 presents an analysis of the relationship between management
ability measures and the fraction of new recruits at a firm with estimated
employee ability at or above various percentiles of the overall distribution
among all new recruits. As with previous tables, the employee effects are
those estimated by Card et al. (2013) for the period 1996–2002, prior to
the start of the jobs under analysis here. Each column of the table shows
the coefficient of the management ability index in a model for the fraction
of new recruits with person effects at or above the percentile listed in the
column heading (the 10th, 25th, 50th, 75th, and 90th percentiles, respectively).
In column 5, for example, the dependent variable is the proportion of work-
ers who were in the top decile of the ability distribution based on their es-
timated person effects during the period 1996–2002. We present two sets of
specifications: a simpler set of models (panel A) that control for location,
ownership, industry, female share, and production market competition,
Table 6
Inflows from Employment and Unemployment

Percentile of the Ability of Different
Quantiles of the Inflow Distribution

10%
(1)

25%
(2)

50%
(3)

75%
(4)

90%
(5)

A. Not Including Size Control

Management score .003 .003 .006 .016** .019***
(.002) (.004) (.005) (.006) (.006)

% college .081*** .212*** .304*** .075 .090
(.013) (.029) (.052) (.086) (.057)

B. Including Size Control

Management score .003 .004 .005 .007 .010*
(.002) (.004) (.006) (.007) (.006)

% college .081*** .202*** .314*** .123 .139**
(.015) (.030) (.050) (.088) (.062)

Firm size: ln(labor) .000 2.005 .005 .026*** .026***
(.002) (.004) (.007) (.007) (.007)

Observations 355 355 355 355 355
28 Recall that the thir
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and a richer specification (panel B) that also controls for firm size. In both
specifications, the coefficient on the management score is positive at every
percentile and is particularly strong for workers in the top of the distribu-
tion. In the specifications without size controls, the management score co-
efficients for the 75th and 90th percentiles are highly significant. As shown
in the second panel, these effects are attenuated once we control for firm
size, but the coefficient in the 90th percentile model remains marginally sig-
nificant. Online appendix tables A3 and A4 repeat the analysis, fitting sepa-
rate models for inflows from a previous job and from unemployment.29 The
results are broadly robust to disaggregating in this way. Overall, we con-
clude that better-managed firms are a little more likely to recruit workers
from the upper tail of the ability distribution.
Table 7 turns to the relationship between management ability and the

composition of outflows to unemployment. These flows are particularly in-
teresting because they arguably reflect termination decisions by the firm
(i.e., decisions to fire or lay off a worker) rather than decisions by workers
to move to another job or withdraw from the labor force. The dependent
variable in all of the models is the average value of the person effect for
leavers who move to unemployment, normalized by differencing from
themean person effect at the firm among all employees in the previous year.
Table 7
Outflows to Unemployment

ln(Average Ability of Outflow) –
ln(Average Ability of Incumbents)

(1) (2) (3) (4)

Management score 2.091* 2.115** 2.106* 2.133**
(.053) (.058) (.060) (.057)

Average age of outflows .048*** .041***
(.016) (.015)

% of college of outflows 4.887***
(.861)

General controls No Yes Yes Yes
Firms 347 347 347 347
29 Haltiwanger, Hyatt, and
patterns by firm size (and fi
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Thus, the coefficients reflect the impact of highermanagement ability on the
differential layoff/firing rate of higher-ability workers.
The results in table 7 suggest that firms with higher management scores

are significantly less likely tofire or lay off their relatively high-abilitywork-
ers. This correlation remains robust in column 2 to more general controls
for firm size, location, the shares of college-educated and female workers,
firm age, competition, and ownership. Nevertheless, one might be con-
cerned that the relative skill level of workers who are laid off or fired from
a particular firm is correlated with some other characteristics of the worker.
Consequently, we also experimented with conditioning on some of the ob-
servable characteristics of the outflow group, such as age (col. 3) and whether
the individual was college educated (col. 4). Interestingly, including these
controls in column 4 increases the magnitude of the management score coef-
ficient compared with column 2, suggesting that the “quality preference” of
better-managed firms is stronger within traditionally measured skill groups
than between groups.30

Tables 6 and 7 together confirm that firms with high WMS management
scores select higher-ability employees and exit lower-ability employees to a
greater extent than other firms.31 This is a clear mechanism through which
they end up with a larger fraction of high-ability incumbent employees.We
estimate that it would take about 9 years for a firm that moved from the bot-
tom 90% into the top decile ofWMSmanagement scores to converge to the
average employee ability score of its peers purely through improving the
quality of the inflows and outflows.32

C. Extensions and Robustness

Management practices and the within-plant dispersion of wages and abil-
ity.—So far we have focused on the importance ofmanagement practices for
30 We repeated these specifications looking at outflows to jobs at other firms. Al-
though the results were of a similar sign, they were generally weaker, which is con-
sistent with our prior finding that the firm policy variables are most likely to be
seen when looking at exits to unemployment.

31 We tried decomposing the management score into its 18 components to see
whether there was any systematic pattern between inflows and outflows and types
of management practices. We found that 32 of the 36 coefficients were correctly
signed, but we did not see any clear pattern of groups of practices being particularly
important.

32 If we compare firms in the top decile of management to the rest, there is a dif-
ference of 0.007 (0.554 vs. 0.547) in the average employee fixed effect. The difference
in the average employee ability of joiners from the labor force between these two
groups of firms is 0.004 (0.555 vs. 0.551), but the inflow rates are similar at 6.7%.
Hence, improving the quality of inflows will bridge 4.5% (50:004 � 0:076=0:007)
of the employee ability gap per year. The ability difference of outflows to unem-
ployment is larger at 0.014, but the mean outflow rate is only 3.1%, which makes
a contribution of 6.5% (50:031 � 0:014=0:007). Putting the inflows and outflows
channels together implies that 11% of the ability gap is closed per year.
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the differences in mean levels of productivity and worker ability across
firms. In part, this focus is driven by the recent literature emphasizing the
role ofwidening between-firm inequality in overall labormarket inequality.
But an interesting question is whether advanced management practices are
also related to the degree of within-firm inequality.
We investigate this issue in table 8. We begin in columns 1 and 2 with

specifications that take the 90-10 difference in ln(wages) at each firm in
our sample as the dependent variable. As suggested by the pattern in figure 1,
there is a modest negative correlation between use of advanced management
practices and within-firm wage inequality, although the effect is at best only
marginally significant. In columns 3 and 4, we use the coefficient of variation
in log daily wages as an alternative measure of within-firm dispersion. This
measure of within-firm inequality is strongly negatively correlated with the
firm’s management score, with or without other controls in the model. Col-
umns 5–8 present a parallel set of models, taking as a dependent variable the
corresponding measure of within-firm inequality in worker quality, as mea-
sured by the estimated employee effects. (We emphasize that these employee
effects are estimated using wage data from a period preceding the time win-
dow here.) Again, the findings are consistent with the simple graphical evi-
dence in figure 2, suggesting that better-managed firms have a slightly wider
distribution of worker skill.
Overall, the conclusion from table 8 is that firms with high management

scores tend to have a little more dispersion in skills and a little less dispersion
in overall wages. The opposite signs imply that better-managed firms tend
to implement “equalizing” pay policies that offset their more unequal skill
distributions—a pattern that is inconsistent with the additive proportional
pay premium imposed by the AKMspecification.We believe that additional
work on the relationship between within-firm inequality and management
Table 8
Within-Firm Heterogeneity of Wages and Employee Ability

90-10
ln(Wages)

Coefficient of
Variation in
Log Wages

90-10
ln(Employee

Ability)

Coefficient of
Variation in
ln(Employee

Ability)

(1) (2) (3) (4) (5) (6) (7) (8)

Management score 2.037* 2.030* 2.097*** 2.030** .027* .015 .035** .023
(.022) (.017) (.020) (.012) (.014) (.012) (.016) (.015)

General controls No Yes No Yes No Yes No Yes
Observations 571 571 571 571 571 571 571 571
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practices could be a fruitful area for additional research with larger samples.
One interesting question is whether advanced management practices are re-
lated to the use of outsourcing practices, which in some cases at least lead to a
reduction in the variation in skill levels at the firm (e.g., Goldschmidt and
Schmieder 2017).
Family ownership and governance.—All of our regressions include con-

trols for family ownership. We were particularly interested in family own-
ership, as this has been the subject of much previous research.33 Consistent
with the patterns identified in earlier work, our models suggest that family-
owned firms have significantly lowermanagement scores than private, non-
family-owned firms. Part of this appears to be related to human capital. For
example, the coefficient on family ownership in the management regres-
sions of table 2 falls from a significant20.262 in column 1 to an insignificant
20.207 in column 4, with most of this fall being due to managerial ability.34

This is consistent with some of the association being due to weaker mana-
gerial talent in family-run firms.35

We probed the results further by distinguishing between firms whose
CEO was selected by primogeniture (i.e., was the eldest son, grandson,
etc. of the founder) and thosewhoseCEOwas not. Although the coefficient
was more negative than the basic indicator for family ownership, it was im-
precisely determined and not significantly lower in specifications like those
in tables 2 and 3.36 However, in the TFP specifications of table 4 the coeffi-
cient on primogeniturewas negative and significant.37 The broad consistency
of these patterns with those of earlier studies is reassuring, although the
smaller sample size of our data set makes us cautious about drawing too
strong a conclusion over family firms.
Other outcomes.—We also investigated many other outcomes discussed

in the online appendixes.We examinedwhether therewas fasterwage growth
(as a proxy for promotion) for the more able employees in better-managed
firms (online app. table A5). But when interacting management scores and
33 For deeper investigations into the role of family firms, see Sraer and Thesmar
(2007), Bertrand and Schoar (2006), and Bloom and Van Reenen (2007).

34 The negative association between management and family ownership is partic-
ularly strong and significant for targets and operations management. It is insignif-
icant for people and monitoring management.

35 We also found a negative correlation between family ownership and produc-
tivity in tables 3 and 4, although this was not statistically significant.

36 For example, in a specification like col. 1 in table 2, the coefficient (standard
error) on primogeniture was 20.316 (0.210), compared with 20.100 (0.171) for the
coefficient on family ownership.

37 For example, in a specification like col. 5 in table 4, the coefficient (standard
error) on primogeniture was 20.181 (0.075), compared with 20.056 (0.060) for the
coefficient on family ownership.
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worker ability together in the wage growth equation, we found that the co-
efficient was insignificant.
Average wage bill versus AKM.—Another question is whether our ap-

proach of using AKM fixed effects to proxy for worker, managerial, and
firm “quality” buys us any more information than simply conditioning on
average wages. There is a tradition in firm-level productivity analysis of us-
ing the wage bill instead of employment as a measure of “labor services”
(e.g., Hsieh and Klenow 2009). Under competitive markets and perfect sub-
stitutability between heterogeneous workers, this seems an attractive ap-
proach, as thewage bill is usually available infirm accounts,whereas individ-
ual wages are not.
Online appendix table A8 investigates this issue, beginning in column 1

with the basic TFP specification from column 1 of table 4. In column 2,
we include the log of the average wage bill per employee, taken from the
firm-wideOrbis accounts. Consistent with existing work, this suggests that
TFP is higher in firms with higher average “accounting wages,” as the co-
efficient is positive and (weakly) significant, increasing the R2 from 0.561
to 0.575. If instead of the accounting wage we include our preferred AKM
controls, there is a larger increase in theR2, to 0.685. Furthermore, the average
wage estimated from firm accounts is now insignificant conditional on our
controls for employee and firm fixed effects in column 4. In column 5, we in-
clude the average of the individual ln(wages) from the IEB.This ismuchmore
powerful than the accounting measure (which probably has greater measure-
ment error), explaining 0.679 of the variance, almost as much as our AKM
measures in column 4. Nevertheless, including our AKMmeasures gives ad-
ditional information over and above the simple average individual wage, with
employee and managerial ability remaining significant (the joint F-test of the
three AKM terms is 9.84, which is significant at the 1% level). The bottom
line from this is that our AKM approach adds much more information than
simply using thewage bill and/or simply using the average of individualwages
of the workers currently in the firm.38

V. Conclusions

In this paper, we have examined whether some core management practices
found to be important for firm productivity (e.g., Bloom and Van Reenen
2007; Bloom et al. 2016) are due to the higher ability of employees, especially
managers, in these firms. We merge German administrative employee-
employer data (the IEB) with the WMS management data. We estimate an
overall measure of individual ability for each worker using the employee
38 As with table 2, we also considered controlling for a number of other observ-
able measures of human capital, such as general experience and tenure in the job or
firm in the TFP regressions, but these did not make any substantial difference to the
results.
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fixed effects fromwage equations in the manner of Abowd et al. (1999). This
approach also provides us with information on the ability of the top quartile
of workers, who we interpret as the firm’s managers, and with an estimate of
the average pay premium paid by the firm relative to the outside labor mar-
ket. Card et al. (2013) have documented a large (and increasing) degree of
firm-specific wage premia in these data, consistent with evidence in many
other countries.
We show several interesting stylized facts in our data. First, we find a

strong relationship between average employee ability andmanagement prac-
tices. This is particularly strong at the top end of the ability distribution, sug-
gesting that managerial ability is important in explaining why some firms
have high management scores (over and above average worker human cap-
ital).Whenwe estimate production functions, we find that firmswith higher
worker and managerial human capital have higher productivity. However,
the WMS management scores remain significant in production functions
and TFP equations even after conditioning on allmeasures of employee abil-
ity. Including human capital reduces the association of productivity with
management by between 30% and 50% (with our preferred estimates at
the low end of this range). Although we cannot rule out the idea that there
could be further aspects of human capital we are not accounting for, the con-
tinued importance of management practices for firm performance regres-
sions is striking.
Delving further into the management score—the employee-ability rela-

tionship—we show that well-managed firms have a larger stock of higher-
ability workers. Firms with high management scores accomplish this at least
in part by selection. They are able to recruit workers from higher points of
the ability distribution and remove those from the lower part of the distri-
bution. This is revealed through our analysis of inflows and outflows of
workers.
Taken as a whole, our results suggest that human capital, especially man-

agerial human capital, is important for the capability to sustain successful
management practices.However, there appears to be information in theman-
agement practice scores that predicts the existence of productivity that is
not reducible to the “atoms” of human capital employed in the firm. This
could be what some scholars have termed “corporate culture”—something
that makes a firmmore than simply the sum of its parts. We believe that this
is a fascinating research path to pursue, as it links economics with other ar-
eas of social science.
In short, individuals who are “lucky” enough to have high ability or low

disutility of effort will be disproportionately sorted into high-paying, more
productive, and better-managed firms. Hence, their existing wage advan-
tages in a world with homogenous firms are magnified by the presence of
heterogeneous management practices. This is another force adding to exist-
ing inequalities in the labor market.
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