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The first part of the Internet Appendix presents the supplementary analysis for the proofs in
the main Appendix. The second part presents a detailed analysis of litigation pressure and policy
proposals.

A. Supplementary analysis for the proofs
1. Supplementary analysis for the proof of Proposition 1: Proof that for any q, the
equilibrium ws (0) = 0, ws (1) = 1, and w0 = 1

2 exists.
Consider the decision of shareholder i with signal si when other informed shareholders (i.e.,

shareholders that acquired private signals) vote according to strategy ws (sj), and uninformed
shareholders (i.e., shareholders that did not acquire private signals) vote according to strategy
w0 = 1

2 . Given q, the probability that each shareholder votes “for”in state θ ∈ {0, 1} equals

Pr [vj = 1|θ = 1] = q (ws (1) p+ ws (0) (1− p)) + (1− q) 1
2 = qp+ (1− q) 1

2 ,
Pr [vj = 1|θ = 0] = q (ws (1) (1− p) + ws (0) p) + (1− q) 1

2 = q (1− p) + (1− q) 1
2 .

Shareholder i’s vote affects the decision if N−1
2 other shareholders vote “for”and N−1

2 vote “against.”
The expected value of the proposal to shareholder i in this case is

ũ (si) = E [u (1, θ) |si, P IVi] = Pr [θ = 1|si, P IVi]− Pr [θ = 0|si, P IVi] ,

where PIVi denotes the event in which shareholder i’s vote determines the outcome (i.e., if
∑

i 6=j vj =
N−1

2 ). Applying the Bayes’rule,

ũ (si) =
Pr[si|θ=1] Pr[

∑
j 6=i vj=

N−1
2
|θ=1]−Pr[si|θ=0] Pr[

∑
j 6=i vj=

N−1
2
|θ=0]

Pr[si|θ=1] Pr[
∑
j 6=i vj=

N−1
2
|θ=1]+Pr[si|θ=0] Pr[

∑
j 6=i vj=

N−1
2
|θ=0]

= D (si)× (Pr [si|θ = 1]− Pr [si|θ = 0])
(

1
2 + q

(
p− 1

2

))N−1
2
(

1
2 − q

(
p− 1

2

))N−1
2 ,

where D (si) > 0. The best response of shareholder i is to vote “for” (vi = 1) if ũ (si) ≥ 0 and
vote “against”(vi = 0) if ũ (si) ≤ 0. When si = 1, Pr [si|θ = 1]− Pr [si|θ = 0] = 2p− 1 > 0. When
si = 0, Pr [si|θ = 1] − Pr [si|θ = 0] = 1 − 2p < 0. Therefore, the optimal strategy of shareholder i
is indeed vi = si. Hence, ws (s) = s is an equilibrium.

Similarly, for an uninformed shareholder, the expected value of the proposal conditional on
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being pivotal is

ũ0 = D0 ×
(

(qp+ (1− q) 1
2)

N−1
2 (1− qp− (1− q) 1

2)
N−1
2

−(q (1− p) + (1− q) 1
2)

N−1
2 (1− q (1− p)− (1− q) 1

2)
N−1
2

)
= 0,

for some D0, and hence it is indeed optimal to mix between voting “for”and “against.”

2. Proof that c and c̄ decrease in N and approach zero as N → ∞. Denote both
as functions of N via cN and c̄N , respectively. Using their expressions in (7) and the fact that

C
N+1
2

N+1 = 4N
N+1C

N−1
2

N−1 , we get cN+2 = cN
N
N+1

(
1− (2p− 1)2

)
< cN and c̄N+2 = c̄N

N
N+1 < c̄N .

Furthermore, limN→∞ cN = 0 and limN→∞ c̄N = 0, because limN→∞ P
(
q,N − 1, N−1

2

)
= 0 for any

q ∈ (0, 1).

3. Value of signals. We derive the value of the private signal Vs (qr, qs) and the value of the
advisor’s recommendation Vr (qr, qs) to shareholder i for given qr, qs.

3.1. Value of a private signal. Shareholder i’s vote only makes a difference only if
∑

j 6=i vj =
N−1

2 . Conditional on si = 1 and on being pivotal, his utility from being informed is 1
2E [u (1, θ) |si = 1, P IVi].

Similarly, conditional on being pivotal and his private signal being si = 0, the shareholder’s utility
from being informed is −1

2E [u (1, θ) |si = 0, P IVi]. Overall, the shareholder’s value of acquiring a
private signal is

Vs (qr, qs) = Pr (si = 1) Pr (PIVi|si = 1) 1
2E [u (1, θ) |si = 1, P IVi]

−Pr (si = 0) Pr (PIVi|si = 0) 1
2E [u (1, θ) |si = 0, P IVi] .

By the symmetry of the model, E [u (1, θ) |si = 1, P IVi] = −E [u (1, θ) |si = 0, P IVi] and Pr (PIVi|si = 1) =
Pr (PIVi|si = 0), so we get

Vs (qr, qs) = 1
2 Pr (PIVi|si = 1)E [u (1, θ) |si = 1, P IVi]

= 1
2 Pr (PIVi|si = 1) (Pr (θ = 1|si = 1, P IVi)− Pr (θ = 0|si = 1, P IVi)) =

(
p− 1

2

)
Pr (PIVi) ,

where

Pr (PIVi) = Pr (PIVi|θ = 1) = πPr (PIVi|r = 1, θ = 1) + (1− π) Pr (PIVi|r = 0, θ = 1)

= πP
(

1
2qn + qr + qsp,N − 1, N−1

2

)
+ (1− π)P

(
1
2qn − qr + qsp,N − 1, N−1

2

)
.

Hence, Vs (qr, qs) is given by (9).

3.2. Value of the advisor’s signal. As before, shareholder i’s vote makes a difference only
if
∑

j 6=i vj = N−1
2 . Conditional on r = 1 and on being pivotal, his utility from being informed is

1
2E [u (1, θ) |r = 1, P IVi]. Similarly, conditional on r = 0 and on being pivotal, shareholder i’s utility
from being informed is −1

2E [u (1, θ) |r = 0, P IVi]. Overall, the shareholder’s value of acquiring the
advisor’s signal is

Vr (qr, qs) = Pr (r = 1) Pr (PIVi|r = 1) 1
2E [u (1, θ) |r = 1, P IVi]

−Pr (r = 0) Pr (PIVi|r = 0) 1
2E [u (1, θ) |r = 0, P IVi] .
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By the symmetry of the model, E [u (1, θ) |r = 1, P IVi] = −E [u (1, θ) |r = 0, P IVi] and Pr (PIVi|r = 1) =
Pr (PIVi|r = 0), so we get

Vr (qr, qs) = 1
2 Pr (PIVi|r = 1)E [u (1, θ) |r = 1, P IVi]

= 1
2 Pr (PIVi|r = 1) (Pr (θ = 1|r = 1, P IVi)− Pr (θ = 0|r = 1, P IVi))

= 1
2 Pr (PIVi|r = 1, θ = 1) Pr (r = 1|θ = 1)− 1

2 Pr (PIVi|r = 1, θ = 0) Pr (r = 1|θ = 0)
= 1

2 Pr (PIVi|r = 1, θ = 1)π − 1
2 Pr (PIVi|r = 1, θ = 0) (1− π) .

Note that Pr (PIVi|r = 1, θ = 1) = P
(
qr + qsp+ 1

2qn, N − 1, N−1
2

)
and Pr (PIVi|r = 1, θ = 0) =

P
(
qr − qsp+ 1

2qn, N − 1, N−1
2

)
. Hence, Vr (qr, qs) is given by (10).

4. Supplementary analysis for the proof of Proposition 2: Derivation of the condition
under which equilibrium ws (si) = si, wr (r) = r, and w0 = 1

2 exists.
According to Proposition 2, we can restrict attention to subgames that follow the information

acquisition stage at which each shareholder i acquires r with probability qr, acquires si with prob-
ability qs, and stays uninformed with probability qn = 1− qr − qs. Such an equilibrium only exists
if given qr, qs, it is optimal for a shareholder who acquired a signal to follow it. It will be useful to
compute the probabilities that a random shareholder j votes for the proposal, conditional on the
advisor’s recommendation r and the true state θ:

Pr [vj = 1|r = 1, θ = 1] = qr + qsp+ qn
1

2
, (IA1)

Pr [vj = 1|r = 0, θ = 1] = qsp+ qn
1

2
, (IA2)

Pr [vj = 1|r = 1, θ = 0] = qr + qs (1− p) + qn
1

2
, (IA3)

Pr [vj = 1|r = 0, θ = 0] = qs (1− p) + qn
1

2
. (IA4)

First, consider a shareholder with private signal si. Since his vote affects the decision only when
he is pivotal, he compares E [u (1, θ) |si, P IVi] with zero or, equivalently, Pr (θ = 1|si, P IVi) with 1

2 ,
and votes “for”if and only if the former is higher. By Bayes’rule,

Pr (θ = si|si, P IVi) =
Pr (PIVi|θ = si) p

Pr (PIVi|θ = si) p+ Pr (PIVi|θ 6= si) (1− p) = p >
1

2
,

where we used the independence of sj and r from si conditional on θ: because of independence, vj
is independent from θ = si or θ 6= si (i.e., from whether shareholder i’s private signal is correct or
not). Therefore, it is always optimal for a shareholder who acquired a private signal to follow it.

Second, consider a shareholder that acquired r. A shareholder compares E [u (1, θ) |r, PIVi] with
zero and votes “for”if and only if the former is higher. Using Bayes’rule and Pr (θ) = 1

2 = Pr (r),
we get

E [u (1, θ) |r, PIVi] Pr (PIVi|r)
= Pr (θ = 1|r, PIVi) Pr (PIVi|r)− Pr (θ = 0|r, PIVi) Pr (PIVi|r)

= Pr (PIVi|r, θ = 1) Pr (r|θ = 1)− Pr (PIVi|r, θ = 0) Pr (r|θ = 0) .
(IA5)

It is suffi cient to consider r = 1: since the model is symmetric, voting “against”is optimal for r = 0
whenever voting “for” is optimal for r = 1. When r = 1, the shareholder finds it optimal to vote
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“for”if and only if
Pr (PIVi|r = θ = 1)

Pr (PIVi|r = 1, θ = 0)

π

1− π ≥ 1. (IA6)

By independence of si, sj , j 6= i, and r conditional on θ,

Pr (PIVi|r, θ) = Pr

∑
j 6=i

vj =
N − 1

2
|r, θ

 = P

(
Pr [vj = 1|r, θ] , N − 1,

N − 1

2

)
.

Plugging this into (IA6) gives

π

1− π
P
(

1
2 + qr

2 + qs(p− 1
2), N − 1, N−1

2

)
P
(

1
2 + qr

2 − qs(p−
1
2), N − 1, N−1

2

) ≥ 1. (IA7)

The intuition for (IA7) is as follows. Consider a shareholder with the advisor’s recommendation
deciding whether to follow it. If qs > 0, a split vote is a signal that the advisor’s recommendation
is more likely to be incorrect (r 6= θ), since a split vote is more likely when private signals of
shareholders disagree with the advisor’s recommendation than when they agree with it. Therefore,
as long as qr > 0 and qs > 0, the information content from being pivotal lowers the shareholder’s
assessment of the precision of the advisor’s recommendation. This logic is reflected in the left-hand
side of (IA7), which gives the ratio of probabilities that the advisor is correct and incorrect: the
first term ( π

1−π ) is the prior, while the second term reflects additional information from the fact
that the vote is split.

Finally, consider an uninformed shareholder. Since the event of being pivotal is uninformative
about state θ, such a shareholder is indifferent between voting “for”and “against”the proposal, so
it is optimal for him to mix between the two options.

Therefore, if qr and qs satisfy (IA7), then voting in the direction of the signal that a shareholder
has (private or advisor’s) is an equilibrium. If (IA7) is violated, there is no equilibrium with a
positive value of the advisor’s recommendation. However, since all these sub-games imply zero
value of recommendation of the advisor, they are not reached on equilibrium path if qr > 0. In
particular, whenever Vr (qr, qs) − f ≥ 0, which is implied by any equilibrium with qr > 0 (where
Vr (qr, qs) is the value of the advisor’s recommendation to a shareholder), this condition is satisfied.
Therefore, we do not verify (IA7) in subsequent derivations.

5. Supplementary analysis for the proof of Lemma 1.
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The solutions to (A7), if they exist, are given by

q1
r (ψ) =

√√√√1
4 −

(
f+ c

2p−1+ 2p
2p−1ψ

πC
N−1
2

N−1

) 2
N−1

−

√√√√1
4 −

(
c

2p−1−f+
2(1−p)
2p−1 ψ

(1−π)C
N−1
2

N−1

) 2
N−1

,

q1
s (ψ) = 1

2p−1


√√√√1

4 −
(
f+ c

2p−1+ 2p
2p−1ψ

πC
N−1
2

N−1

) 2
N−1

+

√√√√1
4 −

(
c

2p−1−f+
2(1−p)
2p−1 ψ

(1−π)C
N−1
2

N−1

) 2
N−1

 ,

(IA8)

q2
r (ψ) =

√√√√1
4 −

(
f+ c

2p−1+ 2p
2p−1ψ

πC
N−1
2

N−1

) 2
N−1

+

√√√√1
4 −

(
c

2p−1−f+
2(1−p)
2p−1 ψ

(1−π)C
N−1
2

N−1

) 2
N−1

,

q2
s (ψ) = 1

2p−1


√√√√1

4 −
(
f+ c

2p−1+ 2p
2p−1ψ

πC
N−1
2

N−1

) 2
N−1

−

√√√√1
4 −

(
c

2p−1−f+
2(1−p)
2p−1 ψ

(1−π)C
N−1
2

N−1

) 2
N−1

 .

(IA9)

Note that q1
j (0) = qaj and q2

j (0) = qbj for j ∈ {r, s}. Since p ∈
(

1
2 , 1
)
, it is easy to see that

q2
r (ψ) + q2

s (ψ) ≤ q1
r (ψ) + q1

s (ψ) and that q1
r (ψ) + q1

s (ψ) is strictly decreasing in ψ. Each solution
satisfies (qr, qs) > 0 if and only if f + ψ < 2π−1

2p−1 (c+ ψ)⇔ f < f̄ + 2(π−p)ψ
2p−1 .

Proof of Claim 1: If f ≥ f̄ , then there is no equilibrium (qr, qs) > 0.
First, since strictly positive solutions (A5)-(A6) do not exist for f ≥ f̄ , there is no equilibrium

(qr, qs) > 0 satisfying qr + qs < 1. Second, by contradiction, suppose there is an equilibrium

(qr, qs) > 0 with qr + qs = 1. Then,
f+ c

2p−1+ 2p
2p−1ψ

π ≤
c

2p−1−f+
2(1−p)
2p−1 ψ

1−π and qir (ψ) + qis (ψ) = 1 for
some ψ ≥ 0 and some i ∈ {1, 2}. Since q2

r (ψ)+q2
s (ψ) ≤ q1

r (ψ)+q1
s (ψ), we have q1

r (ψ)+q1
s (ψ) ≥ 1.

This, together with the inequality above, implies

1 ≤ 2p

2p− 1

√√√√√1

4
−

f + c
2p−1 + 2p

2p−1ψ

πC
N−1
2

N−1

 2
N−1

+
2 (1− p)
2p− 1

√√√√√1

4
−

 c
2p−1 − f + 2(1−p)

2p−1 ψ

(1− π)C
N−1
2

N−1

 2
N−1

≤ 2

2p− 1

√√√√√1

4
−

f + c
2p−1 + 2p

2p−1ψ

πC
N−1
2

N−1

 2
N−1

≤ 2

2p− 1

√√√√√1

4
−

 f̄ + c
2p−1

πC
N−1
2

N−1

 2
N−1

=
2

2p− 1
Λ = q∗0,

which contradicts Assumption 1 that q∗0 ∈ (0, 1).

Proof of Claim 2: If 2p
2p−1

√√√√1
4 −

(
f
1
+ c
2p−1

πC
N−1
2

N−1

) 2
N−1

≤ 1, there is an equilibrium (qr, qs) > 0

if and only if f ∈
[
f

1
, f̄
)
, where f

1
is given by (A4).
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Note that

qbr + qbs =
2p

2p− 1

√√√√√1

4
−

f + c
2p−1

πC
N−1
2

N−1

 2
N−1

− 2 (1− p)
2p− 1

√√√√√1

4
−

 c
2p−1 − f

(1− π)C
N−1
2

N−1

 2
N−1

(IA10)

is strictly decreasing in f . Also, when f = f
1
, the second term is zero and hence, given the

inequality assumed by the claim, qbr + qbs ≤ 1 for f = f
1
. Hence, qbr + qbs ≤ 1 for any f ∈

[
f

1
, f̄
)

with strict inequality for f 6= f
1
. As shown above,

(
qbr, q

b
s

)
> 0 for f < f̄ . Hence, there is

an equilibrium
(
qbr, q

b
s

)
> 0 if f ∈

[
f

1
, f̄
)
. By Claim 1, there is no equilibrium (qr, qs) > 0

if f ≥ f̄ . If f < f
1
, system (A3) has no solution, so there is no equilibrium (qr, qs) > 0 with

qr + qs < 1. Finally, (A3) with c + ψ and f + ψ instead of c and f does not have a solution if

f < c
2p−1 + 2(1−p)

2p−1 ψ − C
N−1
2

N−121−N (1− π) = f
1

+ 2(1−p)
2p−1 ψ. Since ψ ≥ 0, it does not have a solution

if f < f
1
, so there is no equilibrium (qr, qs) > 0 with qr + qs = 1 in this case either.

Proof of Claim 3: If 2p
2p−1

√√√√1
4 −

(
f
1
+ c
2p−1

πC
N−1
2

N−1

) 2
N−1

> 1, there exists f
2
≥ f

1
such that

there is an equilibrium (qr, qs) > 0 if and only if f ∈
[
f

2
, f̄
)
.

By Claim 1, there is no equilibrium (qr, qs) > 0 if f ≥ f̄ . Note that when f = f̄ , the two roots
in (IA10) are equal, and hence qbr + qbs, given by (IA10), is below one. Also, when f = f

1
, the

second term in (IA10) is zero and hence, given the inequality assumed by the claim, qbr + qbs > 1

for f = f
1
. Since qbr + qbs is strictly decreasing in f , there is a unique f̂1 ∈

(
f

1
, f̄
)
at which (IA10)

equals one (and since f < f̄ , both qbr and q
b
s are strictly positive). Hence, if f ∈

(
f̂1, f̄

)
, there is

an equilibrium (qr, qs) > 0 with qr + qs < 1. If f = f̂1, there is an equilibrium (qr, qs) > 0 with
qr + qs = 1. Finally, if f < f̂1, then qar + qas ≥ qbr + qbs > 1, so there is no equilibrium of type (qar , q

a
s )

or
(
qbr, q

b
s

)
.

Next, consider f ≤ f̂1. Consider equilibria with qr + qs = 1. Define

f̂2 ≡ c+ C
N−1
2

N−121−N

(
π (1− p)

(
(1− p) (3p− 1)

p2

)N−1
2

− p (1− π)

)
. (IA11)

We next show that if f̂2 ≤ f̂1, then the necessary and suffi cient conditions for equilibrium of the
type

(
q1
r (ψ) , q1

s (ψ)
)
> 0 with q1

r (ψ) + q1
s (ψ) = 1 to exist (for some ψ ≥ 0) is f ∈ [ f̂2, f̂1]. To prove

this, note that such an equilibrium exists if and only if f is such that equation q1
r (ψ) + q1

s (ψ) = 1
has a solution ψ ≥ 0 with q1

r (ψ) > 0 (condition q1
s (ψ) > 0 is implied by it from (IA8)). Hence, ψ

6



must satisfy

2p

2p− 1

√√√√√1

4
−

f + c
2p−1 + 2p

2p−1ψ

πC
N−1
2

N−1

 2
N−1

≤ 1⇔ ψ ≥ ψl, (IA12)

1

4
−

 c
2p−1 − f + 2(1−p)

2p−1 ψ

(1− π)C
N−1
2

N−1

 2
N−1

≥ 0⇔ ψ ≤ ψh, (IA13)

where the first inequality follows from q1
r (ψ) + q1

s (ψ) = 1 and

ψl = 2p−1
2p

((
(1−p)(3p−1)

4p2

)N−1
2
πC

N−1
2

N−1 − f −
c

2p−1

)
,

ψh = 2p−1
2(1−p)

(
21−N (1− π)C

N−1
2

N−1 + f − c
2p−1

)
.

(IA14)

Hence, this system is equivalent to
ψl ≤ ψ ≤ ψh. (IA15)

Note that ψh ≥ ψl ⇔ f ≥ f̂2, given by (IA11). Therefore, if f < f̂2, there is no equilibrium(
q1
r (ψ) , q1

s (ψ)
)
> 0. We next show that if f ∈ [ f̂2, f̂1], so that (IA15) is non-empty, such an

equilibrium exists. When ψ = ψh, (IA13) binds and since ψl ≤ ψh, then (IA12) is satisfied and
hence q1

r (ψh) + q1
s (ψh) ≤ 1 (since it equals the left-hand side of (IA12) when (IA13) binds). When

ψ = ψl, (IA12) binds and hence q
1
r (ψl) + q1

s (ψl) ≥ 1 (since it equals the left-hand side of (IA12)
plus a non-negative number). As shown above, q1

r (0) + q1
s (0) = qar + qas ≥ qbr + qbs ≥ 1 for f ≤ f̂1.

Hence, when ψ = max {0, ψl}, we have q1
r (ψ) + q1

s (ψ) ≥ 1 for f ≤ f̂1. Since q1
r (ψ) + q1

s (ψ) is
strictly decreasing in ψ, it must be that ψh ≥ 0 (otherwise, q1

r (ψh) + q1
s (ψh) > q1

r (0) + q1
s (0) ≥ 1).

Thus, the interval [max {0, ψl} , ψh] is non-empty and by the intermediate value theorem there
exists a unique ψ∗ ∈ [max {0, ψl} , ψh] at which q1

r (ψ∗) + q1
s (ψ∗) = 1. Note also that for this

ψ∗, q1
r (ψ∗) > 0 (and q1

s (ψ∗) > 0 follows from (IA8)). Indeed, suppose by contradiction that
q1
r (ψ∗) ≤ 0. Since q1

r (0) = qar > 0 for f < f̄ , then by the intermediate value theorem, there exists
ψ∗∗ ∈ (0, ψ∗] such that q1

r (ψ∗∗) = 0. Since ψ∗∗ ≤ ψ∗ and q1
r (ψ) + q1

s (ψ) is strictly decreasing in
ψ, q1

r (ψ∗∗) + q1
s (ψ∗∗) ≥ q1

r (ψ∗) + q1
s (ψ∗) = 1, and hence q1

s (ψ∗∗) ≥ 1. Since q1
s (ψ∗∗) and q1

r (ψ∗∗)
satisfy Vs (qr, qs) − c = Vr (qr, qs) − f = ψ∗∗ and q1

r (ψ∗∗) = 0, we have Vs
(
0, q1

s (ψ∗∗)
)

= c + ψ∗∗,
and hence q1

s (ψ∗∗) is the equilibrium of the benchmark case with no advisor but with a higher
cost, c̃ = c+ ψ∗∗. Since the cost if higher, it must be that q1

s (ψ∗∗) ≤ q1
s (0) = q∗0, but then q

∗
0 ≥ 1,

which contradicts Assumption 1. Hence, indeed, q1
r (ψ∗) > 0. Therefore, there exists an equilibrium(

q1
r (ψ) , q1

s (ψ)
)
> 0 with q1

r (ψ) + q1
s (ψ) = 1 (for some ψ ≥ 0) if and only if f ∈ [ f̂2, f̂1].

Since ψl = ψh for f = f̂2, then (IA12) and (IA13) bind for ψ = ψh. Thus, q
2
r (ψh)+q2

s (ψh) = 1.
By (IA8), q2

r (ψh) ∈ (0, 1), and hence q2
s (ψh) = 1− q2

r (ψh) ∈ (0, 1). Hence, equilibrium of the type(
q2
r (ψ) , q2

s (ψ)
)
> 0 with q2

r (ψ) + q2
s (ψ) = 1 (for some ψ ≥ 0) exists for f = f̂2. We next prove

that there exists a cutoff level f̂3 ≤ f̂2 such that equilibrium of the type
(
q2
r (ψ) , q2

s (ψ)
)
> 0 with

q2
r (ψ) + q2

s (ψ) = 1 (for some ψ ≥ 0) exists for f ∈
[
f̂3, f̂2

]
and does not exist for f < f̂3. To see

7



this, define

V (f) ≡ min
ψ∈[0,ψh(f)]

{q2
r (ψ, f) + q2

s (ψ, f)} = − max
ψ∈[0,ψh(f)]

{−q2
r (ψ, f)− q2

s (ψ, f)},

where ψh (f) is given by (IA14). Define Φ = {f ∈ [0, f̂2] : V (f) ≤ 1} and note that equilibrium of
the type

(
q2
r (ψ) , q2

s (ψ)
)
> 0 with q2

r (ψ)+q2
s (ψ) = 1 exists if and only if f ∈ Φ. Indeed, if V (f) > 1,

then q2
r (ψ, f) + q2

s (ψ, f) > 1 for any ψ ≥ 0 (since for ψ > ψh (f), this function is not well defined)
and hence no such equilibrium exists. On the other hand, suppose that V (f) ≤ 1 and is achieved at
ψ∗ (f). Then q2

r (ψ∗ (f) , f) + q2
s (ψ∗ (f) , f) ≤ 1. In addition, since ψh (f) < ψl (f) for f < f̂2, then

(IA12) is violated and (IA13) binds for ψ = ψh (f), and hence q2
r (ψh (f) , f) + q2

s (ψh (f) , f) > 1
for f < f̂2. By the intermediate value theorem, there then exists ψ ∈ [ψ∗ (f) , ψh (f)] such that
q2
r (ψ, f) + q2

s (ψ, f) = 1. Since (IA9) implies that q2
r (ψ) ∈ (0, 1), and hence q2

s (ψ) = 1 − q2
r (ψ) ∈

(0, 1) as well, this constitues an equilibrium.
Next, note that V (f) is decreasing in f . Indeed, define the Lagrangian L (f, ψ, λ, µ) ≡ −q2

r (ψ, f)−
q2
s (ψ, f) + λψ + µ (ψh (f)− ψ) and note that V (f) = −maxψ,λ,µ L (f, ψ, λ, µ). By Envelope the-

orem, V ′ (f) = −L′f (f, ψ∗, λ∗, µ∗) = −
(
−q2

r (ψ∗, f)′f − q2
s (ψ∗, f)′f + µ∗ψ′h (f)

)
. Note that µ∗ ≥ 0

according to the Kuhn-Tucker conditions. Because q2
r (ψ, f) + q2

s (ψ, f) decreases in f for a given ψ

and ψ′h (f) ≥ 0, it follows that V ′ (f) ≤ 0. The fact that V ′ (f) ≤ 0 implies that Φ =
[
f̂3, f̂2

]
for

some f̂3 ≤ f̂2. Hence, equilibrium
(
q2
r (ψ) , q2

s (ψ)
)
> 0 with q2

r (ψ)+q2
s (ψ) = 1 exists for f ∈

[
f̂3, f̂2

]
and does not exist for f < f̂3, as required. Moreover, note that f̂3 ≥ f1

. This is because, (IA9) does

not have a solution if ψ > ψh ⇔ f < f
1

+ 2(1−p)
2p−1 ψ and hence does not have a solution if f < f

1
.

Consider two cases. First, if f̂2 ≤ f̂1, then combining the results above, equilibrium (qr, qs) > 0

with qr + qs < 1 exists if and only if f ∈
(
f̂1, f̄

)
, equilibrium

(
q1
r (ψ) , q1

s (ψ)
)
> 0 with q1

r (ψ) +

q1
s (ψ) = 1 exists if and only if f ∈ [ f̂2, f̂1], and equilibrium

(
q2
r (ψ) , q2

s (ψ)
)
> 0 with q2

r (ψ) +

q2
s (ψ) = 1 exists for f ∈

[
f̂3, f̂2

]
and does not exist for f < f̂3. Combined with Claim 1, this

implies that equilibrium (qr, qs) > 0 exists if and only if f ∈ [f̂3, f̄). Second, if f̂2 > f̂1, then

equilibrium (qr, qs) > 0 with qr+qs < 1 exists if and only if f ∈
(
f̂1, f̄

)
, there exists an equilibrium

(qr, qs) > 0 with qr+qs = 1 for f = f̂1, and equilibrium
(
q2
r (ψ) , q2

s (ψ)
)
> 0 with q2

r (ψ)+q2
s (ψ) = 1

exists for f ∈
[
f̂3, f̂2

]
and does not exist for f < f̂3. Combined with Claim 1, this implies that

equilibrium (qr, qs) > 0 exists if and only if f ∈ [min(f̂3, f̂1), f̄). Combining the two cases, we
conclude that equilibrium (qr, qs) > 0 exists if and only if f ∈ [f

2
, f̄), where f

2
≡ min(f̂3, f̂1).

Since, as shown above, f̂1 > f
1
and f̂3 ≥ f1

, then f
2
≥ f

1
, which proves Claim 3.

6. Supplementary analysis for the proof of Proposition 3: Properties of (A16).
Let us fix fee f and vary π. Recall from Lemma 1 that equilibrium with complete crowding out

exists if and only if f < f̄ = 2π−1
2p−1 c, i.e., π >

1
2 + f

c

(
p− 1

2

)
. The derivative of the left-hand side of

(A16) in π is:

2
N∑

k=N+1
2

P (pa, N, k)− 1 + (2π − 1)
dpa
dπ

N∑
k=N+1

2

Pq (pa, N, k) > 0,
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since
∑N

k=N+1
2
P (pa, N, k) > 1

2 ,
∑N

k=N+1
2
Pq (pa, N, k) > 0, and dpa

dπ > 0. Indeed,
∑N

k=N+1
2
P (pa, N, k) >

1
2 because

∑N
k=N+1

2
P (pa, N, k) +

∑N
k=N+1

2
P (1− pa, N, k) = 1 and P (pa, N, k) > P (1− pa, N, k)

for pa > 1
2 and k > N . Second,

∑N
k=N+1

2
Pq (pa, N, k) > 0 for pa > 1

2 , as shown in the proof of Part

1. Finally, dpadπ > 0 follows directly from (A14). Therefore, the left-hand side of (A16) is strictly
increasing in π.

Note also that the advisor’s presence strictly decreases firm value for π → 1
2 + f

c

(
p− 1

2

)
. Indeed,

in this case, pa → p∗0, so we obtain

(2π − 1)
N∑

k=N+1
2

P (p∗0, N, k)− π <
N∑

k=N+1
2

P (p∗0, N, k)− 1⇔ 1 < 2
N∑

k=N+1
2

P (p∗0, N, k) ,

which is true, as just shown above, since p∗0 > 1
2 . Finally, when π → 1, the advisor’s presence

strictly increases firm value. Indeed,

lim
π→1

pa =
1

2
+

√√√√√1

4
−

 2f

C
N−1
2

N−1

 2
N−1

>
1

2
+

√√√√1

4
−
(
C
N−1
2

N−1

p− 1
2

c

)− 2
N−1

= p∗0,

so the left-hand side of (A16) converges to

N∑
k=N+1

2

P
(

lim
π→1

pa, N, k
)
− 1 >

N∑
k=N+1

2

P (p∗0, N, k)− 1

because
∑N

k=N+1
2
Pq (q,N, k) > 0 for q > 1

2 , as shown in the proof of Part 1.

7. Supplementary analysis for the proof of Proposition 5.
7.1. Proof that when f = f

1
, firm value is strictly higher in equilibrium with

incomplete crowding out than in equilibrium with complete crowding out.
To see this, consider any equilibrium with pa > 1

2 and pd <
1
2 . Since Ω1 (qr, qs) = P (pa, N −

1, N−1
2 ), Ω2 (qr, qs) = P (pd, N − 1, N−1

2 ) and since pa > 1
2 and pd <

1
2 , we have pa = ϕ (Ω1) and

pd = 1− ϕ (Ω2), where ϕ is given by (A12). According to (A10), firm value is

Û (Ω1,Ω2) =
∑N

k=N+1
2

(πP (ϕ (Ω1) , N, k) + (1− π)P (1− ϕ (Ω2) , N, k))− 1
2

=
∑N

k=N+1
2

(πP (ϕ (Ω1) , N, k)− (1− π)P (ϕ (Ω2) , N, k)) + 1
2 − π

= πf (Ω1)− (1− π) f (Ω2) + 1
2 − π,

where f (x) ≡
∑N

k=N+1
2
P (ϕ (x) , N, k). In equilibrium with complete crowding out and f = f

1
, we

have pa = 1
2 + 1

2qr >
1
2 , pd = 1

2 −
1
2qr <

1
2 , and (according to (A1)) Ω1 (qr, 0) = Ω2 (qr, 0) =

2f
1

2π−1 ≡
Ωr. Consider Ω1 ≡ Ωr + 1−π

2π−1ε and Ω2 ≡ Ωr + π
2π−1ε with ε ≡ (c2π−1

2p−1 − f1
) 1
π(1−π) > 0. Note that

πΩ1 − (1− π) Ω2 = 2f
1
and πΩ1 + (1− π) Ω2 = c

p−0.5 , i.e., Ω1 and Ω2 satisfy (A2). Hence, for
f = f

1
, equilibrium with incomplete crowding out is characterized by probabilities of being pivotal

9



Ω1 and Ω2. We next prove that Û (Ω1,Ω2) = Û
(

Ωr + 1−π
2π−1ε,Ωr + π

2π−1ε
)
> Û (Ωr,Ωr). Indeed,

function Ũ (x) ≡ Û
(

Ωr + 1−π
2π−1x,Ωr + π

2π−1x
)
for x ≥ 0 is increasing because

Ũ ′ (x) =
π (1− π)

2π − 1

(
f ′
(

Ωr +
1− π
2π − 1

x

)
− f ′

(
Ωr +

π

2π − 1
x

))
= −π (1− π)

2π − 1

∫ Ωr+
π

2π−1x

Ωr+
1−π
2π−1x

f ′′ (y) dy > 0

by Auxiliary Lemma A1. Hence, indeed, when f = f
1
, firm value is strictly higher in equilibrium

with incomplete crowding out than in equilibrium with complete crowding out.
7.2. Comparison of π̂ and π̃. Simplifying,

P
(

1
2 + 1

2
√
N
, N − 1, N−1

2

)
= C

N−1
2

N−1

((
1
2 + 1

2
√
N

)(
1
2 −

1
2
√
N

))N−1
2

= C
N−1
2

N−121−N (N−1
N

)N−1
2 ,

P
(

1
2 , N − 1, N−1

2

)
= C

N−1
2

N−121−N ,

and hence

π̂ ≡ 1

2
+

1

2

C
N−1
2

N−121−N − 2c
2p−1

P
(

1
2 , N − 1, N−1

2

)
− P

(
1
2 + 1

2
√
N
, N − 1, N−1

2

) .
Plugging in p∗0 =

(
p− 1

2

)
q∗0 + 1

2 = Λ + 1
2 into (A20), we get π̂ ≤ π̃ if and only if

P
(

1
2 , N − 1, N−1

2

)
− 2c

2p−1

P
(

1
2 , N − 1, N−1

2

)
− P

(
1
2 + 1

2
√
N
, N − 1, N−1

2

) ≤ ∑N
k=N+1

2
P
(

1
2 + Λ, N, k

)
− 1

2∑N
k=N+1

2
P (1

2 + 1
2
√
N
, N, k)− 1

2

.

Furthermore, from the indifference condition in the benchmark case, P
(

1
2 + Λ, N − 1, N−1

2

)
= 2c

2p−1 ,
and hence, π̂ ≤ π̃ if and only if∑N

k=N+1
2
P (1

2 + 1
2
√
N
, N, k)− 1

2

P
(

1
2 , N − 1, N−1

2

)
− P

(
1
2 + 1

2
√
N
, N − 1, N−1

2

) ≤ ∑N
k=N+1

2
P
(

1
2 + Λ, N, k

)
− 1

2

P
(

1
2 , N − 1, N−1

2

)
− P

(
1
2 + Λ, N − 1, N−1

2

) .
Consider function

g (x) =
L (x)

P
(

1
2 , N − 1, N−1

2

)
− P

(
x,N − 1, N−1

2

) ,
where L (x) =

∑N
k=N+1

2
P (x,N, k)− 1

2 is the same as defined in the proof of Lemma A3. Then, the

above inequality is equivalent to g
(

1
2 + 1

2
√
N

)
≤ g

(
1
2 + Λ

)
. Differentiating,

g′ (x) =
L′ (x)

(
P
(

1
2 , N − 1, N−1

2

)
− P

(
x,N − 1, N−1

2

))
+ Px

(
x,N − 1, N−1

2

)
L (x)(

P
(

1
2 , N − 1, N−1

2

)
− P

(
x,N − 1, N−1

2

))2
Using the expressions for L′ (x) and Px

(
x,N − 1, N−1

2

)
in (IA31) and (IA32) in the proof of Lemma
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A3, it follows that the sign of g′ (x) coincides with the sign of

g̃ (x) = N

(
P

(
1

2
, N − 1,

N − 1

2

)
− P

(
x,N − 1,

N − 1

2

))
−

(N − 1)
(
x− 1

2

)
x (1− x)

L (x) .

Note that

g̃′ (x) = −NPx
(
x,N − 1, N−1

2

)
− (N − 1)

[
x− 1

2
x(1−x)

]′
L (x)− (N−1)(x− 1

2)
x(1−x) L′ (x)

= − (N − 1)
x(1−x)+2(x− 1

2)
2

x2(1−x)2
L (x) < 0

Since g̃
(

1
2

)
= 0, g̃ (x) < 0 for x ∈

(
1
2 , 1
)
. Therefore, g (x) is strictly decreasing in x ∈

(
1
2 , 1
)
. Hence,

π̂ ≤ π̃ ⇔ g
(

1
2 + 1

2
√
N

)
≤ g

(
1
2 + Λ

)
is satisfied if and only if 1

2 + 1
2
√
N
≥ 1

2 + Λ ⇔ Λ ≤ 1
2
√
N
. Note

also that Λ ≤ 1
2
√
N
⇔ π̃ ≤ 1, as follows from (A20). Hence, if Λ ≤ 1

2
√
N
, then π̂ ≤ π̃ and π̃ ≤ 1, so

the advisor improves the quality of decision-making compared to the benchmark case if and only if
π > π̃. If Λ > 1

2
√
N
, then π̂ > π̃ and π̃ ≥ 1, so the advisor never improves the quality of decision-

making. Hence, in both cases, the advisor improves the quality of decision-making compared to
the benchmark case if and only if π > π̃.

8. Proof that the advisor does not benefit from adding i.i.d. noise to its recom-
mendations. Consider the following extension of the model. Given the advisor’s signal r, the
signal that shareholder i observes is:

ri =

{
r, with prob. 1− ε,

1− r, with prob. ε,

for ε ∈ [0, 1
2 ]. Signals ri are independent across shareholders, conditional on r. If ε = 0, the model

reduces to the basic model in which all shareholders observe the same recommendation.
By the same logic as in the basic model, at the voting stage, shareholders that acquired a certain

signal must vote according to the signal. Consider the information acquisition stage. The values of
signals are:

Vs (qr, qs, ε) =
(
p− 1

2

)
(πΩ1 (qr,qs, ε) + (1− π) Ω2 (qr, qs, ε))

Vr (qr, qs, ε) = (1− 2ε) 1
2 (πΩ1 (qr,qs, ε)− (1− π) Ω2 (qr, qs, ε))

(IA16)

where the probabilities of a split vote conditional on the advisor being correct and incorrect are,
respectively,

Ω1 (qr,qs, ε) = PN−1

(
qr (1− ε) + qsp+ qn

1
2

)
= PN−1

(
1
2 + qr

2 (1− 2ε) + qs
(
p− 1

2

))
= Ω1 (qr (1− 2ε) , qs, 0)

Ω2 (qr,qs, ε) = PN−1

(
qrε+ qsp+ qn

1
2

)
= PN−1

(
1
2 −

qr
2 (1− 2ε) + qs

(
p− 1

2

))
= Ω2 (qr (1− 2ε) , qs, 0)

(IA17)

where PN−1 (x) ≡ P
(
x,N − 1, N−1

2

)
and qn = 1− qr − qs. Hence,

Vs (qr, qs, ε) = Vs (qr (1− 2ε) , qs, 0) ,
Vr (qr, qs, ε) = (1− 2ε)Vr (qr (1− 2ε) , qs, 0) ,

(IA18)
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where Vi (qr, qs, 0) = Vi (qr, qs) are the values of the signals in the basic model with ε = 0. Denote
q∗r (ε, f) and q∗s (ε, f) the equilibrium fractions of shareholders acquiring the advisor’s and private
signal, respectively, given ε and fee f .

For simplicity, we assume that c is suffi ciently large, so that at least some shareholders will
remain uninformed, i.e., q∗r (ε, f) + q∗s (ε, f) < 1 (this restriction is analogous to restriction c > ĉ
in Assumption 2 of the basic model, which guarantees, according to the proof of Lemma A3, that
there is no equilibrium with qr + qs = 1). Then, the following three cases are possible:
(1) q∗r (ε, f) > 0, q∗s (ε, f) > 0, requiring Vs (q∗r (ε, f) , q∗s (ε, f) , ε) = c, Vr (q∗r (ε, f) , q∗s (ε, f) , ε) = f ;
(2) q∗r (ε, f) = 0, q∗s (ε, f) > 0, requiring Vs (q∗r (ε, f) , q∗s (ε, f) , ε) = c, Vr (q∗r (ε, f) , q∗s (ε, f) , ε) ≤ f ;
(3) q∗r (ε, f) > 0, q∗s (ε, f) = 0, requiring Vs (q∗r (ε, f) , q∗s (ε, f) , ε) ≤ c, Vr (q∗r (ε, f) , q∗s (ε, f) , ε) = f .

Hence, (IA18) implies that, respectively, either
(1) Vs (q∗r (ε, f) (1− 2ε) , q∗s (ε, f)) = c, Vr (q∗r (ε, f) (1− 2ε) , q∗s (ε, f)) = f

1−2ε or

(2) Vs (q∗r (ε, f) (1− 2ε) , q∗s (ε, f)) = c, q∗r (ε, f) (qr (1− 2ε) , q∗s (ε, f)) ≤ f
1−2ε , or

(3) Vs (q∗r (ε, f) (1− 2ε) , q∗s (ε, f)) ≤ c, Vr (q∗r (ε, f) (1− 2ε) , q∗s (ε, f)) = f
1−2ε .

This, in turn, implies that q∗∗r ≡ (1− 2ε) q∗r (ε, f) and q∗∗s = q∗s (ε, f) will form an equilibrium (of
the same type) in the model with ε = 0 and fee f

1−2ε (q
∗∗
r ≤ 1 directly follows from q∗r (ε, f) ≤ 1

since 1− 2ε ≤ 1). Hence, the advisor can achieve exactly the same profits by setting ε = 0 and fee
f

1−2ε (and perhaps even higher profits by setting a different fee).Therefore, the advisor can never
strictly benefit from adding i.i.d. noise to the signals distributed to shareholders.

Intuitively, when the advisor adds noise to its signal, two effects act in opposite directions. The
first, negative, effect is that given the same probabilities of being pivotal, noise ε > 0 decreases
the shareholder’s value from buying the advisor’s recommendation because the signal now has a
lower precision. This is captured in the term (1− 2ε) of the second equation of (IA16) and requires
the advisor to decrease the fee by a factor (1− 2ε). The second, positive, effect is that given the
same fraction qr of shareholders subscribing to the advisor, the probability of each shareholder
being pivotal is higher when ε > 0, because shareholders subscribing to the advisor will not always
vote with each other. This allows the advisor to capture a higher fraction of shareholders while
keeping their probability of being pivotal the same. This effect is captured by terms (1− 2ε) in
each equation of (IA17). The two effects fully offset each other.

9. Auxiliary Lemma A1. Function f (x) ≡
∑N

k=N+1
2
P (ϕ (x) , N, k), where ϕ (x) is defined by

(A12), is strictly decreasing and strictly concave.
Proof of Auxiliary Lemma A1. It will be useful to compute the derivative:

ϕ′ (x) = − 1

C
N−1
2

N−1 (N − 1)ψ (x)
, (IA19)

where

ψ (x) ≡

 x

C
N−1
2

N−1

N−3
N−1

√√√√√1

4
−

 x

C
N−1
2

N−1

 2
N−1

. (IA20)
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The first derivative of f (x) is

f ′ (x) =

 N∑
k=N+1

2

Pq (ϕ (x) , N, k)

ϕ′ (x) < 0,

since ϕ′ (x) < 0 and
∑N

k=N+1
2
Pq (q,N, k) > 0 for any q > 1

2 , including q = ϕ (x). The former follows

from (IA19). The latter follows from
∑N

k=N+1
2
Pq (q,N, k) = −

∑N−1
2

k=0 Pq (q,N, k) and Pq (q,N, k) =

P (q,N, k) k−Nq
q(1−q) < 0 for any k < N

2 because q > 1
2 . Therefore, f (x) is strictly decreasing. The

second derivative of f (x) is

f ′′ (x) =

(
dϕ

dx

)2

 N∑
k=N+1

2

Pqq (ϕ (x) , N, k)

+
d2ϕ

dx2

 N∑
k=N+1

2

Pq (ϕ (x) , N, k)


Since

∑N
k=0 Pq (q,N, k) = 0 and

∑N
k=0 Pqq (q,N, k) = 0,

f ′′ (x) = −
(
dϕ
dx

)2
(∑N−1

2
k=0 Pqq (ϕ (x) , N, k)

)
− d2ϕ

dx2

(∑N−1
2

k=0 Pq (ϕ (x) , N, k)

)
= − 1(

C
N−1
2

N−1

)2
(N−1)2ψ(x)2

(∑N−1
2

k=0 Pqq (ϕ (x) , N, k)

)
− ψ′(x)

C
N−1
2

N−1 (N−1)ψ(x)2

(∑N−1
2

k=0 Pq (ϕ (x) , N, k)

)

Plugging in Pq, Pqq and simplifying,(
C
N−1
2

N−1

)2

(N − 1)2 ψ (x)2 f ′′ (x)

= −
∑N−1

2
k=0 P (ϕ (x) , N, k)

[(
k−Nϕ(x)

ϕ(x)(1−ϕ(x))

)2
− k

ϕ(x)2
− N−k

(1−ϕ(x))2
+ C

N−1
2

N−1 (N − 1)ψ′ (x)
(

k−Nϕ(x)
ϕ(x)(1−ϕ(x))

)]
.

Next, we can calculate ψ′ (x):

C
N−1
2

N−1 (N − 1)ψ′ (x) =

N−3
4

(
x

C
N−1
2

N−1

) −2
N−1

−N + 2

1
4 −

(
x

C
N−1
2

N−1

) 2
N−1

−
1
2

= 1
ϕ(x)− 1

2

(
N−3

4
1

ϕ(x)(1−ϕ(x)) −N + 2
)
.

(IA21)

Thus, (
C
N−1
2

N−1

)2

(N − 1)2 ψ (x)2 f ′′ (x) =

−
∑N−1

2
k=0 P (ϕ (x) , N, k)

[(
k−Nϕ(x)

ϕ(x)(1−ϕ(x))

)2
− k

ϕ(x)2
− N−k

(1−ϕ(x))2
+ 1

ϕ(x)− 1
2

(
N−3

4
1

ϕ(x)(1−ϕ(x)) −N + 2
)(

k−Nϕ(x)
ϕ(x)(1−ϕ(x))

)]
.
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Multiplying by (ϕ (x) (1− ϕ (x)))2:

−
(
C
N−1
2

N−1

)2

(N − 1)2 ψ (x)2 (ϕ (x) (1− ϕ (x)))2 f ′′ (x)

=
∑N−1

2
k=0 P (q,N, k)

(
(k −Nq)2 − k (1− q)2 − (N − k) q2

+2(k−Nq)
2q−1

(
N−3

4 − (N − 2) q (1− q)
) ) ≡ L (q) ,

(IA22)

where we denote ϕ (x) by q ∈
(

1
2 , 1
)
. It follows that f ′′ (x) < 0 if L (q) > 0 for any q ∈

(
1
2 , 1
)
. To

prove it, denote

ζ (q, k) ≡ (k −Nq)2 − k (1− q)2 − (N − k) q2 + C (k −Nq)
= k (k − 1)− (2 (N − 1) q − C) k +N (N − 1) q2 − CNq,

where C ≡ 2
2q−1

(
N−3

4 − (N − 2) q (1− q)
)
. Then,

L (q) =

N−1
2∑

k=0

P (q,N, k) k (k − 1)−(2 (N − 1) q − C)

N−1
2∑

k=0

P (q,N, k) k+
(
N (N − 1) q2 − CNq

) N−12∑
k=0

P (q,N, k) .

Consider the first two terms:

1. Term 1: ∑N−1
2

k=0 k (k − 1)CkNq
k (1− q)N−k =

∑N−1
2

k=2 k (k − 1) N !
k!(N−k)!q

k (1− q)N−k

= N (N − 1) q2
∑N−1

2
−2

m=0 P (q,N − 2,m) = N (N − 1) q2 Pr
[
k ≤ N−1

2 − 2|k ∼ B (N − 2, q)
]
.

2. Term 2: ∑N−1
2

k=0 kC
k
Nq

k (1− q)N−k =
∑N−1

2
k=1 k

N !
k!(N−k)!q

k (1− q)N−k

= qN

(∑N−1
2
−1

k=0 P (q,N − 1, k)

)
= qN Pr

[
k ≤ N−1

2 − 1|k ∼ B (N − 1, q)
]
.

(IA23)

Hence,
L(q)
qN = (N − 1) qPr

[
k ≤ N−1

2 − 2|k ∼ B (N − 2, q)
]

− (2 (N − 1) q − C) Pr
[
k ≤ N−1

2 − 1|k ∼ B (N − 1, q)
]

+ ((N − 1) q − C) Pr
[
k ≤ N−1

2 |k ∼ B (N, q)
]
.

Note that
Pr
[
k ≤ N−1

2 |k ∼ B (N, q)
]

= I1−q
(
N+1

2 , N+1
2

)
,

Pr
[
k ≤ N−1

2 − 1|k ∼ B (N − 1, q)
]

= I1−q
(
N+1

2 , N−1
2

)
,

Pr
[
k ≤ N−1

2 − 2|k ∼ B (N − 2, q)
]

= I1−q
(
N+1

2 , N−3
2

)
,

(IA24)

where I1−q (·) is the regularized incomplete beta function. According to the property of the regu-
larized incomplete beta function, Ix (a, b+ 1) = Ix (a, b) + xa(1−x)b

bB(a,b) , where B (a, b) = (a−1)!(b−1)!
(a+b−1)! is

14



the beta function. Hence,

I1−q
(
N+1

2 , N+1
2

)
= I1−q

(
N+1

2 , N−1
2

)
+ (1−q)

N+1
2 q

N−1
2

N−1
2
B(N+12 ,N−1

2 )

I1−q
(
N+1

2 , N−1
2

)
= I1−q

(
N+1

2 , N−3
2

)
+ (1−q)

N+1
2 q

N−3
2

N−3
2
B(N+12 ,N−3

2 )
.

(IA25)

Plugging into the expression for L(q)
qN :

L(q)
qN = (N − 1) q

(
I1−q

(
N+1

2 , N−1
2

)
− (1−q)

N+1
2 q

N−3
2

N−3
2
B(N+12 ,N−3

2 )

)
− (2 (N − 1) q − C) I1−q

(
N+1

2 , N−1
2

)
+ ((N − 1) q − C)

(
I1−q

(
N+1

2 , N−1
2

)
+ (1−q)

N+1
2 q

N−1
2

N−1
2
B(N+12 ,N−1

2 )

)
= − (N − 1) q (1−q)

N+1
2 q

N−3
2

N−3
2
B(N+12 ,N−3

2 )
+ ((N − 1) q − C) (1−q)

N+1
2 q

N−1
2

N−1
2
B(N+12 ,N−1

2 )
.

Dividing by (1− q)
N+1
2 q

N−3
2 and simplifying,

L (q)

(1− q)
N+1
2 q

N−1
2 N

=
q (N − 1)!(
N−1

2

)
!
(
N−3

2

)
!
(2q − 1)− C q (N − 1)!

N−1
2

(
N−1

2

)
!
(
N−3

2

)
!
.

Hence,

L(q)(N−32 )!(N−12 )!(2q−1)

(1−q)
N+1
2 q

N+1
2 N !

= (2q − 1)2 − 2
N−1

(
N−3

2 − 2 (N − 2) q (1− q)
)

= 4
N−1q

2 − 4
N−1q + 2

N−1 ⇔
L(q)(N−32 )!(N−12 )!(2q−1)(N−1)

(1−q)
N+1
2 q

N+1
2 N !2

= 2q2 − 2q + 1.
(IA26)

Since 2q2 − 2q + 1 > 0, we conclude that L (q) > 0 for any q ∈ (1
2 , 1). Therefore, f ′′ (x) < 0, which

completes the proof.

10. Auxiliary Lemma A2. Function f̃ (x), defined by (IA34), is strictly concave.
Proof of Auxiliary Lemma A2. Differentiating f̃ (x) and using the definition of f (x),

f̃ ′′ (x) = f ′′ (x)− 2ϕ′ (x)− xϕ′′ (x) .

Using f ′′ (x) from the proof of Auxiliary Lemma A1 above, in particular, expressions (IA22), (IA26),
(IA19), and the derivative of (IA19), we can write

f̃ ′′ (x) = −x (2ϕ (x)2 − 2ϕ (x) + 1)N

(2ϕ (x)− 1)ϕ (x) (1− ϕ (x)) (C
N−1
2

N−1 (N − 1)ψ (x))2

+
2

C
N−1
2

N−1 (N − 1)ψ (x)
− xψ′ (x)

C
N−1
2

N−1 (N − 1)ψ (x)2
.

Multiplying both sides by (C
N−1
2

N−1 (N − 1)ψ (x))2, using (IA21), (IA20), and (A12) and simplifying
gives (

C
N−1
2

N−1 (N − 1)ψ (x)

)2

f̃ ′′ (x) = −N − 1

2

x

ϕ (x) (1− ϕ (x)) (2ϕ (x)− 1)
< 0
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since ϕ (x) ∈
(

1
2 , 1
)
. Therefore, f̃ (x) is strictly concave.

11. Lemma A3 (comparison of shareholder welfare across equilibria). Suppose that
c ∈ (ĉ, c̄), where ĉ is defined in the proof. Then, in the range f ∈

[
f, f̄

)
, all equilibria can be ranked

in their shareholder welfare (expected value of the proposal minus information acquisition costs).
Specifically, there exist three equilibria, with equilibrium (a) having the highest and (c) having the
lowest shareholder welfare: (a) equilibrium with incomplete crowding out of private information
acquisition and qr ≤ (2p− 1) qs, given by (A5) in the Appendix; (b) equilibrium with incomplete
crowding out of private information acquisition and qr ≥ (2p− 1) qs, given by (A6) in the Appendix;
(c) equilibrium with complete crowding out of private information acquisition: qs = 0 and qr given
by (13). Equilibria (a) and (b) coincide when f = f .

When f = f̄ , there exist two equilibria: (a) equilibrium that is equivalent to the benchmark
case, qs = q∗0, qr = 0, and (b) equilibrium with complete crowding out: qs = 0, qr ∈ (0, 1), and
equilibrium (a) has higher shareholder welfare than (b).

Proof of Lemma A3. We start by defining ĉ in the statement of the lemma. Consider (qar , q
a
s )

given by (A5) and define

S (f, c) ≡ qar + qas =
2p

2p− 1

√√√√√1

4
−

f + c
2p−1

πC
N−1
2

N−1

 2
N−1

+
2 (1− p)
2p− 1

√√√√√1

4
−

 c
2p−1 − f

(1− π)C
N−1
2

N−1

 2
N−1

.

Consider the following function of c:

S̄ (c) ≡ max
f∈[f

1
(c),f̄(c)]

S (f, c) , (IA27)

where f
1

(c) = c
2p−1 − 21−N (1− π)C

N−1
2

N−1 and f̄ (c) = 2π−1
2p−1 c, as defined before. We show that S̄ (c)

is strictly decreasing in c. Indeed,

S
(
f

1
(c) , c

)
= 2p

2p−1

√√√√1
4 −

(
2c

2p−1−21−N (1−π)C
N−1
2

N−1

πC
N−1
2

N−1

) 2
N−1

,

S
(
f̄ (c) , c

)
= 2

2p−1

√√√√1
4 −

(
2c

(2p−1)C
N−1
2

N−1

) 2
N−1

.

(IA28)

For any c, one of three cases must hold: (1) S̄ (c) = S
(
f

1
(c) , c

)
; (2) S̄ (c) = S (f, c) for some

f ∈
(
f

1
(c) , f̄ (c)

)
; (3) S̄ (c) = S

(
f̄ (c) , c

)
. As clear from (IA28), S

(
f

1
(c) , c

)
and S

(
f̄ (c) , c

)
,

corresponding to cases (1) and (3), are strictly decreasing in c. In case (2), i.e., when (IA27) reaches
the maximum at an interior point f∗ (c), we can apply the envelope theorem: S̄′ (c) = ∂S(f∗(c),c)

∂c < 0.
Together, this implies that S̄ (c) is strictly decreasing in c.

Note also that when c = c, defined in (7), then S
(
f̄ (c) , c

)
= 1. Hence, S̄ (c) ≥ 1. In addition,

when c = c̄, defined in (7), then f̄ (c̄) = f
1

(c̄), and hence S̄ (c̄) = S
(
f̄ (c̄) , c̄

)
= 0. Since S̄ (c) is

strictly decreasing in c, there exists a unique ĉ ∈ [c, c̄) at which S̄ (ĉ) = 1, and S̄ (c) < 1 for any
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c ∈ (ĉ, c̄). To sum up, we define
ĉ ≡ S̄−1 (1) ,

where S̄ (c) is given by (IA27).

Suppose that c ∈ (ĉ, c̄). Then, 2p
2p−1

√√√√1
4 −

(
f
1
+ c
2p−1

πC
N−1
2

N−1

) 2
N−1

= S
(
f

1
, c
)
≤ S̄ (c) < 1, and

hence f = f
1
according to (A8). According to the proof of Lemma 1, there exists an equilibrium

(qr, qs) > 0 if and only if f ∈
[
f, f̄

)
. Let us find all such equilibria. Since S̄ (c) < 1, then qar +qas < 1

for any f ∈
[
f, f̄

)
. Therefore, qbr + qbs ≤ qar + qas < 1. In addition, (qar , q

a
s ) > 0 and

(
qbr, q

b
s

)
> 0

because f < f̄ . Thus, both equilibria (A5) and (A6) exist. Since q1
r (ψ)+q1

s (ψ) is strictly decreasing
in ψ and q1

r (0) + q1
s (0) = qar + qas < 1, we have q2

r (ψ) + q2
s (ψ) ≤ q1

r (ψ) + q1
s (ψ) < 1 for any ψ ≥ 0,

where
(
qir (ψ) , qis (ψ)

)
, i = 1, 2, represent potential solutions for qr + qs = 1 and are given by

(IA8) and (IA9) in the Internet Appendix. Therefore, there is no equilibrium with qs + qr = 1
when f ∈

[
f, f̄

)
. Thus, in addition to equilibrium with complete crowding out, there exist exactly

two other equilibria when f ∈
[
f, , f̄

)
, and these equilibria feature incomplete crowding out with

qr + qs < 1: (A5) with qar ≤ (2p− 1) qas and (A6) with q
b
r ≥ (2p− 1) qbs.

The expected welfare of a shareholder is the expected per-share value of the proposal, U (qr, qs),
given by (A10), minus the expected information acquisition cost:

W (qr, qs) =

N∑
k=N+1

2

(πP (pa, N, k) + (1− π)P (pd, N, k))− 1

2
− qrf − qsc. (IA29)

We next rank these three equilibria in shareholder welfare for f ∈
[
f, f̄

)
and show that the

equilibrium with incomplete crowding out of private information and qr < (2p− 1) qs has the
highest shareholder welfare, followed by the equilibrium with incomplete crowding out of private
information and qr > (2p− 1) qs, which is followed by the equilibrium with complete crowding out
of private information.

First, we show that the equilibrium with incomplete crowding out of private information and
qr > (2p− 1) qs, denoted (qbs, q

b
r), has lower shareholder welfare than the equilibrium with incom-

plete crowding out and qr < (2p− 1) qs, denoted (qas , q
a
r ). As shown above, qr + qs < 1. Using (A9),

we get qr = pa − pd and qs = pa+pd−1
2p−1 , and plugging these into (IA29), W (qr, qs) can be rewritten

as

N∑
k=N+1

2

(πP (pa, N, k) + (1− π)P (pd, N, k))−
(
f +

c

2p− 1

)
pa −

(
c

2p− 1
− f

)
pd −

1

2
+

c

2p− 1
.

Using (A2),

W (qr, qs) = π

 N∑
k=N+1

2

P (pa, N, k)− Ω1pa

+ (1− π)

 N∑
k=N+1

2

P (pd, N, k)− Ω2pd

− 1

2
+

c

2p− 1
.

According to (A2), (A3), and (A9), pa, Ω1, and Ω2 are identical in both equilibria and pd(qbs, q
b
r) =

1− pd(qas , qar ) < 1
2 . Therefore, to show that W (qar , q

a
s ) > W

(
qbr, q

b
s

)
, it is necessary and suffi cient to
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show that for pd > 1
2

N∑
k=N+1

2

P (pd, N, k)− Ω2pd >

N∑
k=N+1

2

P (1− pd, N, k)− Ω2 (1− pd) .

Using
∑N

k=N+1
2
P (1− q,N, k) =

∑N
k=N+1

2
P (q,N,N − k) = 1 −

∑N
k=N+1

2
P (q,N, k) and Ω2 =

P (pd, N − 1, N−1
2 ), this is equivalent to

N∑
k=N+1

2

P (pd, N, k)− 1

2
> (pd −

1

2
)P (pd, N − 1,

N − 1

2
). (IA30)

Denote the left-hand side and the right-hand side by L (pd) and R (pd), respectively. Differentiating
the left-hand side of (IA30),

L′ (x) =
∑N

k=N+1
2
Px (x,N, k) = −

∑N−1
2

k=0 Px (x,N, k) = − 1
x(1−x)

(∑N−1
2

k=0 P (x,N, k) (k −Nx)

)
= − 1

x(1−x)

(∑N−1
2

k=0 kP (x,N, k)−Nx
∑N−1

2
k=0 P (x,N, k)

)

Note that
∑N−1

2
k=0 P (x,N, k) = I1−x

(
N+1

2 , N+1
2

)
, where Ix (a, b) is the regularized incomplete beta

function. In addition, according to (IA23) and (IA24) and (IA25) in the proof of Auxiliary Lemma
A1,

N−1
2∑

k=0

kP (x,N, k) = NxI1−x

(
N + 1

2
,
N − 1

2

)
= Nx

[
I1−x

(
N + 1

2
,
N + 1

2

)
− (1− x)

N+1
2 x

N−1
2

N−1
2 B

(
N+1

2 , N−1
2

)] ,
where B (a, b) is the beta function. Hence,

x (1− x)L′ (x) = Nx
(1− x)

N+1
2 x

N−1
2

N−1
2 B

(
N+1

2 , N−1
2

) =
((1− x)x)

N+1
2 N !(

N−1
2

)
!
(
N−1

2

)
!

= Nx (1− x)P

(
x,N − 1,

N − 1

2

)
.

(IA31)
Differentiating the right-hand side of (IA30),

R′ (x) = Px
(
x,N − 1, N−1

2

) (
x− 1

2

)
+ P

(
x,N − 1, N−1

2

)
= P

(
x,N − 1, N−1

2

)( N−1
2
−(N−1)x

x(1−x)

(
x− 1

2

)
+ 1

)
= P

(
x,N − 1, N−1

2

)(
1− (N−1)(x− 1

2)
2

x(1−x)

)
< P

(
x,N − 1, N−1

2

)
N = L′ (x) .

(IA32)
Since L

(
1
2

)
= R

(
1
2

)
= 0, it follows that L (x) > R (x) for any x > 1

2 . Hence, indeed, W (qar , q
a
s ) >

W
(
qbr, q

b
s

)
.

Second, we show that the equilibrium with incomplete crowding out of private information and
qr > (2p− 1) qs, denoted

(
qbr, q

b
s

)
, has higher shareholder welfare than the equilibrium with complete

crowding out of private information, denoted (qcr, 0), whenever the two co-exist, i.e., f ∈ [f, f̄).
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Consider function ϕ (x) ∈
(

1
2 , 1
)
defined as the higher root of x = P (ϕ (x) , N − 1, N−1

2 ) and given
by (A12). Since Ω1 = P

(
pa, N − 1, N−1

2

)
, Ω2 = P

(
pd, N − 1, N−1

2

)
, and since pa > 1

2 and pd <
1
2

in both of these equilibria, we have pa = ϕ (Ω1) and pd = 1 − ϕ (Ω2). Plugging these expressions
for pa and pd, we can re-write (IA29) as∑N

k=N+1
2

(πP (ϕ (Ω1) , N, k) + (1− π)P (1− ϕ (Ω2) , N, k))− 1
2 − qrf − qsc

=
∑N

k=N+1
2

(πP (ϕ (Ω1) , N, k)− (1− π)P (ϕ (Ω2) , N, k)) + 1
2 − π − qrf − qsc,

(IA33)

where we used
∑N

k=N+1
2
P (1− x,N, k) =

∑N−1
2

k=0 P (x,N, k) = 1−
∑N

k=N+1
2
P (x,N, k) to get to the

second line.
For equilibrium (qbr, q

b
s), let us plug qr = pa−pd, qs = pa+pd−1

2p−1 , pa = ϕ (Ω1), and pd = 1−ϕ (Ω2)

into (IA33). Then, using (A2) and simplifying, we can write shareholder welfare W
(
qbr, q

b
s

)
as the

following function of Ω1 and Ω2:

Ŵ (Ω1,Ω2) = πf̃ (Ω1)− (1− π) f̃ (Ω2) +
1

2
− π,

where

f̃ (x) ≡
N∑

k=N+1
2

P (ϕ (x) , N, k)− x
(
ϕ (x)− 1

2

)
(IA34)

and Ω1 and Ω2 are given by (A2).
Similarly, for equilibrium (qcr, 0), let us plug qr = pa−pd, qs = 0, pa = ϕ (Ω1), and pd = 1−ϕ (Ω2)

into (IA33). Using the fact that in this equilibrium, Ω1 = Ω2 = Ωr = 2f
2π−1 and simplifying, we can

write shareholder welfare W (qcr, 0) as Ŵ (Ωr,Ωr), where Ωr = 2f
2π−1 .

Note next that Ω1 = Ωr + 1−π
2π−1ε and Ω2 = Ωr + π

2π−1ε, where ε ≡ (c2π−1
2p−1 − f) 1

π(1−π) > 0

since f < f̄ . Thus, to prove that W (qbr, q
b
s) > W (qcr, 0), it is necessary and suffi cient to prove that

Ŵ
(

Ωr + 1−π
2π−1ε,Ωr + π

2π−1ε
)
> Ŵ (Ωr,Ωr). Define function W̃ (x) ≡ Ŵ

(
Ωr + 1−π

2π−1x,Ωr + π
2π−1x

)
for x ≥ 0. Differentiating,

W̃ ′ (x) =
π (1− π)

2π − 1

(
f̃ ′
(

Ωr +
1− π
2π − 1

x

)
− f̃ ′

(
Ωr +

π

2π − 1
x

))
= −π (1− π)

2π − 1

∫ Ωr+
π

2π−1x

Ωr+
1−π
2π−1x

f̃ ′′ (y) dy.

Auxiliary Lemma A2 shows that function f̃ (·) is strictly concave, and hence W̃ ′ (x) > 0 for any

x > 0. Thus, Ŵ
(

Ωr + 1−π
2π−1ε,Ωr + π

2π−1ε
)

= W̃ (ε) > W̃ (0) = Ŵ (Ωr,Ωr), which proves the
statement.

Combing the two results above, we can conclude that when c ∈ (ĉ, c̄) and when f ∈ [f, f̄),
multiple existing equilibria rank in shareholder welfare in the following way: The equilibrium with
incomplete crowding out of private information and qr < (2p− 1) qs has the highest shareholder
welfare, followed by the equilibrium with incomplete crowding out of private information and qr >
(2p− 1) qs, which is followed by the equilibrium with complete crowding out of private information.

Finally, when f → f̄ , the equilibrium (qar , q
a
s ) converges to equilibrium qs = q∗0, qr = 0, and the

equilibrium
(
qbr, q

b
s

)
converges to equilibrium with complete crowding out, qs = 0, qr ∈ (0, 1). By

monotonicity and the welfare comparison above, it follows that when f = f̄ , the first equilibrium
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has higher shareholder welfare than the second.

12. Proof that the model is equivalent to a more general setup with u (1, 1)− u (0, 1) =
u (0, 0)− u (1, 0)

Suppose that u (1, 1)−u (0, 1) = u (0, 0)−u (1, 0) = 1. We show that shareholders make exactly
the same information acquisition and voting decisions as in the current setup.

1. Same voting decisions. Whenever a shareholder decides how to vote, he votes “for” if and
only if his utility from voting “for” is greater than his utility from voting “against” conditional
on the event of being pivotal and whatever information he knows. Denote this information set Ii.
The shareholder’s utility from voting for minus his utility from voting against conditional on this
information set is

Pr (θ = 1|Ipiv) (u (1, 1)− u (0, 1)) + Pr (θ = 0|Ipiv) (u (1, 0)− u (0, 0))

= Pr (θ = 1|Ipiv)− Pr (θ = 0|Ipiv) ,

which is the same as in the basic model. Hence, given the same information acquisition decisions,
shareholders make the same voting decisions.

2. Same information acquisition decisions. Shareholder i’s vote only makes a difference only
if the votes of other shareholders are split. Denote this set of events by PIVi. Let us find the
value of any signal to the shareholder. Denote the signal acquired by the shareholder (private or
advisor’s) by Si. If Si = 1, then by acquiring the signal, the shareholder votes “for”for sure, instead
of randomizing between voting “for” and “against”. Hence, conditional on Si = 1 and on being
pivotal, his utility from being informed is

E [u (1, θ) |Si = 1, P IVi]−
E [u (1, θ) + u (0, θ) |Si = 1, P IVi]

2
=
E [u (1, θ)− u (0, θ) |Si = 1, P IVi]

2

Similarly, conditional on being pivotal and the signal being Si = 0, the shareholder’s utility from
being informed is

E [u (0, θ) |Si = 1, P IVi]−
E [u (1, θ) + u (0, θ) |Si = 1, P IVi]

2
=
E [u (0, θ)− u (1, θ) |Si = 1, P IVi]

2

Overall, the shareholder’s value of acquiring the signal is

Pr (Si = 1) Pr (PIVi|Si = 1) E[u(1,θ)−u(0,θ)|Si=1,P IVi]
2

−Pr (Si = 0) Pr (PIVi|Si = 0) E[u(1,θ)−u(0,θ)|Si=1,P IVi]
2 ,

Since, by assumption, u (1, 1)− u (0, 1) = 1 and u (1, 0)− u (0, 0) = −1 and are the same as in the
basic model, the value of any signal to the shareholder is the same as in the basic model, and hence
the shareholders make the same information acquisition decisions.

13. Supplementary analysis for the proof of Proposition 8.
To prove that limt→0 π

∗ (t) = 1, we prove the auxiliary result that R′ (π) is bounded away from
zero for π in the neighborhood of 1.

To prove this property, we first prove that R (π) is strictly increasing in π. The envelope theorem
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implies that at any point at which R (π) is differentiable,

R′ (π) = Nf∗ (π)
∂qr
∂π

(f∗ (π) , π) , (IA35)

where f∗ (π) denotes the fee chosen by the advisor when the precision of the signal equals π. If,
given π, the equilibrium features complete crowding out of private information acquisition, then
qr (f∗ (π) , π) is given by (13), so

∂qr
∂π

(f∗ (π) , π) =
4

(N − 1)
(
π − 1

2

)
qr (f∗ (π) , π)

 f∗ (π)

C
N−1
2

N−1(π − 1
2)

 2
N−1

. (IA36)

If the equilibrium features incomplete crowding out of private information acquisition, then qr (f∗ (π) , π)
is given by (A5), so

(N − 1)
∂qr
∂π

(f∗ (π) , π) =

(
f∗(π)+ c

2p−1

πC
N−1
2

N−1

) 2
N−1

π

√√√√1
4 −

(
f∗(π)+ c

2p−1

πC
N−1
2

N−1

) 2
N−1

+

(
c

2p−1−f
∗(π)

(1−π)C
N−1
2

N−1

) 2
N−1

(1− π)

√√√√1
4 −

(
c

2p−1−f∗(π)

(1−π)C
N−1
2

N−1

) 2
N−1

. (IA37)

Since f∗ (π) > 0 for any π ∈
(

1
2 , 1
)
, (IA36)—(IA37) imply that ∂qr

∂π (f∗ (π) , π) > 0 at any π ∈
(

1
2 , 1
)

at which R (π) is differentiable. Thus, R′ (π) > 0 at any π ∈
(

1
2 , 1
)
at which R (π) is differentiable.

In addition, at any point π at which R (π) is not differentiable, it cannot be decreasing, since for
any such π the seller can choose the fee that is optimal for π − ε for infinitesimal positive ε and
achieve higher revenues. Therefore, R (π) is strictly increasing in π ∈

(
1
2 , 1
)
.

Next, we prove that R′ (π) is bounded away from zero for π in the neighborhood of 1. When π is
close enough to 1, (A3) has no solution, and hence equilibrium cannot feature incomplete crowding
out. In equilibrium with complete crowding out, R′ (π) is given by (IA35)—(IA36), so to prove
that it is bounded away from zero, it is suffi cient to prove that f∗ (π) is bounded away from zero.
Suppose this is not the case, that is, limπ→1 f

∗ (π) = 0. Since qr < 1, this implies limπ→1R (π) = 0.
This, however, is not possible since R (π) is strictly increasing, as shown above. This completes the
proof of this statement.

B. Analysis of regulation
B.1. Litigation pressure

Suppose that a shareholder gets an additional payoff ∆ > 0 if it subscribes to and follows the
advisor’s recommendation. Given qr and qs, the gross value to a shareholder from acquiring a
private signal and the recommendation of the advisor is Vs (qr, qs) and Vr (qr, qs) + ∆, respectively.
As before, the value from staying uninformed is zero. Therefore, for a fixed fee f , the game is
identical to the subgame of the basic model with fee f − ∆. The equilibrium probability that
a shareholder buys and follows the advisor is therefore given by qr (f −∆), where qr (·) is given
by (14). Specifically, if f < f + ∆, the equilibrium features complete crowding out of private
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information acquisition (qr = qHr (f −∆) and qs = 0), while if f ∈ [f + ∆, f + ∆), it features
incomplete crowding out (qr = qLr (f −∆) and qs > 0). Since qr (·) is decreasing in fee f , for any
fee f , the demand for the advisor’s recommendation is higher than in the basic model. The advisor
responds to the increased demand by increasing its fee.

The next proposition summarizes the effect of an increase in regulatory pressure ∆ on the
informativeness of decision-making:

Proposition B.1 (litigation pressure). A marginal increase in ∆:

1. decreases firm value if the equilibrium features incomplete crowding out of private information
acquisition (i.e., equilibrium fee exceeds f + ∆);

2. does not affect firm value if the equilibrium features complete crowding out of private inform-
ation acquisition and limit pricing (i.e., equilibrium fee equals f + ∆);

3. increases firm value if the equilibrium features complete crowding out of private information
acquisition and unconstrained maximization (i.e., equilibrium fee is below f + ∆).

Proposition B.1 suggests that greater litigation pressure is a delicate issue. It increases the de-
mand for the advisor’s recommendation for any quality of the advisor’s recommendation, which has
two effects. On the one hand, it increases the incentives to vote informatively. On the other hand,
it shifts the incentives from doing proprietary research to following the advisor’s recommendations.
As a consequence, the total effect on the quality of decision-making depends on the quality of the
advisor’s information. As the basic model shows, if the quality is low, there is overreliance on the
advisor’s recommendation and ineffi cient crowding out of private information production. In this
case, higher litigation pressure leads to even more ineffi cient crowding out of private information
production, which reduces the quality of decision-making. In contrast, if the quality of the ad-
visor’s recommendation is high, there is underreliance on the advisor’s recommendation, because
the profit-maximizing advisor prices information so as not to sell it to all shareholders. In this
case, greater litigation pressure increases the quality of decision-making by increasing the fraction
of shareholders who follow the advisor instead of voting uninformatively.

B.2. Reducing proxy advisory fees

Consider the effect of a marginal reduction in the fee charged by the advisor from the equilibrium
f∗ to a lower level. As the next proposition shows, whether such a reduction in market power
is beneficial depends on the equilibrium information acquisition decisions by shareholders, and
in particular, on how much private information they acquire. To see this, suppose, first, that
given the equilibrium fee f∗, shareholders do not acquire any private information. In this case, it
is optimal (for the quality of decision-making) that more shareholders rely on the advisor, since
following the advisor dominates uninformed voting. Therefore, if complete crowding out of private
information acquisition occurs in equilibrium, a marginal reduction of the advisor’s fee increases
the informativeness of voting. In contrast, if the equilibrium features incomplete crowding out of
private information acquisition, a reduction in the advisor’s fee has a negative effect of crowding out
some of this private information acquisition. By the same logic as in Proposition 3, this is ineffi cient
and lowers the quality of decision-making. The following result formalizes these arguments:
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Proposition B.2 (restricting market power). A marginal reduction in the advisor’s fee in-
creases firm value if equilibrium features complete crowding out of private information acquisition,
but decreases firm value if equilibrium features incomplete crowding out of private information ac-
quisition.

Proposition B.2 implies that restricting the advisor’s market power will lead to more informative
voting only if the advisor’s information is suffi ciently precise. In contrast, if the advisor’s informa-
tion is imprecise, decreasing its market power will lower the quality of decision-making because it
will lead to even greater overreliance on the advisor’s recommendations.

B.3 Disclosing the quality of recommendations

In this section, we examine how disclosing the quality of the advisor’s recommendations affects the
informativeness of decision-making. Specifically, consider the following modification of our baseline
setting. The actual precision of the advisor’s signal can be high or low, π ∈ {πl, πh}, πl < πh, with
probabilities µl and µh, µh + µl = 1. Let π̄ ≡ µlπl + µhπh denote the expected precision of the
signal.

Let us compare the quality of decision-making in two regimes — when the precision of the
advisor’s signal is publicly disclosed and when it remains unknown to the shareholders. If the
precision of the advisor’s signal is disclosed, the timing of the game is as follows. First, precision
π ∈ {πl, πh} is realized and learned by all parties. Then, the advisor decides on the fee it charges
for its recommendation. After that, shareholders non-cooperatively decide what signals to acquire
and how to vote. If the precision of the advisor’s signal is not disclosed, the timing of the game is
identical to that in the previous sections: The advisor sets the fee it charges, shareholders decide
what signal to acquire, not knowing whether π = πl or π = πh, and then decide how to vote.
The proof of the proposition below shows that the equilibrium in this game coincides with the
equilibrium of the basic model for π = π̄.

We make a simplifying assumption that uncertainty about the precision of the advisor’s signal
is rather high:

Assumption (high precision uncertainty). πl = 1
2 and πh is such that complete crowding out

of private information acquisition occurs in equilibrium of the basic model with π = πh.

This assumption implies that if the quality of the advisor’s information is low, its signal is
completely uninformative. Clearly, if shareholders know that the advisor’s signal is pure noise, no
shareholder buys it, and the equilibrium is identical to the benchmark model without the advisor.
In contrast, if the quality of the advisor’s information is high and shareholders know about it, no
shareholder acquires private information.

The next proposition gives suffi cient conditions under which disclosure improves the quality of
decision-making:

Proposition B.3 (disclosure of precision). Firm value is strictly higher when the precision of
the advisor’s signal is disclosed if at least one of the following conditions is satisfied:

1. V ∗(πh) > V0, i.e., firm value is higher with the advisor than without when π = πh; or
2. Complete crowding out of private information acquisition occurs when π = π̄.
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The intuition is as follows. Disclosing the precision of the advisor’s recommendations allows
shareholders to tailor their information acquisition decisions to the quality of the recommendations:
shareholders do not acquire the advisor’s recommendations if π = 1

2 and do not acquire private
information if π = πh. Under the first condition in Proposition B.3, such tailored information ac-
quisition decisions are rather effi cient: they ensure that the advisor’s recommendations do not affect
the vote when they are uninformative, and that they have a relatively large effect on the vote when
they are suffi ciently informative (V ∗(πh) > V0). Hence, disclosure leads to more informed voting
decisions than if shareholders made their decisions based on the average precision π̄ and sometimes
relied on the advisor’s recommendations when they are completely uninformative. A similar argu-
ment applies under the second condition in Proposition B.3: without disclosure, shareholders do
not acquire private information and completely rely on the advisor’s recommendations, even though
they are sometimes uninformative. In contrast, with disclosure, shareholders perform independent
research when the advisor’s recommendations are uninformative, leading to more informed voting
decisions.

Interestingly, however, disclosing the precision of the advisor’s recommendations does not always
improve the quality of decision-making: Disclosure may encourage even stronger crowding out of
private information acquisition and decrease firm value. To see this, consider the numerical example
of Figure 3 and suppose that πl = 1

2 , πh = 0.7, and µl = µh = 1
2 , so that π̄ = 0.6. Without

disclosure, expected firm value is given by V ∗ (0.6), which, as Figure 3c demonstrates, is very close
to value V0 in the benchmark case without the advisor. This is because the expected precision
of the advisor’s signal is suffi ciently low, so that there is relatively little crowding out of private
information acquisition. In contrast, with disclosure, expected firm value is the average of V0 and
V ∗ (0.7), and this average is lower than V ∗ (0.6). Thus, in this example, disclosure makes voting
decisions less informed and decreases firm value. The reason is that when π = πh, the advisor’s
recommendations are not precise enough to improve decision-making but are suffi ciently precise
to completely crowd out private information acquisition. This ineffi cient crowding out of private
information when π = πh is detrimental for firm value, and even the more effi cient decision-making
when π = πl is not suffi cient to counteract its negative effect.

Proofs for the section “Analysis of regulation”

Proof of Proposition B.1. Let f∗∗ (∆) denote the equilibrium fee that the advisor charges. Con-
sider part 1 of the proposition. Since qr+qs < 1 by Assumption 2, then f∗∗ (∆) = arg maxf fq

L
r (f −∆),

where qLr is given by (A5). Using a change of variable φ ≡ f −∆, we have:

f∗∗ (∆) = ∆ + arg max
φ

(φ+ ∆) qLr (φ) .

We first prove that the maximizer φ, denoted φ∗∗ (∆), is decreasing in ∆. Consider any ∆2 > ∆1.
Denoting φ∗∗ (∆i) = φi, i ∈ {1, 2}, we have

(φ2 + ∆2) qLr (φ2) ≥ (φ1 + ∆2) qLr (φ1) ,

(φ1 + ∆1) qLr (φ1) ≥ (φ2 + ∆1) qLr (φ2) ,
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or equivalently,

φ2q
L
r (φ2)− φ1q

L
r (φ1) ≥ ∆2

[
qLr (φ1)− qLr (φ2)

]
,

φ2q
L
r (φ2)− φ1q

L
r (φ1) ≤ ∆1

[
qLr (φ1)− qLr (φ2)

]
,

implying
∆2

[
qLr (φ1)− qLr (φ2)

]
≤ ∆1

[
qLr (φ1)− qLr (φ2)

]
. (IA38)

Suppose, by contradiction, that φ2 > φ1. Since
∂qLr (φ)
∂φ < 0 by (A5), then qLr (φ2) < qLr (φ1), and

hence (IA38) implies ∆2 ≤ ∆1, giving a contradiction. Hence, φ2 ≤ φ1, i.e., φ
∗∗ (∆) is decreasing

in ∆.
Since ∂qLr (φ)

∂φ < 0 and φ∗∗ (∆) is decreasing in ∆, then the equilibrium probability that a share-

holder acquires information from the advisor, qLr (φ∗∗ (∆)), increases in ∆. Hence, according to
(A9), pa − pd = qr increases in ∆. By the argument similar to that in the proof of Proposition 3,
firm value decreases in ∆. Indeed, since qr + qs < 1, a marginal increase in ∆ increases the distance
between xa = P (pa, N − 1, N−1

2 ) and xd = P (pd, N − 1, N−1
2 ), while keeping the total probabil-

ity of being pivotal, πxa + (1− π)xd, unchanged at 2c
2p−1 . According to (A10), firm value equals

πf (xa) + (1− π) f (xd)− 1
2 , where f (x) =

∑N
k=N+1

2
P (ϕ (x) , N, k) and ϕ (x) is defined by (A12).

Since, according to Auxiliary Lemma A1, function f (x) is concave, firm value decreases with the
distance between xa and xd when πxa + (1− π)xd remains unchanged, and hence decreases with
∆.

Consider part 2 of the proposition. In this case, f∗∗ (∆) = f+∆, and hence qr = qHr (f∗∗ (∆)−∆) =

qHr
(
f
)
. Thus, both qr and qs = 0 are unaffected by a marginal change in ∆, and hence firm value

is unaffected by ∆ as well.
Finally, consider part 3 of the proposition. In this case, f∗∗ (∆) = arg maxf fq

H
r (f −∆). Using

a change of variable φ ≡ f −∆, we have:

f∗∗ (∆) = ∆ + arg max
φ

(φ+ ∆) qHr (φ) .

Since the cross-partial derivative of the maximized function (∂q
H
r (φ)
∂φ ) is negative, the maximizer

φ, denoted φ∗ (∆), is decreasing in ∆. Therefore, the equilibrium probability that a shareholder
acquires information from the advisor, qHr (φ∗ (∆)), increases in ∆. As shown in the proof of
Proposition 3,

∑N
k=N+1

2
Pq (q,N, k) > 0 for q > 1

2 and hence, according to (A18), firm value

increases in ∆.

Proof of Proposition B.2. First, suppose that complete crowding out of private information
acquisition occurs in equilibrium. Then qr = qHr (f) is given by (13), and a marginal decrease
in f increases qr. The expected value of the proposal is given by (A18). As shown in the proof
of Proposition 3,

∑N
k=N+1

2
Pq (q,N, k) > 0 for q > 1

2 and hence expected value increases when f

decreases. Next, consider the case of incomplete crowding out of private information acquisition.
Since qr + qs < 1 by Assumption 2, (qr, qs) are given by (A5). A marginal decrease in f increases
qr and hence, according to (A9), pa − pd = qr increases. By the argument similar to that in the
proof of Proposition 3, firm value increases in f . Indeed, a marginal decrease in f increases the
distance between xa = P (pa, N − 1, N−1

2 ) and xd = P (pd, N − 1, N−1
2 ). while keeping the total
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probability of being pivotal, πxa + (1− π)xd, unchanged at 2c
2p−1 . According to (A10), firm value

equals πf (xa) + (1− π) f (xd) − 1
2 , where f (x) =

∑N
k=N+1

2
P (ϕ (x) , N, k) and ϕ (x) is defined by

(A12). Since, according to Auxiliary Lemma A1, function f (x) is concave, firm value decreases
with the distance between xa and xd when πxa+(1− π)xd remains unchanged, and hence decreases
when f decreases.

Proof of Proposition B.3. We first show that if the precision of the advisor’s signal is not
disclosed, the equilibrium of the game is the same as in the basic model but where the precision of the
advisor’s signal is the expected value of π, π̄ ≡ µlπl+µhπh. Indeed, fix the equilibrium probabilities
qr and qs with which each shareholder acquires the advisor’s signal and his private signal, and
consider the information acquisition decision of any shareholder, taking the strategies of other
shareholders as given. Denote Vs (qr, qs, π) and Vr (qr, qs, π) the shareholder’s values from acquiring
the private and public signal, respectively, if the precision of the advisor’s signal is known to be π.
These values are given by expressions (9) and (10). Then, the values from acquiring the private
and public signal if the shareholder does not know the realization of π are V̄s ≡ µlVs (qr, qs, πl) +
µhVs (qr, qs, πh) and V̄r ≡ µlVr (qr, qs, πl) + µhVr (qr, qs, πh). Because, Ω1 (qr, qs) and Ω2 (qr, qs) do
not depend on π, (9) and (10) imply that Vs (qr, qs, π) and Vr (qr, qs, π) are linear in π. Hence,
V̄s = Vs (qr, qs, π̄) and V̄r = Vr (qr, qs, π̄). This proves that the equilibrium of the game without
disclosure coincides with the equilibrium of the basic model with precision π̄.

Denote V ∗ (π) the expected value of the proposal in the equilibrium of the basic model when
the precision of the advisor’s signal is π. The argument above implies that the expected value of
the proposal in the game without disclosure is given by V ∗(π̄). Since the expected value of the
proposal in the game with disclosure is µlV

∗(1
2) + µhV

∗(πh) and since V ∗(1
2) = V0, given by (8),

we want to prove that under each of the conditions of the proposition, µlV0 + µhV
∗(πh) > V ∗(π̄).

Consider the first condition, i.e., suppose that V ∗ (πh) > V0. First, if π̄ is such that V ∗ (π̄) ≤ V0,
we have µlV0 + µhV

∗ (πh) > V0 ≥ V ∗ (π̄), as required. Second, consider π̄ such that V ∗ (π̄) > V0.
The proof of Proposition 5 implies that this can only be true if π̄ > π̃ and f∗ = fm, and hence
V ∗ (π̄) is given by (A19). Since V ∗(πh) > V0, V ∗ (πh) is also given by (A19). Hence,

V ∗ (π̄) = (2π̄ − 1) (
∑N

k=N+1
2
P (1

2 + 1
2
√
N
, N, k)− 1

2)

= µh (2πh − 1) (
∑N

k=N+1
2
P (1

2 + 1
2
√
N
, N, k)− 1

2) = µhV
∗ (πh) < µlV0 + µhV

∗ (πh) ,

as required.
Next, consider the second condition of the proposition. If V ∗ (πh) > V0, then the first condition

of the proposition, which has been proved above to be suffi cient, applies. Hence, consider V ∗ (πh) ≤
V0. Since complete crowding out of private information acquisition occurs for π̄, it also occurs for
πh since πh > π̄. In the range of complete crowding out of private information acquisition, the
quality of decision-making V ∗ (π) is strictly increasing in π, and hence V ∗ (πh) > V ∗ (π̄). Hence,
µlV0 + µhV

∗ (πh) ≥ V ∗ (πh) > V ∗ (π̄), as required.
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