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1 Proofs and Derivations

Smooth-pasting conditions in Eqs. (37) and (38).

LetM denote the set of (Gt)-stopping times and � 2M be an element of this set. By

de�nition, the value of the option G (X (t) ; p (t)) satis�es

G (X (t) ; p (t)) = sup�2M E
hR �
t
e�r(s�t)�3p (s) e

�
R s
t �3p(u)duH

�
X(s)
1+'

�
ds

+e�
R �
t �3p(s)dse�r(��t) (S (X (�) ; p (�))� I) jGt

�
:

(A1)

The right-hand side of (A1) consists of two terms. The �rst term corresponds to the

payo¤ if the shock reverts before the �rm invests. The second term corresponds to the

payo¤ if the �rm invests before the shock reverses. Let

D (X (t) ; p (t)) � E
�Z +1

t

e�r(s�t)�3p (s) e
�
R s
t �3p(u)duH

�
X (s)

1 + '

�
dsjGt

�
; (A2)

d (p (t)) �
Z t

t0

(r + �3p (s)) ds; (A3)

where t0 is the time when the shock arrives. Then, for any X (t) > 0 and p (t) 2 (0; �0],

we can rewrite (A1) as

e�d(p(t)) (G (X (t) ; p (t))�D (X (t) ; p (t)))

= sup�2M E
�
e�d(p(�)) (S (X (�) ; p (�))� I �D (X (�) ; p (�))) jGt

� (A4)

Because e�d(p(�)) (S (X (�) ; p (�))� I �D (X (�) ; p (�))) is C1 everywhere and the de-

pendence of (X (t) ; p (t)) on any initial point (X; p) is explicit and smooth, the problem

satis�es the smooth-�t principle (Peskir and Shiryaev (2006)).1 Therefore, at all points�
�X (p) ; p

�
the derivatives of e�d(p) (G (X; p)�D (X; p)) and e�d(p) (S (X; p)� I �D (X; p))

1On p.152 Peskir and Shiryaev (2006) prove this result for one-dimensional problems, but state that
it also extends to higher dimensions (see p.150). See also p.144, where they state that the smooth-�t
principle holds in multiple dimensions if the state process after starting at the boundary of the stopping
region enters the interior of the stopping region immediately.
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with respect to X and p must be the same. Taking the two derivatives, we obtain

GX
�
�X (p) ; p

�
= SX

�
�X (p) ; p

�
; (A5)

Gp
�
�X (p) ; p

�
= Sp

�
�X (p) ; p

�
: (A6)

Proof of the existence of a solution to the �xed-point problem in Eq. (39).

Note that a solution
�
G(X; p); �X(p)

�
to Eqs. (35) - (38) will satisfy (39). From

the above we know that if �X (p) exists, then it satis�es (35) - (38). We thus need to

demonstrate the existence of a boundary between an exercise region and a continuation

region for any p 2 (0; �0].

Consider state (X (t) ; p (t)), and suppose that the �rm exogenously learns the type of

the outstanding shock in a moment. Then, the value of the investment option just before

the �rm learns the type of the shock is equal to (1� p (t))G (X (t) ; 0)+p (t)G (X (t) ; 1).

Formally, let (G 0s; s � t) denote �ltration generated by (B (s) ;M (s) ; N (s)), s � t, but

under which the �rm learns the identity of an outstanding shock in a moment. In other

words, G 0s contains the identity of the shock for all s > t, but not for s = t. Notice

that while information �ltrations (Gs; s � t) and (G 0s; s � t) are di¤erent, the evolution of

X (s), s � t under the full-information �ltration is the same. Let G0 (X (t) ; p (t)) denote

the value of the investment option under (G 0s; s � t)

G0 (X (t) ; p (t)) � sup�2M0 E
�R1
�
e�rsX (s) ds� e�r�IjG 0t

�
= (1� p (t))G (X (t) ; 0) + p (t)G (X (t) ; 1) ;

(A7)

where M0 is the set of optimal stopping times adapted to (G 0s; s � t). Because (Gt) is

a �ltration generated by (B;M;N), for any s > t, Gs � G 0s, and for s = t, Gs and G 0s
coincide. By de�nition of G (X (t) ; p (t)),

G (X (t) ; p (t)) = E
�Z 1

��
e�rsX (s) ds� e�r�IjGt

�
; (1)
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where � � is the optimal stopping time, which is adapted to �ltration (Gt). Because � � is

adapted to (Gt), it is also adapted to (G 0t). Hence,

G0 (X (t) ; p (t)) = sup�2M0 E
�R1
�
e�rsX (s) ds� e�r�IjG 0t

�
� E

�R1
�� e

�rsX (s) ds� e�r�IjG 0t
�

= E
�R1
�� e

�rsX (s) ds� e�r�IjGt
�
= G (X (t) ; p (t)) :

(A9)

Combining (A7) with (A9), we obtain

(1� p)G (X; 0) + pG (X; 1) � G (X; p) (A10)

for any (X; p).

Now, consider G (X; 0) and G (X; 1). There is no learning when p 2 f0; 1g, so the

option pricing problems are standard. The exercise boundary for p = 0 is given by

�X (0) = X�. To solve for �X (1), note that in the range p = 1, X < (1 + ')X�, Eq. (35)

is solved by

G (X; 1) = ~CX +

�
X

(1 + ')X�

��
(
X�

r � � � I); (A11)

where

 =
1

�2

24���� �2
2

�
+

s�
�� �

2

2

�2
+ 2 (r + �3)�2

35 > � > 1: (A12)

The unknown constant ~C and the exercise boundary �X (1) are given by the boundary

conditions (36) - (37). Simplifying, we obtain an implicit solution for �X (1):

 � 1


1 + �3
(r��)(1+')

r � �+ �3
�X (1) = I +

 � �


� �X (1)

(1 + ')X�

��
(
X�

r � � � I): (A13)

De�ne

Q(x) = I +
 � �


�
x

(1 + ')X�

��
(
X�

r � � � I)�
 � 1


 
1 + �3

(r��)(1+')

r � �+ �3
x

!
: (A14)

3



We have
Q(0) = I > 0;

Q((1 + ')X�) = ��1


'
r��+�3X

� < 0;

Q00(x) = � (� � 1) ��


�
1

(1+')X�

��
( X

�

r�� � I)x
��1 > 0:

(A15)

Hence, there exists a unique point between 0 and (1 + ')X�, at which Q (x) = 0. It

satis�es the su¢ cient conditions (Dixit and Pindyck (1994)), so it is equal to �X (1).

Because both �X (0) and �X (1) are below (1 + ')X�, for anyX > (1 + ')X�, G (X; 0) =
1
r��X�I and G (X; 1) =

1+
�3

(1+')(r��)
r+�3�� X�I. Thus, for anyX > (1 + ')X� and p 2 (0; �0],

(1� p)G (X; 0) + pG (X; 1) = S (X; p)� I: (A16)

By de�nition of G (X; p),

G (X; p) � S (X; p)� I: (A17)

Combining Eqs. (A10), (A16), and (A17), we �nd that for any p 2 (0; �0] and any

X > (1 + ')X�, G (X; p) = S (X; p) � I, and thus it is always optimal to exercise the

investment option. Also, for any p 2 (0; �0] and any X < (r � �) I, it is always optimal

not to exercise the option, as the payo¤ from the exercise is negative in this range.

Therefore, for any p 2 (0; �0], there is a boundary between exercise and continuation

regions.

Closed form solutions for the model of Section 3.2 when � > 0 and � = 0.

While the exercise trigger �p (X) is characterized by (39), it is not solvable in closed-

form, since the value function G(X; p) itself is not available in closed-form. However, for

the special case in which � = 0, � � 0, the closed-form solution for the trigger is

�p (X) j�=0 =
X � rI

�3

�
I +

�
X

rI(1+')

� r
� �I
r�� �

X
(1+')(r��)

� : (A18)
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The corresponding value of the investment option equals

G (X; p) j�=0 = p
�I

r � �

�
X

(1 + ') rI

� r
�

+ (1� p)X r
��

 
X

�
1

p
� 1
�� �

�3

!
; (A19)

where

� (y) =
�
�1
�2

� �
�3 y

 
�1
r��e

(��r)t�
��

�1
�2

� �
�3 y

�
+ �2

1+'+
�3
r��

(r+�3��)(1+')e
(��r��3)t�

��
�1
�2

� �
�3 y

�!

�
�

y
(1+')rI

� r
� �I
r��

�
�1
�2

� r
�3 �2e

��3t�
��

�1
�2

� �
�3 y

�
;

(A20)

where t� (z) is a function de�ned implicitly by

�2�3
�1e�3t

� + �2
=

ze�t
� � rI�

z
(1+')rI

� r
� �Iert

�

r�� + I � ze�t
�

(r��)(1+')

: (A21)

Notice that when � = 0, investment does not occur when the jump reverts. Therefore, in

this case, the trigger (A18) coincides with (21).2

Derivation of the investment trigger for the case of multiple shocks in Section

5.

Let Y (X (t) ; n (t) ; p (t)) be a continuously di¤erentiable function, where X (t) is the

current value of the cash �ow process, n (t) is the current number of outstanding shocks,

and p (t) = (p0(t); p1 (t) ; :::; pn (t)) is the vector of current beliefs. Applying Itô�s lemma

for semimartingales (see Theorem 33 in Protter (2004)), we get the dynamics of Y (t)

2Note that since in (21) X0 denotes the level of X(t) before the positive jump occurred, we need to
use �p (X0 (1 + ')) to ensure equivalence.
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under (Ft):

dY =

 
�XYX +

1
2
�2X2YXX �

nX
k=1

@Y
@pk
�3pk (k �

Pn
i=1 pii)

!
dt

+�XYxdB (t) + [Y (X(1 + ') ; n+ 1; p̂ (p))� Y ] (dM1 (t) + dM2 (t))

+
h
Y
�

X
1+'
; n� 1; ~p (p)

�
� Y

i
dN (t) ;

(A22)

where X, pk, and Y denote X (t), pk (t), and Y (t), respectively, and p̂ (p) and ~p (p) are

the updated vectors of beliefs de�ned by (8) - (9). In (A22), the intensities of M1 (t)

and M2 (t) are �1 and �2 if n (t) < �N and zero if n (t) = �N . By the law of iterated

expectations,

E [dN (t) jGt] = E [E [dN (t) jFt]Gt] = E [k (t)�3dtjGt] =
nX
k=1

�3kpkdt: (A23)

Therefore, the instantaneous conditional expected change in Y (X;n; p) is equal to

E
h
dY (X;n;p)

dt
jGt
i
= �XYX +

1
2
�2X2YXX �

nX
k=1

@Y
@pk
�3pk (k �

Pn
i=1 pii)

+1n< �N [Y (X(1 + ') ; n+ 1; p̂ (p))� Y ] (�1 + �2)

+
h
Y
�

X
1+'
; n� 1; ~p (p)

�
� Y

i nX
k=1

�3kpk;

(A24)

where 1n< �N is an indicator function taking the value 1 if n < �N and 0 otherwise.

If Y (X;n; p) denotes the value of a contingent claim that continuously pays a cash

�ow of y (X;n; p) and the discount rate is equal to r, then it must be the case that
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E
h
dY (X;n;p)+y(X;n;p)dt

dt
jGt
i
= rY (X;n; p). Hence,

rY = �XYX +
1
2
�2X2YXX �

nX
k=1

@Y
@pk
�3pk (k �

Pn
i=1 pii)

+1n< �N [Y (X(1 + ') ; n+ 1; p̂ (p))� Y ] (�1 + �2)h
Y
�

X
1+'
; n� 1; ~p (p)

�
� Y

i nX
k=1

�3kpk + y (X;n; p) :

(A25)

Simplifying:  
r + �1 + �2 + �3

nX
k=1

pkk

!
Y = �XYX +

1
2
�2X2YXX

��3
nX
k=1

@Y
@pk
pk (k �

Pn
i=1 pii) + 1n< �N (�1 + �2)Y (X(1 + ') ; n+ 1; p̂(p))

+

 
�3

nX
k=1

pkk

!
Y
�

X
1+'
; n� 1; ~p(p)

�
+ y(X;n; p):

(A26)

Let S (X;n; p) denote the value of the underlying project. It is the expected discounted

value of cash �ows that the �rm gets if it immediately exercises the investment option.

S(X;n; p) is thus a special case of Y (X;n; p), with y(X;n; p) = X. Thus S (X;n; p) must

satisfy:  
r + �1 + �2 + �3

nX
k=1

pkk

!
S = �XSX +

1
2
�2X2SXX

��3
nX
k=1

@S
@pk
pk (k �

Pn
i=1 pii) + 1n< �N (�1 + �2)S (X(1 + ') ; n+ 1; p̂(p))

+

 
�3

nX
k=1

pkk

!
S
�

X
1+'
; n� 1; ~p(p)

�
+X:

(A27)

The solution can be written as

S (X;n; p) = an0X +

nX
k=1

pk (a
n
k � an0 )X; (A28)
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where constants ank , k = 0; 1; :::; n, n = 0; 1; :::; �N are de�ned later.

Let G (X;n; p) denote the value of the investment option. Before the investment

occurs, G(X;n; p) is a special case of Y (X;n; p), with y(X;n; p) = 0. Thus G (X;n; p)

must satisfy:  
r + �1 + �2 + �3

nX
k=1

pkk

!
G = �XGX +

1
2
�2X2GXX

��3
nX
k=1

@G
@pk
pk (k �

Pn
i=1 pii) + 1n< �N (�1 + �2)G (X(1 + ') ; n+ 1; p̂(p))

+

 
�3

nX
k=1

pkk

!
G
�

X
1+'
; n� 1; ~p(p)

�
:

(A29)

The optimal investment decision can be described by a trigger function �X (n; p). Eq.

(A29) is solved subject to the following value-matching and smooth-pasting conditions:

G
�
�X (n; p) ; n; p

�
= S

�
�X (n; p) ; n; p

�
� I;

GX
�
�X (n; p) ; n; p

�
= SX

�
�X (n; p) ; n; p

�
;�

�3
Pn

k=1

�
@G( �X(n;p);n;p)

@pk
� @S( �X(n;p);n;p)

@pk

��
pk (k �

Pn
i=1 pii) = 0:

(A30)

The �rst equation is the value-matching condition. The second and third equations are

the smooth-pasting conditions (with respect to X and t, respectively).

Combining (A27), (A29) and (A30) gives us:3

�X (n; p)� rI = �2

2
�X (n; p)2GXX

�
�X (n; p) ; n; p

�
+ 1n< �N (�1 + �2)

�
�
G
�
�X (n; p) (1 + ') ; n+ 1; p̂ (p)

�
+ I � S

�
�X (n; p) (1 + ') ; n+ 1; p̂ (p)

��
+(�3

Pn
k=1 pkk)

h
G
�
�X(n;p)
1+'

; n� 1; ~p (p)
�
+ I � S

�
�X(n;p)
1+'

; n� 1; ~p (p)
�i
:

(A31)

When X is very close to the trigger �X (n; p), the arrival of a new positive shock will result

3Note that since S(X;n; p) is linear in X, SXX = 0.
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in immediate investment. This implies:

G
�
�X (n; p) (1 + ') ; n+ 1; p̂ (p)

�
= S

�
�X (n; p) (1 + ') ; n+ 1; p̂ (p)

�
� I: (A32)

Thus, the second term on the right-hand side of (A31) is zero, so �X (n; p) satis�es

�X (n; p) = (�3
Pn

k=1 pkk)
h
G
�
�X(n;p)
1+'

; n� 1; ~p (p)
�
+ I � S

�
�X(n;p)
1+'

; n� 1; ~p (p)
�i

+rI + �2

2
�X (n; p)2GXX

�
�X (n; p) ; n; p

�
;

(A33)

Derivation of constants ank in Eq. (A28).

Plugging (A28) in (A27), using the de�nitions of p̂ (p) and ~p (p), and simplifying, we

obtain

(r � �+ �1 + �2 + �3
Pn

k=1 pkk) a
n
0 + (r � �+ �1 + �2 + �3)

Pn
k=1 pk (a

n
k � an0 )

= (1 + ')
�
�1a

n+1
0 + �2a

n+1
1 +

Pn
k=1 pk

�
�1
�
an+1k � an+10

�
+ �2

�
an+1k+1 � an+10

���
+ �3
1+'

Pn
k=1 pkka

n�1
k�1 + 1;

(A34)

for n = 0; 1; :::; �N � 1. For n = �N , S (X;n; p) satis�es (A27) without the terms with �1

and �2. Hence, �
r � �+ �3

P �N
k=1 pkk

�
a
�N
0 +

(r � �+ �3)
P �N

k=1 pk
�
a
�N
k � a

�N
0

�
= �3

1+'

P �N
k=1 pkka

�N�1
k�1 + 1:

(A35)

Eqs. (A34) and (A35) must hold for all p. Hence, the coe¢ cients in constant terms and

pk, k = 1; :::; n on both sides of each equation must be equal. Thus, we get the following

equations:

� for n = 0; 1; :::; �N � 1:

(r � �+ �1 + �2) an0 = (1 + ')
�
�1a

n+1
0 + �2a

n+1
1

�
+ 1; (A36)
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� for k = 1; :::; n and n = 1; :::; �N � 1:

k�3a
n
0 + (r � �+ �1 + �2 + �3) (ank � an0 ) (A37)

= (1 + ')
�
�1
�
an+1k � an+10

�
+ �2

�
an+1k+1 � an+11

��
+

�3
1 + '

an�1k�1 ;

� for k = 1; :::; �N :

k�3a
�N
0 + (r � �+ �3)

�
a
�N
k � a

�N
0

�
=

�3
1 + '

a
�N�1
k�1 : (A38)

� �nally, matching the constant term in the equation for n = �N :

(r � �) a �N0 = 1: (A39)

This gives us
�
�N
2
+ 1
� �

�N + 1
�
linear equations that fully determine

�
�N
2
+ 1
� �

�N + 1
�

constants ank , k = 0; :::; n, n = 0; :::; �N .

2 Numerical Procedures

Numerical procedure for computing �X (p) in Section 3.

To compute the trigger functions we use a variation of the least-squares method de-

veloped by Longsta¤ and Schwartz (2003). Note that when p = 0, the model becomes

standard, so �X (0) = X�. Also, note that p (T )! 0 as T !1, where T is the time that

passes after the arrival of the shock. Because of that, we can approximate �X (p (T )) for a

large T by �X (0). After that, we take a small � and compute p (T ��) from (11). Then,

we use the least squares method of Longsta¤ and Schwartz (2003) to estimate the second

derivative of the conditional expected payo¤ from waiting at time T � � until time T .

Then, we use this estimate and (39) to compute �X (p (T ��)). We repeat this N times

for a su¢ ciently large N such that p (T �N�) > �0. More speci�cally, at any step n:
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1. Use �X (p (T � k�)), k = 0; 1; :::; n�1 and the least squares method to estimate the

second derivative of the conditional expected payo¤ from waiting at time T � n�.

2. Use this estimate as input in (39) to compute �X (p (T � n�)).

Numerical procedure for computing �X (n; p) in Section 5.

We consider the following set of parameter values: �N = 2, r = 0:04, � = � = 0,

' = 0:1, �1 = 0:33, �2 = 1, �3 = 3, I = 25. First, we compute S (X;n; p). From (A36)

- (A39), when �N = 2, we get 6 linear equations that determine 6 unknowns a00, a
1
0, a

1
1,

a20, a
2
1, and a

2
2. Solving this system of equations, we obtain a00 = 29:492, a10 = 27:239,

a11 = 26:833, a
2
0 = 25, a

2
1 = 24:766, a

2
2 = 24:398.

Second, we compute �X (n; p). Because the option value is a relatively �at function

of the exercise threshold around the optimal threshold, computing the option values

by simulations yields relatively precise option values but relatively imprecise exercise

threshold. To overcome this problem, we compute the option values by simulations and

use them as inputs in Eq. (52) to compute the exercise thresholds:

�X (0; p) = rI; (A40)

�X (1; p) = �3p1

�
G

� �X (1; p)
1 + '

; 0; 1

�
+ I � S

� �X (1; p)
1 + '

; 0; 1

��
+ rI; (A41)

�X (2; p) = �3 (p1 + 2p2)

�
G

� �X (2; p)
1 + '

; 1; ~p (p)

�
+ I � S

� �X (2; p)
1 + '

; 1; ~p (p)

��
+rI: (A42)

Speci�cally, our numerical procedure is set up in the following way:

1. For given thresholds �X (1; 1� p1; p1) and �X (2; 1� p1 � p2; p1; p2), expressed as poly-

nomials of p1 and (p1; p2), respectively, calculate the option value G (X; 0; 1) by

simulations. We use the fourth-order polynomials and 20; 000 simulations.

2. Maximize the option value G (X; 0; 1) with respect to coe¢ cients of polynomials.

3. Using the computed thresholds, calculate option valuesG (X; 0; 1) andG (X; 1; 1� p1; p1).
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4. Use option values G (X; 0; 1) and G (X; 1; 1� p1; p1) from step 3 to obtain the ex-

ercise thresholds �X (1; p) and �X (2; p) from (A41) and (A42).

The order of the polynomials used in step 1 can be expanded, and steps 3 and 4 can be

iterated until convergence with very little e¤ect on the values of the exercise thresholds.
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