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Abstract— The successful commercialization of any new 

product depends to a degree on the ability of a firm to match 
its supply to market demand. In an emerging industry where 
products have little similarity with the products in existing 
industries, it is very hard to predict demand patterns. In this 
paper, we will develop a general mathematical model for 
providing decision support for the design of supply chains for 
emerging industries. In particular, we will focus on how 
capacity investments in a general supply chain can be made in 
the presence of demand uncertainty and different types of 
contracts. We will develop an efficient and practical 
algorithm for finding the optimal capacity planning strategy 
in a multi-product and multi-stage supply chain model and 
study the properties of the optimal strategies.     
 

Index Terms— Capacity planning, new product, supply 
chain design, contract option.  
 

I. INTRODUCTION 
NE of the key challenges of the commercialization 
process of products in an emerging industry is to 

design an effective supply chain that can meet market 
demand with high quality products in a timely fashion at 
competitive prices. Since there is little data on the 
commercial uptake of the products in these industries, it is 
difficult to predict the demand patterns of the products. 
One example that motivates our research is the micro-
fluidic devices industry. Researchers have demonstrated 
that micro-fluidic devices will benefit many industries and 
research processes. These devices can be used by cancer 
research laboratories and drug development companies to 
perform specific biological analysis tests. Many companies 
believe that these devices have a bright future and are 
starting to commercialize these products. However, there is 
limited information on the commercial uptake of these 
devices by the pharmaceutical industry in their research 
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process; thus, the micro-fluidic manufacturing firms must 
plan their capacities at a time when the demand patterns of 
these devices are currently unknown. 

Besides uncertainty of demands, the manufacturers also 
face the difficulties of planning resources for multiple 
products at the same time. Due to the wide range of 
applications, the manufacturers need to produce a variety 
of generic or custom-made micro-fluidic devices to meet 
the requirements of their customers. Such variety in 
products adds complexity to the manufacturers’ supply 
chain and requires them to plan their resources in a general 
setting. Manufacturers, however, are looking for efficient 
and practical algorithms for solving capacity planning 
problem in a general setting.   

Since micro-fluidic device manufacturers are still in the 
early stages of designing their supply chains, they have the 
privilege to incorporate different types of capacity 
contracts without high administrative cost. Traditionally, a 
manufacturer establishes a fixed-cost capacity contract 
with its suppliers to buy a fixed amount of capacity.  They 
need to pay the price whether they use the capacity or not. 
In practice, the cost of capacity might have two 
components: a fixed cost and a variable cost.  In an option 
contract, the manufacturers buy rights to use a fixed 
amount of capacity with an upfront fixed payment.  If they 
decide to execute their rights and use these capacities, they 
need to pay an exercise price for each unit of capacity that 
they actually use.  

In this paper, we develop a mathematical model to study 
capacity planning in a multi-product and multi-stage 
supply chain with different types of capacity contracts. We 
study the properties of the optimal capacity planning 
strategies.  We also develop an efficient and practical 
algorithm to find the optimal capacity planning strategies. 
The rest of the paper is organized as follows. Section II 
states the formulation of a multi-product multi-stage 
capacity planning problem. Section III outlines and 
compares different algorithms for solving the capacity 
planning problem. Section IV studies the properties of the 
optimal capacity planning strategy. Section V discusses 
how to extend the single-period model to a multi-period 
setting. Finally, Section VI concludes the paper.    

Related Literature.  There is a large amount of 
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literature studying capacity planning under uncertainty and 
fixed-cost contracts. Fine and Freund (1990) consider 
capacity investment strategies in flexible resources, 
Barahona et al. (2005) examine capacity acquisition 
schedule in the context of semiconductor tool planning, 
Huang and Ahmed (2006) study the problem where the 
capacity decision can be revised as more demand 
information is revealed, and Zhang, et al. (2004) look at 
the capacity expansion problem with special demand 
structure. These works either have more restrictive 
assumptions on supply chain structure or demand 
distribution or focus on some particular industries such as 
semiconductor. Van Meighem and Rudi (2002) propose a 
newsvendor network which is closely related to the model 
that we use. All of these papers only consider a fixed-cost 
contract for determining the capacity level. 

 The consideration of  option contracts in supply chains 
is a more recent research topic. Martinez-de-Albéniz and 
Simchi-Levi (2002) analyze the optimal option contract for 
a case of single product and single supplier. Yazlali and 
Erhun (2006) consider option contracts in a single product 
dual supply problem. Both of these works take lead time 
into consideration. Even though we do not consider lead 
time, our model allows a more general setting. 

Another stream of literature that is related to our work is 
that for algorithms for stochastic linear programming. We 
refer readers to Kall and Mayer (2006) for a review. Our 
model for capacity planning problem in supply chain 
system can be viewed as a stochastic linear program.   

II. MODEL 
We consider a multi-product, multistage supply chain 

consisting of M products, J processes, and K resources. 
The production of each product requires a certain amount 
(possibly zero) of each type of process.  For instance, we 
might have two process types – assembly process and 
testing process.  A resource provides capacity for one or 
more processes. For instance, a resource might be an 
assembly line with the capability to assemble a single 
product type.  A flexible resource might be an assembly 
line capable of assembling several different product types. 
We might also imagine a resource with capability to 
provide more than one type of process; for instance, a 
resource might do both assembly and test for a single 
product type. Without loss of generality, we assume that to 
produce one unit of product, it requires one unit of each of 
its required processes; we also assume that to get one unit 
of a process, we need one unit of capacity from one of its 
resources.  

There are multiple options for procuring or reserving 
capacity for each resource.  A firm can reserve capacity on 
a resource with a fixed-cost capacity contract; alternatively 
a firm can reserve capacity on a resource with an option 
contract where there is smaller upfront fixed cost and then 
a variable cost for the use of this capacity.  For instance, 

under a fixed-cost capacity contract, the price for one unit 
of capacity is 1 dollar.  Under option contract, the firm 
might pay a fixed cost 30 cents upfront for one unit of the 
capacity.  If the firm decides to use the capacity that it has 
reserved, it needs to pay another 80 cents per unit.  Given 
these alternatives, the firm wants to find the types of 
resources and contracts to use so that the resulting supply 
chain can maximize the firm’s expected profit.  

We denote 
D  A vector of random variables, with probability 

density function ( )f D , that represents the demand 
of products. (Vector of size M) 

d  A realization of random demand D. (Vector of size 
M) 

z  Amount of products that are produced. (Vector of 
size M)   

jkx  Amount of resource k provided under a fixed-cost 
capacity contract that is used to provide capacity to 
process j. (Scalar) 

x   The vector of jkx . (Vector of size JK) 

jky  Amount of resource k provided under an option 
capacity contract that is used to provide capacity to 
process j. (Scalar) 

y   The vector of jky . (Vector of size JK) 
A   An J M× matrix such that  

 1,  if product  requires process ;
( , )

0,  otherwise.
m j

A j m
⎧

= ⎨
⎩

 

B   An J×JK matrix such that 
1,  if resource  can provide 

( , ( , ))    capacity to process ;
0,  otherwise.

k
B j j k j

⎧
⎪= ⎨
⎪
⎩

 

H  A K×JK matrix such that 
1,  if resource  can provide 

( , ( , ))    capacity to process ;
0,  otherwise.

k
H k j k j

⎧
⎪= ⎨
⎪
⎩

 

C  The amount of fixed-cost capacity that the firm has 
reserved. (Vector of size K) 

G  The total amount of capacity, including fixed-cost 
and option capacity, that the firm has reserved. 
(Vector of size K) 

 r  Unit profit generated from filled products. (Vector 
of size M) 

 p  Unit price of resources under fixed-cost contract. 
(Vector of size K) 

 q  Unit upfront price of resources under option 
contract. (Vector of size K) 

 e  Unit exercise price of resources under option 
contract. (Vector of size K) 

 We assume that any demand that cannot be filled is lost.  
We also assume a two-stage sequential decision process. In 
the first stage, the firm determines the types and sizes of 
the contracts with its suppliers or contract manufacturers. 



 
 

 

In the second stage, demand is realized and the firm 
allocates production capacity to meet demand.  
 We now formulate the second stage problem as a single 
period production planning problem with the objective to 
maximize the profit of the firm.  We are given the demand 
realization d as well as the decisions on C, the amount of 
resource to reserve with fixed-cost contract and G , the 
total amount of resource to reserve. We have the following 
linear optimization problem: 

 

2 , ,
( , , ) max ( , , ) ' '

. .
( )

, , 0.

x y z
P C G d C G d r z e Hy

s t z d
Az B x y

Hx C
Hy G C
x y z

π= = −

≤
≤ +

≤
≤ −

≥

(1.1) 

By solving this optimization problem, we can find the 
profit maximizing production level for a given demand 
realization and the capacity planning decisions.  The firm 
ultimately wants to find the optimal capacity planning 
strategy under demand uncertainty: 

1 2,
max ( , ) [ ( , , )] ' '( )

. .
C G

P C G E P C G D p C q G C

s t C G

= ∏ = − − −

≤
(1.2) 

 
Proposition 1: ( , )C G∏ is concave in both C and G. 
Proposition 1 guarantees the existence of an optimal 
solution for problem (1.2) and also the convergence of 
algorithms given in the following section. 

III. SOLVING THE CAPACITY PLANNING PROBLEM 
In this section, we examine two alternative algorithms 

for solving the capacity planning problem (1.2).    

A. Sub-gradient Method 
Van Meighem and Rudi (2002) found the necessary and 

sufficient conditions for a different but similar capacity 
planning problem.  In their model, the firm cannot reserve 
capacity through options. They propose an algorithm for 
their problem: 

1. Given capacity ( )iC  ２, solve the LP (1.1) and find 
the associated dual variables ( ) ( )( , )i jC dλ  
numerically for each sample demand vector ( )jd . 
Take the average of the ( ) ( )( , )i jC dλ over all j as an 
unbiased estimate of ( ) ( )[ ( , )]i jE C dλ , and use it to 
compute an estimate of the sub-gradient ( )( )iC∇∏ . 

2. If ( )| ( ) |iC p∇∏ −  is smaller than some tolerance 
level, then stop. Otherwise, adjust capacity in the 
direction of the sub-gradient: 

( 1) ( ) ( )( ( ) )i i iC C C pξ+ = + ∇∏ − , whereξ  is some 
step-size (or perform a line-search), and iterate.  

 
２ Since the firm cannot reserve option capacity, .C G=  

The algorithm uses sub-gradient method.  At each step, it 
will need to solve S LPs where S is the number of sample 
demand points that is used to estimate the sub-gradient.  
The computational requirements at each step can be very 
intensive depending upon the number of sample points. 
The algorithm can take a very long time converge, due to 
the following observations: 

1. The convergence rate is constrained by the 
bottleneck processes.  To produce a product, the 
firm needs to plan the capacity of all processes for 
the product at the same time.  If one of the processes 
is short of capacity, the production is constrained by 
the bottleneck process, which dictates the sub-
gradient.  Consider the following example:  The 
firm produces a single product that requires two 
types of processes a and b.  Resource 1 can provide 
fixed capacity to process a at price 5 per unit and 
resource 2 can provide fixed capacity to process 2 at 
price 4 per unit.  The demand for the product 
follows a uniform distribution between 100 and 120.  
The price for the product is 12 per unit.  The optimal 
capacity strategy will be 100 ≤  C1 = C2 ≤  120 for 
some value of C1 = C2.  Now, suppose we start with 
initial point C1 = 10 and C2 = 11. Since C1 < C2 < 
100, 

1C∇ ∏ = 12 – 5 = 7 and 
2C∇ ∏ = 0 – 4 = -4.  

The sub-gradient algorithm will adjust the capacity 
as follows: 

 1, 1,

2, 2,

7
4

new old

new old

C C
C C

ξ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦
 

We also observe that when C2 < C1 < 100, the sign 
of the sub-gradient is reversed.  Thus, depending 
upon how we set the step size, the sub-gradient 
algorithm can take a long time to converge as it will 
cycle back and forth between these two sub-
gradients. 

2. The convergence rate is constrained by the non-
uniqueness of the sub-gradient.  In a typical capacity 
planning problem, the number of processes is larger 
than the number of products and the number of 
resources is larger than the number of processes.  
Therefore, for some capacity planning strategies 
(C,G) and demand d, the solution of the dual 
problem of (1.1) is not unique.  Therefore, the sub-
gradient at some capacity strategies (C,G) is not 
unique.  Following different sub-gradients will have 
very different convergence rates. 

3. The convergence rate depends heavily on the 
starting point. 

4. The convergence rate depends heavily on the step 
size. 

5. Lack of good termination criterion. Due to sampling 
error, the termination criteria, | | ε∇∏ < , is hard to 
satisfy. 

B. Supporting Hyperplane Algorithm 
Let’s consider a new problem: 
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min
. . [ ( , , )] ' '( ) 0

f
s t f E P C G D p C q G C

C G
+ − − − ≥

≤
  (2.1) 

It can been shown that (C*,G*) solves problem (1.2) iff 
(C*, G*, f*) solves problem (2.1) with 

2* [ ( *, *, )] ' * '( * *) 0f E P C G D p C q G C+ − − − = .  To solve 
problem (2.1), we can use the supporting hyperplane 
algorithm suggested by Veinott (1967).  Let Cupper (Clower) 
and Gupper (Glower) be the upper (lower) bounds of the fixed 
and total capacities.  Let fupper (flower) be the upper (lower) 
bound of f. Let 

0
,{( , , ) : [ ], [ , ],

         [ , ], }
lower upper lower upper

lower upper

T C G f C C C G G G

f f f C G

= ∈ ∈

∈ ≤
. 

Let s = 0, the algorithm consists of the following steps: 
1. Solve the linear program of minimizing  f, subject to 

( , , ) sC G f T∈ , and let ( , , )s s sC G f  be the optimal 
solution. If 

 2[ ( , , )] ' '( )s s s s s sf E P C G D p C q G C ε+ − − − ≥ −      (2.2) 
where ε  is a small positive number chosen by the 
user, stop. Otherwise, go to step 2.  

2. Use the simulation method given in the sub-gradient 
algorithm to calculate the sub-gradient C∆ ∏  and 

G∆ ∏ . Add linear constraint  

( , )
[( , ) ( , )] ( , ) 0s s

s s

s s T
C G

f C G
C G C G
+∏ +

− ∇∏ ∇∏ ≥
     (2.3) 

to the set sT . Let the new set be 1sT + . Set 1s s= +  
and go to step 1.  

Geometrically, the supporting hyperplane method 
approximates function ( , )C G∏  with hyperplanes.  At each 
step, the algorithm uses all the sub-gradients that it has 
calculated so far.  Therefore, it overcomes observations 1 
and 2 of the sub-gradient algorithm.  By the nature of 
supporting hyperplane algorithm, it does not require a 
starting point or a step size.  Finally, at each step - sf  is an 
upper bound of ( *, *, )C G D∏ .  Therefore, ε  is an upper 
bound for | ( , , ) ( *, *, ) |s sC G D C G D∏ −∏ .  This 
termination criterion is a better indicator of whether the 
solution is close enough to the optimum or not.  
 The supporting hyperplane method also suffers from the 
high cost of calculating the sub-gradient.  This, however, 
can be improved by using a stochastic update method 
suggested by Higle and Sen (1991).  At each iteration s, the 
algorithm simulates one demand realization sd .  
Let 1{ ,..., }s sV d d= denote the set of demand realizations 
that have been simulated so far.  The supporting 
hyperplane algorithm with stochastic update is as follows: 

1. Set 1s = , 0V = ∅ , and 

 
0

,{( , , ) : [ ], [ , ],

         [ , ], }
lower upper lower upper

lower upper

T C G f C C C G G G

f f f C G

= ∈ ∈

∈ ≤
  

2. Simulate a demand realization sd and let 
1s s sV V d−= ∪ . Add linear cut 

 
( , , )

[( , ) ( , )] ( , ) 0s s

s s s

s s T
C G

f C G V
C G C G
+∏ +

− ∇∏ ∇∏ ≥
    (2.4) 

For 1.. 1,k s= −  update all previous cuts  
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2 2

1( , , ) ( , , )
1 1
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C G
k k T
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                                                                   (2.5) 
Let the new set of constraint to be sT . 

3. Solve the linear program of minimizing  f, subject to 
( , , ) sC G f T∈ , and let ( , , )s s sC G f  be the optimal 
solution. If 

 2[ ( , , )] ' '( )s s s s s s sf E P C G V p C q G C ε+ − − − ≥ −  (2.6) 
where ε  is a small positive number chosen by the 
user, stop. Otherwise, set 1s s= + and go to step 2.  

 

IV. PROPERTIES OF OPTIMAL STRATEGY 
In this section we will study the properties of optimal 

strategies.  We first look at the effects of changes of 
demands.  Let I be a J K× matrix such that 

 1,  if =min{ | ( , ( , )) 1};
( , )

0, otherwise.
k np p B j j n

I j k
=⎧

= ⎨
⎩

 

If ( , ) 1I j k = , it means that using resource k is the cheapest 
way to provide capacity to process j. WLOG, we assume 
that  there is an unique k for each j such that ( , ) 1I j k = .   
 
Proposition 2: Let ( *, *)C G  be the optimal solution of 
capacity planning problem ( , , , , , , , )D A B H r p q e  . Let 

D̂ be another set of random demand that is different to D 
only in its first moments. Let [ ]ˆE D E D⎡ ⎤∆ = −⎣ ⎦ .  Let 

( )* *ˆ ˆ,C G be the optimal solution of capacity planning 

problem ( )ˆ , , , , , , ,D A B H r p q e . Then * *ˆ 'C C I A= + ∆  and 
* *ˆ 'G G I A= + ∆ . 

 
This proposition suggests that if the first moment of the 

demand vector changes, the firm doesn’t need to 
recalculate the optimal capacity planning strategy.  The 
new optimal strategy can be obtained by using the method 
suggested in the proposition.   
 The effects of unit profits and unit prices on optimal 
capacities are more complicated and less intuitive. For 
example,  

 If unit profits for some products increase, the 
optimal total capacities for some resources might 
decrease.  When unit profits increase, one would 



 
 

 

expect that the firm will reserve as least as much 
capacity as before. This, however, might not always 
be true.  

 Let ( *, *)C G be the optimal capacity planning 
strategy for problem ( , , , , , , , )D A B H r p q e . Let’s 
assume that * *G C> ;  as the unit profits r for some 
products increase, the optimal fixed capacity for 
some resources might also increase. If * *G C>  , 

*C  indicates the optimal trade-off threshold 
between fixed capacity and option capacity. One 
might expect that this threshold only depends on the 
price ratio between fixed capacity and option 
capacity as in the single product case. However, for 
the case of multi-products, it also depends on the 
unit profits of the other products. 

To illustrate the effects of unit profits, we consider the 
following example which contains 5 products, 9 processes, 
and 9 resources. The structure of the supply chain is given 
in Figure 1. The demand for each product follows a normal 
distribution (120,  10)N . We set [30,  50, 46, 41, 25]r = , 

10 kp k= ∀ , 8 kq k= ∀ , and 3 ke k= ∀ . We plot the 
change of optimal strategy for one of the resources as unit 
profits increase in Figure 2. We can see that both the 
optimal total capacity and the fixed capacity increase as 
unit profits increase.  Also, the ratio between the option 
capacity and the fixed capacity increases as the unit prices 
increase. This means that as unit prices increase the firm 
will increase the amount of option capacity in the optimal 
strategy. Moreover, both curves have a concave structure. 
This is because the utilization of an additional unit of 
capacity deceases as the total capacity and fixed capacity 
increase.  
 Finally, we look at the effects of unit prices. We 
set q e+ to be a constant and increase q.  When q is small, 
the firm pays less up-front cost to reserve capacity and a 
higher exercise price. When q is large, the firm will pay 
more to reserve and less to use the capacity. If q e+ is a 
constant, the firm prefers to pay less up-front cost since the 
penalty of over reservation is less. This intuition is 
confirmed by the plot given in Figure 3. When q is small, 
the firm reserves more capacity in total and less fixed 
capacity and when q is large the firm reserves less capacity 
in total and more fixed capacity. 

V. MULTI-PERIOD CAPACITY PLANNING AND INTEGER 
CONSTRAINT 

In this section, we discuss how to extend the single 
period model to a multi-period setting and how to solve the 
problem if capacity only can be reserved in indivisible 
units. 

Depending on the time length of the contracts, there are 
different ways to formulate a multi-period capacity 
planning problem. If the contracts require a long term 
commitment, after the firm signs the contract to acquire 
capacity, the same amount of capacity might need to be 
bought or reserved in each period until the end of the 

planning horizon. On the other hand, if the contracts are 
short term, the firm can reserve different amounts of 
capacity for different periods. Huang, et al. (2006), Roundy 
et al. (2004), Barahona et al. (2005), and Martinez-de-
Albéniz and Simchi-Levi (2002) consider long term 
contracts while Yazlali and Erhun (2006) use short term 
contract. For both formulations, we can show that if 
demands from different periods are independent, we can 
decompose the multiple-period problem into a series of 
single period problems. However, if demands from 
different periods are not independent, a simple 
decomposition algorithm might not be applicable. We will 
address this problem in our future research.        

In practice, the capacity might only be procured or 
reserved in bulk units. This requires that the decision 
variables, C and G, to be integer multiples of some base 
unit. Having integer decision variables will increase the 
difficulty of solving the problem. Barahona et al. (2005) 
and Ahmed and Garcia (2003) have proposed some 
approximation algorithms that can be used to cope with 
these difficulties.  Their algorithms need to solve an LP-
relaxation of the integer programming problem.  Similar 
types of technique might be used with the algorithm given 
in this paper to solve integer capacity planning problem. 

VI. CONCLUSION 
In this paper, we propose a model to study capacity 

planning in a multi-product and multi-stage supply chain 
with multiple types of contracts. The model is very general 
so that manufacturers can use it to plan their resources and 
also design their supply chain structure.  We also give a 
practical algorithm for solving the capacity planning 
problem. We believe that our work opens the door to many 
future research topics. 
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Figure 1: A supply chain with 5 products, 9 processes, and 9 resources. 
 

 
 

Figure 2: Optimal Capacity vs. Unit Profits Increment
 

 
Figure 3: Optimal Capacity vs. Up-front Reservation Price 
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