
 

 

  
Abstract —In the paper, we minimize the holding cost of 

the safety stock held in a supply chain modeled as a general 

network. By our assumption, the demand is bounded by a 

concave function. This fact allows us to formulate the 

problem as a deterministic optimization. We minimize a 

concave function over a discrete polyhedron. The main goal of 

the paper is to describe an algorithm to solve the problem 

without assuming any particular structure of the underlying 

supply chain. The algorithm is a branch and bound 

algorithm. 

 
Index Terms—Base-stock policy; Multi-Stage Supply Chain 

Optimization; Safety Stock Placement; Branch and Bound 

Algorithm. 

 

I. INTRODUCTION 

he problem being solved here deals with the amount of 

safety stock to hold at each stage of a supply chain. On 

one hand the amount must be such that a manufacturing 

company is able to serve its customers on time and satisfy 

most of the demand. On the other hand, the amount of 

stock to hold must be small to minimize holding and 

storage costs. By solving the problem a manufacturing 

company can protect itself against uncertain demand and 

provide a high level of service to its customers. 

The problem was solved previously for a supply chain 

that can be represented as a spanning tree [1].  In the 

current paper, our objective is to find an algorithm to solve 

the problem for the general structure supply chains. The 

rest of the assumptions of the model remain the same as in 

[1]. In particular, we assume that each stage operates with 

a common review base-stock policy, the demand is 

bounded and the company wants to satisfy 100% of the 

customer demand. The formulation allows each stage of 

the supply chain to quote service times to the adjacent 

stages. The safety stock becomes a function of the service 
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times. If we want to reduce the inventory at a particular 

stage of the chain, we set a longer service time, which 

allows the stage to store less and to delay production . 

Now, we have to find a right balance between quoting long 

service times at some stages and making the others wait 

and store inventory.  

The assumption of bounded demand is the key 

assumption of the model. This assumption allows us to 

formulate the problem as a deterministic optimization. 

Moreover, we assume that the bounding function is 

concave.  Therefore, the problem deals with minimization 

of a concave function over a set of constraints. 

The algorithm developed here is a branch and bound 

algorithm. We show how the description of the optimal 

solutions helps us construct a branching tree. To develop 

the bounds on the branches, we use the algorithm for a 

spanning tree from [1]. 

In the next sections we first state the assumptions of the 

model and its mathematical formulation. Then, in section 

III we describe a subset of feasible solutions of the 

problem that contains an optimal solution. The algorithm is 

stated in section IV. 

II. ASSUMPTIONS AND FORMULATION 

A. Assumptions 

Assumptions of the model were originally introduced in 

[1]. Here, we only outline the assumptions. 

• Multi-stage network. We can model a supply chain 

as a network. Nodes and arcs of the network have 

natural interpretation in terms of the chain. Each node 

or stage in the network can be seen as a processing 

function in the chain. We place an arc from node i to 

node j if a product of stage i is needed in production at 

stage j. If a node is connected to several upstream 

nodes, then the node is an assembly requiring inputs 

from each of the upstream nodes. The nodes are 

potential locations for holding a safety-stock of the 

item processed at the node. 

Due to the interpretation of the network we assume 

that the network does not have directed cycles. This 

fact says that a component once processed in a node 

can not return back to the node in an assembly with 

other components. 
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Let N be the number of nodes and A be the set of 

arcs in the graph representing the chain. 

• Production lead-times. We assume that each node j 

has a deterministic production lead-time Tj, where 

lead-time is the total time of production, given that all 

necessary components are available. 

Here we also introduce maximum replenishment 

time for a node j: 

{ }AjiMTM jjj ∈+= ),(max  

The maximum replenishment time is the length of the 

longest directed path (with arc lengths Tj) in the 

network that terminates at node j, and represents the 

longest possible time to replenish the inventory at 

node j.  

• Demand process. We assume that external demand 

occurs only in the demand nodes, namely in the nodes 

with zero out-degree. We denote the set of demand 

nodes as D. For each node j in D demand dj(t) comes 

from a stationary process with average demand per 

period µj.  

Any other node i∉D has only internal demand from 

its successors. We can calculate the demand in node i 

at time t by summing the orders placed by its 

immediate successors: 
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where a scalar θij is associated with each node 

representing the number of units of upstream 

component i required per downstream unit j. From this 

relationship, we find the average demand rate for the 

node i to be 
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The most important assumption of the model is that 

demand is bounded. In particular, for each node j there 

exists a function Dj(F) for F=1,2,…,Mj, such that 

1) for any period t  

Dj(F)≥dj(t-F+1)+dj(t-F+2)+…+dj(t); 

2) Dj(0)=0; 

3) the function is concave and increasing for 

F=1,…,Mj; 

4) Dj(F)-Fµj is increasing in F. 

• Base-stock replenishment policy. All stages operate 

under a periodic-review base-stock policy with a 

common review period. We assume that there is no 

delay in ordering, therefore, all the nodes see customer 

demand once it occurs in the demand nodes. Based on 

the observed demand, inventory is replenished up to 

the bases stock level. 

• Guaranteed outbound service times. We assume that 

node j provides 100% service and promises a 

guaranteed service time Sj to its downstream nodes. 

That means that demand dj(t) that arrives at time t must 

be filled at t+Sj. Note, we assume that for any non 

demand node j quotes the same service time to each of 

its downstream nodes i: (j,i)∈A. 

Also, we impose bounds on the service times for the 

demand nodes, i.e., Sj≤sj, j∈D, where sj≤Tj is a given 

input that represents the maximum service time for the 

demand node j. 

• Guaranteed inbound service times. Let SIj be 

inbound service time for the node j. We define 

inbound service time to be the time for the node j to 

get all of inputs from nodes i: (i,j)∈A  and to 

commence production. We require that SIj≥Si for all 
arcs (i,j)∈A, since stage j cannot start production until 

all inputs have been received. We can show that, if the 

objective is to minimize the cost of the safety stock 

held in the chain, it is optimal to have [5]. 
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All the parameters described here are known except for 

the service times. The service times are decision variables 

for the optimization. 

B. Formulation 

Suppose Bj is the base stock level for a node j and Ij(t) is 

inventory in j at time t. Then the finished inventory at the 

stage j at the end of period t is 

Ij(t)=Bj-dj(t-SIj-Tj, t-Sj), 

where dj(a b) denotes demand at stage j over the time 

interval (a,b]. 

To provide 100\% service level, we require Ij(t)≥0. To 
satisfy this requirement, we set the base stock Bj=Dj(SIj+Tj-

Sj). Hence, the expected inventory at the stage j is 

Dj(SIj+Tj-Sj)-(SIj+Tj-Sj)µj, 

which represents safety stock held at the stage j. 

Now, we formulate the problem P of finding optimal 

guaranteed outbound service times Sj, j=1,…,N and 

inbound service times SIj, j=1,…,N in order to minimize 

total cost of safety stock in the chain. 
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This is a problem of minimizing a concave function over 

a polyhedron, which in general is NP-hard (see [2] and 

[3]). It is not proved whether problem P is or is not NP-

hard. In the case the supply chain is presented as a bipartite 

graph a branch and bound algorithm can be used to find an 

optimal solution [5]. Here, we provide a branch and bound 

algorithm for a general network presentation of the chain. 

 

III. NECESSARY CONDITIONS 

In this section we describe solutions of the problem P 

that can potentially be optimal. To specify a set of such 

solutions, we introduce necessary conditions and describe 

feasible solutions that satisfy the conditions. The structure 



 

 

of the solutions is critical in constructing the branch and 

bound algorithm in the following section. 

We first define layers of the network. Node i belongs to 

the layer L1 if there are no incoming arcs to the node i. 

Node i belongs to the layer Lk if there exists a directed path 

(i1,…,ik=i) of length k from a node i1∈L1 to the node i and k 

is the length of the longest path of the type. Let the number 

of layers be K. 

Lemma 1. There always exists an optimal solution 

(S1,…,Sn,SI1,…,SIn) of the problem, such that all the 

inbound service times of the nodes from layer L1 are 0: 

SIj=0 for all j∈L1 

and the remaining inbound service times are equal to the 

maximum of the outbound service times of the adjacent 

upstream nodes  

SIj=max{Si, (i,j)∈A} for all j∈Lk, k>1.  

Proof: We introduce a layer of dummy nodes L0. The 

nodes are upstream of layer L1 and are only connected to 

the nodes from L1. For the purpose of the proof we add the 

new arcs to the set A. The nodes can be seen as an infinite 

source of raw materials for the production chain. The lead-

times of the nodes are 0; consequently, we can assign 

outbound and inbound service times to be 0. 

Suppose δj=SIj-max{Si, (i,j)∈A}>0 for j∈Lk, k>0. We 

define a new solution 

SIj′=SIj-δj 

Sj′=Sj-min{δj, Sj}. 

We can now consider two cases. 

1. δj≤Sj. Then the new solution is feasible and  
SIj′+Tj-Sj′= SIj+Tj-Sj. 

Therefore, the new solution has the same cost, is 

optimal and satisfies the lemma. 

2. δj>Sj. Then the new solution is feasible, but  

SIj′+Tj-Sj′=SIj+Tj-Sj-(δj-Sj)< SIj+Tj-S 

By the assumption 4) for the demand process, 

inventory at the stage j decreases as SIj+Tj-S decreases, 

the cost of the new solution is strictly less than the cost 

of the optimal solution. Therefore, δj is always no 

greater than Sj. 

The two cases show that we can always reduce the 

inbound service time to the maximal incoming inbound 

service time. In case of the nodes from the layer L1, we can 

always reduce the inbound service times to 0, since the 

outbound service times of the nodes from L0 are 0. Q.E.D. 

Lemma 2. Let j be a demand node. In an optimal solution, 

Sj=sj. 

Proof. The cost function decreases when outbound service 

times increase. Moreover, the only upper bounds on the 

outbound service times are the guaranteed service times si. 

We also assume that the guaranteed service times si≤Ti for 

the demand nodes which prevents the arguments of the cost 

function from becoming negative. Therefore, the outbound 

service times are equal to the guaranteed service times. 

Q.E.D. 

 The two lemmas provide a characterization of optimal 

solutions for the problem. It is optimal to have service 

times for the demand nodes to be equal to the maximum 

guaranteed service times. It is also optimal for an inbound 

service time to be equal to the maximum outbound service 

time of its upstream nodes. 

The results are rather intuitive. Postponing delivery of a 

product to the end customers till the latest possible moment 

gives greater flexibility in the earlier stages of the chain, 

and therefore more opportunities to minimize the total cost 

of the safety stock. The intuition behind the result of the 

first lemma might be as follows. In order to avoid 

unnecessary inventory in a node, the inbound service time 

of the node should be no greater than the largest 

guaranteed service time of its suppliers. 

Observation 1. The objective function can be presented as 

a function of outbound service times Si only. For each 

solution (S1,…,Sn), the corresponding (SI1,…,SIn) can be 

reconstructed using lemma 1:   

SIj=0 for all j∈L1; 

SIj=max{Si, (i,j)∈A} for all j∈Lk, k>1. 

Observation 2. The objective function can be represented 

as a function of inbound service times SIi only. For each 

solution (SI1,…,SIn), the corresponding (S1,…,Sn) can be 

reconstructed using lemmas 1 and 2 and the fact that the 

inventory cost decreases when the outbound service time 

increases.  

Si=si for all demand nodes i; 

Si=min{SIj, Ti+SIi; (i,j)∈A} for all non demand nodes i. 

Observation 1 was previously used to construct a branch 

and bound algorithm for two-layer networks [5]. 

Observation 2 will now be used for a branch and bound 

algorithm for a general network. 

Now, we formulate two lemmas that further characterize 

the optimal solutions of the problem. The objective of the 

lemmas is to provide a more detailed description of the 

extreme points of the polyhedron described by the 

constraints of the original problem P. 

Lemma 3. If i∈Lk and k<K, then in an optimal solution 

Si=0 or 

Si= SIi+Ti or Si=  SIr+ Tr for some r such that (r,j)∈A and 

j∈Lk+1. 

Proof. Suppose we have an optimal solution for the 

problem. Define set L to consist of nodes i such that (i,j)∈A 

for some node j∈ Lk, k>1.  Let us renumber the nodes such 

that the nodes from L receive numbers 1 to m in the order 

of increasing outbound service times, i.e., 

Sl≤…≤Sm, 1…m∈L. 

Suppose these outbound service times are optimal. 

Suppose for some node i∈L we know that Si<SIj for all 

nodes j: (i,j)∈A. The only other condition on Si is 

Si≤Ti+SIi. If Si<Ti+SIi, then we can increase Si without 

violating any constraints, and decrease the value of the 

objective function. This contradicts the supposition of the 

optimality of S1,…,Sm. Hence, we can conclude that if 

Si<SIj for all nodes j: (i,j)∈A, then Si=SIi+Ti.  

Suppose now Si=SIj=a>0 for some node j: (i,j)∈A. 

Consider a subset of nodes Ca such that 

• i∈Ca; 

• j∈Ca if j ∈ L and Sj=a; 

• j∈Ca if j ∈ Lk and SIj=a. 

 



 

 

Without loss of generality we can assume that Ca is 

connected. Let u=min{j: j∈Ca∩L} and v=max{j: j∈Ca∩L}. 

That means 

S1≤…<Su=…=Sv<…≤Sm. 
We note, that since a=Sj, u≤j≤v, we have a≤SIj+Tj, 

u≤j≤v. Let SImin+Tmin=min{SIj+Tj: u≤j≤v}. We can express 

the total inventory function of the nodes contained in Ca as 

a concave function of a for feasible values of a. The 

parameter a is constrained below by Su-1, and is constrained 

above by the minimum of Sv+1 and SImin+Tmin.  Thus, the 

function achieves its minimum at one of these end points. 

If the minimum of the function were at Su-1 = a, then we 

should include node u-1 in Ca. The same is true if the 

minimum of the function were at Sv+1 = a. Therefore, we 

can conclude that a = SImin+Tmin < Sv+1.   

Suppose now, that a=S1. Then we again define Ca. This 

time the total inventory function on Ca is concave in a and 

is defined on [0,min{SIj+Tj: 1≤j≤v}]. Therefore, the 
optimal a must be 0 or min{SIj+Tj: 1≤j≤v}. This completes 

the proof of the lemma. QED. 

The following lemma is a direct consequence of the 

previous lemma and observation 2.  

Lemma 4. If j∈Lk and k>1, then in an optimal solution 

SIj=0 or 

SIj= SIi+Ti for some i such that (i,r)∈A and r∈Lk . 

 We use lemma 4 to construct a branching tree for the 

algorithm described in the next section.  

IV. ALGORITHM 

As noted previously, the algorithm we describe here is a 

branch and bound algorithm [4]. In this section, we first 

specify the branching tree, and then the methods of 

constructing upper and lower bounds. 

a) Branching tree 

To construct the tree we number the nodes in the graph. 

We start by numbering nodes such that a node i∈Lk only if 

there are no nodes with lower numbers in the layers with 

smaller k. In other words, we start by first numbering the 

nodes of layer L1 and assign the numbers in any order to 

the nodes of the layer. The nodes of L1 receive the numbers 

from 1 to the maximum number of nodes in the layer. Then 

we continue numbering the nodes of layer L2 and so on. 

Lemma 4 and the order of the nodes give us a way of 

constructing a branching tree. As we know from 

Observation 2, the objective function can be presented as a 

function of inbound service times only.  By lemma 4, the 

inbound service times SIj can take only a finite number of 

values in an optimal solution for all j. Therefore, the most 

natural step in constructing the branching tree is to try all 

possible values of SIj. The ordering of the nodes provides a 

systematic way to do this. 

We start from layer L1. From Lemma 1 we know that SIj 

for all nodes j in the layer take 0 value. Then we move to 

L2, L3,…,LK in the order of increasing the node numbers. 

Suppose we are at the layer Lk. The numbering of the 

nodes in the layer is r, r+1, … , p. Starting from node r we 

let SIr be 0 or SIi+Ti where node i has a directed arc to a 

node in layer Lk. Then we do the next branching step for 

the nodes r+1 to p. Note here, once we assign a value of 

inbound service time for node r, we impose an upper 

bound on the outbound service times for all the upstream 

nodes that supply the node. If for some node i, we have 

assigned SIj for all its successors m (i,j)∈A, then we can 

calculate the outbound service time Si using lemma 3. In 

particular, the service time is min{SIi+Ti, SIj}. The first 

term in the minimum is defined already, because node i 

belongs to a layer which we have already used in 

branching earlier in the process. Therefore, SIi is already 

known. We have to include SIi+Ti in the minimum to make 

sure that SIi+Ti-Si≥0 as imposed by the constraints of the 

formulation.  

In general, by the time we branch on the nodes from 

layer k, we have already assigned a part of the solution to 

the nodes that are connected to the layers 2 to k-1 only. Let 

us call the set of such nodes Nk. Indeed, since the nodes 

themselves belong to the lower layers, we specify their 

inbound service times SI. Because they are connected only 

to the nodes from upstream layers, for which the inbound 

service times are set, we can calculate the outbound service 

times of the nodes from Nk as described earlier using 

lemma 3. 

Example. As an example, let us consider the network 

presented on Fig.1. The lead times of the nodes of the 

corresponding supply chain are 

T1=1, T2=2, T3=3, T4=4, T5=5. 

In figure 2, we show the tree for enumerating all of the 

solutions, which is the basis for the branch and bound 

algorithm. Note that as we generate the tree, the partial 

solution for the upstream nodes will impose some 

constraints on the inbound service times that need to be 

considered for the downstream nodes.  

b) Lower bounds 

As discussed in the previous section, a part of the 

solution can become known after each branching point, 

namely the nodes with known inbound and outbound 

service times. Effectively these nodes can be removed from 

the supply chain network. The nodes with known inbound 

service times, but unknown outbound service times stay in 

the network, but their outbound service times are bounded 

from above if inbound service times have been set for any 

downstream nodes that are direct descendents. The 

resulting subnetwork is a general network, and we want to 

develop a lower bound on the solution to the original 

problem restricted to the subnetwork.  

To find a lower bound, we relax some of the constraints 

of the problem P. In particular, we remove some 

constraints of the form Si ≤ SIj (i,j)∈A.  Removing the 

constraints is equivalent to removing corresponding arcs 

from the graph. The goal is to remove the minimum 

number of arcs for which the resulting graph has a tree 

structure.  

For the spanning tree we can apply the algorithm from 

[1] to solve the relaxed problem optimally and, therefore, 

to obtain a lower bound. The original algorithm from the 



 

 

paper must be modified to accommodate possible bounds 

on some of both the outbound service times and the 

inbound service times of the nodes that remain in the 

graph.  

c) Upper Bounds 

Here, we show how to obtain an upper bound on the 

solution for the problem constrained to the subnetwork. It 

is enough to find any feasible solution. Given that we have 

a solution for the tree constructed for the lower bound, we 

can easily modify the solution to make it an upper bound.  

The solution we obtained for the relaxed problem can be 

‘fixed’ in the following way.  The lower bound solution 

might not be feasible, since it can violate the constraints 

removed to obtain a spanning tree. The constraints are of 

the form Si≤SIj for (i,j)∈A. From Lemma 1 we know that 

the inbound service time SIj has to be equal to the 

maximum outbound service time of the upstream nodes 

directly connected to node j. Therefore, the solution can be 

fixed in two ways. 

The first way to fix the solution is to increase the 

inbound service time of j to be equal to the maximum 

outbound service time of a directly connected node. The 

new inbound service time is 

SIj=max Si, (i,j)∈A.  

The new solution is feasible. To see that, we check all of 

the constraints of problem P.. Indeed, the inbound service 

time stays non negative, since it can only increase. The 

constraint SIj+Tj-Sj≥0 is also satisfied. And any constraint 
on the arcs Si≤SIj (i,j)∈A is satisfied by construction of the 

new solution. Therefore, the new solution is feasible and is 

an upper bound on the optimal solution for the subnetwork. 

Another way to fix the solution is to set the inbound 

service times to be the maximum of the inbound service 

times allowed by the constraints. In particular, the new 

solution will have  

Si=min{SIi+Ti, SIj} for (i,j)∈A. 

The new solution is feasible. Indeed, SIi+Ti and SIj are non 

negative. Si becomes no greater than SIj for all (i,j)∈A. 

Since Si can only decrease, SIj+Tj-Sj can only increase and 

therefore can not become negative. Therefore, the new 

solution can be an upper bound on the solution for the 

subnetwork problem. 

Another way of constructing an upper bound is to solve 

the problem optimally imposing some constraint on the 

unknown variables. For example, for the two-layer 

network, the problem can be solved optimally in 

polynomial time if we order the outbound service times of 

the component nodes [5]. 

V. CONCLUSIONS 

In this paper we present a method to solve the problem 

of safety stock placement in supply chains modeled as a 

general network. We characterize the set that contains 

optimal solutions of the problem. Using this 

characterization, we show how to systematically enumerate 

the solutions, which is the basis for a branch and bound 

algorithm.  

The performance of the branch and bound algorithm 

depends on the quality of the bounds. We continue to 

research how to improve these bounds. Whereas the 

calculation for the lower bounds seems reasonable, we 

expect we can improve upon the method for obtaining 

good upper bounds.  

Another direction for the future research is to relax some 

of the assumptions of the model. For example, we are 

interested in developing a similar model that permits 

production capacity. This extension can make the model 

more useful for applications.  

 

REFERENCES 

[1] S. Graves, and S.Willems, “Optimizing strategic safety stock 

placement in supply chains,”  Manufacturing & Service 

Operations Management, vol. 2 No. 1, pp. 68-83, Winter 2000. 

[2] S.-J. Chung, “NP-completeness of the linear complementarily 

problem,” Journal of Optimization Theory and Applications, 60:393-

399, 1989  

[3] O.L. Mangasarian, “Minimum support solutions of polyhedral 

concave problems,” Optimization, 45 (1-4), pp. 149-162, 1999. 

Dedicated to the memory of of professor Karl-Heinz Elster.  

[4] B. Korte, J.Vygen, Combinatorial Optimization: Theory and 

Algorithms (Algorithms and Combinatorics, 21). Springer Verlag; 

2nd edition, 2002. 

[5] E. Lesnaia, “Optimizing safety stock placement in two-layer supply 

chains”, Proceedings of the 2003 SMA Conference, Singapore,  5 

pp., January 2003. 



 

 

 

  

12

34

5

 
Fig. 1. Five-node supply chain example 
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Fig.2. An  enumeration tree for the network presented on Fig. 1. 


