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Abstract: We develop a constant-inventory tactical planning model for a generic manufacturing
system, such as a job shop. The model is based on a discrete-time, continuous flow model
developed by the first author. In the model, we assume that we can regulate the release of work
to the shop to maintain the constant-inventory constraint. We characterize the conditions for
which the shop production levels converge to a steady-state distribution. We then determine the
first two moments for the production random vector. We illustrate the use of the model with an
industry application.

Subject classifications: performance evaluation and planning for a job shop; constant WIP
control; work-flow smoothing
Area of review: manufacturing, service and supply chain operations




1. Introduction

This paper discusses an analytic model for a manufacturing system that is comprised of multiple
workstations and produces multiple products or services. Each product or service typically
requires processing at a series of stations, and different products will have different process
routes through the shop; there is no dominant flow path, and there is often significant uncertainty
in process routing and workloads. A distinguishing characteristic of this generic manufacturing
system is its inherent flexibility, in terms of its ability to accommodate a wide range of products
and processes. However, this creates challenges for how to plan and schedule the workflow
through the shop.

In this paper we extend the tactical planning model in Graves (1986) to incorporate an
additional control policy. In particular we add a constraint on the total amount of work-in-
process inventory in the manufacturing system. Thus, the control policy regulates the release of
work to the system so as to maintain this inventory constraint.

The intent of this paper is similar to that of the Graves (1986). We wish to develop a
model that can be used to understand the interrelationship and interplay of variability, capacity
and work-in-process inventory in a generic manufacturing system, such as a job shop. The intent
is to help managers with tactical decisions in the design, improvement and operation of a
complex manufacturing system. The key tactical challenge is to find the most efficient balance of
resources, in terms of capacity and work-in-process inventory, needed to satisfy customer
requirements, specified in terms of volume of work and flow times. Beyond Graves (1986), we
now consider the tactic of regulating the input flow on work released to the shop; we wish to

understand how this tactic can help to improve the operation of a shop.



We expect this model to be used in an exploratory fashion to identify high leverage
points for improving the performance of a shop, and for addressing various what if questions.
For instance, what is the impact on the manufacturing system of imposing a limit on the work-in-
process inventory, and how best should one set this limit? What is the impact from increasing
capacity at one workstation in the shop? What additional capacity is needed to reduce the flow
times through the shop? These are the types of questions we hope to explore with the model.

But our intent is to develop a simple model that is easy to implement and to use. In this
respect we make simplifying assumptions so as to keep the model analytically tractable and
parsimonious in terms of required data. As such, the model provides first-order analyses and
answers to the questions posed above, and we expect the model to be used, in a complementary
fashion, with more detailed models or simulations that would verify the findings and results from
our first-order model.

Keeping the inventory in a shop constant is an increasingly popular strategy to control
inventory and work-in-progress levels, along with production variability, and has been studied in
detail. Relevant work on constant work-in-progress rules includes that of that of Spearman,
Hopp and Woodruff (1989, 1990), Duenyas and Hopp (1993), Duenyas, Hopp and Spearman
(1993), Gstettner and Kuhn (1996), Herer and Masin (1997), Hopp and Roof (1998), Dar-El,
Herer and Masin (1999), Ryan, Baynat and Choobineh (2000), and Ryan and Choobineh (2003).
Framinan, Gonzalez and Ruiz-Usano (2003) provide a comprehensive review of the research
literature on CONWIP systems.

For the purposes of tactical planning, a common approach is to model a job shop as a
network of queues. Jackson (1957, 1963) developed the basic models for open queuing

networks, now known as Jackson networks. Gordon and Newell (1967) extended the analysis of



Jackson networks to a closed queuing system, whereby the number of jobs in the system remains
constant. Kelly (1979) provides a comprehensive treatment and generalization. Conway and
Georganas (1989) discuss a number of queuing network models, and numerical algorithms to
calculate their values. Most of these models assume that arrivals and/or processing times are
exponentially distributed, and assume that workstations process work at a constant rate.

The tactical planning model (TPM) in Graves (1986) is a discrete-time linear-systems
model of a job shop that determines the first two moments of the production random variables,
given a set of planned lead-times for the workstations. Rather than track individual jobs (as in a
Jackson network), the model tracks workloads at each station, and assumes that work arrivals to
a station are linear functions of work completed at upstream stations. Fine and Graves (1989)
apply the TPM to an IBM manufacturing system that produced components for mainframe
computers, and show how to modify the model to account for a control policy on the input mix
to the shop. Leong (1987) shows how to adapt the TPM to permit a Kanban control policy in
which downstream stations pull work from upstream stations. Graves (1988a) extends the one-
station model to permit workstation failures, to incorporate variability due to lot-sizing, and to
include an explicit capacity constraint. Mihara (1988) extends the TPM to multiple-station
systems in which each station fails in accordance with a Bernoulli process. Hollywood (2005)
develops the TPM for the case of non-linear production rules for modeling distributed computing
networks. He employs a linearization approach to obtain second-order and first-order
approximations of the expectations and of the variances, respectively, for the production and
queue length random variables. He then shows the effectiveness of these approximations

compared to a simulation.



In this paper, we show how to extend the TPM to incorporate a constraint on the work-in-
process in the shop, and show how this extension significantly reduces production variability in
the shop. In section 2, we review the TPM. We then present and analyze the constant-inventory
model in section 3. We report in section 4 on an application to illustrate how the constant-
inventory model can be used. In section 5 we show how to set the parameters for the constant-
inventory model so that it has the same expected throughput and work-in-process as a given
TPM. In section 6 we test the constant-inventory model on an example job shop to demonstrate
the advantages of the model over both the TPM and a constant-release model where we keep the

input to a station constant. We conclude in section 7 with a few ideas about next steps.

2. Review of the Tactical Planning Model

The tactical planning model (TPM) is a discrete-time model of the work-flow through a network
of workstations, where there are no restrictions on the flow structure. We assume an underlying
time period for the model and express the arrival of work per period in terms of time units (e.g.
hours) of work rather than individual jobs. We model production per period at a workstation as
the amount of work performed rather than as the number of jobs completed. Individual jobs
have no identity in the model.

Each station uses a linear control rule to determine the amount of work to perform each

period. The rule is:
Rt =2iQit, 1)
where Pj; is the production of work station i in time period t, Qj; is the work-in-process or work-

in-queue at the start of period t, and the parameter ¢;,0 < ¢ <1, is a smoothing parameter. This

rule states that the production at workstation i is a fixed portion (o) of the queue of work
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remaining at the start of the period. We discuss the motivation for this control rule at the end of

the section.  We model the queue level Qj;; by a standard inventory balance equation:
Qit =Qit-1-Rt-1+Ar, (2)

where Aj; is the amount of work that arrives at workstation i at the start of period t. By using the

control rule (1) to replace Qj; in the balance equation (2), we get a simple smoothing equation:
Rt =(1-aj )R t-1+aiAt - 3)

The next step in the model development is to characterize the work arrivals. A
workstation receives two types of arrivals: new jobs that have their first processing step at the
station, and in-process jobs that have just completed processing at an upstream station. We

model the arrivals to a station from another station by the equation:
Aijt = #ijPj -1+ &ijt - 4)

Ajjt is the amount of work arriving to station i from station j at the start of period t, @; is a
positive scalar, and g;j: is a random variable. We assume that one unit (e.g. hour) of work at
station j generates ¢; time units of work at station i, on average. gjiis a noise term that
introduces uncertainty into the relationship between production at j and arrivals to i; we assume
this term is a serially i.i.d. random variable with zero mean and a known variance.

Then, the arrival stream to station i is given by:

At :ZAijt"'Nitv (5)
J

where Nj; is an i.i.d. random variable for the workload from new jobs that enter the shop at

station i at time t. Substituting for Ajj;, we find:



At = D #jPj.t-1+ &it» Where &t = Nip + ) sijt - (6)
i i

Note that &; represents arrivals that are not predictable from the production levels of the previous
period, and consists of work from new jobs and noise in the flow. By assumption, the time series
&t Is independent and identically distributed over time.

To present the analysis for the TPM, we rewrite the equations for production (3) and for

arriving work (6) in matrix-vector form:

P =(I-D)P,_; +DA;, (7

At =@ Pt-l + St . (8)

where P ={R,...Py}" A¢={Ayg,... Ay}, and g ={ey,....&n} are column vectors of

random variables, n is the number of workstations, I is the identity matrix, D is a diagonal matrix

with {al,...,an}on the diagonal, and @ is an n-by-n matrix with elements ¢;. By substituting
equation (8) into equation (7), we obtain a recursion:

By iterating this equation and assuming an infinite history of the system, we rewrite P, as an

infinite series:

P => (I-D+D®)°Dg, ;. (10)
s=0

We denote the mean and the covariance for the noise vector & byp={z4,..., 15}, and

Y= {aij} , respectively. The first two moments of P, are given by:



E[P]= i(I-D+D(I))SDu:(I-(I))'1u, (11)
s=0

o0
and S =var(P;) = > B°DEDB"™, where B=1-D+D®. (12)
s=0

provided that p(®) < 1, where p(®) denotes the spectral radius of ® (see Graves 1986). We note
that S provides the production variance for each station, as well as the covariance for each pair of
workstations.

Discussion: The assumption of a linear control rule (1) merits some discussion and justification.
In the following we offer several points to clarify our intent and provide support for this
assumption. Graves (1986) provides additional motivation for this control rule.

First, we intend for a simple model that is tractable and easy to apply. As summarized
above, the linear control rule permits a fairly general model that entails just linear algebra and is
readily implemented with MATLAB. We obtain the first two moments for the random variables
for production and queue length at each work station with no distributional assumptions and no
assumptions on the flow matrix other than p(®) < 1.

Second, we find that this rule is somewhat descriptive of actual behavior in many shops.
Work output often does increase as the work-in-process increases in manufacturing and service
systems. For example, Fine and Graves (1989) found a statistically significant linear relationship
between station work-in-process and production at an IBM mainframe subcomponents plant;
more recently, Holly (2006) finds the same at various work stations in an Intel semiconductor
fabrication facility. In white-collar work systems, such as product development, people are the
limiting resources, and can and do adjust their output rate as their work backlog grows. In

machine shops, when the work-in-process grows too large, a manager might adjust the output
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rate by various means: adding overtime, postponing preventative maintenance and training,
running larger batch sizes. When the backlog drops, the manager cuts overtime and reinstates
non-productive activities and events. Nevertheless, we would be hard pressed to argue that
output is strictly linear over the entire range of possibilities. However, as with any model, we
make simplifying assumptions so as to get a first-order understanding of the major effects under
consideration.

Third, we find that many operations, both in manufacturing and white-collar settings,
continue to operate with planned lead times. That is, they plan the flow of work through the
operation by first decomposing the flow into unit steps each of which has a planned lead time. In
effect, each unit step is allocated a fixed amount of time to transform its inputs into outputs.
Questions arise as to how these planned lead times should be set, and what amount of capacity is
required to assure that these times can be met reliably. The TPM provides an approach to this, as
we interpret (1/ ) to be the planned lead time for station i.

Fourth, related to the prior comment, we need to consider how we intend to use the
model. The analysis does not explicitly account for any capacity constraints on the output of a
workstation. Rather, we find the moments for the production random variable for each work
station, e.g., equations (11) and (12), as a function of the smoothing parameter for the linear
production rule. Given the nominal capacity of each workstation, the intent is to set the
smoothing parameters, or equivalently the planned lead times, so that the resulting production
random variables are consistent with the nominal capacity. Thus, the intent is to implicitly
incorporate capacity limits into the model by means of the planned lead times. We illustrate this

in the later sections of this paper.



Fifth, a linear control rule has desirable theoretical properties. Hollywood (2000)
demonstrates that the optimal control rule for minimizing a weighted sum of production and
work-in-process variances over a multi-period planning horizon (including infinite horizon) is a
linear function of the work-in-process at multiple stations.

Finally, we have found that linear rules, particularly for production smoothing, have been
helpful in practice. We have reported our efforts with using linear rules in a number of industrial
projects: Cruickshanks et al. (1984), Graves et al. (1986), Graves (1988b), Fine and Graves
(1989), and Graves et al. (1998). Our experience is that such models can be useful at

highlighting the key tradeoffs and for evaluating counter measures for handling variability.

3. The Constant Inventory Model

In this section, we develop the constant-inventory tactical planning model (CIM). For this model

we require that the weighted inventory of the shop is equal to some constant, W:

ZWiQit =W, Vt. (13)

Here, w; is a non-negative weight for the work-in-process at station i. The units for the work-in-
process Qj: are the time units of work at station i; thus, the weights reflect how to combine
workloads at different stations into a common measure of inventory or workload for the shop.
We can use (13) to achieve an additional degree of control on the workflow through a
shop. To enforce the constraint we need to assume that we can control the work release into the
shop. There is extensive prior evidence that regulating the release of work to a shop provides
great benefits in terms of either reduced and less variable flow times for a given throughput

level, or increased throughput for a fixed level of work-in-process. For instance, we can use (13)
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to incorporate into the TPM a constant work-in—process, or CONWIP, control policy, as
proposed by Spearman et al. (1989, 1990); see also Hopp and Spearman (2001), who provide
both a compelling justification for its use and strong evidence of its merits. We can also use (13)
to model work-regulating control schemes, as developed by Wein (1988, 1990). Finally, we will
show how to embed (13) within an optimization to determine the optimal weights for minimizing
a measure of production variability.

Since we assume a linear control rule (1) for setting production, we can also use (13) to

model any linear constraint on the production rates, e. g.,

D ViRt =V, Vt.

For instance, if the shop has a single bottleneck, we might impose a simple constraint that
specifies the bottleneck’s production rate and then use the model to characterize the workflow
throughout the shop. Another application is when v; is the labor requirements per unit of work at
station i, and there is a finite pool of shared labor V.

To adapt the TPM to include the constraint (13), we assume that the initial work-in-queue

Qio satisfies (13). Then to assure (13) for all time periods, we must have that

W (Qit - Qit-1)=0,vt. (14)

Recall from (2) that the differences in queue levels equal arrivals of new work less completed

work. Then we can rewrite the above equation as:

> Wi (A —Ra)=0vt. (15)
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In order to achieve constant inventory, as specified by (13), we must assume that we can
control the release of work to the shop in some way. Let R;; be the work that we release to station
I at time t to maintain the constant-inventory constraint. We assume that we can set the work
releases Rj; immediately after observing the realization of the random vector g, which
corresponds to the exogenous arrivals to the system plus random noise in the workflow between

stations. The arrival random variable to workstation i at the start of time t is now:

At = D 4iPjt-1+ Nit + X &ijt + Rit, (16)
i ]

where the variables have the same definitions as for the original TPM. We can substitute (16)

into (15) to obtain:
D Wi | D 4iPjo1+Nit + > &ijt +Rig —R 11 | =0, Vt. 17)
i J ]
We can rewrite (17) in matrix-vector form as follows:

WRy =w'((I-®) Py -2 ), (18)

where w={w,...,Wn}", R¢ ={Ry,...,Rp¢}', and the other vectors and matrices are the same as

in the TPM model. Thus, in order to satisfy (13), we must determine the work release vector R¢
so as to satisfy (18) in each period. Unfortunately, we have an under-specified requirement: n
unknowns and only one equation. For the purpose of analysis, we introduce two simplifying
assumptions.

Proportional Releases: We assume that in each period we set R¢ as follows:
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B

Re=r| "2 |=1p. (19)

P
We interpret the scalar r; as the control variable, equal to the amount of work that is released to
the shop at the start of time period t in order to maintain the constant-inventory constraint. Then
the vector B is a template that prescribes how to divide this aggregate work release across the

workstations, where B >0; specifically, station i receives Rj; =1 f; in time period t.

Controllability: We assume that w'g >0, where w={w,...,w,}', and B={A,..., fn}'. We

cannot control the system if we can only release work to stations whose inventories do not

contribute to the constant-inventory constraint, as will be seen.

We substitute (19) into (18):
WRe = (W'B)=w'((I-®) Py -2). (20)

Without loss of generality, given that we assume w'p > 0, then we can rescale 3 so that w'p =1.

Thus, we find the work-release control variable to be:
=w'((I-®)Pyy-2) (21)

Now, if we substitute (19) and (21) into (16), we find in matrix form:

A¢=®P; +5 +Ry,
=Py +&+W'((I-®) Py -2 )B
= (@ +pw'(I-®)) Py +(I-Bw')z
=FP;_1 +Gg;.

(22)
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where F=®+pw'(I-®)and G=1-pw". (23)

As in the TPM, the production vector at time t is given by the following equation:

P =(I-D)P;_; + DA,
= (I-D)P; +D(FPy_; +Ggy) (24)
=(I-D+DF)P;_ +DGg;.

We note that (24) has the same form as (9), the recursion for the TPM. By iterating this

equation, we rewrite (24) for P as the series:

t-1
P =(-D+DF)'DQg + > (I-D+DF)*DGg,_ (25)
s=0

where Py = DQ, for Qq being the initial work-in-process that satisfies (13). In the following
propositions we show that if the spectral radius of F (denoted by p(F)) equals one, then the first
two moments of P; converge as t — .
Proposition 1. We assume the spectral radius of matrix ® is less than one (i. e., p(®) < 1).
Suppose we choose w such that w'® <w'. Then p(F) = 1.
Proof. We first observe that p(F) > 1: from (23) and the assumption that w'p =1, we see that
w'F =w'. Thus, w is the left eigenvector of F with a corresponding eigenvalue of 1.
To show that p(F) <1, we note that F is a positive matrix:
F=0+pw'(I-®)=0+p(W'-W'D)>D>0
where the first inequality is due to the supposition that w'® <w' and the assumption that § > 0,

and the second inequality is due to the assumption that @ is a positive matrix.
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Suppose that p(F) > 1, and let y be the maximal left eigenvector of F such that y’F =\ y’
for A > 1. We consider two cases.
Case 1: Suppose y’B =0. Then consider

YF=y'®+y'pw'(I-®)=y'® =1y’
Thus, y is a left eigenvector @ with eigenvalue A > 1; this contradicts the assumption that p(®) <
1.
Case 2: Suppose y’B = 0. Without loss of generality we can re-scale y so that y’ = 1. Then
consider

YF=y'®+y'pw'(I-®)=y'®+w'(I-®) =1y
By rearranging terms we get

(y'-w')(I) =Ay'-w'>y'-w',
where the inequality is due to the supposition that A > 1 and the fact that y > 0 since F is a
positive matrix. This contradicts the assumption that p(®) < 1.

Thus, if p(®) < 1, we conclude that p(F) < 1.

As we have shown that p(F) <1 and p(F) > 1, we conclude that p(F) = 1. -
Proposition 2. Assume that p(F) = 1. The expectation of P, converges to a finite value as
t > 0.
Proof. Define B=(I-D+DF). B’s largest eigenvalue equals the largest eigenvalue of F (the
argument is identical to that given in Graves, 1986), so p(B) = 1. Further, we see by substitution

that w’D™ is the left eigenvector of B corresponding to B’s maximal eigenvalue:

wD B=wD !0I-D+DF)=w'D!-w' + wF=wD L.
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Define v, to be the corresponding right eigenvector of B, scaled so that w’D™v; = 1. We then

have the following decomposition of B*:
BS=1v,w'D ' +E°.

Here, 1 is the largest eigenvalue of B, and E is an orthogonal matrix such that v, w'D'E=0.
Further, E has a spectral radius strictly less than one. By substituting the expression for B® into
(25), we find:

t-1

P,=B'DQy+ (1s vyw'DDGe,_( + ESDGet_S) .
s=0

We know that BtDQO converges to a finite value as t — o« since the spectral radius of B is one.

This leaves the summation. From (23), we note that w'G =0, so the first term in the summation
IS zero. But then, since the spectral radius of E is less than one, the second term must converge
to a finite value.

Consequently, the expectation of P, converges to the following:

o0
E{ lim Pt} =B*”DQy + Y E°DGp
o> s=0 ,

=v;w'Qg +(I—E) DG,

where p = {,ul,...,un}' is the expectation of the noise vector . Since by (13) w'Q, =W, we

can simplify the above expression:

E[ lim Pt} =Wv, +(I—E)_1 DGp. - (26)

t—w
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Proposition 3. Assume that p(F) = 1. The covariance matrix of P, converges to a finite value as
t—>o0.

Proof. Define B=(I-D+DF). We denote the covariance matrix for P, as t —» oo by S, given

by:

0
S=var| > B°DGeg |,
L s=0

o0
= var Z E’DGg,_ |, as shown in Proposition 2, (27)
s=0

0
= > E'DGXIG'DE®.
s=0

Here, X is the covariance matrix of the noise vector. This summation converges, as the maximal
eigenvalue of E is less than one. -

To understand the convergence conditions, we compare (22) with (8): the matrix F for
the constant-inventory model is analogous to the workflow matrix ® for the TPM. For the
constant-inventory model, FP¢ is the vector of arrivals at the start of period t that are due to the
production in period t-1. For the TPM, we require p(®) < 1 for convergence. For the constant-
inventory model, this condition becomes p(F) = 1, as the workflow matrix F accounts for the
endogenous workflow, given by @, and the induced workflow required to assure the inventory
constraint, given by pw’(I - ®@).

Sufficient conditions for p(F) = 1 are p(®) < 1, and w’(I - ®) > 0. To understand the
latter condition, we interpret the (i, j) element of the matrix (I - ®) as the work-in-process
reduction at station i per unit production at station j. Then the j™ element of the vector w’(I - @)

is the reduction to the weighted work-in-process in the shop per unit production at station j; the

17



condition states that a unit of production at station j does not increase the weighted work-in-
process in the shop. This condition is similar to the convergence condition for the TPM (p(®) <
1), whereby a unit of production at any workstation cannot ultimately generate more than one

unit of return work for that station.

4. lllustrative Example

To illustrate how one might use the constant-inventory model we present an example
based on an application for the Synchronous Machine Division at ABB. Synchronous Machines
engineers and manufactures custom-designed electric generators and motors for a variety of
industrial markets.

We model the production of the stators, which are one of two major subassemblies
required for producing an engineered-to-order electric motor. The production of the
subassembly entails three production stages in series: stator body assembly, stator winding and
impregnation, and stator final assembly. In Table 1 we show the expectation and standard
deviation of the workload per job for each stage. In Table 1 we also show the nominal capacity
available each day for each stage. The nominal capacity represents the typical staffing level for
each stage of the process; however, each stage has some amount of flexibility by which it can
expand its capacity on a daily basis, through use of overtime and shared resources with other
operations. The data in this example have been disguised for proprietary reasons, but remain
representative of the actual data from the application.

As each order requires extensive customization, ABB cannot produce to stock; rather
ABB maintains an order backlog and schedules production at a pre-determined rate based on the

capacity of the bottleneck for the manufacturing system, which is the assembly and test operation
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for the electric motors and generators. The stator subassembly is an input to these downstream
operations. At the time of study, ABB had set a production rate of 2 jobs per day, or 10 jobs per

week.
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E[hours per job] | Std Dev{hrs per job] | Capacity (hrs per day)
Stator body assembly 55.6 47 150
Stator winding and
impregnation 165.9 135.9 385
Stator final assembly 30.2 27.9 85

Table 1: Sample Data for Three-Stage Shop

As part of an improvement project, ABB had decided to implement a CONWIP control
policy for the production of the subassembly. That is, they would maintain a constant work-in-
process of W jobs in the three-stage system for manufacturing the subassembly. The question at
hand was how to set W. The primary tradeoff is that a smaller value of W results in a lower
inventory and a shorter lead-time for producing the subassembly; however, with smaller values
of W, more capacity is required to satisfy the production rate of 2 jobs per day.

To examine this question, we built a simple spreadsheet model that could inform the
implementation of the CONWIP policy, in particular the choice of W. The inputs for the model
are as follows:

Workflow matrix @: There are only two non-zero entries, ¢,; = 2.98 and ¢z, = 0.18. That is,

from Table 1 each hour of work at stator body assembly generates on average 165.9/55.6 = 2.98
hours of work at stator winding and impregnation. Similarly, we find that each hour at stator

winding and impregnation yields 0.18 hours of work at stator final assembly.

Mean and Covariance of noise vector g: There are no exogenous arrivals, as all job releases are
controlled by the CONWIP policy. Hence E[g] = u = 0. We use the covariance of the noise
vector to model the workload uncertainty. In particular we have:

4418
T =cov(g)= 36938 :
1556
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and we assume the off-diagonal elements are zero. The diagonal elements represent the variance
of the workload that arrives at each stage each day. As the production rate for the shop is 2 jobs
per day, we set the diagonal elements to be the variance of the workload for 2 independent jobs.

In reality, these variances are larger, as there is also variability in the daily arrivals.

Release template B: All new jobs enter the system at stage 1, so p=(1 0 0)".

Weight vector w: The CONWIP policy creates a limit on the number of jobs in the system.

Thus, we set the weight vector to convert the workload at each stage, measured in hours, into

jobs: the weights are the inverses of the expected hours per job, given in Table 1. We re-scale
the weight vector so that w'g =1, to get: w=(1 0.34 1.84)".

For each stage i, the model requires a smoothing parameter a; or equivalently, a planned
lead-time, which we denote by A =1/¢;. Rather than specify these parameters a priori, we
formulate an optimization problem for which the planned lead-times (A;) are the decision

variables. In the optimization we minimize the capacity required to meet the production rate

target with a lead-time constraint.

3

Min > cjo (Rt)
i=1

st. 4 2L Vi
3
Y 4<L
i=1

E[R¢]>2h;, Vi

(28)

The decision variables for the optimization are the planned lead-times (A;) and the
inventory limit W. The objective in (28) is to minimize the weighted sum of the standard

deviations of the production random variables. We find the standard deviations, o(Pj;), from the
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covariance matrix S in (27). The objective function weights c; signify the relative cost for
capacity at the different stages. We use the objective function as a surrogate for the cost of the
required capacity.

By the first set of constraints, we assure that the planned lead-times are at least one day
for each stage, or equivalently that the smoothing parameters are no greater than one. The second
constraint establishes an upper bound L on the total lead-time for the subassembly. The third set
of constraints states that the expected workload at each stage, as given by (26) is at least that
required for two jobs per day, where h;is the expected hours per job at stage i.

We solve (28), using a generalized reduced gradient solver in Excel, over different values
for the lead-time target L to explore the trade-off between the requirements for capacity and

inventory (or equivalently lead-time). In Table 2, we report illustrative results for the model,

where we use a weight vector ¢ = (1 1 2)' in the objective function. Each row corresponds to

a solution to (28) for the specified value of the lead-time L. We state the capacity requirements
for each stage as being E(Pi;) + ko(Pi), where we use k = 1.3 for these computations. Thus, if
the noise vector is normally distributed, then the actual production is within the capacity for 90%
of the days; for the remaining 10% of the days, we assume each stage relies on its flexibility
options (e. g., overtime) to expand the available capacity to cover the production.

As expected, we see that the capacity requirements increase as we reduce the lead-time L
and equivalently W, the number of CONWIP jobs. The current staffing plans provide a nominal
capacity of 150 hours/day, 385 hours per day, and 85 hours per/day for the three stages; then one
might set W = 28 jobs. Furthermore, one can see what increases in capacity are necessary to
reduce W. We can also use the model to evaluate the benefits from reducing variability in the

process times at each stage, as well as the impact from changing the production rate.
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L W Stage 1 Stage 1 Stage 2 Stage 2 Stage 3 Stage 3
Capacity | Lead-Time | Capacity | Lead-Time | Capacity | Lead-Time
8 16 166 2.5 415 3.6 93 1.8
9 18 162 2.8 406 4.1 90 2.0
10| 20 159 3.1 400 4.7 88 2.3
11| 22 156 3.3 395 5.2 86 2.5
12 | 24 153 3.6 390 5.7 85 2.7
14 | 28 150 4.2 384 6.7 82 3.1
16 | 32 147 4.7 379 7.7 81 3.6

Table 2: Model Results for Three-Stage Shop

5. Creating Comparable TPM and Constant Inventory Models

To appreciate the merits of a constant-inventory control policy, we will compare its
performance to that for the TPM. In effect, the constant-inventory model corresponds to a closed
shop or closed queuing network, whereas the TPM corresponds to an open shop or open queuing
network. In this section we show how to create comparable TPMs and constant-inventory
models. We first show how to parameterize the constant-inventory model so that it will have the
same expected production and queue levels, and the same expected inputs as a given TPM. We
then show how to parameterize the TPM so that it will have the same expected production and

queue levels, and the same expected inputs as a given constant-inventory model.

5.1 Creating a Constant-Inventory Model from a TPM

In this section, we create a constant-inventory model from a TPM, where we use
subscripts Cl and TPM to denote the respective models.
Proposition 4. Suppose we have a TPM with parameters @, D, £ and prpm. Consider a constant-
inventory model with parameters @, D, X, w, B and pcj, where prpm # e, and where we set the release

template B as follows:
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B= '”TPM .o B (29)
w'(rTPM —RCI)

Then, the two models have the same expected production vectors, namely E[P¢i] = E[Prtpm].

Proof. To show E[P¢;] = E[Prpm]|, We note from (25) that E[P¢] satisfies the following recursion:
E[Pci]=(I-D+DF)E[Pcy]+DGpcy, (30)
which we can simplify to
(I-F)E[Pcy]=Gncy -
We use (23) to substitute for F and G, and can rewrite this recursion as:
(1-®)E[P, ]-pe =BW'[(I-@)E[P]-ng |.

Now we suppose that prem # pcr and we select B as given by (29); then E[P¢i] must satisfy the

following recursion:

w'[(I-®)E[P,]-pg |
W'[HTPM - lla] .

(I - (I))E[PCI ] "R T [HTPM Ry ]

By substitution, we easily see that E[P., ] = (I-®)" p,,,, is a solution, and that, by proposition 2, this is
the unique solution for the recursion. Thus, by using (29) to set g, we have shown that
E[P,]=(1- (I))_l Ripy = E[Prpy].

From (19) and (21), we can use the results of proposition 4 to find the expectation for the

releases for the constant-inventory model:
E[Rcy]=pw'((T-®@)E[Pcr]-ncr ) = BW'(rrpm - Ber) = Brem - Ber

Thus, the expected inputs into the constant-inventory shop, E[Rci] + per, equal the inputs into

the TPM shop, prem.
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5.2 Creating a TPM from a Constant-Inventory Model

Now we suppose that we are given a constant-inventory model, and wish to create a
comparable TPM.
Proposition 5. Suppose we have a constant-inventory model with parameters @, D, X, w,  and

ucr. Consider a TPM with parameters @, D, X, and prpm, Where prpm # per 1S Set as follows:
nrpm =t +Bw'((1-@)E[Pey]-ncr ) (31)

Then, the two models have the same production vectors, namely E[P¢i] = E[Prpm].
Proof. We note that (31) equates the expected inputs for the TPM to that for the constant

inventory model, i.e., pypy =ncr TE[Rcy]. To show that E[Pci] = E[Prem], We know that
E[P¢i] satisfies recursion (30). By substituting (23) for F and G, and rearranging terms, we can
rewrite (30) as:

E[P¢(]=(I-D+D®)E[Pc]+Dpcy +Dpw'((1-®)E[Pcy|-ncy ) - (32)

But (32) has the same form as the expectation of the TPM recursion (9), with

LrpM = BCT +|3w'((I-<I))E[PCI]-pCI). Thus, E[P1pm] also satisfies (32), and we conclude

that E[Pci] = E[Prpm]. *-

6. A Computational Experiment

In this section we perform a computational experiment to illustrate both the use of the constant-
inventory model and the superiority of a constant-inventory control policy relative to alternative
controls. For this experiment, we use the example given in Graves (1986), which corresponds to

a job shop that produces spindle components for grinding machines. The job shop consists of ten
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stations, and the workflow is described by the matrix ® given in Table 3. The only station that

receives work from outside the network is station 1 (the lathe); it receives 4 hours of work, on

average, each time period. We note that each column of ® represents the expected amount of

work generated for subsequent stations per unit of work at the current station.

To test the performance of the constant inventory model, we perform a 2 design test, as

follows. We assume that the covariance matrix X for the noise vector is a diagonal matrix. We

consider pairs of stations (1 and 2, 3 and 4, etc.), and we alternate between giving the pairs

“high” variances and “low” variances. Each “high” station i has a variance of 4, and a lead-time

of4(i. e, Uiz =4 and 1/oj =4). Each “low” station has a variance of 0.05, and a lead-time of 2.

There are 32 test cases formed by choosing all ways to assign “high” or “low” to the station

pairs. Table 4 shows the variances and lead-times for each test.

From Work Station
To Work Station 1 2 3 4 5 6 7 8 9 10
1 (lathe) 0.11 0.68
2 (copy lathe) 0.15
3 (drill press) 0.04 0.01 0.71 0.6 0.07
4 (milling) 0.01 0.41
5 (rough grinder) 0.03 0.37 1.36
6 (internal grinder) 0.24 0.15 0.13
7 (thread cutting) 0.10
8 (hole abrading) 0.01 0.22 1.00
9 (precision grider) 3.43
10 (ultra-precision grinder) 1.16

Table 3: Workflow Matrix
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Station Input Variances Station Lead Times Station Input Variances Station Lead Times
Test |12 34 56 78 910(12 34 56 7,8 910 |Test|{1,2 34 56 78 910|12 34 56 78 910
1 0.05 0.05 0.05 0.05 0.05 |2 2 2 2 2 17 4.0 0.05 0.05 0.05 0.05 |4 2 2 2 2
2 0.05 0.05 0.05 0.05 4.0 |2 2 2 2 4 18 (4.0 0.05 0.05 0.05 4.0 |4 2 2 2 4
3 0.05 0.05 0.05 4.0 0.05|2 2 2 4 2 19 (4.0 0.05 0.05 40 0.05 |4 2 2 4 2
4 0.05 0.05 0.05 40 4.0 |2 2 2 4 4 20 |40 0.05 005 40 4.0 |4 2 2 4 4
5 0.05 0.05 40 0.05 0.05|2 2 4 2 2 21 |40 0.05 40 0.05 0.05|4 2 4 2 2
6 0.05 0.05 40 0.05 40 |2 2 4 2 4 22 |40 005 40 0.05 40 |4 2 4 2 4
7 0.05 0.05 40 4.0 0.05|2 2 4 4 2 23 |40 005 40 40 0.05|4 2 4 4 2
8 0.05 0.05 40 40 4.0 |2 2 4 4 4 24 |40 005 40 40 40 |4 2 4 4 4
9 0.05 40 0.05 0.05 0.05 |2 4 2 2 2 25 |40 4.0 0.05 0.05 0.05 |4 4 2 2 2
10 [0.05 4.0 0.05 0.05 4.0 |2 4 2 2 4 26 |40 4.0 005 0.05 40 |4 4 2 2 4
11 [0.05 4.0 0.05 40 0.05(2 4 2 4 2 27 |40 40 005 40 0.05|4 4 2 4 2
12 [0.05 40 0.05 40 4.0 |2 4 2 4 4 28 |40 40 005 40 40 |4 4 2 4 4
13 [0.05 4.0 4.0 0.05 0.05 |2 4 4 2 2 29 |40 40 4.0 0.05 0.05|4 4 4 2 2
14 |0.05 40 4.0 0.05 40 |2 4 4 2 4 30 |40 40 40 0.05 40 |4 4 4 2 4
15 |0.05 40 4.0 4.0 0.05|2 4 4 4 2 31 |40 40 40 40 0.05|4 4 4 4 2
16 |0.05 40 40 40 40 |2 4 4 4 4 32 |40 40 40 40 40 |4 4 4 4 4

Table 4: Variances and Lead-Times for Test Cases

10
We use the sum of the production standard deviations, that is, ZG(P“), as a measure of
i=1

the capacity requirements for the shop. For each test case, we evaluate this measure for three

control policies: the TPM, the TPM with constant release, and the constant-inventory model.

e For the TPM, the variance of work arrivals to station 1 is 0.05 or 4, depending on whether
the station is set to “low” or “high”.

e For the TPM with constant release, the variance of work arrivals to station 1 is 0. That is, we
assume that exactly four hours of work arrives each period to station 1.

e For the constant-inventory model, we regulate the work release to station 1 to maintain a
constant weighted-inventory in the job shop. We solve a nonlinear program (see appendix)
to find the weights and exogenous inputs that minimize the performance metric and assure
equivalence to the TPM.

Table 5 gives the results of the 32 tests. For each test, we give the performance metric for each

of the three models, and a percentage comparison between the models. The table shows that the
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constant-inventory policy outperforms the other two policies. In comparison with the TPM, the
sum of production standard deviations is 13% lower, on average, for the constant-inventory
model; the percentage reduction ranges from about 5% to over 25% for the test cases. This
performance is much better than the constant-release TPM, which only manages decreases from
0.2% to 12%, with the average being about 3%. The constant-release TPM is particularly
ineffective for cases in which most of the variability is far downstream from the first station
(cases 1 to 16). The constant-inventory model usually produces a significant decrease, even for

cases in which most of the variability is far downstream from the first station.
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Sum of Production Standard Deviations

Percentage Reductions

Test TPM TPM with Constant C. Release C. Inventory C. Inventory
Constant Inventory Over TPM over TPM over C. Release
Release Model
1 2.2781 2.2202 2.0465 2.54 10.12 7.82
2 3.2663 3.2119 3.0289 1.67 7.27 5.70
3 9.6651 9.6328 9.2429 0.33 4.37 4.05
4 8.9121 8.8788 8.5060 0.37 4.56 4.20
5 4.5684 4.5490 3.8723 0.42 15.24 14.88
6 5.1785 5.1594 4.5272 0.37 12.58 12.25
7 10.8417 10.8242 10.1488 0.16 6.39 6.24
8 10.1183 10.1008 9.4424 0.17 6.68 6.52
9 6.2609 6.1937 4.7082 0.21 24.14 23.98
10 6.8003 6.7874 5.4662 0.19 19.62 19.47
11 12.4466 12.4347 11.2520 0.10 9.60 9.51
12 11.7091 11.6971 10.5329 0.10 10.04 9.95
13 7.1819 7.1703 5.8271 0.16 18.86 18.73
14 7.6384 7.6269 6.3927 0.15 16.31 16.18
15 12.9572 12.9462 11.7935 0.08 8.98 8.90
16 12.2348 12.2239 11.0984 0.09 9.29 9.21
17 4.5344 3.8336 3.3131 15.46 26.93 13.58
18 5.3642 4.7063 4.2355 12.26 21.04 10.00
19 11.3964 10.8365 10.3013 4.91 9.61 4.94
20 10.6553 10.0920 9.5699 5.29 10.19 5.17
21 6.0995 5.5940 4.8906 8.29 19.82 12.57
22 6.6659 6.1757 5.5181 7.35 17.22 10.65
23 12.2109 11.7582 11.0923 3.71 9.16 5.66
24 11.4892 11.0355 10.3864 3.95 9.60 5.88
25 7.2972 6.8656 5.5114 591 24.47 19.72
26 7.8661 7.4519 6.2460 5.27 20.60 16.18
27 13.4416 13.0654 11.9967 2.80 10.75 8.18
28 12.7043 12.3272 11.2785 2.97 11.22 8.51
29 8.1720 7.7969 6.5855 4.59 19.41 15.54
30 8.6165 8.2508 7.1400 4.24 17.14 13.46
31 13.8974 13.5530 12.5217 2.48 9.90 7.61
32 13.1746 12.8299 11.8283 2.61 10.22 7.81

Table 5: Test Results

The implication of this computational experiment is a reaffirmation of the benefits from

regulating the workflow into a shop. In particular, we show that the constant-inventory model

has less production variability in comparison with a TPM with equivalent expected throughput

and work-in-process for a job shop. The reduction in production variability translates into less

required capacity and/or a lower production cost.
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7. Concluding Remarks

In this paper, we show how to add a weighted-inventory constraint to the TPM, and to
find the first two moments for the production and work-in-process random vectors. The
algorithmic complexity for determining these moments is comparable to that for the TPM. To the
extent that the TPM is a discrete-time model for an open queuing network, then we might
interpret the constant-inventory model as the analog to a closed queuing network. We describe
an application of the use of the model for sizing a CONWIP control policy. We also show how to
parameterize a constant-inventory model to be comparable to a TPM, and vice versa. We report
on a computational experiment that establishes the benefit of a constant-inventory control policy,
over the TPM, in terms of reducing production variability.

We note some opportunities for future research on the constant-inventory model. First,
one might explore further the stability of these models. In proposition 1, the condition on the
inventory weights that guarantees convergence, is a sufficient but not necessary condition.
Experimental tests suggest that models whose weights violate the proposition are able to
converge if (1) the resulting total weighted arrivals are less than the total weighted production, or
(2) if station lead-times are lengthened sufficiently. These phenomena warrant additional study.

Second, one might extend the analysis to permit multiple constraints. With multiple
constraints we could split the shop into separate sub-sections and apply a constant-inventory
constraint to each sub-section. For instance this would permit the analysis of a shop with
multiple CONWIP loops. We expect that by having independent control on sub-sections of the
shop would allow us to reduce production variations more effectively.

A third possible extension is to combine constant WIP constraints with production rules

that are linear functions of the WIP at multiple stations. The optimal control rules minimizing
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production and WIP variances in Hollywood (2000) were of this form; it may be possible to
make significant reductions in production variability (and thus, capacity requirements) by
allowing multi-station production rules.

A final area of study is to relax the linear control assumption for each station.
Hollywood (2005) has developed a fairly accurate approximation for a TPM with nonlinear
control rules, and has shown how to apply this to model distributed computing networks. It may

be possible to extend this approximation to include a weighted-inventory constraint.
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Appendix

Proposition 4 has shown how to set the parameters for the constant—inventory model so as to
make it comparable to a given TPM. In particular, for a given TPM with expected arrivals prpm,
we set w, B and uc, for the constant-inventory problem to satisfy (29). Thus, we can define
several comparable constant-inventory models.

Suppose we wish to find the “best” from this set of comparable constant-inventory
models. We can do this by optimization, subject to how we define “best.” For the
computational experiment in section 6, we seek the comparable constant-inventory model that
minimizes the sum of the production standard deviations. We formulate an optimization whose
decision variables are the inventory weight vector w and the expectation of the exogenous input

vector ucr. For a given value of prpv, We solve the following problem:

Min ZO‘(P”)

st B—_ PTPM ~HBcr (A1)
w'(prpm —Ber)
et S RTpm
her W =0

The objective function is the sum of the standard deviations of the production random variable;
we obtain this from the diagonal elements of the covariance matrix S, as found from (27). The
first constraint sets the release template B so that the resulting constant-inventory model is
comparable to the TPM. In addition we require the decision variables w and pc; to be non-
negative, and we bound pcy by the given prpm.

The objective function in (Al) is a continuous and continuously differentiable function in

the decision variables, and is fairly easy to minimize. To find the optimal weights for the
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examples in section 6, we employed the Two-Metric Projection Method (see Bertsekas, 1982)
with diagonally scaled steepest descent iterations (taking numerical approximations of
derivatives). Using this approach, an SGI workstation found the optimal weights in well under a

minute of computing time.
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