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Optimizing Strategic Safety Stock Placement in Supply Chains

January 1998

Manufacturing managers face increasing pressure to reduce inventories across the supply chain.

However, in complex supply chains it is not always obvious where to hold safety stock to

minimize inventory costs and provide a high level of service to the final customer.  In this paper

we develop a framework for modeling safety stock in a supply chain that is subject to demand or

forecast uncertainty.  Key assumptions are that we can model the supply chain as a network, that

each stage in the supply chain operates with a periodic–review base-stock policy, that demand is

bounded and that there is a guaranteed service time between every stage and its customers.  We

develop an optimization algorithm for the placement of strategic safety stock for supply chains

that can be modeled as spanning trees. As a partial validation of the model, we describe its

successful application by product flow teams at Eastman Kodak.  We discuss how the model has

been used to reduce finished goods inventory, target cycle time reduction efforts and rationally

size component inventories.  We conclude with a list of needs to enhance the utility of the model.
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1.  Introduction

Manufacturing firms are subject to pressure to do everything faster, cheaper and better.  Firms

are expected to continue to improve customer service by increasing on-time deliveries and

reducing delivery lead-times.  At the same time, they must provide this service more cheaply and

by utilizing fewer assets.  And increasingly, firms need to do this for a global marketplace.

This pressure to improve forces companies to look at their operations from a supply-

chain perspective and to seek improvements from better coordination and communication across

the supply chain.  A supply-chain perspective is essential to avoid some of the local sub-

optimization that occurs when each step in a process operates independently with its own metrics

and rewards.  Using a supply chain as a focusing mechanism challenges an organization to

examine cross-functional solutions to address some of the barriers that inhibit improvements.

The primary intent of this research is to develop a tactical tool to help cross-functional

teams in their efforts to model and improve a supply chain.  In particular we provide a

framework for modeling a supply chain and develop an approach, within the framework, to

optimize the inventory in a supply chain.  More specifically, we provide an optimization

algorithm for finding the optimal placement of safety stock in a supply chain that can be modeled

as a spanning tree that is subject to uncertain demand.  Key assumptions for the optimization are

that each stage of the supply chain operates with a periodic-review, base-stock policy, that each

stage quotes a guaranteed service time to its customers, and that demand is bounded.

Given our intent to develop a useful tactical tool for industry, we have made an enormous

investment in time and energy to build a commercial-quality software application.  With the

software, one can build and optimize a network model of a supply chain, as described in this

paper.  This has been necessary in order for us to have an opportunity to test the research and
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validate the model as being applicable to industry.  We do not discuss in the paper in any detail

this software implementation of the model; however, the software is available to download from

our web site, http://web.mit.edu/lfmrg3/www/.  We do report in the paper on our experience

applying the model to a supply chain at Kodak.

In the remainder of this section we briefly discuss related literature.  In section 2, we

present our framework for modeling a supply chain by describing the key assumptions.  In

section 3, we discuss and defend the assumptions.  We introduce the model for a single stage in

the supply chain in section 4; this serves as the building block for the multi-stage model

described in section 5.  In section 6 we develop the optimization algorithm for determining the

safety stock placement in a supply chain modeled as a spanning tree.  We discuss in section 7

how one can use the spanning tree algorithm to get near-optimal solutions for more general

networks.  We present an overview of our application experience with the model in section 8,

and conclude in section 9 with thoughts on how to improve the tool.

Related Literature: There is an extensive literature on inventory models for multi-stage or multi-

echelon systems with uncertain demand; much of this literature is applicable to supply chains as

now defined.  We refer the reader to the survey articles by Axsater (1993), Federgruen (1993),

Inderfurth (1994), van Houtum et al. (1996) and Diks et al. (1996).  Within this vast literature,

we mention two sets of papers that are most related to our work.

First, we note the work by Simpson (1958) who determined optimal safety stocks for a

supply chain modeled as a serial network.  Our work is based on similar assumptions about the

demand process and about the internal control policies for the supply chain.  Our work is also

closely related to that of Inderfurth (1991, 1993), Inderfurth and Minner(1995) and Minner

(1995) who also build off of the framework proposed by Simpson for optimizing safety stocks in
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a supply chain.  We extend the work of Simpson and of Inderfurth and Minner by treating a more

general network, namely spanning trees.  We also provide a different, and we believe richer,

interpretation of the framework and its applicability to practice.  And we provide new results in

the appendix on the form of the optimal policies when we relax a constraint on the internal

control policy for the supply chain.

Second, our work is closely related in intent to Lee and Billington (1993), Glasserman

and Tayur (1995) and Ettl et al. (1996).  Each of these papers examines the determination of the

optimal base-stock levels in a multi-stage supply chain, and tries to do so in a way that is

applicable to practice.  Glasserman and Tayur (1995) show how to use simulation and

infinitesimal perturbation analysis to find the optimal base-stock levels for capacitated multi-

stage systems.  Both Lee and Billington and Ettl et al. (1996) develop performance evaluation

models of a multi-stage inventory system, where the key challenge is how to approximate the

replenishment lead-times within the supply chain.  They then formulate and solve a nonlinear

optimization problem that minimizes the supply chain’s inventory costs subject to user-specified

customer service level requirements.  Our work is similar in that we also assume base-stock

policies and focus on minimizing the inventory requirements in a supply chain.  The resulting

models and algorithms are much different, though, due to different assumptions about the

demand process and different constraints on service levels within the supply chain.
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2.  Assumptions

Multi-Stage Network: We model a supply chain as a network where nodes are stages in the

supply chain and arcs denote that an upstream stage supplies a downstream stage.  A stage

represents a major processing function in the supply chain.  A stage might represent the

procurement of a raw material, or the production of a component, or the manufacture of a

subassembly, or the assembly and test of a finished good, or the transportation of a finished

product from a central distribution center to a regional warehouse.

An arc signifies that the component produced at the upstream stage is a required input to

the process at the downstream stage.  If a stage is connected to several upstream stages, then the

production activity at the stage is an assembly requiring inputs from each of the upstream stages.

A stage that is connected to multiple downstream stages is either a distribution node or a

production activity that produces a common component for multiple internal customers.  We can

associate with each arc a scalar φij to indicate how many units of the upstream component i are

required per downstream unit j.

Each stage is a potential location for holding a safety-stock inventory of the item

processed at the stage.

Production Lead-Times: For each stage, we assume a known deterministic production lead-time,

call it Ti.  When a stage reorders, the production lead-time is the time from when all of the inputs

are available until production is completed and available to serve demand.  The production lead-

time includes both the waiting and processing time at the stage, plus any transportation time

required to put the item into inventory.  For instance, suppose stage k requires inputs from stage i

and j, and has a three-day production lead-time; if we make a production request on stage k in
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time period t, then stage k completes the production at time t+3, provided that there are adequate

supplies of i and j at time t.

We assume that the production lead-time is not impacted by the size of the order; hence,

in effect, we assume that there are no capacity constraints that limit production at a stage.

Periodic-Review Base-Stock Replenishment Policy: We assume that all stages operate with a

periodic-review policy with a common review period.  Each period each stage observes demand

either from an external customer or from its downstream stages, and places orders on its

suppliers so as to replenish the observed demand.  In effect, each stage operates with a one-for-

one or base-stock replenishment policy.  There is no time delay in ordering; hence, in each

period the ordering policy passes the external customer demand back up the supply chain so that

all stages see the customer demand.

External Demand: Without loss of generality, we assume that external demand occurs only at

nodes that have no successors, which we term demand nodes or stages.  For each demand node j,

we assume that the end-item demand comes from a stationary process for which the average

demand per time period is µj.  We denote the demand observed at stage j in period t as dj(t).  We

assume that the demand process for end item j is bounded by the function Dj(τ), for τ = 1, 2, 3, ...

Mj, where Mj is the maximum replenishment time for the item1.  That is, Dj(τ) ≥ dj(t-τ+1) + dj(t-

τ+2) + ... + dj(t) for all t and for τ = 1, 2, 3, ... Mj.  We define Dj(0) = 0 and assume that Dj(τ) is

                                               

1 The maximum replenishment time for node j is defined as Mj = Tj + max {Mi | i:(i,j)∈A}.
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increasing and concave on τ = 1, 2, 3, ... Mj;  thus, Dj(τ) - Dj(τ-1) is nonnegative and decreases

as τ increases.

Internal Demand: We term an internal stage to be one with internal customers or successors.  For

an internal stage, the demand at time t is the sum of the orders placed by the immediate

successors.  Since each stage orders according to a base-stock policy, the demand at internal

stage i is given by:

di(t) =  ij d j(t) 

(i, j)  A

φ
∈

∑

where A is the arc set for the network representation of the supply chain.  For both demand

nodes and internal stages, stage j will order an amount φij dj(t) from upstream stage i, for all i

that directly supply stage j (φij > 0).

We assume that the demand at each internal node of the supply chain is stationary and

bounded.  The average demand rate for component i is:

µ φ µi =  ij j
(i, j)  A∈

∑ .

We assume that demand for the component i is bounded by the function Di(τ), for τ = 1, 2, 3, ...

Mi, where Mi is the maximum replenishment time for the item.  This bound may be a given input

or it may be derived from the demand bounds for the downstream, or customer, stages for stage i.

We discuss in the next section how this might be done.

Guaranteed Service Times for End Items:  We assume that each demand node j promises a

guaranteed service time Sj by which the stage j will satisfy customer demand.  For instance, if Sj
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= 0, then the stage provides immediate service from inventory to the final customer; if Sj > 0,

then the customer demand at time t, dj(t), must be filled by time t + Sj.  Furthermore, we assume

that stage j provides 100% service for the specified service time: stage j delivers exactly dj(t) to

the customer at time t + Sj.

Guaranteed Service Times for Internal Stages: An internal stage i quotes and guarantees a service

time Sij for each downstream stage j, (i, j) ∈ A.  Given the assumption of a base-stock policy,

stage j places an order equal to φij dj(t) on stage i at time t; then stage i delivers exactly this

amount to stage j at time t + Sij.  For instance, if Sij = 3, then stage i will fulfill at time t + 3 an

order placed at time t by stage j.

For the initial development of the model, we assume that stage i quotes the same service

time to all of its downstream customers; that is, we assume that Sij = Si for each downstream

stage j, (i, j) ∈ A.  We describe in Appendix II how to extend the model to permit customer-

specific service times.  In brief, if there is more than one downstream customer, we can insert

zero-cost, zero production lead-time dummy nodes between a stage and its customers to enable

the stage to quote different service times to each of its customers.  The stage quotes the same

service time to the dummy nodes and each dummy node is free to quote any valid service time to

its customer stage.

The service times for both the end items and the internal stages are decision variables for

the optimization model, as will be seen in section 5.  However, as a model input, we may impose
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bounds on the service times for each stage.  In particular, we assume that for each end item we

are given a maximum service time as an input.



Page 11 of 59

3.  Discussion of Assumptions

The assumptions of bounded demand and of guaranteed service times are the most controversial.

We need to frame the discussion of these assumptions in the context of the intent of the research.

We desire to provide tactical guidance for where to position safety stock in a supply chain.  In

light of this, we pose the problem as one of finding the safety stock necessary to provide 100%

service for both external and internal customers for a bounded demand process.

Bounded Demand: We do not require any assumptions about the distribution of demand.  We do

presume, though, that it is possible to establish a meaningful upper bound on demand over

varying horizons for each end item.  By meaningful, we mean in the context of setting safety

stock policies: the safety stock should be set to cover all demand realizations that fall within the

upper bounds.  If demand were to exceed the upper bounds, then the safety stock, by design, will

not be adequate.  In such extraordinary cases, a manager would resort to other devices or tactics

to handle the excess demand.  For instance, a manager might use expediting, subcontracting,

premium freight transportation, and/or overtime to accommodate the windfall of demand.  In

specifying the demand bounds, a manager indicates explicitly his or her preference for how

demand variation should be handled -- what range is covered by safety stock and what range

should be dealt with by other actions or responses.

As an example, consider a typical assumption where demand for end item j is normally

distributed each period and i.i.d., with mean µ and standard deviation σ.  Then, for the purposes

of positioning safety stock, a manager might specify the demand bounds at the demand node by:

D j( ) =   +  k  τ τµ σ τ (1)
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where k is set to assure that the safety stock covers the demand variation some percentage of

time.  In this example, the choice of k indicates how frequently the manager is willing to resort to

other tactics to cover demand variability.

In some contexts there may be natural bounds on the demand for an end item.  For

instance, suppose the end item is a component or subassembly for a manufacturing process

whose production is limited by capacity constraints or by a frozen master schedule.  An example

would be a supply chain that supplies components to an automobile assembly line or an OEM

subassembly to a system integrator.  In these cases, bounded demand for the component

corresponds to the maximum usage by the manufacturing process for the component over

various time horizons.

For each internal stage we assume that we can also establish meaningful demand bounds.

If internal stage i has a single successor, say stage j, then Di(τ) = φij Dj(τ) for all relevant τ.  For

internal stages with more than one successor, we require some judgment for deciding how to

combine the demand bounds for the successors to obtain a relevant demand bound for the

internal stage for the purposes of positioning the safety stock.  One possibility is just to sum the

demand bounds for the successors; however, this approach assumes that there is no risk pooling

from combining the demand of multiple end items.  An alternative approach is to assume that

there will be some relative reduction in variability as we combine demand streams, i.e., some

risk pooling.  For instance, we might infer the demand bounds for internal stages by means of an

expression like

Di( ) =   i ij D j( ) -   j
p

  +  p
(i, j) A

τ τ µ φ τ τ µe j{ }
∈

∑ (2)
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where p ≥ 1 is a given constant.  Larger values of p correspond to more risk pooling.  Setting p =

1 models the case of no risk pooling.  If one were to think of the end-item demand bounds

analogous to (1), then combining demand bounds could be viewed as similar to combining

standard deviations; indeed, this is what (2) will do when p = 2.

We do not attempt to model what happens when demand exceeds some maximal level.

When demand might be regarded as being extraordinary, we assume that the operation would

respond with an equally extraordinary measure, as noted above.  We regard this as beyond the

scope of the model, given the stated intention to provide tactical decision support.  See Kimball

(1988), Simpson (1958) and Graves (1988) for further discussion of this assumption.

Guaranteed Service Times: We assume that we can express the service at both external and

internal stages by means of guaranteed service times.  Furthermore, we assume perfect or 100%

service; within the context of the model there are never any shortages nor any violations of the

guaranteed service times.  As such, we do not explicitly model a tradeoff between possible

shortage costs and the costs for holding inventory.  Rather, we pose the problem as being how to

place safety stocks across the supply chain to provide 100% service for the assumed bounded

demand with the least inventory holding cost.

In defense of these assumptions, we note that it is often very difficult in practice to assess

shortage costs for an external customer.  Similarly, when we have asked managers for their

desired service level, more often than not the response is that there should be no stockouts for

external customers.  We have found that managers seem more comfortable with the notion of

100% service for some range of demand; they accept the fact that if demand exceeds this range

they will have shortages unless they can somehow expand the response capability of their supply

chain.  The assumptions for the model presented herein are consistent with this perspective.
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For an internal customer, guaranteed service times need not be optimal in terms of least

inventory costs.  Indeed we show in Appendix I how to relax this assumption for a serial

network, and report the cost impact of this assumption for a set of 36 test problems: the safety

stock holding cost is 26% higher on average, while the total inventory cost is 4% higher on

average.  However, guaranteed service times are very practical in contexts where there is the

need to coordinate replenishments.  For instance, any assembly or subassembly stage requires the

concurrent availability of multiple components, not all of which might be explicitly included in

the model.  When we assume guaranteed service times, we make the challenge of coordinating

the availability of these components much easier.
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4.  Single-Stage Model

In this section we present a model for the inventory at a single stage; the single-stage model

serves as the building block for modeling a multi-stage supply chain.

Associated with each stage j is an inbound service time, call it SIj.  The inbound service

time is the time it takes for the stage to get supplies from its immediate suppliers.  In period t

stage j observes demand dj(t) and places an order equal to φij dj(t) on each upstream stage i for

which φij >0.  The inbound service time is the time for all of these orders to be delivered to stage

j, so that stage j can then initiate the process to replenish dj(t).  If stage j has a single upstream

stage, say stage i, then SIj = Si.  If  production at stage j requires inputs from more than one

upstream stage, then SI j Si
i j A

=
∈

max
( , )

l q .  That is, stage j cannot commence production to

replenish the demand observed in period t, dj(t), until all inputs have been received, where all

inputs are available by t + SIj by definition.

The service time for stage j, Sj, is the outbound service time, namely the time allowed for

stage j to satisfy demand; that is demand in period t is filled in period t + Sj, where we assume

that stage j provides the same service time for all downstream customers.

Inventory Model: We define Ij(t) to be the finished inventory at stage j at the end of period t,

where we assume the inventory system starts at time t=0.  Under the assumptions of perfect

service and a base-stock replenishment policy, we can express Ij(t) as

Ij(t) = Bj - dj(t - SIj - Tj, t - Sj) (3)
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where Bj = Ij(0) ≥ 0 denotes the base stock and where dj(a, b) denotes the demand at stage j over

the time interval (a, b].  [see Kimball 1988, Simpson 1958 or Graves 1988]  Since we assume a

periodic-review replenishment policy, then without loss of generality we express all time

parameters as integer units of the underlying time period.  Hence, we understand dj(a, b), the

demand at stage j over the time interval (a, b], to be given by

dj(a, b) = dj(a+1) + dj(a+2) + …. + dj(b)

for a<b and dj(t) being the demand observed at stage j in time period t.  When a ≥  b, we define

dj(a, b) = 0.  And for (3) to be true for small t, we define dj(a, b) = dj(0, b) for a<0.

To explain (3), we observe that the replenishment time for the inventory at stage j is SIj +

Tj.  Thus, in time period t stage j completes the replenishment of the demand observed in time

period t - SIj - Tj.  Hence, at the end of time period t, the cumulative replenishment to the

inventory at stage j equals dj(0, t - SIj - Tj).  For a given service time Sj, in time period t stage j

fills the demand observed in time period t - Sj from its inventory.  By the end of time period t the

cumulative shipments from the inventory at stage j equal dj(0, t - Sj).  The difference between the

cumulative replenishment and the cumulative shipments is the inventory shortfall, dj(t - SIj - Tj, t

- Sj).  The on-hand inventory at stage j is the initial inventory or base stock minus the inventory

shortfall, as given by (3).
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Determination of Base Stock: We require that Ij(t) ≥ 0 with probability 1 in order for the stage to

provide 100% service to its customers.  From (3) we see that 100% service requires that

Bj ≥  dj(t - SIj - Tj, t - Sj)  with probability 1.

Since we assume demand is bounded, we can satisfy the above requirement with the least

inventory by setting the base stock as follows:

Bj = Dj(τ) where τ = max [0, SIj + Tj - Sj]. (4)

By assumption, any smaller value for the base stock can not assure that Ij(t) ≥ 0  with probability

1, and thus cannot guarantee 100% service.

In words, we set the base stock equal to the maximum possible demand over the net

replenishment time for the stage.  The replenishment time for stage j is the time to get the inputs

(SIj) plus the production time at stage j (Tj).  The net replenishment time for stage j is the

replenishment time minus the service time (Sj) quoted by the stage.  The demand over the net

replenishment time is demand that has been filled but that has not yet been replenished.  The

base stock must cover this time interval of exposure; thus the base stock is set to the maximum

demand over this time interval.

It is possible that the promised service time is longer than the replenishment time, i.e., SIj

+ Tj < Sj, and thus the net replenishment time is negative.  For example, it may take five days for

the stage to replenish its inventory, but the promised service time is eight days.  In this case, we

see from (4) that there is no need for a finished goods inventory; we can set the base stock Bj to
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zero and still provide 100% service.  Indeed, in such a case, the stage would delay each order on

its suppliers by Sj - SIj - Tj periods, so that the supplies arrive when needed.

With no loss of generality, we can redefine the inbound service time so that the net

replenishment time is nonnegative.  In particular we redefine SIj to be the smallest value that

satisfies the following constraints:

SIj ≥  Si  for all (i, j) ∈ A and

SIj + Tj ≥  Sj .

If the inbound service time is such that SIj > Si for some (i, j) ∈ A, then stage j delays orders

from stage i by SIj - Si periods.

Safety Stock Model: We use (3) and (4) to find the expected inventory level E[Ij]:

   E[Ij] = Bj – E[dj(t - SIj - Tj, t - Sj)]

= Dj(SIj + Tj - Sj ) – (SIj + Tj - Sj ) µj (5)

for SIj + Tj - Sj ≥  0.  The expected inventory represents the safety stock held at stage j.  The

safety stock is a function of the net replenishment time and the bound on the demand process.

As an example, suppose the demand bound is given by (1); then the safety stock is

E I j k SI j Tj S j= + −σ .

Pipeline Inventory:  In addition to the safety stock, we may want to account for the in-process or

pipeline stock at the stage.  Following the argument for the development for equation (3), we

observe that the work-in-process inventory at time t is given by
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Wj(t) = dj(t - SIj - Tj, t - SIj) .

That is, the work-in-process corresponds to Tj periods of demand given the assumption of a

deterministic production lead-time for the stage.

We see that the expected work-in-process depends only on the lead-time at stage j and is

not a function of the service times:

E[Wj] = Tj µj .

Hence, in posing an optimization problem in the next section, we ignore the pipeline inventory

and only model the safety stock.  This is not to say that the work-in-process is not a significant

part of the inventory in a supply chain.  But for the purposes of this work, we assume that the

lead-time of a stage, as well as the demand rate, are input parameters and thus the pipeline stock

is predetermined.  Nevertheless, in any application, we account for both the safety stock and the

pipeline stock as both will contribute to the total supply chain inventory.
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5.  Multi-Stage Model

We can now use the single-stage model as a building block to model the inventory in a multi-

stage system or supply chain.  In particular, we just use (5) for every stage, but where the

inbound service time is a function of the outbound service times for the upstream stages; to wit,

the model for stage j is

E[Ij] = Dj(SIj + Tj - Sj ) – (SIj + Tj - Sj ) µj (6)

SIj + Tj - Sj ≥ 0 (7)

SIj - Si  ≥ 0 for all (i, j) ∈ A (8)

The first equation expresses the expected safety stock as a function of the net replenishment

time.  The second equation assures that the net replenishment time is nonnegative.  The third

equation constrains the inbound service time to equal or exceed the service times for the

upstream stages.  In (8), if stage j has no upstream supplier, then we require the inbound service

time to be nonnegative.

We see from (6)-(8) that the expected inventory or safety stock in the supply chain is a

function of the demand process, the production lead-times and the service times.  We assume

that the production lead-times, the means and bounds of the demand processes, and the

maximum service times for the demand nodes are known input parameters. The service times are

the decision variables.  This suggests the following optimization problem P for finding the

optimal service times:

P min h j j
j

N
D j SI j + Tj -S j SI j + Tj -S je j e j{ }−

=
∑ µ

1

s. t. Sj - SIj  ≤ Tj for j= 1, 2 …. N
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SIj - Si  ≥ 0 for all (i, j) ∈ A

Sj ≤ sj for all demand nodes j

Sj, SIj  ≥ 0 and integer for j = 1, 2 ….N

where hj denotes the per-unit holding cost for inventory at stage j and sj is the maximum service

time for demand node j.  Thus, the objective of problem P is to minimize the holding cost for the

safety stock in the supply chain.  The constraints assure that the net replenishment time for each

stage is nonnegative, that the inbound service time is at least as large as the maximum supplier

service time, and that the end-item stages satisfy their service guarantee.  The decision variables

are the service times.

Problem P is a non-linear optimization problem.  One can show that the objective

function is a concave function, provided that the demand bound Dj( ) is a concave function for

each stage j.  Hence, in problem P we minimize a concave function over a set of linear

constraints.  Although the feasible region is not necessarily bounded, one can show that the

optimal service times need not exceed the sum of the production lead-times, provided that the

demand bound Dj( ) is a non-decreasing function for each stage j.  Thus, problem P is to

minimize a concave function over a closed, bounded convex set.  An optimum for such problems

is at an extreme point of the feasible region (e.g., Luenberger, 1973).

We have not been able to exploit this result to develop a general-purpose algorithm for P

for any supply chain.  However, there are algorithms for special cases, based on the network

structure of the supply chain.
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Simpson (1958) considered a serial-line supply chain, where he assumed that the

guaranteed service time for the external customer is zero.  Simpson showed that there is an

optimal extreme point solution for P for which Si = 0 or Si = Si+1 + Ti, where stage i+1 supplies

stage i (i.e., SIi = Si+1).  Thus, there is an “all or nothing” optimal solution; either a stage has no

safety stock (Si = Si+1 + Ti) or the stage has sufficient safety stock (Si = 0) to de-couple it from

its downstream stage.  Gallego and Zipkin (1994) provide supporting evidence that “all or

nothing” policies can be near optimal in serial systems under more traditional assumptions where

demand is not bounded.

Graves (1988) observed that the optimization for the serial line case is equivalent to a

shortest path problem over N nodes.  In a series of papers, Inderfurth (1991), (1993), Inderfurth

and Minner (1995), and Minner (1995) show how to solve problem P by dynamic programming

when the supply chain is an assembly network or a distribution network.  Graves and Willems

(1996) developed similar results for assembly and distribution networks.  In the next section we

present a dynamic programming algorithm for the more general case of a spanning tree.
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6.  Algorithm for Spanning Tree

We describe in this section how to solve P by dynamic programming when the underlying

network for the supply chain is a spanning tree, like in the figure below.
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Figure 1: Spanning Tree

In the terminology of dynamic programming, we will solve P by decomposing the

problem into N stages where there is a dynamic-programming stage for each node in the

spanning tree.  For a spanning tree, there is not a readily apparent ordering of the nodes by which

the algorithm would proceed; indeed, we desire to sequence or number the nodes so that the

algorithm is most efficient.  We will enumerate the nodes in a spanning tree (and thus sequence

the algorithm) so that there will be a single state variable for the dynamic programming

recursion.  However, the state variable for the dynamic program will be either the inbound

service time at a stage or its outbound service time, where the determination depends on the

topology of the network.

We first present the algorithm for numbering the nodes.  Next we will present the

functional equations for the dynamic programming recursions, and then state the algorithm.  In

section 7 we discuss solution strategies for more complex supply chains.

Labeling the Nodes:  The algorithm for labeling or re-numbering the nodes is as follows:

1.  Start with all nodes in the unlabeled set, U.
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2.  Set k := 1

3. Find a node i ∈ U such that node i is adjacent to at most one other

node in U.  That is, the degree of node i is 0 or 1 in the sub-graph with

node set U and arc set A defined on U.

4. Remove node i from set U and insert into the labeled set L; label node

i with index k.

5.  Stop if U is empty; otherwise set k:= k+1 and repeat steps 3 – 4.

For a spanning tree, it is easy to show that there will always be an unlabeled node in step 3 that is

adjacent to at most one other unlabeled node.  As a consequence, the algorithm will eventually

label all of the nodes in N iterations.  Indeed, we can show that each node labeled in the first N-1

steps is adjacent to exactly one other node in set U.  That is, the nodes with labels 1, 2, … N-1

each have one adjacent node with a higher label; we define p(k) to be the node with higher label

that is adjacent to node k, for k = 1, 2, … N-1.  The node with label N obviously has no adjacent

nodes with larger labels.

We assume in the following that the nodes in the spanning tree have been re-numbered

according to this algorithm.  For instance, we have used the algorithm to re-number the nodes in

Figure 1 to produce Figure 2.  Note that the labeling is not unique as there may be multiple

choices for node i in step 3.
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Figure 2: Renumbered Spanning Tree
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For each node k we define Nk to be the subset of nodes {1, 2, ... k} that are connected to

k on the sub-graph consisting of nodes {1, 2, … k}.  We will use Nk to explain the dynamic

programming recursion.  We can determine Nk by the following equation:

Nk k Ni N j
i k i k A j k k j A

= + +
< ∈ < ∈

l q
,( , ) ,( , )
U U .

For instance, in Figure 2 Nk is {3} for k=3, {1, 2, 3, 9} for k=9, {1, 2, 3, 4, 5, 9, 11} for k=11

and {6, 7, 8, 10, 12} for k=12.  We can compute Nk as part of the algorithm for re-numbering the

nodes.

Dynamic Programming Recursion: We can solve the mathematical program P for the case of a

spanning tree by dynamic programming.  We first need to label or re-number the nodes as

described in the previous section.  Then the dynamic program evaluates a functional equation for

each node, in the order of the node labels.  There are two forms for the functional equation.  One

form determines the function fk(S), which is defined to be the minimum holding cost for safety

stock in a sub-network with node set Nk, assuming that the outbound service time for stage k is

S.  The second form determines the function gk(SI), which is defined to be the minimum holding

cost for safety stock in a sub-network with node set Nk, assuming that the inbound service time

for stage k is SI.

At node k (or stage k) for 1≤ k ≤ N-1, the dynamic programming algorithm will

determine either fk(S) or gk(SI), depending upon the location of the node with higher label that is

adjacent to k.  If p(k) is downstream of node k, then the algorithm evaluates fk(S).  If p(k)  is
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upstream of node k, then the algorithm evaluates gk(SI).  For node N, as will be seen, either

functional equation can be evaluated.

To develop the functional equations we first define the minimum inventory holding cost

for the sub-network with node set Nk as a function of both the inbound service time and the

outbound service time at node k:

ck S k Dk SI Tk S SI Tk S k fi SI g j S

k j A
k

i k A
k

,  SI  =  h  +   +   

    j    i

b g b g b gm r b g b g+ − − + −
∈

<
∈

<

∑∑µ
( , )( , )

.

The first term is the holding cost for the safety stock at node k as a function of S and SI.

The second term corresponds to the nodes in Nk that are upstream of k.  For each node i

that supplies node k, we include the minimum inventory holding costs for the sub-network with

node set Ni, as a function of SI.  The argument SI represents the inbound service time to node k,

and thus, an upper bound for the outbound service time for node i.  We can show that fi(), the

inventory holding costs for the sub-network with node set Ni, is non-increasing in the service

time at node i.  Hence, we equate the outbound service time at i to the inbound service time at k

without loss of generality.

The third term corresponds to the nodes in Nk that are downstream of k.  For each node j

that is a customer of node k, we include the minimum inventory holding costs for the sub-

network with node set Nj, as a function of S.  The argument S represents the outbound service

time for node k, and thus a lower bound for the inbound service time for node j.  We can show

that gj(), the inventory holding costs for the sub-network with node set Nj, is non-decreasing in
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the inbound service time to node j, and thus, we equate the inbound service time at j to the

outbound service time at k without loss of generality.

We now use the minimum inventory holding cost for the sub-network with node set Nk to

develop the functional equation for fk(S):

fk S ck Sb g b gm r =  min  SI
SI

,

where the minimization is over the feasible set of inbound service times.  From P, we see that SI

≥ max (0, S - Tk).  We can also bound SI by Mk-Tk, where Mk is the maximum replenishment

time for node k.  Thus, the minimization is subject to max (0, S - Tk) ≤ SI ≤ Mk-Tk, and SI

integer.  The minimization can be done by enumeration.

The functional equation is evaluated for all possible integer outbound service times for

node k, S = 0, 1, 2,  … Mk.

The functional equation for gk(SI) is very similar in structure:

gk SI ck Sb g b gm r =  min  SI
S

, .

The minimization is over the feasible set of outbound service times.  If k is an internal stage, then

the feasible set is S = 0, 1, … SI + Tk; if k corresponds to a demand node, then the feasible set is

S = 0, 1, ….sk.  The minimization can be done by enumeration.

The functional equation is evaluated for all possible integer inbound service times for

node k, SI = 0, 1, 2,  … Mk-Tk where Mk is the maximum replenishment time for node k.

The dynamic programming algorithm is now as follows:
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1.  For k:= 1 to N-1

2. If p(k) is downstream of k, evaluate fk(S) for S = 0, 1, … Mk.

3. If p(k) is upstream of k, evaluate gk(SI) for SI = 0, 1, … Mk-Tk.

4.  For k:=N evaluate gk(SI) for SI = 0, 1, … Mk-Tk.

5.  Minimize gN(SI) for SI = 0, 1, … MN-TN to obtain the optimal objective

function value.

This procedure finds the optimal objective function value; to find an optimal set of service times

entails the standard backtracking procedure for a dynamic program.

To summarize, at each stage of the dynamic program, we find the minimum inventory

holding costs for the sub-network with node set Nk, as a function of a state variable.  The state

variable depends on the direction of the arc that connects the sub-network Nk to the rest of the

network.  When the connecting arc originates in Nk, then the state variable is the outbound

service time (step 2); otherwise, the state variable is the inbound service time (step 3).  We

number the nodes so that the functions required to evaluate either fk(S) or gk(SI) have been

determined prior to stage k in the dynamic program.  At stage N (step 4), we determine the

inventory costs for the entire network as a function of the inbound service time to node N.  At

step 5, we optimize over the inbound service time to find the optimal inventory cost.

The computational complexity of the algorithm is of order NM2 where M is the

maximum service time, which is bounded by the sum of the production lead-times Tj
j

N

=
∑

1

.  We
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have implemented the algorithm for a PC in the C++ programming language.  The run times for

real problems with 25 to 30 nodes are effectively instantaneous on a Pentium PC with a 100

megahertz Intel processor.
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7.  Extension to General Networks

We present in this section one possible approach to solving P for general networks.  We describe

how one can develop a lower bound to P, as well as a good feasible solution, by application of

the spanning-tree algorithm.

We develop a lower bound by solving a Lagrangian relaxation to P.  Suppose we have a

general supply chain that we model as a connected network with N nodes and with N+K arcs.

Suppose we select K+1 arcs from the arc set A such that the remaining N-1 arcs form a spanning

tree; let A* denote the set of K+1 arcs.  In P, for each arc (i, j) ∈ A we have a constraint of the

form

SIj - Si  ≥ 0,

which relates the outbound service time at node i to the inbound service time at node j.   We

define a nonnegative Lagrange multiplier λij for each constraint corresponding to the arca (i, j) ∈

A* , and then use the multiplier to remove the constraint and bring it to the objective function.

We then have a relaxed version of P:

P (λλ) min

( , ) *

h j j SI j Si
j

N

i j A

D j SI j + Tj -S j SI j + Tj -S j  -  ije j e j{ } e j− −
= ∈

∑ ∑µ λ
1

s. t. Sj - SIj  ≤ Tj for j= 1, 2 …. N

SIj - Si  ≥ 0 for all (i, j) ∈ A – A*

Sj ≤ sj for all demand nodes j

Sj, SIj  ≥ 0 and integer for j = 1, 2 ….N
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The relaxed problem P (λλ) can be solved with the spanning-tree algorithm, and yields a lower

bound on P.  We can improve the lower bound by solving the dual problem:

P(D) max P(λλ)

s. t. λij ≥ 0 for (i, j) ∈ A* .

We can solve the dual problem by a subgradient optimization or a dual ascent procedure.

To find an upper bound to P, we generate a feasible solution to P.  One approach is again

to focus on the K+1 constraints defined by the arc set A*.  For each arc (i, j)∈A*, we somehow

specify a nonnegative target, call it τij.  We then require for (i, j)∈A*, that SIj equals or exceeds

the target, and the target equals or exceeds Si.  We now replace the constraints in P for the arc set

A* with this requirement, and define the new problem:

P(ττ) min h j j
j

N
D j SI j + Tj -S j SI j + Tj -S je j e j{ }−

=
∑ µ

1

s. t. Sj - SIj  ≤ Tj for j= 1, 2 …. N

SIj - Si  ≥ 0 for all (i, j) ∈ A - A*

SIj ≥  τij  ≥ Si for all (i, j) ∈ A*

Sj ≤ sj for all demand nodes j

Sj, SIj  ≥ 0 and integer for j = 1, 2 ….N

We can solve P(ττ) by the spanning-tree algorithm, with a slight modification to permit simple

bounds on the service times.  Since any feasible solution to P(ττ) is also feasible to P, solving
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P(ττ) provides a heuristic solution to P,  and an upper bound on its objective value.  Clearly the

quality of the heuristic depends on the choice of set A* and the targets for each arc in A*.

We cannot report on any systematic study of these approaches and leave that for further

research.  Nevertheless, from some limited exploratory work, we expect that these approaches

will work reasonably well when K is small, say between 0 and 5 for a twenty-node network

(N=20).  Indeed, when K is small, we have been able to craft by hand optimal or near-optimal

solutions by using the spanning-tree algorithm to iterate between relaxed and over-constrained

versions of the problem.  As K gets larger, though, this will not be possible.  The challenge then

will be to develop systematic procedures for selecting the arc set A*, for improving the lower

bound by solution of the dual problem, and for improving the upper bound by setting the targets.
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8.  Application

This section presents an application of the model at the Eastman Kodak Company.  Starting in

1995, Kodak has applied the model to eleven finished products across two of its assembly sites

within its equipment division. We first present the model’s application to a specific product flow.

Then we provide a summary of Kodak’s financial results to date from using the model.

Product Background: Kodak has applied the model to the internal supply chain for a high-end

digital camera2.  The key subassemblies for the digital camera are a traditional 35mm camera, an

imager and a circuit-board assembly.  The 35mm camera is procured from an outside vendor.

The imager (a charge-coupled device) and the circuit-board assembly are produced internally.

The 35mm camera supplies the lens, shutter and focus functions for the digital camera.  The

imager captures and digitizes the picture, and the circuit-board assembly processes and stores the

image.  To produce the digital camera, the back of the 35mm camera is removed and replaced

with a housing containing the imager and circuit board.  The camera is then tested to make sure

that there are no defects in the imager.  Once the camera passes the quality tests, the product is

shipped to the distribution center.  From the distribution center, the camera is shipped to the final

customers, which for our purposes are high-end photography shops and computer superstores.

In Figure 3, we provide a high-level depiction of this supply chain.  In addition to the

three key subassemblies, we include the remaining parts in order to accurately represent the

product’s cost structure; since there are nearly one hundred additional parts in a camera,

modeling them in any level of detail would greatly expand the size of the model.  Hence, we

                                               

2 The data presented in this section has been altered to protect proprietary information. However, the resulting

qualitative relationships and insights drawn from this example are the same as would be from using the actual data.
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group these parts into two aggregate stages of the supply chain, where one stage represents all of

the parts with long procurement lead-times (greater than 60 days) and the other stage represents

the short lead-time parts (less than 60 days).

We also aggregate certain operations.  As seen in Figure 3, we combine the build

operation for a camera with the test operation and the packing operation.  The imager stage and

circuit board stage are also aggregates as each represents the flow through a separate department.

In the case of the circuit-board stage, this entails circuit board assembly and test.  The imager

stage consists of a semiconductor operation to produce wafers of imagers, followed by packaging

and testing of the semiconductors, followed by an assembly operation.  As we will discuss later,

we subsequently expanded the model to capture some of these details.

Figure 3: Implemented Safety Stock Policy for Digital Camera.  All stages have a circle that
denotes the processing activity at the stage.  A triangle denotes that the stage holds a safety
stock of its finished goods.

Implementation Approach: The product’s supply chain crosses several functional boundaries

within Kodak.  Functional areas like circuit-board assembly and imager assembly are separate
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departments and act as suppliers to an assembly group that performs final assembly and test.

Distribution is a separate organization and owns the product once it leaves the final assembly

area.  To improve coordination across the departments, the equipment division at Kodak has set

up product flow teams with the general charge to optimize their supply chains.

The product flow team for the digital camera relied on the model to identify opportunities

for better coordination and improved asset utilization.  The implementation strategy was to start

simple and get experience with the model; once there was some evidence of the utility of the

model, the team extended the application in increments to capture more and more of the supply

chain.

The team implemented the model in phases.  In the first phase, the goal was to optimize

the safety stock placement in the final assembly area.  In the second phase, a key internal

supplier was integrated into the model.  The third phase involved refining the coordination

between the assembly group and the internal supplier, and incorporating other internal and

external suppliers into the modeling effort.

Phase One: When the project first began, the goal was to optimize the safety stock levels for the

stages that were under the direct control of the final assembly area.  The decision to start with the

final assembly area was based on the product’s high material cost and its relatively simple supply

chain structure, as described above.  The cost and production lead-time for each stage are (the

numbers have been disguised, but are illustrative):

Stage Name
Production
Lead-Time

Cost
Added

Camera 60 750
Imager 60 950
Circuit Board 40 650
Other Parts LT<60 days 60 150
Other Parts LT>60 days 150 200
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Build/Test/Pack 6 250
Transfer to DC 2 50
Ship to Customer 3 0

Table 1 : Phase One Digital Camera Information

The demand bound was estimated by equation (1) where µ = 11, σ = 7 and k = 1.645.

From looking at historical demand and future demand estimates, Kodak felt that this function

realistically captured the range of demand for which they wanted to use safety stock.

This characterization of demand excluded large one-time orders that come from the

government and some large corporations.  These orders are typically for 200-300 units with

delivery scheduled less than a month from the time when the order is placed.  However, since

there is some advanced warning about these orders and they are independent of the other demand

for the product, we developed a separate anticipatory stock policy to deal with these large,

infrequent orders.

Marketing determined that the maximum service time to the final customer is five days.

Finally, the assembly group imposed the constraint that a safety stock of imagers must be

held on site at final assembly. Therefore, we set the service time for the imager stage to be zero;

the effect of this constraint increased the total safety stock cost by 8.7%

In the optimal solution the subassembly stages, the aggregate parts stages and the

build/test/package stages hold safety stocks and quote zero service times.  The ship to

distribution and ship to customer stages each quote their maximum feasible service times, two

and five days, respectively.  The annual holding cost for the safety stock is $78,000.  Thus, the

optimal solution holds an inventory of components, subassemblies and completed cameras at the

manufacturing site, but holds no inventory in the distribution center.  In effect, the distribution

center would act only as a processing center to receive orders and then to immediately ship out
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cameras once it received them.  This is feasible since the maximum service time to the customer

is five days, and it is possible to get the product from the assembly area through the distribution

center and to the final customer within this five-day window.

The product flow team decided to explore some near-optimal solutions because they felt

that there were some additional organizational constraints not captured in the model; in

particular, distribution would want to hold safety stock on-site.  To ameliorate the situation, the

team suggested that both manufacturing and distribution hold safety stock and quote zero service

times.  However, the model showed that the cost for the safety stock would increase to $89,000.

The team also investigated a policy in which the distribution center holds safety stock but the

manufacturing site does not.  The safety stock cost for this policy was $81,000, which was

deemed to be acceptable as it was quite close to the unconstrained optimum and satisfied

distribution’s desire to hold inventory.  This policy, as shown in Figure 3, was implemented at

the end of phase one of the application.

Phase Two: After the initial phase of the project was completed, the product flow team expanded

the model to incorporate the internal supply chain for the imager.  The resulting supply chain is

shown in Figure 4:
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Figure 4 :  Digital Camera Supply Chain

Prior to this study, safety stocks of (in-process) imagers had been held at each stage of

the supply chain.  By application of the model, the product flow team decided to remove safety

stocks from two stages in the supply chain for the imagers, as shown in the figure.  This required

some increase in the downstream safety stocks of finished imagers, but overall the amount of

imagers held in the supply chain as safety stock (measured in terms of finished imagers) was

more than halved.

Now that the model has been successfully piloted with an internal supplier, the product

flow team is in the process of extending the model to incorporate other key internal and external

suppliers.

Financial Results: Table 2 contains the financial summary for two assembly sites that use the

model.  Site A has applied the model to each of its eight products and Site B has applied the

model to each of its three product families.  The sales volume has remained relatively constant

over the three years.
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Assembly Site A Y/E 95 Y/E 96 Y/E 97
Worldwide FGI $6.7m $3.3m $3.6m
Raw Material & WIP $5.7m $5.6m $2.9m
Delivery Performance 80% 94% 97%
Manufacturing Operation MTS RTO RTO
Assembly Site B
Worldwide FGI $4.0m $4.0m $3.2m
Raw Material & WIP $4.5m $1.6m $2.5m
Delivery Performance Unavailable 78% 94%
Manufacturing Operation MTS RTO RTO

Table 2:  Financial Summary for Assembly Sites A and B.

At the start of 1996, the sites moved from a make-to-schedule (MTS) to a replenish-to-

order (RTO) system.  The modeling effort began at the end of 1995 and was used to help guide

the transition to replenish-to-order.  The increase in worldwide finished goods inventory for 1997

is due to a marketing promotion that was underway in Europe.  By our estimate, this promotion

has increased the finished goods inventory by as much as $.5 million.  In the first year of the

project, the emphasis was on reducing the areas directly under the control of final assembly.

Over the past year, the effort has been on reducing the raw material costs and WIP in the

manufacturing supply chain.  The total value of the inventory for these products has been

reduced by over one third over the two years.

Beyond the immediate use to guide inventory decisions, Kodak’s product flow teams

have also used the model for a variety of other purposes.  Some products have tens of

components with long procurement lead-times.  The model has helped to prioritize the suppliers

with whom to work to reduce these lead-times.  The teams have used the model to determine the

cost effectiveness of lead-time reduction efforts in manufacturing.  One can compare the

investment required to reduce a lead-time versus the cost savings from the reductions in pipeline

and safety stock cost.  Finally, manufacturing and marketing personnel have used the model to
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help quantify the cost of quoting a specific maximum service time to the final customer.  With

the model, the supply-chain team can accurately estimate the costs of a one-day, one-week or

two-week guaranteed service time to the customer, and weigh the costs of the policy against the

marketing benefits of the policy.

Another benefit of the model is that it provides a common, objective framework with

which a cross-functional supply-chain team can work.  In particular, we note that it provides a

standard terminology and set of assumptions for these teams to use as they work together to

improve or optimize a supply chain.  As such the model has been a very effective

communication vehicle or platform.
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9.  Conclusion

In this paper we introduce and develop a model for positioning safety stock in a supply chain.

We model the supply chain as a network, where the nodes of the network are the stages of a

supply chain.  We assume that each stage uses a base-stock policy to control its inventory.  We

also assume that each stage quotes a service time to its customers, both internal and external, and

that each stage provides 100% service for these quoted service times.  Finally we assume that

external customer demand is bounded.

We show how to evaluate the inventory requirements at each stage as a function of the

service times.  For supply chains that can be modeled as spanning trees, we develop an

optimization algorithm for finding the service times that minimize the holding cost for the safety

stock in the supply chain.  We describe how this optimization might extend to more complex

networks but have not explored this in any depth.

As a form of validation, we describe an application of the model at Kodak to an internal

supply chain for a digital camera.  This application helped Kodak to re-position its inventories in

this supply chain so as to reduce its inventory and increase its service performance.  In particular,

Kodak realized the benefit from creating a few strategic locations to hold safety stocks, rather

than spreading the safety stock across the entire supply chain.  We have also applied the model to

a number of other related products at Kodak and at two other companies (Black 1998, Coughlin

1998 and Felch 1997).

As with any research undertaking, we end with a number of unresolved issues, as well as

new questions.  We discuss these in the relative order of importance, based on our experience in

applying the research to date.
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Stochastic Lead-times: We assume that associated with each stage is a known, deterministic lead-

time.  In practice, this is often not true.  Indeed, procurement times for some components are

often highly uncertain.  It will be of value to capture this in the model.  We know how to extend

the model in an approximate way for stages that procure raw materials or components from an

outside vendor.  In effect, for such a stage we just need to build an approximation for the

inventory requirements at the stage as a function of the outbound service time quoted by the

stage and the stochastic procurement time.  But it is less clear how to extend the model, either

exactly or approximately, to permit stochastic lead-times at stages whose function is not

procurement.

Non-stationary Demand: We assume that the demand processes for end items are stationary.  Yet

virtually all of the products with which we have worked have short life times, over which

demand is never really stationary.  In practice, one runs the model under various (stationary)

scenarios to see how sensitive the safety stock is to the demand characterization (Coughlin

1998).  Fortunately, we have found empirically that where the model locates safety stock in the

supply chain is fairly insensitive to the demand.  The size of the safety stock, though, does

depend directly on the demand characterization.  We currently are conducting research to

understand better these observations, and then to use them to extend the model to treat non-

stationary demand.

Different Review Periods: We assume that each stage operates with a periodic-review, base-stock

policy with a common review period.  In many supply chains different stages will operate with

different reorder frequencies.  That is, whereas one stage may place replenishment orders on a

daily basis, another stage may do this weekly.  In other cases, a stage may operate with a

continuous-review policy so that the time between orders varies.  We can extend the model to
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evaluate nested periodic-review base-stock polices, in which whenever one stage reorders, all

stages downstream also reorder.  That is, the review period for an upstream stage is an integer

multiple of the review period of its immediate customers.  However, we have not yet built the

software to implement this extension, as it will be a major programming undertaking and it may

only be a partial fix to the issue.

Capacity Constraints: In the model we ignore capacity constraints.  For certain stages in a supply

chain, the consideration of a capacity limit may be necessary in order to get a credible model for

determining safety stock requirements.  At this time, we do not have good ideas for how to add

this to the model.

General Networks: We have developed and implemented an optimization algorithm for supply

chains that can be modeled as spanning trees.  We have described earlier how this algorithm

might extend to more general networks.  But more research is needed to test and refine these

ideas as well as to uncover better approaches.
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Appendix I

In this appendix we examine the question as to how costly is our assumption that each internal

stage quotes a guaranteed service time for each of its customers.  To get some insight into this

issue, we consider a serial system, for which we can determine the optimal policy when we relax

the assumption of guaranteed service times for internal customers.  We then compare the

inventory holding costs for the optimal policies with and without this assumption for a small set

of test problems.

Consider a serial supply chain with N stages where stage 1 is the demand node and stage

i supplies stage i –1 for i = 2, … N.  The same assumptions hold as in the original model, except

that we do not require that each internal stage guarantees a fixed service time to its customer.

There are no restrictions on the service level that stage i provides to its customer, stage i –1 for i

= 2, … N; rather, these internal service levels will depend on the base stocks, which will be

chosen to minimize the inventory holding costs for the entire supply chain.  We do assume that

stage 1 provides a 100% service level to the external customer; and, without loss of generality,

we assume that the service time quoted to the external customer is zero.

For ease of presentation, we assume that one unit of end-item demand translates into one

unit of demand at each of the internal stages; that is, φi,i-1 = 1 for i = 2, … N.  We let d(t) denote

the end-item demand in period t, d(a, b) denote the end-item demand over the time interval (a, b],

and D(τ) denote the maximum possible end-item demand over a time interval of τ periods.

For each stage i, we define Bi to be the base stock, Ii(t) to be the on hand inventory at

time t, and Qi(t) to be the shortfall or backlog at time t.  The backlog at a stage is the amount that
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has been ordered by the stage’s customer but not yet delivered.  We assume at t=0, Ii(t) = Bi ≥ 0

and Qi(t) = 0 for all stages.

We can show for i = 1, 2, … N that the inventory on-hand and backlog at time t are given

by:

Ii t d t Ti t Qi t Ti

Qi t d t Ti t Qi t Ti

b g b g b g
b g b g b g

 =  Bi

 =  Bi

− − − + − +

− + + − − +

,

,

1

1

, (A1)

where [x]+ = max(0, x), Ti is the production lead-time for stage i,  and QN+1(t) = 0 by definition.

The argument to show (A1) requires that each stage has a deterministic lead-time and that each

stage follows a base-stock policy in which each period each stage observes end-item demand and

places a replenishment order for this amount.  The essence of the argument is to note that the net

inventory on hand at a stage equals the stage’s base stock minus the inventory on order.  For

stage i, the inventory on order at time t is the backlog as of time t-Ti, plus all of the demand over

the interval (t- Ti, t].

From (A1) we can show by induction that for i = 1, 2, … N

Qi t t Ti t t Ti Ti t i

t Ti Ti TN t i

b g b g b g
b g

 =  max  d Bi  d Bi B

                                     ....  d Bi B BN

[0 1 1

1 1

, , , , ,...

... , ... ]

− − − − + − − +
− − + − − − − + − −

. (A2)

In order for the supply chain to provide 100% service to the external customer, we must select

base stocks so that Q1(t) = 0 for all t.  That is, we will never have a backlog at stage 1.  From

(A2) we see that Q1(t) = 0 is assured if the base stocks satisfy the following constraints:

B B Bi D T T Ti1 2 1 2+ + + ≥ + + +... ...b g for i =   1,  2,  ...  N  . (A3)
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Thus, if the base stocks satisfy (A3), then all of the terms on the right-hand-side of (A2) are

guaranteed to be non-positive; there will never be a shortfall at stage 1 and end-item demand will

be satisfied with 100% service.  We can also see that if it is possible for the demand bounds to be

realized, then the constraint set (A3) provides not just sufficient but also necessary conditions for

assuring 100% service for end-item demand.

We now wish to select the base stocks to satisfy (A3) and to minimize the inventory

holding costs for the supply chain.  To develop an expression for the inventory holding costs, we

note from (A1) that the net inventory on hand for i = 1, 2, … N is given by:

Ii t Qi t d t Ti t Qi t Tib g b g b g b g-  =  Bi − − − + −, 1 . (A4)

From (A4) we can write the inventory holding costs for the supply chain as:

hiE Ii t Ti E Qi t E Qi t Ti
i

N
b g b g b gn s =  hi Bi

i=1

N
− + − + −

=
∑∑ µ 1

1
(A5)

where hi is the holding cost at stage i, µ is the expected demand rate, and E[] denotes

expectation.

We now can pose an optimization problem to select the base stocks, namely we minimize

(A5) subject to (A3) and non-negativity constraints on the base stocks.  After dropping constant

terms in the objective and noting that Q1(t) = 0 for any feasible solution, we can write the

optimization as

P*

min

. .

... ...

hiBi -  ei-1
i=2

N

  for i =   1,  2,  ...  N

Bi   for i =  1,  2,  ...  N

E Qi
i

N

s t

B B Bi D T T Ti

∑∑
=

+ + + ≥ + + +

≥

1

1 2 1 2
0

b g
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where ei = hi – hi+1 is the echelon holding cost.  We note from (A2) that E[Qi] is a non-linear

function of Bi, … BN for i = 1, 2 … N.

Our main result is that there is an optimal solution to P* in which all of the constraints in

(A3) are binding.  More formally we state the following:

Result: If the echelon holding costs are nonnegative and if D( ) is a non-decreasing function, then

an optimal solution to P* is given by

B1 = D(T1)

Bi = D(T1+ … + Ti) - D(T1+ … + Ti-1) for i = 2, … N. (A6)

Proof:  We note that the solution given by (A6) is nonnegative and satisfies the constraints in

(A3) as equalities; thus it is a feasible solution to P*.  To prove that this is also an optimal

solution, we will argue that there must be an optimal solution in which the constraints in (A3) are

binding.

Suppose we have a solution B1
*,  … BN

* such that (A3) holds as a strict inequality for

one or more constraints.  Suppose the kth constraint is the first constraint that is not binding and

that k<N; we will treat the case when k=N later.  Thus, we assume

B B Bi D T T Ti

B B Bk D T T Tk

1 2 1 2

1 2 1 2

* * ... * ...

* * ... * ... .

+ + + = + + +

+ + + > + + +

b g
b g

 for i =   1,  2,  ...  k -1 and

We now define a new solution B1
**,  … BN

** in which the kth constraint is satisfied as an

equality, and show that its objective value is no worse than that for B1
*,  … BN

*:

Bi
**= Bi

* for i = 1, … N and i ≠ k, k+1
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Bk
**= Bk

* - ∆

Bk+1
**= Bk+1

* + ∆

where ∆ = −
=

F
H
GG

I
K
JJ +

=

−F
H
GG

I
K
JJ∑ ∑Bk D Ti

i

k
D Ti

i

k
*

1 1

1

We first observe that ∆>0 due to the supposition that the solution B1
*,  … BN

* satisfies the kth

constraint in (A3) as a strict inequality.  Thus, we have Bk+1
**≥0.  We also see that Bk

**≥0 since

D( ) is non-decreasing.  Hence the new solution B1
**,  … BN

** is nonnegative.  By construction,

the new solution satisfies the kth constraint as an equality, and there are no changes in the

remaining constraints.  Thus, the new solution B1
**,  … BN

** is a feasible solution.

To see the change in objective function for the new solution, we will decompose it into

two parts.  The change to the first part of the objective function is seen to be

hiBi
** =   -hk hi hi

i=1

N

i=1

N
+ + + = − +

=
∑∑∑ hk Bi ek Bi

i

N
1

1
b g∆ ∆* * . (A7)

For the second part of the objective function, let E[Qi]
* and E[Qi]

** denote the expected backlog

at stage i for the first and second solution.  Then we find from (A2) that

E[Qi]
** = E[Qi]

 * for i>k+1,

E[Qi]
* ≤ E[Qi]

**≤ E[Qi]
* + ∆ for i<k+1, and

E[Qk+1]* ≥ E[Qk+1]**≥ E[Qk+1]* - ∆ .

Thus, for nonnegative echelon holding costs, we can bound the change to the second part of the

objective function as follows:
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− −
=

≤ − −
=

+∑ ∑ei
i

N
E Qi ei

i

N
E Qi ek1

2
1

2

** * ∆ . (A8)

By combining (A7) and (A8), we see that the objective function for the second solution is no

greater than the objective for the first.  Thus, we have found a new solution in which the first k

constraints in (A3) are binding and whose objective value is no worse than that for the first

solution.  This argument can be continued in this fashion to construct a solution in which the first

N-1 constraints in (A3) are binding and whose objective value is no worse than that for the

solution B1
*,  … BN

*.  The argument for the case when k=N is similar in structure but easier; we

just have to reduce the base stock for stage N until the Nth constraint is binding, which can be

done with no penalty to the objective function.

Hence, there is a feasible solution that satisfies all of the constraints in (A3) as equalities

and that has an objective value no higher than that for the solution B1
*,  … BN

*.  Furthermore,

this new solution must be given by (A6), as it is easy to see that it is the unique binding solution

to (A3).  Finally we conclude that (A6) must be an optimal solution, as its objective value equals

or is less than that for any interior solution B1
*,  … BN

*.  This completes the proof.

We note that the optimal base-stock policy can be determined directly from the demand

bound, and does not depend at all on the holding costs.  All we need to know is that the holding

costs do not decrease as we move down the supply chain, closer to the customer.  We also note

that this result generalizes to assembly systems by means of the transformation given by Rosling

(1989); namely we can transform an assembly system into an equivalent serial system, and the

result applies.
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We use this result to compare the performance of the base stock policies with and without

the assumption of guaranteed service times for internal customers.  The test problems were all

for a 3-stage serial system; the problems differed according to their demand process, their

production lead-times and their holding costs.

For the demand process, we start with a Poisson demand distribution with mean λ and

with a specified percentile α to truncate the demand.  For each time window of length τ, we set

the demand bound D(τ) as the smallest integer such that the cumulative probability for the

Poisson random variable with mean λτ exceeds α.  We then normalize the demand distribution

over the truncated range.  We consider four possible demand processes: λ=10, α=0.90; λ=10,

α=0.98; λ=50, α=0.90; λ=50, α=0.98.

We permit three settings for the production lead-times and three settings for the holding

costs, as follows:

(T1, T2, T3) =  (4, 4, 4); (1, 3, 8);   (8, 3, 1).

(h1, h2, h3) =  (1, 0.5, 0.2); (1, 0.66, 0.33);  (1, 0.8, 0.5).

By evaluating all combinations we have a total of 36 test problems.  For each test

problem we determine the optimal policy for the model with guaranteed internal service times

and the optimal policy (given by the result above) for the model without this requirement.  For

each instance, we evaluate the base stocks, the safety-stock holding cost and the total inventory

holding cost.  The safety stock holding cost is given by the objective function of P for the model

with guaranteed internal service times and by (A5) for the model without this requirement.  The

total inventory holding cost is the sum of the safety-stock holding cost plus the pipeline-stock
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holding cost.  The expected pipeline stock at stage i is µTi, for µ being the mean demand rate; we

assume that the holding cost for the pipeline stock at stage i is (hi + hi+1)/2.

For the 36 test problems we find that the safety-stock holding cost for the model with

guaranteed internal service times is on average 26% higher than that for the model without this

requirement; the range is between 7% and 43%.  The size of the gap is insensitive to the choice

of demand process.  However, the gap becomes larger as the production lead-time at stage 1

increases and as the echelon holding cost at stage 1 increases.

The impact on the total inventory holding cost is less dramatic.  The difference in holding

costs is 4% on average, with a range from less than 1% to 14%.  The gap increases as the holding

cost of the pipeline stock decreases, namely as the production lead-time at stage 1 decreases and

as the demand rate decreases.

From the limited computational study we see that there can be a significant increase in

safety stock due to the assumption of guaranteed internal service times.  Relative to the total

inventory, this increase does not look as bad.  Nevertheless, there is a cost in terms of higher

inventories from the requirement of guaranteed internal service times.  This cost needs to be

considered in light of the practical benefits, as discussed in the body of the paper, from imposing

this requirement.  Based on our observations from industrial projects, this requirement, and the

resulting increase in safety stock, has not been an issue as the assumption of guaranteed internal

service times is already engrained in practice.
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Appendix II

In this appendix, we show by example how to transform the network model of a supply chain to

permit a stage to quote different service times to its downstream customers.  We do this by

augmenting the network with dummy nodes, where the dummy nodes are added so that in the

modified network each stage will still quote the same service time to its downstream stages.  But

the effective service times to the original downstream stages can now differ.

Consider the simple three-stage network where stage 1 supplies both stage 2 and 3 as shown in

the figure below:

Stage 1

Stage 2

Stage 3

Figure A1: Original Network Formulation

Suppose we wish to allow stage 1 to quote different service times to stage 2 and 3.  To do

this, we modify the network by inserting dummy nodes between stage 1 and each of the

downstream stages, as shown in the next figure.

Stage 1

Dummy 1-2

Dummy 1-3

Stage 2

Stage 3

Figure A2:  Modified Network Formulation

The production lead-time at each dummy node is zero.  We assume that stage 1 quotes the same

service time to each of the dummy nodes.  But the service times quoted by the dummy nodes can

differ.  The effective service time from stage 1 to stage 2 is the service time from “dummy 1-2”

to stage 2.  Hence, in this way, we can allow the service time to stage 2 to differ from that to
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stage 3.  But for the purposes of the spanning-tree algorithm, we still have a single service time

being quoted by each node, albeit a greater number of nodes.

The cost for holding inventory at each dummy node is the same as at stage 1.  Indeed,

safety stock held at a dummy stage represents inventory held at stage 1.  This inventory, though,

is now dedicated to the dummy stage’s downstream customer. Thus, in this example there are

now three non-exclusive options for holding safety stock at stage 1.  Safety stock at the “stage1”

node is pooled and protects both stage 2 and stage 3, whereas safety stock at either of the dummy

nodes is committed to a single downstream stage. The spanning-tree algorithm will determine the

service times for stage 1 (S1) and for the two dummy stages (S12 and S13) so as to minimize the

safety stock costs.

As an example, suppose the replenishment time for stage 1 is T1 days.  Then, the feasible

set for the service times is given by the constraints 0≤ S12 ≤ T1 and 0≤ S13 ≤ T1.  In the

following discussion we consider the possible specifications for S12 and S13 to illustrate how the

modified network would model different service times and the safety stock implications:

a. S12 = S13 = T1.  There is no need for any safety stock, pooled or dedicated, at stage 1,

since the service time equals the replenishment time for both stages; we set S1 = T1.

b. 0 ≤ S12 < S13 = T1.  There is no need to hold safety stock, either pooled or dedicated, to

protect demand at stage 3 since the service time equals the replenishment time; thus, we

have S1 = T1.  But there is a need to have a dedicated safety stock at stage 1 for demand

at stage 2, the size of which depends upon the maximum demand at stage 2 over the net
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replenishment time of S1 - S12.  In the modified network, this stock appears at the node

“dummy 1-2.”

c. 0 ≤ S12 ≤ S13 < T1.  Stage 1 needs to hold a safety stock for demand for both stage 2 and

stage 3.  To benefit from pooling, in this model representation, we would find that S1 =

S13.  Thus, the pooled safety stock at stage 1 would be the maximum demand for stage 2

and 3 over the net replenishment time of T1 - S13.  There would be no dedicated safety

stock for stage 3 as S1 = S13.  But there again is a need to have a dedicated safety stock at

stage 1 for demand at stage 2, the size of which depends upon the demand at stage 2 over

the net replenishment time of S1 - S12 = S13 - S12.  In the modified network, this stock

appears at the node “dummy 1-2.”

Other cases when S12 > S13 can be mapped into (b) or (c).

When there are more than two downstream stages, this modified network would again

have one dummy node for each downstream stage.  But optimization of the resulting modified

network provides only an approximation.  To explain the nature of the approximation, suppose

there are three downstream stages, stages 2, 3, and 4.  Then the modified network permits a

pooled safety stock at stage 1 that is available to all of the downstream stages, and allows for a

dedicated safety stock for each of the three downstream stages.  But it may be that the best safety

stock policy would hold safety stock at stage 1 for two of the downstream stages, say stage 2 and

3,and no safety stock for stage 4.  In this case there would be a pooling benefit for holding safety

stock at stage 1 for stages 2 and 3 that is not correctly modeled in the current network model.
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Thus, the proposed approach would provide an upper bound on the actual inventory requirements

when there is more than two downstream stages.

To extend this approach for the case of three or more downstream stages, we need to add

additional dummy nodes to represent each “type” of safety stock that might be held at stage 1.  In

the example, we would need to add a dummy node for holding a pooled safety stock for stage 2

and 3; this dummy node would be supplied by stage 1, and then would supply the dummy nodes

for the dedicated safety stocks for stage 2 and for stage 3.  Considering all combinations we

would need a total of six dummy nodes when there are three downstream stages, and in general,

2n – 2 for n downstream stages; and the resulting network would no longer be a spanning tree.

Hence we do not regard this extension as being practical.

We conclude this appendix by discussing under what circumstances one might want to

consider quoting different service times to downstream stages.  This could be useful in terms of

guiding where to modify the network by adding dummy nodes. Whereas the model could

completely relax the assumption of a common service time for all downstream stages, this would

approximately double the number of nodes in the network.  We expect that in practice one would

only permit this possibility where it could make a difference in holding costs.

One instance is when the downstream stages represent distinctly different market

channels.  In this case, the downstream stages could differ in terms of the stability of their

demand streams, their production lead-times, and the service expectations for their markets.

For instance, one can envision two different channels of distribution, an OEM channel

that has a steady volume dictated by annual purchase contracts and a consumer market facing a

very volatile demand process.  This case can be a candidate for creating different stockpiles of

inventory, and thus different service times, for the different demand streams.
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A more common example involves multiple market segments with different maximum

service time requirements.  For example, a product may be sold through superstores and small

retail outlets.  The retail outlets may hold no inventory in the store, only a demonstration unit to

show customers.  For these customers, product has to be shipped out within 24 hours of the order

placement.  The superstores carry an inventory of the product on-site and typically place orders a

month in advance.  The guaranteed service time to the retail segment is one day but is thirty days

for the superstore segment.  From the perspective of the supply chain, the retail segment must be

treated as a make-to-order operation but the superstore segment can be treated like a make-to-

stock operation.  In the framework of the model, quoting the retail segment a low service time is

a necessity but quoting the superstore segment the same service time would be needlessly costly

since they do not require delivery for weeks.

Finally, we note that the quoting of different service times becomes more prevalent when

there is less benefit from pooling demand at the upstream stage.  For instance, if the downstream

demand streams are positively correlated, then there may be limited benefit from demand

pooling.  In this case, the cost penalty of having dedicated safety stocks for the downstream

demand, rather than a pooled safety stock, may be low.
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