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We develop and test an active-machine-learning method to select questions adaptively when consumers use
heuristic decision rules. The method tailors priors to each consumer based on a “configurator.” Subsequent

questions maximize information about the decision heuristics (minimize expected posterior entropy). To update
posteriors after each question, we approximate the posterior with a variational distribution and use belief
propagation (iterative loops of Bayes updating). The method runs sufficiently fast to select new queries in under
a second and provides significantly and substantially more information per question than existing methods
based on random, market-based, or orthogonal-design questions.

Synthetic data experiments demonstrate that adaptive questions provide close-to-optimal information and
outperform existing methods even when there are response errors or “bad” priors. The basic algorithm focuses
on conjunctive or disjunctive rules, but we demonstrate generalizations to more complex heuristics and to the
use of previous-respondent data to improve consumer-specific priors. We illustrate the algorithm empirically
in a Web-based survey conducted by an American automotive manufacturer to study vehicle consideration
(872 respondents, 53 feature levels). Adaptive questions outperform market-based questions when estimating
heuristic decision rules. Heuristic decision rules predict validation decisions better than compensatory rules.
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1. Problem Statement: Adaptive
Questions to Identify Heuristic
Decision Rules

We develop and test an active-machine-learning algo-
rithm to identify heuristic decision rules. Specifically,
we select questions adaptively based on prior beliefs
and respondents’ answers to previous questions. To
the best of our knowledge, this is the first (near-
optimal) adaptive-question method focused on con-
sumers’ noncompensatory decision heuristics. Extant
adaptive methods focus on compensatory decision
rules and are unlikely to explore the space of noncom-
pensatory decision rules efficiently (e.g., Evgeniou
et al. 2005; Toubia et al. 2007, 2004; Sawtooth 1996). In
prior noncompensatory applications, question selec-
tion was almost always based on either random pro-
files or profiles chosen from an orthogonal design.

We focus on noncompensatory heuristics because
of managerial and scientific interest. Scientific inter-
est is well established. Experimental and revealed-
decision-rule studies suggest that noncompensatory
heuristics are common, if not dominant, when con-
sumers face decisions involving many alternatives,
many features, or if they are making consideration
rather than purchase decisions (e.g., Gigerenzer and

Goldstein 1996; Payne et al. 1988, 1993; Yee et al.
2007). Heuristic rules often represent a rational trade-
off among decision costs and benefits and may be
more robust under typical decision environments
(e.g., Gigerenzer and Todd 1999). Managerial inter-
est is growing as more firms focus product devel-
opment and marketing efforts on getting consumers
to consider their products or, equivalently, prevent-
ing consumers from rejecting products without evalu-
ation. We provide illustrative examples in this paper,
but published managerial examples include Japanese
banks, global positioning systems, desktop comput-
ers, smart phones, and cellular phones (Ding et al.
2011, Liberali et al. 2011).

Our focus is on adaptive question selection, but to
select questions adaptively, we need intermediate esti-
mates after each answer and before the next question
is asked. To avoid excessive delays in online ques-
tionnaires, intermediate estimates must be obtained
in a second or less (e.g., Toubia et al. 2004). This
is a difficult challenge when optimizing questions
for noncompensatory heuristics because we must
search over a discrete space of the order of 2N deci-
sion rules, where N is the number of feature levels
(called aspects, as in Tversky 1972). Without special
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structure, finding a best-fitting heuristic is much
more difficult than finding best-fitting parameters for
an (additive) compensatory model—such estimation
algorithms typically require the order of N parame-
ters. The ability to scale to large N is important in
practice because consideration heuristics are common
in product categories with large numbers of aspects
(e.g., Payne et al. 1993). Our empirical application
searches over 900 × 1015 heuristic rules.

We propose an active-machine-learning solution
(hereafter, active learning) to select questions adap-
tively to estimate noncompensatory heuristics. The
active-learning algorithm approximates the posterior
with a variational distribution and uses belief prop-
agation to update the posterior distribution. It then
asks the next question to minimize expected posterior
entropy by anticipating the potential responses (in
this case, to consider or not consider). The algorithm
runs sufficiently fast to be implemented between
questions in an online questionnaire.

In the absence of error, this algorithm comes
extremely close to the theoretical limit of the informa-
tion that can be obtained from binary responses. With
response errors modeled, the algorithm does substan-
tially and significantly better than extant question-
selection methods. We also address looking ahead S
steps, generalized heuristics, and the use of popula-
tion data to improve priors. Synthetic data suggest
that the proposed method recovers parameters with
fewer questions than extant methods. Empirically,
adaptive-question selection is significantly better at
predicting future consideration than benchmark ques-
tion selection. Noncompensatory estimation is also
significantly better than the most commonly applied
compensatory method.

We begin with a brief review and taxonomy
of existing methods to select questions to identify
consumer decision rules. We then review noncom-
pensatory heuristics and motivate their managerial
importance. Next, we present the algorithm, test
parameter recovery with synthetic data, and describe
an empirical illustration in the automobile mar-
ket. We close with generalizations and managerial
implications.

2. Existing Methods for Question
Selection to Reveal Consumer
Decision Rules

Marketing has a long tradition of methods to measure
consumer decision rules. Figure 1 attempts a taxon-
omy that highlights the major trends and provides
examples.

The vast majority of papers focus on compensatory
decision rules. The most common methods include

either self-explication, which asks respondents to self-
state their decision rules, or conjoint analysis, which
infers compensatory decision rules from questions
in which respondents choose, rank, or rate bun-
dles of aspects called product profiles. These meth-
ods are applied widely and have demonstrated both
predictive accuracy and managerial relevance (e.g.,
Green 1984, Green and Srinivasan 1990, Wilkie and
Pessemier 1973). In early applications, profiles were
chosen from either full-factorial, fractional-factorial,
or orthogonal designs, but as hierarchical-Bayes esti-
mation became popular, many researchers moved
to random designs to explore interactions better.
For choice-based conjoint analysis, efficient designs
are a function of the parameters of compensatory
decision rules, and researchers developed “aggre-
gate customization” to preselect questions using data
from prestudies (e.g., Arora and Huber 2001). More
recently, faced with impatient online respondents,
researchers developed algorithms for adaptive con-
joint questions based on compensatory models (e.g.,
Toubia et al. 2004). After data are collected adaptively,
the likelihood principle enables the data to be reana-
lyzed with models using classical statistics, Bayesian
statistics, or machine learning.

In some applications respondents are asked to self-
state noncompensatory heuristics. Self-explication has
had mixed success because respondents often chose
profiles with aspects they had previously stated as
unacceptable (e.g., Green et al. 1988). Recent experi-
ments with incentive-compatible tasks, such as hav-
ing respondents write an e-mail to a friend who will
act as their agent, are promising (Ding et al. 2011).

Researchers have begun to propose methods to
identify heuristic decision rules from directly mea-
sured consideration of product profiles. Finding the
best-fit decision rule requires solving a discrete opti-
mization problem that is NP-hard (e.g., Martignon
and Hoffrage 2002). Existing estimation uses machine-
learning methods such as greedy heuristics, greedoid
dynamic programs, logical analysis of data, or lin-
ear programming perturbation (Dieckmann et al. 2009,
Hauser et al. 2010, Kohli and Jedidi 2007, Yee et al.
2007). Even for approximate solutions, runtimes are
exponential in the number of aspects limiting methods
to moderate numbers of aspects. Bayesian methods
have been used to estimate parameters for moderate
numbers of aspects (e.g., Gilbride and Allenby 2004,
2006; Hauser et al. 2010; Liu and Arora 2011). To date,
profiles for direct consideration measures are chosen
randomly or from an orthogonal design.

Within this taxonomy Figure 1 illustrates the focus
of this paper (thick box)—adaptive questions for non-
compensatory heuristics. We also develop an esti-
mation method for noncompensatory heuristics that
scales to large numbers of aspects, even when applied
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Figure 1 Taxonomy of Existing Methods to Select Questions to Identify Consumer Decision Rules
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Note. ACA, adaptive conjoint analysis; DP, dynamic program; HB, hierarchical Bayes; SVMs, support-vector machines.

to extant question-selection methods (dotted box).
We focus on questions that ask about consideration
directly (consider or not). However, our methods
apply to all data in which the consumer responds
with a yes or no answer and might be extendable
to choice-based data where more than one profile is
shown at a time. We do not focus on methods where
consideration is an unobserved construct inferred
from choice data (e.g., Erdem and Swait 2004, van
Nierop et al. 2010). There is one related adaptive
method—the first stage of adaptive choice-based con-
joint analysis (ACBC; Sawtooth 2008) that is based
on rules of thumb to select approximately 28 profiles
that are variations on a “bring-your-own” profile. Pro-
files are not chosen optimally, and noncompensatory
heuristics are not estimated.

3. Noncompensatory Decision
Heuristics

We classify decision heuristics as simple and more
complex. The simple heuristics include conjunctive,
disjunctive, lexicographic, take-the-best, and elimina-
tion by aspects. The more complex heuristics include

subset conjunctive and disjunctions of conjunctions.
The vast majority of scientific experiments have exam-
ined the simple heuristics, with conjunctive the most
common (e.g., Gigerenzer and Selten 1999; Payne
et al. 1988, 1993, and references therein). The study
of more complex heuristics, which nest the simple
heuristics, is relatively recent, but there is evidence
that some consumers use the more complex forms
(Jedidi and Kohli 2005, Hauser et al. 2010). Both sim-
ple and complex heuristics apply for consideration,
choice, or other decisions and for a wide variety of
product categories. For simplicity of exposition, we
define the heuristics with respect to the consideration
decision and illustrate the heuristics for automotive
features.

3.1. Simple Heuristics

3.1.1. Conjunctive Heuristic. For some features
consumers require acceptable (“must-have”) levels.
For example, a consumer might only consider a
sedan body type and only consider Toyota, Nissan,
or Honda. Technically, for features not in the conjunc-
tion, such as engine type, all levels are acceptable.
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3.1.2. Disjunctive Heuristic. If the product has
“excitement” levels of a feature, the product is con-
sidered no matter what the levels of the other features
are. For example, a consumer might consider all vehi-
cles with a hybrid engine.

3.1.3. Take-the-Best. The consumer ranks prod-
ucts on a single most diagnostic feature and considers
only those above some cutoff. For example, the con-
sumer may find “brand” most diagnostic, rank prod-
ucts on brand, and consider only those with brands
that are acceptable—say, Toyota, Nissan, and Honda.

3.1.4. Lexicographic (by Features). This heuristic
is similar to take-the-best except the feature need not
be most diagnostic. If products are tied on a feature
level, then the consumer continues examining fea-
tures lower in the lexico ordering until ties are broken.
For example, the consumer might rank on brand,
then body style considering only Toyota, Nissan, and
Honda, and, among those brands, only sedans.

3.1.5. Elimination by Aspects. The consumer
selects an aspect and eliminates all products with
unacceptable levels, and then he or she selects another
aspect and eliminates products with unacceptable lev-
els on that aspect, continuing until only considered
products are left. For example, the consumer may
eliminate all but Toyota, Nissan, and Honda and all
but sedans. Researchers have also examined accep-
tance by aspects and lexicographic by aspects that
generalize elimination by aspects in the obvious ways.

When the only data are consider versus not con-
sider, it does not matter in which order the profiles
were eliminated or accepted. Take-the-best, lexico-
graphic (by features), elimination by aspects, accep-
tance by aspects, and lexicographic by aspects are
indistinguishable from conjunctive heuristics. The
rules predict differently when respondents are asked
to rank data and differ in the underlying cognitive
process, but they do not differ when predicting the
observed consideration set. Disjunctive is a mirror
image of conjunctive. Thus, any question-selection
algorithm that optimizes questions to identify con-
junctive heuristics can be applied (perhaps with a mir-
ror image) to any of the simple heuristics.

3.2. More Complex Heuristics

3.2.1. Subset Conjunctive. The consumer consid-
ers a product if F features have levels that are
acceptable. The consumer does not require all fea-
tures to have acceptable levels. For example, the con-
sumer might have acceptable brands (Toyota, Honda,
Nissan), acceptable body types (sedan), and accept-
able engines (hybrid) but only require that two of the
three features have levels that are acceptable.

3.2.2. Disjunctions of Conjunctions. The con-
sumer might have two or more sets of acceptable
aspects. For example, the consumer might consider
[Toyota and Honda sedans] or [crossover body types
with hybrid engines]. Disjunctions of conjunctions
nests the subset conjunctive heuristic and all of
the simple heuristics (for consideration). However,
its generality is also a curse. Empirical applications
require cognitive simplicity to avoid overfitting data.

All of these decision heuristics are postulated
as descriptions of how consumers make decisions.
Heuristics are not, and need not be, tied to utility
maximization. For example, it is perfectly reason-
able for a consumer to screen out low-priced prod-
ucts because the consumer believes that he or she
is unlikely to choose such a product if considered
and, hence, does not believe that evaluating such a
product is worth the time and effort. (Put another
way, the consumer would purchase a fantastic prod-
uct at a low price if he or she knew about the prod-
uct but never finds out about the product because the
consumer chose not to evaluate low-priced products.
When search costs are considered, it may be rational
for the consumer not to search the lower-priced prod-
uct because the probability of finding an acceptable
low-priced product is too low.)

In this paper we illustrate our question-selection
algorithm with conjunctive decision rules (hence it
applies to all simple heuristics). We later extend
the algorithm to identify disjunctions-of-conjunctions
heuristics (which nest subset conjunctive heuristics).

4. Managerial Relevance: Stylized
Motivating Example

As a stylized example, suppose that automobiles
can be described by four features with two levels
each: Toyota or Chevy, sedan or crossover body type,
hybrid or gasoline engine, and premium or basic trim
levels, for a total of eight aspects. Suppose we are
managing the Chevy brand that makes only sedans
with gasoline engines and basic trim, and suppose it
is easy to change trim levels but not the other fea-
tures. If consumers are compensatory and their part-
worths are heterogeneous and not “too extreme,” we
can get some consumers to consider our vehicle by
offering sufficiently premium trim levels. It might be
profitable to do so.

Suppose instead that a segment of consumers is
conjunctive on [Toyota ∧ crossover]. (In our nota-
tion, ∧ is the logical “and”; ∨ is the logical “or.”)
No amount of trim levels will attract these conjunc-
tive consumers. They will not pay attention to Chevy
advertising, visit the GM website, or travel to a Chevy
dealer—they will never evaluate any Chevy sedans
no matter how much we improve them. In another
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example, if a segment of consumers is conjunctive
on [crossover ∧ hybrid], we will never get those con-
sumers to evaluate our vehicles unless we offer a
hybrid crossover vehicle no matter how good we
make our gasoline-engine sedan. Even with disjunc-
tions of conjunctions, consumers who use [(sedan ∧

hybrid)∨(crossover∧gasoline engine)] will never con-
sider our gasoline-engine sedan. In theory we might
approximate noncompensatory heuristics with com-
pensatory partworth decision rules (especially if we
include interactions), but if there are many aspects,
empirical approximations may not be accurate.

Many products just never make it because they
are never considered; consumers never learn that the
products have outstanding aspects that could com-
pensate for the product’s lack of a conjunctive feature.
Our empirical illustration is based in the automotive
industry. Managers at high levels in the sponsoring
organization believe that conjunctive screening was a
major reason that the automotive manufacturer faced
slow sales relative to other manufacturers. For exam-
ple, they had evidence that more than half of the con-
sumers in the United States would not even consider
their brands. Estimates of noncompensatory heuris-
tics are now important inputs to product-design and
marketing decisions at that automotive manufacturer.

Noncompensatory heuristics can imply different
managerial decisions. Hauser et al. (2010) illustrate
how rebranding can improve the share of a com-
mon electronic device if consumers use compensatory
models but not if consumers use noncompensatory
models. Ding et al. (2011) illustrate that conjunctive
rules and compensatory rules are correlated in the

Figure 2 Example Configurator and Example Queries (Color in Original)

Body Type: Down

Consider

Brand:

Engine Cylinders:

Composite MPG:

Engine Type:

Price:

Body Type Minivan

$32,000

Gasoline

20

Toyota

6

Brand

Engine Cylinders

Quality Rating

Crash Test Rating

Composite MPG

Engine Type

Price

Consider

29 questions left

(a) Example configurator (b) Example query

Next>>

Would Not Consider

sense that feature levels with higher average part-
worth values also appear in more “must-have rules.”
However, the noncompensatory models identify com-
binations of aspects that would not be considered
even though their combined partworth values might
be reasonable.

5. Question Types, Error Structure,
and Notation

5.1. Question Types and Illustrative Example
Figure 2 illustrates the basic question formats. The
example is automobiles, but these types of questions
have been used in a variety of product categories—
usually durable goods, where consideration is easy
to define and a salient concept to consumers (Dahan
and Hauser 2002, Sawtooth 2008, Urban and Hauser
2004). Extensive pretests suggest that respondents
can accurately “configure” a profile that they would
consider (Figure 2(a)). If respondents use only one
conjunctive rule in their heuristic, they find it diffi-
cult to accurately configure a second profile. If they
use a disjunctions-of-conjunctions heuristic with suffi-
ciently distinct conjunctions, such as [(Toyota∧sedan)
∨ (Chevy ∧ truck)], we believe they can configure a
second profile “that is different from previous pro-
files that you said you will consider.” In this section
we focus on the first configured profile and the cor-
responding conjunctive heuristic. In a later section,
we address more conjunctions in a disjunctions-of-
conjunctions heuristic.

After configuring a considered profile, we ask
respondents whether or not they will consider various
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profiles (Figure 2(b)). Our goal is to select the profiles
that provide the most information about decision
heuristics (information is defined below). With syn-
thetic data we plot cumulative information (parame-
ter recovery) as a function of the number of questions.
In our empirical test, we ask 29 queries, half of which
are adaptive and half of which are chosen randomly
(proportional to market share). We compare predic-
tions based on the two types of questions. Although
the number of questions was fixed in the empirical
test, we address how stopping rules can be endoge-
nous to the algorithm.

5.2. Notation, Error Structure, and
Question-Selection Goal

Let M be the number of features (e.g., brand, body
style, engine type, trim level; M = 4), and let N be
the total numbers of aspects (e.g., Toyota, Chevy,
sedan, crossover, hybrid, gasoline engine, low trim,
high trim; N = 8). Let i index consumers and j
index aspects. For each conjunction, consumer i’s
decision rule is a vector, Eai, of length N , with ele-
ments aij such that aij = 1 if aspect j is accept-
able and aij = −1 if it is not. For example, Eai =

8+11−11+11−11+11−11+11+19 would indicate that
the ith consumer finds hybrid Toyota sedans with
both low and high trim to be acceptable.

Each sequential query (Figure 2(b)), indexed by k, is
a profile, Exik, with N elements, xijk, such that xijk = 1 if
i’s profile k has aspect j and xijk = 0 if it does not. Each
Exik has exactly M nonzero elements, one for each fea-
ture. (In our stylized example, a profile contains one
brand, one body type, one engine type, and one trim
level.) For example, Exik = 81101110111011109 would
be a hybrid Toyota sedan with low trim.

Let XiK be the matrix of the first K profiles given to
a consumer; each row corresponds to a profile. Math-
ematically, profile Exik satisfies a conjunctive rule Eai if
whenever xijk = 1, then aij = 1, such that every aspect
of the profile is acceptable. In our eight-aspect exam-
ple, consumer i finds the hybrid Toyota sedan with
low trim to be acceptable (compare Eai to Exik5. This con-
dition can be expressed as minj8xijkaij9≥ 0. It is vio-
lated only if a profile has at least one level (xijk = 15
that is unacceptable (aij = −15. Following Gilbride and
Allenby (2004), we define a function to indicate when
a profile is acceptable: I4Exik1 Eai5 = 1 if minj8xijkaij9≥ 0,
and I4Exik1 Eai5 = 0 otherwise. We use the same cod-
ing for disjunctive rules but modify the definition of
I4Exik1 Eai5 to use maxj rather than minj .

Let yik be consumer i’s answer to the kth query,
where yik = 1 if the consumer says “consider” and
yik = 0 otherwise. Let EyiK be the vector of the first K
answers. If there were no response errors, we would
observe yik = 1 if and only if I4Exik1 Eai5 = 1. How-
ever, empirically, we expect response errors. Because

the algorithm must run rapidly between queries, we
choose a simple form for response error. Specifically,
we assume that a consumer gives a false-positive
answer with probability �1 and a false-negative
answer with probability �2. For example, the ith con-
sumer will say “consider (yik = 15” with probability
1 − �2 whenever the indicator function implies “con-
sider,” but he or she will also say “consider” with
probability �1 if the indicator function implies “not
consider.” This error structure implies the following
data-generating model:

Pr4yik =1 � Exik1 Eai5= 41−�25I4Exik1 Eai5+�141−I4Exik1 Eai551

Pr4yik =0 � Exik1 Eai5=�2I4Exik1 Eai5+41−�1541−I4Exik1 Eai550

(1)

Each new query Exi1K+1 is based on our poste-
rior beliefs about the decision rules (Eai5. After the
Kth query, we compute the posterior Pr4Eai � XiK1yiK5
conditioned on the first K queries (XiK5, the first
K answers (EyiK5, and the priors. (Posterior beliefs
might also reflect information from other respon-
dents; see §6.6.) We seek to select the Exiks to get as
much information as feasible about Eai or, equivalently,
to reduce uncertainty about Eai by the greatest amount.
In §6.2 we define “information” and describe how we
optimize it.

5.3. Error Magnitudes Are Set Prior to
Data Collection

We cannot know the error magnitudes until after data
are collected, but we must set the �s in order to collect
data. Setting the �s is analogous to setting “accuracy”
parameters in aggregate customization. We address
this conundrum in two ways: (1) We treat the �s as
“tuning” parameters and explore the sensitivity to
these tuning parameters with synthetic data. Setting
tuning parameters is common in machine-learning
query selection. (2) For the empirical test, we rely
on managerial judgment (Little 2004a, b). Because the
tuning parameters are set by managerial judgment
prior to data collection, our empirical test is conser-
vative in the sense that predictions might improve if
future research allows updating of the error magni-
tudes within or across respondents.

To aid intuition we motivate the �s with an
illustrative microanalysis of our stylized example.
Suppose that a respondent’s conjunctive heuris-
tic is [Toyota ∧ crossover]. This respondent should
find a crossover Toyota acceptable and not care
about the engine and trim. Coding each aspect as
acceptable or not, and preserving the order Toyota,
Chevy, sedan, crossover, hybrid, gasoline, premium
trim, and basic trim, this heuristic becomes Eai =

6+11−11−11+11+11+11+11+17. Suppose that when
this respondent makes a consideration decision, he or
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she makes errors with probability � on each aspect,
where an error involves flipping that aspect’s accept-
ability. For example, suppose he or she is shown
a Toyota crossover with a hybrid engine and pre-
mium trim; that is, Exik = 61101011111011107. He or
she matches the heuristic to the profile aspect by
aspect, making errors with probability � for each
acceptable aspect in the profile; e.g., Toyota is accept-
able per the heuristic but may be mistaken for unac-
ceptable with probability �. The respondent can make
a false-negative error if any of the four aspects in
the profile are mistaken for unacceptable ones. If
these errors occur independently, the respondent will
make a false-negative error with probability �2 =

1 − 41 − �54. If a profile is unacceptable, say, Exik =

60111110111011107, we easily compute �1 = �241−�52.
In this illustration, any prior belief on the distri-

bution of the heuristics and profiles implies expected
�s as a function of the �s. Whether one specifies
the �s and derives expected �s or specifies the �s
directly depends on the researchers and managers,
but in either case, the tuning parameters are specified
prior to data collection. With synthetic data we found
no indication that one specification is preferred to the
other. Empirically, we found it easier to think about
the �s directly.

6. Adaptive Question Selection
To select questions adaptively, we must address the
following procedure:

Step 1. Initialize beliefs by generating consumer-
specific priors.

Step 2. Select the next query based on current pos-
terior beliefs.

Step 3. Update posterior beliefs from the priors and
the responses to all the previous questions.

Step 4. Continue looping Steps 2 and 3 until Q
questions are asked (or until another stopping rule is
reached).

6.1. Initialize Consumer-Specific Beliefs (Step 1)
Hauser and Wernerfelt (1990, p. 393) provide exam-
ples where self-stated consideration set sizes are
one-tenth or less of the number of brands on the
market. Our experience suggests these examples are
typical. If the question-selection algorithm used non-
informative priors, the initial queries would be close
to random guesses, most of which would not be con-
sidered by the consumer. When a consumer considers
a profile, we learn (subject to the errors) that all of
its aspects are acceptable; when a consumer rejects
a profile, we learn only that one or more aspects
are unacceptable. Therefore, the first considered pro-
file provides substantial information and a significant
shift in beliefs. Without observing the first considered
profile directly, queries are not efficient, particularly

with large numbers of aspects (N5. To address this
issue, we ask each respondent to configure a consid-
ered profile and, hence, gain substantial information.

Prior research using compensatory rules (e.g.,
Toubia et al. 2004) suggests that adaptive questions
are most efficient relative to random or orthogonal
questions when consumers’ heuristic decision rules
are heterogeneous. We expect similar results for non-
compensatory heuristics. In the presence of hetero-
geneity, the initial configured profile enables us to
tailor prior beliefs to each respondent.

For example, in our empirical application we tai-
lor prior beliefs using the co-occurrence of brands
in consideration sets. Such data are readily available
in the automotive industry and for frequently pur-
chased consumer goods. Alternatively, prior beliefs
might be updated on the fly using a collaborative
filter on prior respondents (see §6.6). Without loss
of generality, let j = 1 index the brand aspect the
respondent configures, and for other brand aspects,
let b1j be the prior probability that brand j is accept-
able when brand 1 is acceptable. Let Exi1 be the con-
figured profile, and set yi1 = 1. When co-occurrence
data are available, prior beliefs on the marginal prob-
abilities are set such that Pr4ai1 = 1 � Exi11yi15 = 1 and
Pr4aij = 1 � Exi11yi11priors5= bij for j 6= 1.

Even without co-occurrence data, we can set
respondent-specific priors for every aspect on which
we have strong prior beliefs. We use weakly infor-
mative priors for all other aspects. When managers
have priors across features (e.g., considered hybrids
are more likely to be Toyotas), we also incorporate
those priors (Little 2004a, b).

6.2. Select the Next Question Based on Posterior
Beliefs from Prior Answers (Step 2)

The respondent’s answer to the configurator pro-
vides the first of a series of estimates of his or
her decision rule, pij1 = Pr4aij = 1 � Xi1 = Exi11 Eyi15 for
all aspects j . (We have suppressed the notation for
“priors.”) We update these probabilities by iterating
through Steps 2 and 3, computing updated estimates
after each question–answer pair using all data col-
lected up to and including that the Kth question,
pijK = Pr4aij = 1 � XiK1 EyiK5 for K > 1. (Details are in
Step 3; see §6.3.) To select the K + 1st query (Step 2),
assume we have computed posterior values (pijK5
from prior queries (up to K5 and that we can com-
pute contingent values (pij1K+15 one step ahead for
any potential new query (Exi1K+15 and its correspond-
ing answer (yi1K+15. We seek those questions that tell
us as much as feasible about the respondent’s decision
heuristic. Equivalently, we seek to reduce uncertainty
about Eai by the greatest amount.

Following Lindley (1956) we define the most infor-
mative question as the query that minimizes a loss
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function. In this paper, we use Shannon’s entropy as
the uncertainty measure (Shannon 1948), but other
measures of uncertainty could be used without other-
wise changing the algorithm. Shannon’s entropy, mea-
sured in bits, quantifies the amount of information
that is missing because the value of a random vari-
able is not known for certain. Higher entropy corre-
sponds to more uncertainty. Zero entropy corresponds
to perfect knowledge. Shannon’s entropy (hereafter,
entropy) is used widely in machine learning, has
proven robust in many situations, and is the basis of
criteria used to evaluate parameter recovery and pre-
dictive ability (U 2 and Kullback–Leibler 1951 diver-
gence). We leave to future implementations other loss
functions such as Rényi (1961) entropy, suprisals, and
other measures of information.1 Mathematically,

HEai
=

N
∑

j=1

−
{

pijK log2 pijK + 41 − pijK5 log2 41 − pijK5
}

0 (2)

If some aspects are more important to managerial
strategy, we use a weighted sum in Equation (2).

To select the K + 1st query, Exi1K+1, we enumer-
ate candidate queries, anticipating the answer to the
question, yi1K+1, and anticipating how that answer
updates our posterior beliefs about the respon-
dent’s heuristic. Using the pijKs we compute the
probability the respondent will consider the profile,
qi1K+14Exi1K+15 = Pr4yi1K+1 = 1 � XiK1 EyiK1 Exi1K+15. Using
the Step 3 algorithm (described in the next subsec-
tion), we update the posterior pij1K+1s for all potential
queries and answers. Let p+

ij1K+14Exi1K+15 = Pr4aij = 1 �

XiK1 EyiK1 Exi1K+11yi1K+1 = 15 be the posterior beliefs if
we ask profile Exi1K+1 and the respondent considers
it. Let p−

ij1K+14Exi1K+15= Pr4aij = 1 �XiK1 EyiK1 Exi1K+11yi1K+1
= −15 be the posterior beliefs if the respondent does
not consider the profile. Then the expected posterior
entropy is

E6HEai4Exi1K+1 �XiK1 EYiK57

=−qi1K+14Exi1K+15
∑

j

{

p+

ij1K+14Exi1K+15log26p
+

ij1K+14Exi1K+157

+61−p+

ij1K+14Exi1K+157log261−p+

ij1K+14Exi1K+157
}

−61−qi1K+14Exi1K+157
∑

j

{

p−

ij1K+14Exi1K+15log26p
−

ij1K+14Exi1K+157

+61−p−

ij1K+14Exi1K+157log261−p−

ij1K+14Exi1K+157
}

0 (3)

When the number of feasible profiles is moderate,
we compute Equation (3) for every profile and choose
the profile that minimizes Equation (3). However, in

1 Rényi’s entropy reduces to Shannon’s entropy when Rényi’s �= 1;
the only value of � for which information on the aijs is separable.
To use these measures of entropy, modify Equations (2) and (3) to
reflect Rényi’s �.

large designs such as the 53-aspect design in our
empirical example, the number of potential queries
435712105 can be quite large. Because this large num-
ber of computations cannot be completed in less than
a second, we focus our search using uncertainty sam-
pling (e.g., Lewis and Gale 1994). Specifically, we eval-
uate Equation (3) for the T queries about which we
are most uncertain. “Most uncertain” is defined as
qi1K+14Exi1K+15≈ 005. Profiles identified from among the
T most uncertain profiles are approximately optimal
and, in some cases, optimal (e.g., see Appendix A).
Uncertainty sampling is similar to choice balance
as used in both polyhedral methods and aggregate
customization (e.g., Arora and Huber 2001, Toubia
et al. 2004). Synthetic data tests demonstrate that
with T sufficiently large, we achieve close-to-optimal
expected posterior entropy. For our empirical applica-
tion, setting T = 11000 kept question selection under
a second. As computing speeds improve, researchers
can use a larger T .

Equation (3) is myopic because it computes
expected posterior entropy one step ahead. Extending
the algorithm S steps ahead is feasible for small N .
However S-step computations are exponential in S.
For example, if there are 256 potential queries, a two-
step ahead algorithm requires that we evaluate 2562 =

651536 potential queries (without further approxima-
tions). Fortunately, synthetic data experiments sug-
gest that one-step ahead computations achieve close
to the theoretical maximum information of one bit
per query (when there are no response errors) and do
quite well when there are response errors. For com-
pleteness we coded a two-step-ahead algorithm in the
case of 256 potential queries. Even for modest prob-
lems, its running time was excessive (over 13 minutes
between questions); it provided negligible improve-
ments in parameter recovery. Our empirical applica-
tion has over a thousand times as many potential
queries—a two-step-ahead algorithm was not feasible
computationally.

6.3. Update Beliefs About Heuristic Rules Based
on Answers to the K Questions (Step 3)

In Step 3 we use Bayes theorem to update our beliefs
after the Kth query:

Pr4Eai �XiK1 EyiK5

∝ Pr4yiK � ExiK1 Eai = Ea5Pr 4Ea= Eai �Xi1K−11 Eyi1K−150 (4)

The likelihood term, Pr4yiK � ExiK1 Eai = Ea5, comes from
the data-generating model in Equation (1). The vari-
able of interest, Eai, is defined over all binary vec-
tors of length N . Because the number of potential
conjunctions is exponential in N , updating is not
computationally feasible without further structure on
the distribution of conjunctions. For example, with
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N = 53 in our empirical example, we would need to
update the distribution for 900 × 1015 potential con-
junctions.

To gain insight for a feasible algorithm, we examine
solutions to related problems. Gilbride and Allenby
(2004) use a “Griddy–Gibbs” algorithm to sample
threshold levels for features. At the consumer level,
the thresholds are drawn from a multinomial distribu-
tion. The Griddy–Gibbs uses a grid approximation to
the (often univariate) conditional posterior. We cannot
modify their solution directly, in part because most of
our features are horizontal (e.g., brand) and thresh-
olds do not apply. Even for vertical features, such
as price, we want to allow non-threshold heuristics.
We need algorithms that let us classify each level as
acceptable or not.

For a feasible algorithm, we use a variational
Bayes approach. In variational Bayes inference, a
complex posterior distribution is approximated with
a variational distribution chosen from a family of
distributions judged similar to the true posterior dis-
tribution. Ideally, the variational family can be evalu-
ated quickly (Attias 1999, Ghahramani and Beal 2000).
Even with an uncertainty-sampling approximation in
Step 2, we must compute posterior distributions for
2T question–answer combinations and do so while
the respondent waits for the next question.

As our variational distribution, we approximate
the distribution of Eai with N independent bino-
mial distributions. This variational distribution has N
parameters, the pijs, rather than parameters for the 2N

potential values of Eai. Because this variational approx-
imation is within a consumer, we place no restric-
tion on the empirical population distribution of the
aijs. Intercorrelation at the population level is likely
(and allowed) among aspect probabilities. For exam-
ple, we might find that those automotive consumers
who screen on Toyota also screen on hybrid engines.
In another application we might find that those cellu-
lar phone consumers who screen on Nokia also screen
on “flip.” For every respondent the posterior values
of all pijKs depend on all of the data from that respon-
dent, not just queries that involve the jth aspect.

To calculate posteriors for the variational distribu-
tion, we use a version of belief propagation (Yedidia
et al. 2003, Ghahramani and Beal 2001). The algorithm
converges iteratively to an estimate of EpiK . The hth
iteration uses Bayes theorem to update each phijK based
on the data and based on phij ′K for all j ′ 6= j . Within
the hth iteration, the algorithm loops over aspects
and queries using the data-generating model (Equa-
tion (1)) to compute the likelihood of observing yk = 1
conditioned on the likelihood for k′ 6= k. It continues
until the estimates of the phijKs stabilize. In our expe-
rience, the algorithm converges quickly: 95.6% of the
estimations converge in 20 or fewer iterations, 99.2%

in 40 or fewer iterations, and 99.7% in 60 or fewer
iterations. Appendix B provides the pseudo-code.

Although variational distributions work well in a
variety of applications, there is no guarantee for our
application. Performance is an empirical question that
we address in §§7 and 8. Finally, we note that the
belief propagation algorithm and Equation (4) appear
to be explicitly dependent only on the questions that
are answered by consumer i. However, our notation
has suppressed the dependence on prior beliefs. It is
a simple matter to make prior beliefs dependent on
the distribution of the Eais, as estimated from previous
respondents (see §6.6).

6.4. Stopping Rules (Step 4)
Adaptive-question selection algorithms for compen-
satory decision rules and fixed question-selection
algorithms for compensatory or noncompensatory
rules rely on a target number of questions chosen
by prior experience or judgment. Such a stopping
rule can be used with the adaptive question-selection
algorithm proposed in this paper. For example, we
stopped after Q = 29 questions in our empirical
illustration.

However, expected posterior entropy minimization
makes it feasible to select a stopping rule endoge-
nously. One possibility is to stop questioning when
the expected reduction in entropy drops below a
threshold for two or more adaptive questions. Syn-
thetic data provide some insight. In §7 we plot the
information obtained about parameters as a function
of the number of questions. In theory we might also
gain insight from our empirical example. However,
because our empirical example used only 29 ques-
tions for 53 aspects, for 99% of the respondents
the adaptive-question selection algorithm would still
have gained substantial information if the respon-
dents had been asked a 30th question. We return to
this issue in §11. Because we cannot redo our empir-
ical example, we leave this and other stopping-rule
extensions to future research.

6.5. Extension to Disjunctions of Conjunctions
Disjunctions-of-conjunctions heuristics nest both sim-
ple and complex heuristics. The extension to disjunc-
tions of conjunctions is conceptually simple. After we
reach a stopping rule, whether it be fixed a priori or
endogenous, we simply restart the algorithm by ask-
ing a second configurator question but requiring an
answer that is substantially different from the pro-
files that the respondent has already indicated he or
she will consider. If the respondent cannot configure
such a profile, we stop. Empirically, cognitive simplic-
ity suggests that respondents use relatively few con-
junctions (e.g., Gigerenzer and Goldstein 1996, Hauser
et al. 2010, Martignon and Hoffrage 2002). Most con-
sumers use one conjunction (Hauser et al. 2010).
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Hence the number of questions should remain within
reason. We test this procedure on synthetic data and,
to the extent that our data allow, empirically.

6.6. Using Data from Previous Respondents
We can use data from other respondents to improve
priors for new respondents, but in doing so, we
want to retain the advantage of consumer-specific pri-
ors. Collaborative filtering provides a feasible method
(e.g., Breese et al. 1998). We base our collaborative fil-
ter on the consumer-specific data available from the
configurator (Figure 2(a)).

Specifically, after a new respondent completes the
configurator, we use collaboratively filtered data from
previous respondents who configured similar profiles.
For example, if an automotive consumer configures a
Chevy, we search for previous respondents who con-
figured a Chevy. For other brands we compute priors
with a weighted average of the brand posteriors (pijs)
from those respondents. (We weigh previous respon-
dents by predictive precision.) We do this for all con-
figured features. As sample sizes increase, population
data overwhelm even “bad” priors; performance will
converge to performance based on accurate priors
(assuming the collaborative filter is effective). We test
finite-sample properties on synthetic data and, empir-
ically, with an approximation based on the data we
collected.

7. Synthetic Data Experiments
To evaluate the ability of the active-learning algo-
rithm to recover known heuristic decision rules,
we use synthetic respondents. To compare adaptive-
question selection to established methods, we choose
a synthetic decision task with sufficiently many
aspects to challenge the algorithm but for which exist-
ing methods are feasible. With four features at four
levels (16 aspects), there are 65,536 heuristic rules—
a challenging problem for extant heuristic-rule esti-
mation methods. An orthogonal design is 32 profiles
and, hence, in the range of tasks in the empirical lit-
erature. We simulate respondents who answer any
number of questions K ∈ 6112567, where 256 profiles
exhaust the feasible profiles. To evaluate the question-
selection methods, we randomly select 1,000 heuris-
tic rules (synthetic respondents). For each aspect we
draw a Bernoulli probability from a Beta41115 distri-
bution (uniform distribution) and draw a +1 or −1
using the Bernoulli probability. This “sample size”
is on the high side of what we might expect in an
empirical study and provides sufficient heterogeneity
in heuristic rules.

For each decision heuristic, Eai, we use either the
proposed algorithm or an established method to select
questions. The synthetic respondent then “answers”
the questions using the decision heuristic, but with

response errors �1 and �2 chosen as if generated by
reasonable �s. To compare question-selection meth-
ods, we keep the estimation method constant. We
use the variational Bayes belief-propagation method
developed in this paper. The benchmark question-
selection methods are orthogonal, random, and
market based. Market-based questions are chosen ran-
domly but in proportion to profile shares we might
expect in the market—market shares are known for
synthetic data.

With synthetic data we know the parameters aij .
For any K and for all i and j , we use the “observed”
synthetic data to update the probability pijK that
aij = 1. An appropriate information-theoretic measure
of parameter recovery is U 2, which quantifies the per-
centage of uncertainty explained (empirical informa-
tion/initial entropy; Hauser 1978); U 2 = 100% indi-
cates perfect parameter recovery.

We begin with synthetic data that contain no
response errors. These data quantify potential maxi-
mum gains with adaptive questions, test how rapidly
active-learning questions recover parameters per-
fectly, and bound improvements that would be possi-
ble with nonmyopic S-step-ahead algorithms. We then
repeat the experiments with error-laden synthetic data
and with “bad” priors. Finally, we examine whether
we can recover disjunctions-of-conjunctions heuris-
tics and whether population-based priors improve
predictions.

7.1. Tests of Upper Bounds on Parameter
Recovery (No Response Errors)

Figure 3 presents key results. To simplify interpreta-
tion we plot random queries in Appendix D, rather
than Figure 3, because the results are indistinguish-
able from market-based queries on the scale of Fig-
ure 3. Market-based queries do approximately 3%
better than random queries for the first 16 queries,
approximately 1% better for the first 32 queries, and
approximately 0.5% better for all 256 queries. (Queries
129–256 are not shown in Figure 3; the random-
query and the market-based query curves asymp-
tote to 100%.) Orthogonal-design questions are only
defined for K = 32.

Questions selected adaptively by the active-learn-
ing algorithm find respondents’ decision heuristics
much more rapidly than existing question-selection
methods. The adaptive questions come very close to
an optimal reduction in posterior entropy. With 16
aspects and equally likely priors, the prior entropy is
16 log2(2), which is 16 bits. The configurator reveals
four acceptable aspects (four bits). Each subsequent
query is a binary outcome that can reveal at most
one bit. A perfect active-learning algorithm would
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Figure 3 Synthetic Data Experiments (Base Comparison, No Error):
Percent Uncertainty Explained 4U25 for Alternative
Question-Selection Methods
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require 12 additional queries to identify a decision
rule (4 bits + 12 bits identifies the 16 elements of
Eai5. On average, in the absence of response error,
the adaptive questions identify the respondent’s deci-
sion heuristic in approximately 13 questions. The
variational approximation and the one-step-ahead
question-selection algorithm appear to achieve close-
to-optimal information (12 bits in 13 questions).

We compare the relative improvement as a result
of question-selection methods by holding informa-
tion constant and examining how many questions
it takes to achieve that level of parameter recovery.
Because an orthogonal design is fixed at 32 ques-
tions, we use it as a benchmark. As illustrated in
the first line of data in Table 1, an orthogonal design
requires 32 queries to achieve a U 2 of approximately
76%. Market-based questions require 38 queries; ran-
dom questions require 40 queries, and adaptive ques-
tions only nine queries. To parse the configurator
from the adaptive questions, Appendix D plots the U 2

obtained with a configurator plus market-based ques-
tions. The plot parallels the plot of purely market-
based queries requiring 30 queries to achieve a U 2

of approximately 76%. In summary, in an errorless
world, the active-learning algorithm chooses adaptive
questions that provide substantially more information
per question than existing nonadaptive methods. The
large improvements in U 2, even for small numbers of
questions, suggests that adaptive questions are cho-
sen to provide information efficiently.

7.2. Tests of Parameter Recovery When There Are
Response Errors or “Bad” Priors

We now add either response error or “bad” pri-
ors and repeat the synthetic data experiments. The
plots remain quasi-concave for a variety of levels
of response error and/or bad priors.2 We report

2 Although the plots in Figure 2 are concave, there is no guarantee
that the plots remain concave for all situations. However, we do
expect all plots to be quasi-concave, and they are.

representative values in Table 1. (Table 1 is based on
false negatives occurring 5% of the time. False posi-
tives are set by the corresponding �. Bad priors per-
turb “good” priors with bias drawn from U6010017.)
Naturally, as we add errors or bad priors, the amount
of information obtained per question decreases; for
example, 13 adaptive questions achieved a U 2 of 100%
without response errors but only 55.5% with response
errors. On average, it takes 12.4 adaptive questions to
obtain a U 2 of 50% (standard deviation 8.7). The last
column of Table 1 reports the information obtained by
32 orthogonal questions. Adaptive questions obtain
relatively more information per question than existing
methods under all scenarios. Indeed, adaptive ques-
tions appear to be more robust to bad priors than
existing question-selection methods.

7.3. Tests of the Ability to Recovery
Disjunctions-of-Conjunctions Heuristics

We now generate synthetic data for respondents who
have two distinct conjunctions rather than just one
conjunction. By distinct, we mean no overlap in the
conjunctions. We allow both question-selection meth-
ods to allocate one-half of their questions to the first
conjunction and one-half to the second conjunction.
To make the comparison fair, all question-selection
methods use data from the two configurators when
estimating the parameters of the disjunctions-of-
conjunctions heuristics. After 32 questions (plus two
configurators), estimates based on adaptive questions
achieve a U 2 of 80.0%, whereas random questions
achieve a U 2 of only 34.5%. Adaptive questions also
beat market-based and orthogonal-design questions
handily.

This is an important result. With random questions
false positives from the second conjunction pollute the
estimation of the parameters of the first conjunction,
and vice versa. The active-learning algorithm focuses
questions on one or the other conjunction to provide
good recovery of the parameters of both conjunctions.
We expect the two-conjunction results to extend read-
ily to more than two conjunctions. Although this ini-
tial test is promising, future tests might improve the
algorithm with endogenous stopping rules that allo-
cate questions optimally among conjunctions.

7.4. Tests of Incorporating Data from
Previous Respondents

To demonstrate the value of incorporating data from
other respondents, we split the sample of synthetic
respondents into two halves. For the first half of
the sample, we use bad priors, ask questions adap-
tively, and estimate the Eais. We use the estimated
Eais and a collaborative filter on two features to cus-
tomize priors for the remaining respondents. We then
ask questions of the remaining respondents using
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Table 1 Synthetic Data Experiments Number of Questions Necessary to Match Predictive Ability of
32 Orthogonal Questions

Adaptive Random Market-based Orthogonal- Percent
questions questions questions design questions uncertaintya

Base comparison 9 40 39 32 7601
Error in answers 11 38 38 32 5306
“Bad” priors 6 42 41 32 5004

Note. Number of questions in addition to the configurator question.
aU2 (percent uncertainty explained) when heuristics estimated from 32 orthogonal questions; U2 for other

question-selection methods is approximately the same subject to integer constraints on the number of questions.

collaborative-filter-based priors. On average, U 2 is
17.8% larger on the second set of respondents (using
collaborative-filter-based priors) than on the first set
of respondents (not using collaborative-filter-based
priors). Thus, even when we use bad priors for
early respondents, the posteriors from those respon-
dents are sufficient for the collaborative filter. The
collaborative-filter-based priors improve U 2 for the
remaining respondents.

7.5. Summary of Synthetic Data Experiments
The synthetic data experiments suggest that

• adaptive question selection via active learning
is feasible and can recover the parameters of known
heuristic decision rules,

• adaptive question selection provides more infor-
mation per question than existing methods,

• one-step-ahead active-learning adaptive ques-
tions achieve gains in information (reduction in
entropy) that are close to the theoretical maximum
when there are no response errors,

• adaptive question selection provides more infor-
mation per question when there are response errors,

• adaptive question selection provides more infor-
mation per question when there are badly chosen
priors,

• it is feasible to extend adaptive-question selec-
tion to disjunctions-of-conjunctions heuristic decision
rules, and

• incorporating data from other respondents im-
proves parameter recovery.
These synthetic data experiments establish that if
respondents use heuristic decision rules, then the
active-learning algorithm provides a means to ask
questions that provide substantially more information
per question.

8. Illustrative Empirical Application
with a Large Number of Aspects

In the spring of 2009, a large American automotive
manufacturer (AAM) recognized that consideration of
their vehicles was well below that of non-U.S. vehi-
cles. Management was interested in exploring various
means to increase consideration. As part of that effort,

AAM fielded a Web-based survey to 2,336 respon-
dents recruited and balanced demographically from
an automotive panel maintained by Harris Interac-
tive, Inc. Respondents were screened to be 18 years
of age and interested in purchasing a new vehicle in
the next two years. Respondents received 300 Harris
points (good for prizes) as compensation for complet-
ing a 40-minute survey. The response rate was 68.2%,
and the completion rate was 94.9%.

The bulk of AAM’s survey explored various mar-
keting strategies that AAM might use to enhance
consideration of their brands. The managerial test of
communications strategies is tangential to the scope
and focus of this paper, but we illustrate in §10 the
types of insight provided by estimating consumers’
noncompensatory heuristics.

Because AAM’s managerial decisions depended on
the accuracy with which they could evaluate their
communications strategies, we were given the oppor-
tunity to test adaptive-question selection for a subset
of the respondents. A subset of 872 respondents was
not shown any communications inductions. Instead,
after configuring a profile, evaluating 29 calibration
profiles, and completing a memory-cleansing task
(Frederick 2005), respondents evaluated a second set
of 29 validation profiles. (A 30th profile in calibration
and validation was used for other research purposes
by AAM.) The profiles varied on 53 aspects: brand
(21 aspects), body style (9 aspects), price (7 aspects),
engine power (3 aspects), engine type (2 aspects), fuel
efficiency (5 aspects), quality (3 aspects), and crash-
test safety (3 aspects).

8.1. Adaptive Question Selection for
Calibration Profiles

To test adaptive question selection, one-half of the
calibration profiles were chosen adaptively by the
active-learning algorithm. The other half were cho-
sen randomly in proportion to market share from the
top 50 best-selling vehicles in the United States. To
avoid order effects and to introduce variation in the
data, the question-selection methods were random-
ized. This probabilistic variation means that the num-
ber of queries of each type is 14.5, on average, but
varies by respondent.
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As a benchmark we chose market-based queries
rather than random queries. The market-based
queries perform slightly better on synthetic data than
purely random queries and, hence, provide a stronger
test. We could not test an orthogonal design because
29 queries is but a small fraction of the 13,320 pro-
files in a 53-aspect orthogonal design. (A full fac-
torial would require 357,210 profiles.) Furthermore,
even if we were to complete an orthogonal design
of 13,320 queries, Figure 2 suggests that orthogo-
nal queries do only slightly better than random or
market-based queries. Following Sándor and Wedel
(2002) and Vriens et al. (2001), we split the market-
based profiles (randomly) over respondents.

Besides enabling methodological comparisons, this
mix of adaptive and market-based queries has prac-
tical advantages with human respondents. First, the
market-based queries introduce variety to engage
the respondent and help disguise the choice-balance
nature of the active-learning algorithm. (Respondents
get variety in the profiles they evaluate.) Second,
market-based queries sample “far away” from the
adaptive queries chosen by the active-learning algo-
rithm. They might prevent the algorithm from getting
stuck in a local maximum (an analogy to simulated
annealing).

8.2. Selecting Priors for the Empirical Application
AAM had co-occurrence data available from prior
research, so we set priors as described in §6.1. In
addition, using AAM’s data and managerial beliefs,
we were able to set priors on some pairwise con-
junctions such as “Porsche ∧ Kia” and “Porsche ∧

pick-up.” Rather than setting these priors directly as
correlations among the aijs, AAM’s managers found
it more intuitive to generate “pseudo-questions” in
which the respondent was assumed to “not consider”
a “Porsche ∧ pick-up” with probability q, where q
was set by managerial judgment. In other applications
researchers might set the priors directly.

8.3. Validation Profiles Used to Evaluate
Predictive Ability

After a memory-cleansing task, respondents were
shown a second set of 29 profiles, this time cho-
sen by the market-based question-selection method.
Because there was some overlap between the market-
based validation and the market-based calibration
profiles, we have an indicator of respondent reliabil-
ity. Respondents consistently evaluated market-based
profiles 90.5% of the time. Respondents are consistent,
but not perfect, and, thus, modeling response error
(via the �s) appears to be appropriate.

8.4. Performance Measures
Although hit rate is an intuitive measure, it can mis-
lead intuition for consideration data. If a respondent

were to consider 20% of both calibration and valida-
tion profiles, then a null model that predicts “reject
all profiles” will achieve a hit rate of 80%. Such a
null model, however, provides no information, has a
large number of false-negative predictions, and pre-
dicts a consideration set size of 0. On the other hand,
a null model that predicts randomly proportional
to the consideration set size in the calibration data
would predict a larger validation consideration set
size and balance false positives and false negatives,
but it would achieve a lower hit rate (68%: 0068 =

400852 + 4002525. Nonetheless, for interested readers,
Appendix E provides hit rates.

We expand evaluative criteria by examining false-
positive and false-negative predictions. A manager
might put more (or less) weight on not missing
considered profiles than on predicting as consid-
ered profiles that are not considered. However, with-
out knowing specific loss functions to weigh false
positives and false negatives differently, we cannot
have a single managerial criterion (e.g., Toubia and
Hauser 2007). Fortunately, information theory pro-
vides a commonly used measure that balances false
positives and false negatives: the Kullback–Leibler
divergence (KL). KL is a nonsymmetric measure of
the difference from a prediction model to a compar-
ison model (Chaloner and Verdinelli 1995, Kullback
and Leibler 1951). It discriminates among models
even when the hit rates might otherwise be equal.
Appendix C provides formulae for the KL measure
appropriate to the data in this paper. We calculate
divergence from perfect prediction; hence a smaller KL
is better.

In synthetic data we knew the “true” decision rule
and could compare the estimated parameters aijs to
known parameters. U 2 was the appropriate measure.
With empirical data we do not know the true deci-
sion rule; we only observe the respondents’ judg-
ments about consider versus not consider; hence KL
is an appropriate measure. However, both attempt to
quantify the information explained by the estimated
parameters (decision heuristics).

8.5. Key Empirical Results
Table 2 summarizes KL divergence for the two
question-selection methods that we tested: adaptive
questions and market-based questions. For each ques-
tion type, we use two estimation methods: (1) the
variational Bayes belief-propagation algorithm com-
putes the posterior distribution of the noncompen-
satory heuristics, and (2) a hierarchical Bayes logit
model (HB) computes the posterior distribution for a
compensatory model. HB is the most used estimation
method for additive utility models (Sawtooth 2004),
and it has proven accurate for zero-versus-one consid-
eration decisions (Ding et al. 2011, Hauser et al. 2010).
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Table 2 Illustrative Empirical Application KL Divergence for
Question-Selection-and-Estimation Combinations (Where
Smaller Is Better)

Noncompensatory Compensatory
heuristics decision model

Question-selection method
Adaptive questions 00475abc 00537c

Market-based questions 00512c 00512cd

Null models
Consider all profiles 0.565
Consider no profiles 0.565
Randomly consider profiles 0.562

aSignificantly better than market-based questions for noncompensatory
heuristics (p < 00001).

bSignificantly better than compensatory decision model (p < 00001).
cSignificantly better than null models (p < 00001).
dSignificantly better than adaptive questions for compensatory decision

model (p < 00001).

The latter authors provide a full HB specification in
Appendix C. Both estimation methods are based only
on the calibration data. For comparison Table 2 also
reports predictions for null models that predict all
profiles as considered, predict no profiles as consid-
ered, and predict profiles randomly based on the con-
sideration set size among the calibration profiles.

When the estimation method assumes respon-
dents use heuristic decision rules, rules estimated
from adaptive questions predict significantly bet-
ter than rules estimated from market-based queries.
(Hit rates are also significantly better.) Furthermore,
for adaptive questions, heuristic rules predict sig-
nificantly better than HB-estimated additive rules.
Although HB-estimated additive models nest lexico-
graphic models (and hence conjunctive models for
consideration data), the required ratio of partworths is
approximately 1015 and not realistic empirically. More
likely, HB does less well because its assumed additive
model with 53 parameters overfits the data, even with
shrinkage to the population mean.

It is perhaps surprising that ∼14.5 adaptive ques-
tions do so well for 53 aspects. This is an empirical
issue, but we speculate that the underlying reasons
are (1) consumers use cognitively simple heuristics
with relatively few aspects, (2) the adaptive questions
search the space of decision rules efficiently to con-
firm the cognitively simple rules, (3) the configurator
focuses this search quickly, and (4) consumer-specific
priors keep the search focused.

There is an interesting, but not surprising, interac-
tion effect in Table 2. If the estimation assumes an
additive model, noncompensatory-focused adaptive
questions do not do as well as market-based ques-
tions. Also, consistent with prior research using non-
adaptive questions (e.g., Dieckmann et al. 2009, Kohli
and Jedidi 2007, Yee et al. 2007), noncompensatory
estimation is comparable to compensatory estimation

using market-based questions. Perhaps to truly iden-
tify heuristics, we need heuristic-focused adaptive
questions.

But are consumers compensatory or noncompensa-
tory? The adaptive-question–noncompensatory-
estimation combination is significantly better than
all other combinations in Table 2. But what if we
estimated both noncompensatory and compensatory
models using all 29 questions (combining ∼14.5 adap-
tive questions and ∼14.5 market-based questions)?
The noncompensatory model predicts significantly
better than the compensatory model when all 29
questions are used (KL = 00451 versus KL = 00560,
p < 00001 using a paired t-test). Differences are
also significant at p < 00001 using a related-samples
Wilcoxon signed-rank test. Because we may not know
a priori whether the respondent is noncompensatory
or compensatory, collecting data both ways gives us
flexibility for post-data-collection reestimation. (In
the automotive illustration, prior theory suggested
that consumers were likely to use noncompensatory
heuristics.)

8.6. Summary of Empirical Illustration
Adaptive questions to identify noncompensatory
heuristics are promising. We appear able to select
questions to provide significantly more information
per query than market-based queries. Furthermore, it
appears that questions are chosen efficiently because
we can predict well with ∼14.5 questions, even in a
complex product category with 53 aspects. This is an
indication of cognitive simplicity. Finally, consumers
appear to be noncompensatory.

9. Initial Tests of Generalizations:
Disjunctions of Conjunctions and
Population Priors

Although data were collected based on the conjunctive
active-learning algorithm, we undertake exploratory
empirical tests of two proposed generalizations: dis-
junctions of conjunctions and prior-respondent-based
priors. These exploratory tests complement the theory
in §§6.5 and 6.6 and the synthetic data tests in §§7.3
and 7.4.

9.1. Disjunctions of Conjunctions
AAM managers sought to focus on consumers’ pri-
mary conjunctions because, in prior studies sponsored
by AAM, 93% of the respondents used only one con-
junction (Hauser et al. 2010). However, we might
gain additional predictive power by searching for sec-
ond and subsequent conjunctions using the methods
of §6.5. Ideally, this requires new data, but we get
an indicator by (1) estimating the best model with
the data, (2) eliminating all calibration profiles that
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were correctly classified with the first conjunction,
and (3) using the remaining market-based profiles to
search for a second conjunction. As expected, this
strategy reduced false negatives because there were
more conjunctions. It came at the expense of a slight
increase in false positives. Overall, using all 29 ques-
tions, KL increased slightly (0.459 versus 0.452, p <
00001), suggesting that the reestimation on incorrectly
classified profiles overfit the data. Because the dis-
junctions of conjunctions (DOC) generalization works
for synthetic data, a true test awaits new empiri-
cal data.

9.2. Previous-Respondent-Based Priors
The priors used to initialize consumer-specific beliefs
were based on judgments by AAM managers and
analysts; however, we might also use the methods
proposed in §6.6 to improve priors based on data
from other respondents. As a test, we used the basic
algorithm to estimate the pijKs, used the collaborative
filter to reset the priors for each respondent, rees-
timated the model (p′

ijKs), and compared predicted
consideration to observed consideration. Previous-
respondent-based priors improved predictions but
not significantly (0.448 versus 0.452, p = 00082), sug-
gesting that AAM provided good priors for this
application.

10. Managerial Use
The validation reported in this paper was part of a
much larger effort by AAM to identify communica-
tions strategies that would encourage consumers to
consider AAM vehicles. At the time of the study,

Table 3 Percentage of Respondents Using Aspect as an Elimination Criterion

Brand Elimination (%) Body type Elimination (%) Engine type Elimination (%)

BMW 68
Buick 97
Cadillac 86
Chevrolet 34
Chrysler 66
Dodge 60
Ford 23
GMC 95
Honda 14
Hyundai 89
Jeep 96
Kia 95
Lexus 86
Lincoln 98
Mazda 90
Nissan 14
Pontiac 97
Saturn 95
Subaru 99
Toyota 15
VW 86

Sports car 84
Hatchback 81
Compact sedan 62
Standard sedan 58
Crossover 62
Small SUV 61
Full-size SUV 71
Pickup truck 82
Minivan 90
Quality

Q-rating 5 0
Q-rating 4 1
Q-rating 3 23

Crash test
C-rating 5 0
C-rating 4 27
C-rating 3 27

Gasoline 3
Hybrid 44
Engine power

4 cylinders 9
6 cylinders 11
8 cylinders 69

EPA rating
15 mpg 79
20 mpg 42
25 mpg 16
30 mpg 5
35 mpg 0

Price ($)
12,000 77
17,000 54
22,000 46
27,000 48
32,000 61
37,000 71
45,000 87

two of the three American manufacturers had entered
bankruptcy. AAM’s top management believed that
overcoming consumers’ unwillingness to consider
AAM vehicles was critical if AAM was to become
profitable. Table 2, combined with ongoing studies by
AAM, was deemed sufficient evidence for managers
to rely on the algorithm to identify consumers’ heuris-
tic decision rules. AAM is convinced of the relevancy
of consumer heuristics and is actively investigating
how to use noncompensatory data routinely to inform
management decisions. We summarize here AAM’s
initial use of information on consumer heuristics.

The remaining 1,464 respondents each answered
29 adaptive plus market-based questions, were shown
an experimental induction, and then answered a sec-
ond set of 29 adaptive plus market-based questions.
Each induction was a communications strategy tar-
geted to influence consumers to (1) consider AAM
vehicles or (2) consider vehicles with aspects on
which AAM excelled. Details are proprietary and
beyond the scope of this paper. However, in general,
the most effective communications strategies were
those that surprised consumers with AAM’s success
in a non U.S. reference group. AAM’s then-current
emphasis on J.D. Power and Consumer Reports ratings
did not change consumers’ decision heuristics.

AAM used the data on decision heuristics for prod-
uct development. AAM recognized heterogeneity in
heuristics and identified clusters of consumers who
share decision heuristics. There were four main clus-
ters: high selectivity on brand and body type, selec-
tivity on brand, selectivity on body type, and (likely)
compensatory. There were two to six subclusters
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within each main cluster, for a total of 20 clusters.3

Each subcluster was linked to demographic and other
decision variables to suggest directed communica-
tions and product development strategies. Decision
rules for targeted consumer segments are proprietary,
but the population averages are not. Table 3 indicates
which percentage of the population uses elimination
rules for each of the measured aspects.

Although some brands were eliminated by most
consumers, larger manufacturers have many targeted
brands. For example, Buick was eliminated by 97%
of the consumers and Lincoln by 98%, but these are
not the only GM and Ford brands. For AAM, the
net consideration of its brands was within the range
of more-aggregate studies. Consumers are mixed on
their interest in “green” technology: 44% eliminate
hybrids from consideration, but 69% also eliminate
large engines. Price elimination illustrates that heuris-
tics are screening criteria, not surrogates for utility:
77% of consumers will not investigate a $12,000 vehi-
cle. This means that consumers’ knowledge of the
market tells them that, net of search costs, their best
strategy is to avoid investing time and effort to eval-
uate $12,000 vehicles. It does not mean that con-
sumers would not buy a top-of-the-line Lexus if it
were offered for $12,000. Table 3 provides aggregate
summaries across many consumer segments—AAM’s
product development and communications strategies
were targeted within segment. For example, 84% of
consumers overall eliminate sports cars indicating the
sports-car segment is a relatively small market. How-
ever, the remaining 16% of consumers constitute a
market that is sufficiently large for AAM to target
vehicles for that market.

11. Summary and Challenges
We found active machine learning to be an effective
methodology to select questions adaptively in order
to identify consideration heuristics. Both the synthetic
data experiments and the proof-of-concept empiri-
cal illustration are promising, but many challenges
remain.

Question selection might be improved further
with experience in choosing “tuning” parameters
(�′s1T 5, improved priors, an improved focus on
more-complex heuristics, and better variational Bayes
belief-propagation approximations. In addition, fur-
ther experience will provide insight on the informa-
tion gained as the algorithm learns. For example,

3 AAM used standard clustering methods on the posterior pijs. By
the likelihood principle, it is possible to use latent-structure mod-
els to reanalyze the data. Post hoc clustering is likely to lead to
more clusters than latent-structure modeling. Comparisons of clus-
tering methods are beyond the scope and tangential to our current
focus on methods to select questions efficiently for the estimation
of heuristic decision rules.

Figure 4 Average Expected Reduction in Entropy up to the 29th
Question
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Figure 4 plots the average expected reduction in
entropy for adaptive questions and for market-based
questions. We see that, on average, adaptive questions
provide substantially more information per question
(5.5 times as much). Prior to the 10th question, the
increasingly accurate posterior probabilities enable
the algorithm to ask increasingly more accurate ques-
tions. Beyond 10 questions the expected reduction in
entropy decreases and continues to decrease through
the 29th question. It is likely that AAM would have
been better able to identify consumers’ conjunctive
decision rules had they used 58 questions for estima-
tion rather than split the questions between calibra-
tion and validation. Research might explore the mix
between adaptive and market-based questions.

The likelihood principle implies that other mod-
els can be tested on AAMs and other adaptive data.
The variational Bayes belief-propagation algorithm
does not estimate standard errors for the pijs. Other
Bayesian methods might specify more complex dis-
tributions. Reestimation or bootstrapping, when fea-
sible, might improve estimation.

Active machine learning might also be extended
to other data-collection formats, including formats in
which multiple profiles are shown on the same page
or formats in which configurators are used in creative
ways. The challenge for large N is that we would like
to approximate decision rules in less than N queries
per respondent.
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Appendix A. Example Where Uncertainty Sampling
Minimizes Posterior Entropy
We choose a simple example with two aspects to demon-
strate the intuition. For this formal example, we abstract
away from response error by setting �1 = �2 = 0, and
we choose uninformative priors such that p0

i1 = p0
i2 = 005.

With two aspects there are four potential queries, Exi1 =

801091 801191 81109, and 81119; and four potential decision
rules, Eai = 8 − 11−191 8 − 11+191 8 + 11−19, and 8 + 11+19,
each of which is a priori equally likely. However, the differ-
ent Exi1s provide differential information about the decision
rules. For example, if Exi1 = 80109 and yi1 = 1, then the deci-
sion rule must be Eai = 8 − 11−19. At the other extreme, if
Exi1 = 81119 and yi1 = 1, then all decision rules are consis-
tent. The other two profiles are each consistent with half of
the decision rules. We compute Pr4yi1 = 1 � Exi15 for the four
potential queries as 0.25, 0.50, 0.50, and 1.00, respectively.

We use the formulae in the text for expected posterior
entropy, E6H4Exi157.

Potential
query (Exi15 Pr4yi1 = 1 � Exi15 E6H4Exi157

{0, 0} 0025 − 3
2 =

( 2
3 log2

2
3

+ 1
3 log2

1
3

)

= 104

{0, 1} 0050 − log2
1
2 = 1

{1, 0} 0050 −log2
1
2 = 1

{1, 1} 1000 −2 log2
1
2 = 2

Expected posterior entropy is minimized for either of the
queries, 80119 or 81109, both of which are consistent with
uncertainty sampling (choice balance).

Appendix B. Pseudo-Code for
Belief-Propagation Algorithm
Maintain the notation of the text; let EpiK be the vector of the
pijKs, and let EpiK1−j be the vector of all but the jth element.
Define two index sets, S+

j = 8k � xijk = 11yik = 19 and S−
j = 8k �

xijk = 11yik = 09. Let superscript h index an iteration with
h = 0 indicating a prior. The belief-propagation algorithm
uses all of the data, XK and EyiK , when updating for the Kth
query. In application, the �s are set by managerial judgment
prior to data collection. Our application used �1 = �2 = 0001
for query selection.

Use the priors to initialize Ep0
iK . Initialize all Pr4yik �

XiK1 Eph−1
iK1−j1 aij = ±15.

While maxj 4p
h
ijK − ph−1

ijK 5 > 00001.
[Continue looping until phijK converges.]

For j = 1 to N [Loop over all aspects.]
For k ∈ S+

j [Use variational distribution to
approximate data likelihood.]

Pr4yik = 1 �XiK1 Eph−1
iK1−j1 aij = 15

= 41 − �25
∏

xigk=11g 6=j

ph−1
igK + �141 −

∏

xigk=11g 6=j

ph−1
igK 51

Pr4yik = 1 �XiK1 Eph−1
iK1−j1 aij = −15= �1

end loop k ∈ S+

j

For k ∈ S−
j [Use variational distribution to

approximate data likelihood.]

Pr4yik = 0 �XiK1 Eph−1
iK1−j1 aij = 15

= 41 − �1541 −
∏

xigk=11g 6=j

ph−1
igK 5+ �2

∏

xigk=11g 6=j

ph−1
igK 1

Pr4yik = 0 �XiK1 Eph−1
iK1−j1 aij = −15= 41 − �15

end loop k ∈ S−
j

Pr4EyiK �XiK1 Eph−1
iK1−j1aij =15=

K
∏

k=1

Pr4yik �XiK1 Eph−1
iK1−j1aij =151

Pr4EyiK �XiK1 Eph−1
iK1−j1aij =−15

=

K
∏

k=1

Pr4yik �XiK1 Eph−1
iK1−j1aij =−15

[Compute data likelihoods across all K questions as a
product of marginal distributions for each k.]

Pr4aij = 1 �XiK1 EyiK1 Eph−1
iK1−j5

∝ Pr4EyiK �XiK1 Eph−1
iK1−j1 aij = 15Pr4aij = 1 � prior51

Pr4aij = −1 �XiK1 EyiK1 Eph−1
iK1−j5

∝ Pr 4EyiK �XiK1 Eph−1
iK1−j1 aij = −1541−Pr4aij = 1 � prior551

phijK = Pr4aij = 1 �XiK1 EyiK1 Eph−1
iK1−j5 normalized0

[Use Bayes theorem, then normalize.]
end loop j [Test for convergence and continue if

necessary.]

Appendix C. Kullback–Leibler Divergence for
Empirical Data
The Kullback–Leibler divergence (KL) is an information
theory-based measure of the divergence from one proba-
bility distribution to another. In this paper we seek the
divergence from the predicted consideration probabilities
to those that are observed in the validation data, recogniz-
ing the discrete nature of the data (to consider or not). For
respondent i we predict that profile k is considered with
probability, rik = Pr4yik = 1 � Exik1model5. Then the divergence
from the true model (the yiks) to the model being tested (the
riks) is given by Equation (C1). With log-based-2, KL has the
units of bits:

KL=
∑

k∈validation

[

yik log2

(

yik
rik

)

+41 − yik5 log2

(

1 − yik
1 − rik

)]

0 (C1)

When the riks are themselves discrete, we must use the
observations of false-positive and false-negative predictions
to separate the summation into four components. Let V =

the number of profiles in the validation sample, let Ĉv = the
number of considered validation profiles, let Fp = the false-
positive predictions, and let Fn = the false-negative predic-
tions. Then KL is given by the following equation, where
Sc1 c is the set of profiles that are considered in the calibration
data and considered in the validation data; the sets Sc1nc ,
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Snc1 c , and Snc1nc are defined similarly (nc → not considered):

KL =
∑

Sc1 c

log2

(

Ĉv

Ĉv − Fp

)

+
∑

Sc1nc

log2

(

V − Ĉv

Fn

)

+
∑

Snc1 c

log2

(

Ĉv

Fp

)

+
∑

Sc1 c

log2

(

V − Ĉv

V − Ĉv − Fn

)

0

After algebraic simplification, KL can be written as

KL = Ĉv log2 Ĉv+4V −Ĉv5log24V −Ĉv5−4Ĉv−Fp5log24Ĉv−Fp5

−Fn log2Fn−Fp log2Fp−4V −Ĉv−Fn5log24V −Ĉv−Fn50

(C2)

KL is a sum over the set of profiles. Sets with more profiles
are harder to fit; if V were twice as large and Ĉv, Fp, and
Fn were scaled proportionally, then KL would be twice as
large. For comparability across respondents with different
validation set sizes, we divide by V to scale KL.

Appendix D. Percent Uncertainty Explained 4U25 for
Other Question-Selection Methods

0

20

40

60

80

100

0 32 64 96 128

U
2  

(%
)

Number of questions

Random questions
Adaptive questions
Market-based questions
Random questions plus configurator
Orthogonal-design questions

Appendix E. Hit Rates for Question-Selection-and-
Estimation Combinations (Where Larger Is Better)

Noncompensatory Compensatory
heuristics decision model

Question-selection method
Adaptive questions 00848abcde 00594d

Market-based questions 00827bcde 00806cdf

Null models
Consider all profiles 0.180
Consider no profiles 0.820
Randomly consider profiles 0.732

aSignificantly better than market-based questions for noncompensatory
heuristics (p < 00001).

bSignificantly better than the compensatory decision model (p < 00001).
cSignificantly better than the random null model (p < 00001).
dSignificantly better than the consider-all-profiles null model (p < 00001).
eSignificantly better than the consider-no-profiles null model (p < 00001).
fSignificantly better than adaptive questions for the compensatory decision

model (p < 00001).
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