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The Impact of Utility Balance and Endogeneity in Conjoint Analysis 
Technical Appendix  

Endogeneity Bias for the 2x2 Stylized Model 
Proposition 1.  For a simple problem involving two binary features, adaptation based on metric 

utility balance (1) biases partworth estimates upward and (2) biases smaller partworths propor-

tionally more than larger partworths. 

Proof.  Following the text, we scale the low level of each feature to zero, let iw  be the partworth 

of the high level of feature i, denote the utility of a product with feature 1 and feature 2 by 

u(feature 1, feature 2), and denote the estimates of the partworths with 1ŵ and 2ŵ .  The assump-

tion of no interactions implies that the true utilities are: 

u(0, 0) = 0  u(1, 0) = p1  u(0, 1) = p2  u(1, 1) = p1 + p2 

Following the text we assume response error is an additive, zero-mean random variable, e, with 

probability distribution )(ef .  Label the error associated the first question as eub and label errors 

associated with subsequent questions as either e1 or e2.  Without loss of generality, consider the 

case where 02 212 >>> www .  With this assumptions the off-diagonal question, which compares 

{0,1} to. {1,0}, is the most utility-balanced first question.  In this simple problem, adaptive met-

ric utility balance implies the following sequence. 

First question:   ubewwww +−=− 2121 ˆˆ  
Second question:  111ˆ eww +=  if 12 wweub −<       (Case 1) 
    222ˆ eww +=  if 12 wweub −≥    (Case 2) 

Suppose that 12 wweub −≥ , then: 

 2222 ][]ˆ[ weEwwE =+=  

  1121122121 ]|[]|[]ˆ[]ˆ[ wwweeEwwweeEwwwEwE ubububub >−≥+=−≥+−+=  

Suppose that 12 wweub −< , then: 

  1111 ][]ˆ[ weEwwE =+=  

  2122121212 ]|[]|[]ˆ[]ˆ[ wwweeEwwweeEwwwEwE ubububub >−<−=−<−−+=  

We now calculate the expected bias in w1 and w2. 
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We obtain the following where the last step relies on f(eub) being zero-mean which makes the 

first integral negative and the second integral zero.  The term in brackets is positive because w1 > 

w2 by assumption. 
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 Thus, for the simple model, both partworths are biased upward and the larger  partworth 

is biased relatively more than the smaller partworth. 

Winner’s Curse Technical Arguments 

 In the text we argue that the following equation updates partworths for ACA: 
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We pre-multiply this equation with a row vector of 1’s, er , and suppose for a moment the term, 

1
1)( +

− ′′′+ qq xXXIe rr , is of the same sign as 1. +′qxe rr  In the positive case, for example, Equation 1 

implies that whenever the observed answer is larger than the expected answer, the sum of the 

partworths will increase. (This is the case because )( 1 qq wwe rrr
−+  is the difference in the sum of 

the partworths). Attempting to balance utility based on estimated partworths increases the likeli-

hood that an answer is “cursed.”  That is, the utility-balance criterion attempts to get 1ˆ +qa  as 

close to zero as feasible and, in doing so, exploits random errors in the answers to the first q 
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questions.  When we observe aq+1 we are surprised (cursed) that it is larger than expected and 

this affects our estimate of 1+qwr . 

Equation 1 provides the intuition, but it is not a proof (it assumes that 1
1)( +

− ′′′+ qq xXXIe rr , 

is of the same sign as 1. +′qxe rr ) and, technically, it applies only to OLS estimation.  We might sim-

plify Equation 1 for special qX ′  matrices to approximate a general ACA matrix, but the equation 

remains approximate, not exact.1  We have not been able to obtain a general analytic proof, 

rather we simulate reasonable-sized problems to gain insight on the practical implications of 

Equation 1.   

Winner’s Curse Simulations and Graphs 

 The text provides simulations which attempt to test the winner’s curse when four features 

are allowed to vary.  In this appendix we provide (1) an example where three features are al-

lowed to vary and (2) a graph of expected bias as a function of the number of features that are al-

lowed to vary.  Please note that when there are an odd number of binary features varying, “same” 

questions are not feasible.  This phenomenon is seen clearly in Figure A1. The graphs and the ta-

ble use the same parameters as Table 3, with 200 simulated respondents. 

Figure A1 
Endogeneity Bias as a Function of the Number of Features that Vary 
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1 One analytic solution is possible if Xq’Xq is proportional to an identity matrix.  ACA uses constraints to promote 
orthogonality in Xq’Xq, but, as we argue later, metric utility balance, which tends to make this matrix singular, works 
against an analytic solution. 
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Table A1 
Simulations to Demonstrate the Winner’s Curse -- Three-Variable Example 

 Adaptive Utility-
Balanced Questions Random Questions 

Percent “up” questions 59% 84% 

Percent of “down” questions 41% 16% 

Percent of “same” questions – – 

Percent of “up” questions that are “cursed” 55% 44% 

Percent of “down” questions that are “cursed” 24% 24% 

Percent of “same” questions that are “cursed” – – 

Evolution for “up” questions X percent “up” 0.17 -0.13 

Evolution for “down” questions X percent “down” 0.20 0.43 

Evolution for “same” questions X percent “same” – – 

Overall bias 3.15* -0.14 

*Significant at 0.01 level 

Heterogeneity and Selection Bias in Metric Utility Balanced Questions 

Following the stylized model in the text, we first ask the question of {1, 0} vs. {0, 1} to 

obtain an unbiased observation of ubaww =− 21 .  We then use minimum estimated utility bal-

ance to design the second question. 

First question:   2121 ˆˆ wwww −=−  
Second question:  11ˆ ww =  if 210 wwaub ≤⇒<      (Case 1a) 
    22ˆ ww =  if 120 wwaub ≤⇒>   (Case 2a) 

Suppose that 1wr  and 2wr  are both independently uniformly distributed with means 1w  and 2w .  

Define δ as the spread of the uniform distributions, i.e., w1 varies from δ−1w  to δ+1w . Thus, δ 

indicates the magnitude of the heterogeneity.  For ease of exposition we set www == 21 .  

Hence, by symmetry, 2
1

1221 }Pr{}Pr{ =≤=≤ wwww .  Integrating over the region for which 



Utility Balance and Endogeneity in Conjoint Analysis, Appendix 

 5

21 ww ≤ , we obtain 
3.2

)-)((-)-()(]|[ 2
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δδδδ

−=
+++

=≤ wwwwwwwwE .  Simi-

larly, 3/]|[ 122 δ−=≤ wwwwE .  Thus, the second question will ask about w1 for half of the 

population and these answers will be downwardly biased by δ/3.  This selection bias will be 

mitigated by the first question, which is asked of the entire population and is not subject to selec-

tion bias.  Nonetheless, the net result will be a downward bias in the mean of w1 and this bias 

will be larger for populations that are more heterogeneous.  These calculations are illustrated by 

the following figure.  We encourage readers to explore other distributions for f(w1, w2). 

Figure A2 
Illustration of the Stylized Model with Symmetric Uniform Distributions 
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Utility Balance and Choice-Based Questions 

Following Arora and Huber (Equation 5) and Kanninen (Equation 9) we illustrate the im-

pact of utility balance on efficiency with the binary logit model.  In particular, for binary choice 

sets it is easy to show that: 

  ∑ ∑
= =

− −=−−−=Σ
q

i

q

i
iiiiiiiiii dPPdRxxPPxxR

1 1
11211121

1 )1('))(1()'(
rrrrrr  

where id
r

 is the row vector of differences in the features for the ith choice set.    In general, opti-

mizing Equation 2 requires numerical means (e.g., Kanninen 2002), however, we can illustrate 

the basic intuition by examining the trace of 1−Σ .  The trace is given by: 

    ∑∑
= =

− −=Σ
q

i

K

k
iiik PPdtrace

1 1
11

21 )1()(  

If we focus on one feature, say the Kth feature, and allow it to vary continuously, then the first-
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order conditions for the focal feature are:  
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where dik is the level of the kth feature difference in the ith binary question.     

We first rule out the trivial solution of 0=ikd  for all k, which would imply a choice be-

tween two identical alternatives.  The only other solutions imply some utility imbalance because 

non-zero iKd  requires that 21 ii PP ≠ .  Following Arora and Huber (2001) and Toubia, Hauser and 

Simester (2004), we use the magnitude of the partworths as a measure of response accuracy.  Be-

cause ∑∑
= =

− −=Σ
q

i

K

k
iiik PPdtrace

1 1
11

21 )1()(  is separable in i, we focus on a single i and drop the i sub-

script.  We let pr  be the partworths for choice-based questions and rewriting iP  in terms of the 

partworths, pr .  We allowing m to scale the magnitude of the partworths and we obtain for a 

given i, )2()(
1

21 ++=Σ≡ −

=
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K

k
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.  We assume, without loss of generality, that 

0>Kp  and 0
1
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Kd be the optimal Kd .  

 
Lemma 1.  For 0>Kp  and 01 ≤−Ky , 0* ≥Kd . 
 
Proof.  Assume 0* <Kd .  If 01

** <+= −KKK ydpa , then trace* = )2/(()(
**

1
2* +++ −

−
mama

KK eesd .  
Consider 0/)( 1

*** >−−= − KKK pyad  such that 0*** >−= aa .  This assures that the denominator 
of the trace stays the same.  Now KKK pyad /)( 1

***
−−−=  > *

1
* /)( KKK dpya =− −  if 

01 <−Ky because both *a and 1−Ky are of the same sign.  Thus, the numerator of the trace is larger 
and the denominator is unchanged and we have the result by contraction.  In the special case of 

01 =−Ky , )()( KK dtracedtrace −= , hence we can also restrict ourselves to 0≥Kd . 
 
Lemma 2. For 0>Kp , 01 <−Ky , then the trace has no minimum in Kd  on (0, ∞). 
 

Proof. 22 )2/()]()2(2[)( ++−−++=′ −−− ∑ pdmpdmpdmpdm
Kk k

pdmpdm
KK eeeempdeeddT

rrrrrrrrrrrr

 ≡ 

)(/)( KK dbdh .  Then, ⇒= 0)(' *
KdT 0)( * =Kdh  and )(/)()( ***

KKK dbdhdT ′=′′ .  )( *
KdT ′′  will have 

the same sign as )(2)(2)2(2)( * pdmpdm
KK

pdmpdm
KK

pdmpdm
K eempdeempdeedh

rrrrrrrrrrrr
−−− −−−+++=′  
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k
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Kk eepmd ).(222 rrrr

Cancel the second and third terms. Using the FOC gives 
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K
pdmpdm

Kk kK deempddh /)()( 2* rrrr
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Kk k eepmd
rrrr

−+− ∑ . Thus, )( *
Kdh′  and 

)()( pdmpdm
KK

pdmpdm eepmdeeH
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−− +−−≡  have the same sign.  Because 0* ≥Kd by assumption, 

the FOC imply that 0≥− − pdmpdm ee
rrrr

, hence 0>pdm rr .  If 1≥KK pmd , then H < 0 and so is 

)( *
KdT ′′ .  If 1<KK pmd , then 1<pdm rr  because 01 <−Ky .  Thus, 10 eee pdm <<

rr

, hence 

KK pmdeH 21−−< .  Thus, 0<H if .2/)1( −> epmd KK  Call 2/)1(0 −= eh .  If 0hpmd KK < , 

then 00 hpdm <<
rr  and KK

h pmdeH 210 −−< , which is negative if .2/)1( 0
1 −=> h

KK ehpmd   
For all h in (0,1], we have heh <− 2/)1( , so by recursion we show that 0<H  if lhpmd KK >  
and lh converging to zero. 
 
Proposition 2. When optimizing A-efficiency for binary choice, greater response accuracy im-
plies greater utility balance. 
 
Proof. Assume 0>Kp  and 01 ≤−Ky  without loss of generality and rewrite 

),(/),( mdvmduT KK= where ∑=
k kK dmdu 2),( , ).2(),( ++= − pdmpdm

K eemdv
rrrr

 For 0>om , 

)(*
oK md  satisfies gvvuuf ≡′=′≡ // .  The numerator, u, does not depend upon m. Taking de-
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K eeeempvv
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We rearrange the numerator to obtain the following expression: 
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4)(2)2)(( +++++− −−− , which is positive because 

0>pdm rr  and 0≥− − pdmpdm ee
rrrr

as proven in Lemma 2.  Hence, vv /′  is increasing in m.  Thus, 
)),(()),(( *

1
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ooKoK mmdgmmdg >  for omm >1 , which implies )),(()),(( *
1
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)),(()),(( 1
** mmdgmmdg oKooK <= .  Hence, .0)),(( 1

* <′ mmdT oK  
 We have shown that at 1mm = , the derivative to T with respect to Kd  is negative at 

)(*
oK md .  By Lemma 2, it is non-positive for all )(*

oKK mdd > .  Thus, )()( *
1

*
oKK mdmd < .  Be-

cause 0)(*
1 >+− KoKK pmdy , 0)( 1

*
1 >+− KKK pmdy , and 01 <−Ky , we have 

KoKKKKK pmdypmdy )()(0 *
11

*
1 +<+< −− , which proves that utility balance increases. 

 
Parameters for Simulations in Text 

Table 1 .  Ten binary partworths with true differences 10, 20, …, 100, e.g., ±5, ±10, …, ±50.  

Response error is normally distributed with standard deviation 20.  Answers to self-explicated 

questions are necessary for ACA question selection, but are not used in the estimation.  SE ques-

tions are unbiased with normally distributed noise, standard deviation 20.  Estimation via OLS.  
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1,000 simulated respondents answering twenty questions each. Profiles differ on three attributes 

in the paired-comparison questions. 

Table 3 and Figure 1.  Ten binary partworths with true differences uniformly distributed on 

[0,100]. Response error is normally distributed with standard deviation 20.  SE questions are un-

biased with normally distributed noise, standard deviation 20.  Estimation via ACA’s OLS meth-

ods. 1,000 respondents answering ten paired-comparison questions each (in addition to the ten 

SE questions, bringing the total number of questions to 20).  

Table 4.  Ten binary partworths with true average differences 10, 20, …, 100.  Individual re-

spondent partworths are equal to the population mean plus a deviation that is drawn from a zero-

mean normal distribution with standard deviation 20.  Response error and SE questions as in the 

simulations for Table 1. 1,000 simulated respondents answering twenty questions each. Estima-

tion is via OLS. In the first row of Table 4, ACA is used to select questions.  In the second, third, 

and fourth rows the same first-row questions are used.  In the second row, we redraw the true 

partworths from a normal distribution, but keep the response errors the same as they were in the 

first row.  In the third row, we keep the true partworths the same as the first row, but redraw the 

response errors.  In the fourth row, both the true partworths and the response errors are redrawn.  

Details are provided in Table A2.  For comparison, Table A2a normalizes the mean partworths 

then computes the percent differences vs. the true population means. 
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Table A2: Detailed Results Underlying the Summaries in Table 4 from the Text 

 True Population 
Means 

Means Based on 
ACA Questions 

Same Questions, 
Response Error 

Redrawn 

Same Questions, 
Heterogeneity 

Redrawn 

Heterogeneity 
and Response 
Error Redrawn 

Handle 9.3 3.7 2.7 10.7 9.6 

Price 20.0 8.6 8.3 20.1 19.8 

Logo 29.6 15.1 14.5 31.5 30.8 

Closure 39.1 20.7 20.8 40.4 40.4 

Mesh pockets 49.4 28.7 28.0 50.6 49.9 

PDA 60.0 35.4 35.2 61.1 60.9 

Cell phone 68.9 41.9 41.6 69.1 68.9 

Color 79.9 49.6 49.0 81.2 80.7 

Size 89.5 55.4 55.6 90.0 90.2 

Boot 99.9 63.0 62.4 101.7 101.1 

Mean of estimates 54.6 32.2 31.8 55.6 55.2 

Selection bias – -41% -42% 2% 1% 

Endogeneity bias – 6.3 -0.5 6.9 0.1 

t-test of endo. bias – 7.1 -0.7 6.2 0.1 

 

Table A2a: Normalized Percent Differences (vs. True Population) for Table A2 

 True Population 
Means 

Normalized Dif-
ference ACA 

Questions 

Normalized Dif-
ference Same 

Questions, Re-
sponse Error Re-

drawn 

Normalized Dif-
ference Same 

Questions, Het-
erogeneity Re-

drawn 

Normalized Dif-
ference Hetero-
geneity and Re-

sponse Error Re-
drawn 

Handle 9.3 -50.2% -32.6% 12.8% 2.0% 

Price 20.0 -28.8% -27.2% -1.5% -2.2% 

Logo 29.6 -16.0% -13.6% 4.4% 2.8% 

Closure 39.1 -8.8% -10.3% 1.3% 2.1% 

Mesh pockets 49.4 -2.8% -1.6% 0.4% -0.2% 

PDA 60.0 0.6% -0.1% -0.1% 0.3% 

Cell phone 68.9 3.6% 3.0% -1.7% -1.2% 

Color 79.9 5.2% 5.2% -0.3% -0.2% 

Size 89.5 6.6% 4.9% -1.4% -0.4% 

Boot 99.9 7.1% 6.8% -0.2% 0.0% 

Correlation  0.93 0.89 -0.63 -0.36 

t-test of correlation  7.32 5.67 -2.28 -1.08 
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Table A3 
Empirical Test of Aggregate Selection Biases in ACA Questions 

 Orthogonal Questions ACA Questions 

Actual Fea-
tures 

Average of In-
dividual Esti-

mates 
Aggregate Es-

timates 
Average of In-
dividual Esti-

mates 
Aggregate Es-

timates 

Normalized Dif-
ference in Ag-
gregate Esti-

mates 

Handle 28.0 29.3 55.5 16.4 19.0% 

Price ($100 - 

$70) 
54.0 53.3 59.6 

17.8 -29.0% 

Logo 24.3 23.3 18.4 0.9 -91.8% 

Closure 13.3 15.1 22.8 6.1 -14.1% 

Mesh pockets 7.3 8.7 10.4 1.0 -75.6% 

PDA  9.4 10.9 2.6 8.3 62.0% 

Cell phone 11.2 11.5 8.6 0.8 85.2% 

Color 27.7 29.1 49.8 18.5 35.2% 

Size 7.3 7.6 38.2 23.5 557.7% 

Boot 22.2 22.4 25.6 6.0 -43.0% 

Correlation. with 

Orthogonal. 
  0.75 0.39 0.30 

t-statistic   3.18 1.18 -0.87 

 

Comparison Of Adaptive Polyhedral Questions and Orthogonal Questions 

 The following graph uses the framework in Toubia, et. al. (2004) – four features at four 

levels each with partworths drawn from a normal distribution with mean 0.5*{-1, -1/3, 1/3, 1} 

and standard deviation equal to √(0.5*0.5)=0.5. Two hundred (200) simulated respondents chose 

from sixteen questions with four profiles per choice task based on logistic choice probabilities 

calculated from these partworths. Four features at four levels give twelve independent part-

worths. We normalize and order the true partworths, sort them into twelve categories, and com-

pute the differences in errors for each category (errors for polyhedral HB minus errors for fixed 

orthogonal HB).  The differences in errors are not significantly different at the 0.05 level.   
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Figure A2 
HB Errors Do Not Vary Based on Question-Selection Method 
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