
0025-1909/98/4412/1670$05.00
Copyright q 1998, Institute for Operations Research

and the Management Sciences1670 MANAGEMENT SCIENCE/Vol. 44, No. 12, Part 1 of 2, December 1998

3b30 de01 Mp 1670 Wednesday Dec 09 05:35 PM Man Sci (December, Part 1) de01

Research, Development, and
Engineering Metrics

John R. Hauser
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

We seek to understand how the use of Research, Development, and Engineering (R,D&E)
metrics can lead to more effective management of R,D&E. This paper combines qualita-

tive and quantitative research to understand and improve the use of R,D&E metrics. Our re-
search begins with interviews of 43 representative Chief Technical Officers, Chief Executive
Offices, and researchers at 10 research-intensive international organizations. These interviews,
and an extensive review of the literature, provide qualitative insights. Formal mathematical
models attempt to explore these qualitative insights based on more general principles.

Our research suggests that metrics-based evaluation and management vary according to the
characteristics of the R,D&E activity. For applied projects, we find that project selection can be
based on market-outcome metrics when firms use central subsidies to account for short-termism,
risk aversion, and scope. With an efficient form of subsidies known as ‘‘tin-cupping,’’ the busi-
ness units have the incentives to choose the projects that are in the firm’s best long-term interests.
For core-technological development, longer time delays and more risky programs imply that
popular R,D&E effectiveness metrics lead researchers to select programs that are not in the firm’s
long-term interest. Our analyses suggest that firms moderate such market-outcome metrics by
placing a larger weight on metrics that attempt to measure research effort more directly. These
metrics include standard measures such as publications, citations, patents, citations to patents,
and peer review. For basic research, the issues shift to getting the right people and encouraging
a breadth of ideas. Unfortunately, metrics that identify the ‘‘best people’’ based on research
success lead directly to ‘‘not-invented-here’’ behaviors. Such behaviors result in research empires
that are larger than necessary, but lead to fewer ideas. We suggest that firms use ‘‘research
tourism’’ metrics, which encourage researchers to take advantage of research spillovers from
universities, other industries, and, even, competitors.
(Marketing; Research and Development; Product Development; Incentives)

R&D expenditure is often a convenient target when it comes to maintaining or increasing the company dividend. If fact,
with R&D expenditure roughly the same amount as the dividend in many companies, it is a significant temptation.

James W. Tipping (1993, p. 13)
Director of Research and Technology, ICI Americas, Inc.

Pioneering research is closely connected to the company’s most pressing business problems. . . . Research must ‘‘coproduce’’
new technologies and work practices by developing with partners throughout the organization a shared understanding of why
these innovations are important.

John Seely Brown (1991, pp. 103–104)
Director of Xerox Palo Alto Research Center (PARC)
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Table 1 Managers Interviewed (A total of 43 managers and
researchers were interviewed. This table lists some of the
titles.)

Organization Managers Interviewed

Chevron Petroleum Technology President, Head of Strategic
Research, R&D Portfolio
Manager

Hoechst Celanese ATG President, VP Technology, VP
Commercial Development, VP
Technology & Business
Assessment, Director
Innovations

AT&T Bell Laboratories VP Administrative Systems,
Director of R&D Programs,
Director of Information
Applications Architecture

Bosch GmbH Senior VP for Strategic Planning,
Head of Corporate Research

Schlumberger Measurement & Systems VP Director of R&D, Director of
Engineering Process
Development, Director of
European Tech. Cooperation

Electricite de France Associate Director R&D, Director
of Division

Cable & Wireless plc Federal Development Director,
Director of Technology (HK),
Group Strategic Development
Advisor

Polaroid Corporation CEO, Director of Research

US Army Missile RDEC and Army
Research Laboratory

Associate Director for Science
and Technology, Associate
Director for Systems, Deputy
Assistant Secretary for
Research and Technology/
Chief Scientist

Varian Vacuum Products VP, General Manager

Balancing Market- and Research-
Driven R,D&E
Research, development, and engineering (R,D&E) pro-
vide the science and technology which firms use to
serve tomorrow’s customers profitably. Many manag-
ers, consultants, and researchers have argued that, to
succeed in the next century, R,D&E should be market-

driven. See Griffin and Hauser, 1996. John Seely
Brown’s comments are typical of those heard in inter-
views with Chief Technical Officers (CTOs) and Chief
Executive Officers (CEOs). Indeed, a recent interna-
tional CTO task force on the evaluation of R,D&E opines
that success is more likely if a product delivers unique
benefits to the user (EIRMA 1995, p. 36).

However, it is not easy for R,D&E to be market-
driven. If we limit our definition of the customer to ‘‘to-
day’s customers,’’ it might not even be desirable.
R,D&E, almost by definition, represents the long-term
technological capability of the organization. While
many successful new products are developed based on
customer needs (von Hippel 1988), an organization can-
not meet customer needs if it does not have the capa-
bility to do so (EIRMA 1995). The laser was not in-
vented to provide high quality music or to store large
quantities of data on compact disks. The U.S. Army Re-
search Laboratory (ARL) and its affiliated research, de-
velopment, and engineering centers (RDECs) would not
have been able to adapt rapidly to the post-cold-war era
if they did not have capabilities in the basic research
areas. By maintaining basic chemistry and chemical en-
gineering expertise, the Hoechst Celanese Advanced
Technology Group, a major producer of chemicals for
automotive tires, was able to turn a chance discovery of
a chemical process into a thriving pharmaceutical busi-
ness. Other examples include Carother’s research on lin-
ear superpolymers that led to nylon and Westing-
house’s research on water flows through porous geo-
logical formations that led to breakthroughs in uranium
mining, the evaluation of environmental impacts for
real estate development, and heat flow analyses for
high-temperature turbines and for belowground heat
pumps (Nelson 1959, Mechlin and Berg 1980). On the
other hand, the great isolation of Bayer A.G.’s corporate
research center was a failure (Corcoran 1994).

Perhaps today’s popular conviction that R,D&E
should be evaluated based on market outcomes is too
strong. For example, Mansfield (1980) demonstrates
that, holding total R,D&E expenditures constant, an or-
ganization’s innovative output is directly related to the
percentage of expenditures allocated to basic research.
In a statistical study of new product development at 135
firms, Cooper and Kleinschmidt (1995) find that ade-
quate resources devoted to R,D&E are a key driver that
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Figure 1 Tier Metaphor for R,D,&E

separates successful firms from unsuccessful firms.
Bean (1995) indicates that a greater percentage of re-
search activities in R,D&E (vs. business units) implies
more growth.

We seek to understand how metrics can be used to
manage R,D&E more effectively. Specifically, we ex-
amine how the use of market-outcome metrics should
vary as research activities move from basic explorations
to applied projects. We demonstrate how risk, time lags,
scope, spillovers, and the management of creative peo-
ple affect the metrics used to evaluate R,D&E.

Our methodology combines qualitative and quanti-
tative methods. We began by interviewing 43 CTOs,
CEOs, and researchers at 10 research-intensive organi-
zations. See Table 1. We next reviewed the public state-
ments of CTOs, consultants, and academic researchers.
(See Zettelmeyer and Hauser 1995 for more details on
the qualitative interviews and Hauser 1996 for an an-
notated bibliography.) Together these activities led to
both a qualitative description of R,D&E’s activities and
formal analyses that attempt to generalize the insights.
These insights suggest the properties of metrics that can
be used to evaluate and manage R,D&E more effec-
tively.

The remainder of this paper is structured into five
sections. In the next section we describe a tier metaphor
for R,D&E. We then devote a section to each tier. We
close with a summary and suggested extensions.

A Tier Metaphor for Describing
R,D&E
Many of the firms we interviewed used a tier meta-
phor to describe their R,D&E activities (Figure 1).
This metaphor recognizes that R,D&E activities vary
based on risk, on the time lag from conception to mar-
ket outcomes, and on the number of potential appli-
cations (scope). Tier 1 represents basic research. Ac-
tivities in this area are exploratory and less tied to the
market; they concentrate on understanding basic phe-
nomena that might have applicability to many busi-
ness units. They are often long-term and risky. Tier 2
represents the development of core-technological
competence. Tier 2 activities fulfill an organization’s
existing strategic directions and set new ones. Tier 3
is applied engineering. Activities in tier 3 are usually
done with some funding from business units and are
often evaluated based on market outcomes. Not only
is the tier metaphor common at the firms we inter-
viewed (for example, the U.S. Army uses funding
numbers such as 6.1, 6.2, and 6.3 to describe its tiers),
but it is consistent with concepts in the R,D&E liter-
ature (Bachman 1972, Krause and Liu 1993, Pappas
and Remer 1985, Tipping et al. 1995).

Some firms use a formal tier structure, while others
use the metaphor to aid evaluation and management.
Although many firms assign activities to tiers, all rec-
ognize that the assignment is fuzzy. Some activities
overlap tiers and most activities evolve from one tier
to another as knowledge is gained. Real explorations,
programs, and projects often have elements of more
than one tier. Indeed, many scientists and engineers
work on activities drawn from two or more tiers. We
use the tier metaphor to focus on activities that have
properties typical of each tier. This metaphor simpli-
fies exposition and makes the insights more transpar-
ent. For example, we treat the value of research scope
in tier 3 as if it were fully determined by tier 2 activ-
ities. In reality, there is still residual uncertainty about
research scope that is resolved by tier 3 activities.
Thus, the lessons of tier 2 apply to tier 3, but to a lesser
extent. By focusing our analyses by tier, we avoid rep-
etition.

We present the tiers in a pyramid to represent con-
ceptually the amount of funding that is allocated to
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Figure 2 Decision Tree Representing Project Options

the tiers. For example, in a study of 108 corporations,
Mansfield (1981) found that roughly 5% of company-
financed research was devoted to tier 1. However, this
does not mean that tier 1 is unimportant. In many
ways, tier 1 is the research and development (R&D)
lab of the R,D&E lab.

In the R,D&E literature, many words—such as pro-
gram and project—are used interchangeably (Steele
1988). For the purpose of this paper we adopt Steele’s
terminology and use the words objectives and/or explo-
rations for basic research activities, the word programs
for development activities, and the word projects for ap-
plied engineering activities. This trichotomy is some-
what arbitrary, but it indicates clearly to which tier we
refer.

Tier 3. Applied Engineering for
R,D&E’s Customers
We begin our analyses with the most market-oriented
of the tiers, applied engineering (tier 3). Activities in
this tier have the following properties: (1) the business
unit managers have the knowledge and skill to evaluate
the projects; (2) the projects have more immediate ap-
plication with relatively less risk; and (3) previous
R,D&E activities have provided acceptable estimates of
scope, the time stream of payoffs, the magnitude of pay-
offs, and the probability of success. We focus on metrics
that are used to select among tier 3 projects.

Qualitative Ideas
Our interviewees suggested that project selection is the
most important and difficult management task in tier 3.
They were more satisfied with the monitoring and feed-
back mechanisms that they used once a project was se-
lected. Many CTOs believed that the business units (the
customers of tier 3) have the means and information
with which to judge tier 3 projects. Furthermore, they
believed that the business units were better able to judge
a project’s value than R,D&E management. We found a
major trend toward making project selection more
business-unit driven.

Among the statements that we heard were, ‘‘Cus-
tomer satisfaction is the number one priority;’’ ‘‘R,D&E
has to be developed in the marketplace,’’ ‘‘The key is to
become customer focused;’’ and ‘‘Technology assess-
ment is ‘What does it do for the customer?’ ’’ At one
firm, R,D&E proposes tier 3 projects and the business
unit managers decide whether or not to fund them. In
many firms R,D&E maintains its budget by ‘‘selling’’
projects to business units.

On the other hand, many firms subsidized R,D&E
with central funds. Business units were asked to pay
only a fraction of the cost of applied engineering proj-
ects. One interviewee stated that the business units
could judge research better if they did not have to pay
the entire cost. For other examples of subsidies see Cor-
coran (1994), Mechlin and Berg (1980), and Szakonyi
(1990).

Our interviewees proposed at least three justifications
for subsidies: research scope, risk aversion, and varying
time horizons between the business unit managers and
the corporation. Research scope affects subsidies when
the results of a pilot test have applications beyond those
for which the business unit paid. Other business units
often benefit without incurring R,D&E costs. See Mans-
field (1982), Mechlin and Berg (1980), and Vest (1995).
Scope economies also apply across technological disci-
plines—for example, when discoveries in chemistry en-
hance research in biology (Henderson and Cockburn
1996, Koenig 1983). Risk aversion affects subsidies
when, without a subsidy, a business unit manager
would decide to avoid a risky project even though the
expected payoff to the firm justifies the project. Different
time horizons affect subsidies when, as expressed in our
interviews, business unit managers have shorter time
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horizons than the firm. They often favor quick fixes for
their immediate problems. See Braunstein and Salsa-
mendi (1994), Hultink and Robben (1995), Negroponte
(1996), and Whelen (1976). Holmstrom (1989) adds
theoretical justification that market expectations can
make it rational for managers to be short-term oriented.

Finally, in calculating the net value of an applied proj-
ect, many firms recognize that they need only commer-
cialize those technologies that prove profitable in pilot
tests (Mitchell and Hamilton 1988). The cost of com-
mercialization can be avoided for failed pilot projects.
We assume that the firm implements strategies that
minimize the tendency of business unit managers to es-
calate commitments to failing projects (Boulding et al.
1997).

We now incorporate these ideas into a formal model.

Model
We illustrate the contingent nature of applied research
decisions with the simple model in Figure 2. First, busi-
ness unit managers and/or R,D&E managers (and en-
gineers) select among potential projects and begin ini-
tial development. For project j, let the pilot engineering
costs be kj. If the project succeeds (with probability pj),
the business unit and R,D&E managers observe the
commercial value (tj ¢ 0) of the project. This commer-
cial value is modeled as being drawn from a probability
density function, f(tj). If the project fails or if the realized
commercial value is below a cutoff (tc), then the firm
can abort the project without further costs. If the com-
mercial value is sufficient, the firm can exercise its ‘‘op-
tion’’ and apply the technology elsewhere in the firm.
We model this research scope as if the firm can apply the
technology to mj applications at a cost of cj for each ap-
plication. Let aj be the percent of the applications that
are within the business unit that funded the project. (For
tier 3 we assume aj and mj are given. In the next section,
we address how tier 2 might determine these values.)

The parameters in Figure 2 are feasible to obtain.
Many organizations routinely make judgments about
the expected value of a pilot test (E[tj]), the probability
of success for various outcomes (pj), and costs (both for
the pilot application, kj, and for eventual commerciali-
zation, cj). For example, EIRMA (1995) suggests that the
‘‘3 main components that must be estimated for any
project are project cost, benefits, and probability of suc-

cess.’’ See Abt et al. (1979), Block and Ornati (1987),
Boschi et al. (1979), Krogh et al. (1988), and Schainblatt
(1982) for discussion and methods.

To model the difference in time horizons we define gj

and gF as the business unit and firm discount factors,
respectively. These factors reflect the fact that commer-
cial values and costs are really time streams of revenue
and costs. If the business unit managers and the firm
discount these time streams differently, then the net
present value as perceived by the business unit man-
agers will differ from that perceived by the firm. With-
out loss of generality, we normalize gF Å 1 and treat gj

as the value relative to the firm. The business unit man-
ager is more short-term oriented when gjõ 1. For issues
in the measurement of gj, see Hodder and Riggs (1985)
and Patterson (1983).

For simplicity, we include all project costs in kj such
that tj is positive. This allows us to illustrate the effect
of f(tj) with a negative exponential distribution with ex-
pected value lj. Such probabilistic processes are com-
mon in the R,D&E literature. When the business unit
managers are risk averse we model them as constantly
risk averse with utility, u(x) Å 1 0 exp(0rx), where x
is monetary outcomes and r is the risk aversion param-
eter.1 For risk neutrality, u(x) becomes linear as r r 0.

Analyses
In the appendix, we show that the optimal cutoff, tc,
equals the cost of commercialization, cj, and that the
expected rewards (to the business unit) of the decision
tree in Figure 2 are:

0c /lj jExpected net rewards Å g a m p l e 0 k . (1)j j j j j j

The computations are straightforward applications of
conditional probability. The term, exp(0cj/lj), appears
in the formula to represent the fact that the firm need
only invest further (and incur costs of cj) when tj is
above the cutoff. The expected outcome from the deci-
sion tree in Figure 2 exceeds the naı̈ve valuation,
gjajmjpj(lj0 cj) 0 kj, that would be made without antic-
ipating the option nature of the project.

1 The qualitative implications should be the same for most reasonable
density and utility functions. Some readers may prefer a two-
parameter lognormal distribution to facilitate the option-value calcu-
lations and to separate risk from expected outcomes.
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If the business unit manager is risk neutral, he or she
will value the project via Equation (1). If the manager
is risk averse, the certainty equivalent (c.e.) can be ap-
proximated by:

c.e. of expected net rewards

0c /lj jÉ R g a m p l e 0 k (2)j j j j j j j

1
where R Å .j 1 / rl m aj j j

For risk neutrality, Rj å 1. The firm values the project
differently than the business unit managers. It earns
value from all commercializations within the firm, dis-
counts future value and cost streams less, and can di-
versify risk. The firm will want at least one business unit
to select the project if:

0c /lj jm p l e 0 k ¢ 0. (3)j j j j

Subsidies
Comparing Equations (1) and (3), we see that the firm
can match its incentives with those of the business unit
managers by subsidizing projects. If business units are
asked to pay only a fraction, sj, of the project costs, then
the business unit manager(s) will choose the same proj-
ects as the firm if:

s Å a g R . (4)j j j j

In other words, the subsidy adjusts for the concentration
of research scope (aj), short-termism (gj), and risk aver-
sion (Rj). The subsidy varies by project because both
scope and short-termism vary by project. (Short-
termism varies because the effect of a differential dis-
count rate has a greater impact on projects with longer
time horizons. Rj varies by project because the uncer-
tainty in payoffs varies by project.)

In principle, the subsidy also varies by business unit.
Thus, the firm needs a means by which it can entice
either a single business unit or a coalition of business
units to fund a project. (The firm benefits if other busi-
ness units ‘‘free ride’’ on the initial business unit’s in-
vestment. We leave strategic free riding among business
units to future papers.)

In theory, the firm can implement the subsidy with a
Dutch auction, lowering sj until one and only one busi-
ness unit selects the project (with the limit that the sub-
sidy is not so low that Equation (3) is violated). In prac-

tice, the subsidies, which vary from 30% to 90% among
our interviewees, are set by a complex negotiation pro-
cess that allows information to be transferred and coa-
litions to form. (One manager called this tin cupping be-
cause, like a beggar with a tin cup, she went to other
business unit managers asking them to contribute to
projects that she championed.) An average subsidy will
introduce selection inefficiencies whenever there is sub-
stantial variation in aj, gj, lj, and mj.

We summarize this section by stating the implications
of Equations (1)–(4) as a set of qualitative hypotheses
that can be used for empirical testing. Equations (1)–
(3) provide explicit quantification of the value of ap-
plied engineering projects.

IMPLICATION 1. (a) The option value of a tier 3 project
should be higher than the (naı̈ve) expected value. This option
value anticipates future decisions on subsequent investment.
(b) For applied projects, firms should use subsidies and im-
plicit auctions. The subsidies and auctions correct for the ten-
dency of business unit managers to choose projects that are
more concentrated in a single business unit, have shorter-
term payoffs, and are less risky than the firm would find op-
timal. (c) Subsidies should be larger (sj smaller) when proj-
ects have benefits that are less concentrated, have revenue
streams over longer periods, and are perceived as more risky.

Tier 2. Development Programs to
Match or Create Core Technological
Competence
We now focus on development activities (tier 2) that
provide the bridge from basic research (tier 1) to ap-
plied engineering (tier 3). These activities are more risky
and have longer-term payoffs than tier 3 projects. They
are also more difficult for business unit managers (and
line managers) to evaluate because evaluation requires
more detailed information and greater current technical
experience. Instead, business unit managers rely more
heavily on the decisions of R,D&E managers and engi-
neers. The challenge for activities having tier 2 charac-
teristics is to develop a set of metrics with which to eval-
uate the decisions and the efforts of R,D&E managers
and engineers. Because the firm must rely on their de-
cisions, we seek metrics that encourage R,D&E manag-
ers and engineers to make those decisions and allocate
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Figure 3 Representation of Development Activitiesthose efforts that are in the firm’s best interests. In ad-
dition, because tier 2 programs evolve into tier 3 pro-
jects, we examine how the activities in tier 2 determine
the parameters used to select tier 3 projects.

Qualitative Ideas
Our qualitative interviews and the R,D&E literature sug-
gest that the primary task of development is to match ex-
pertise with strategic direction. See Adler et al. (1992), Al-
lio and Sheehan (1984), Block and Ornati (1987), Boblin
et al. (1994), Chester (1994), EIRMA (1995), Frohman
(1980), Ransley and Rogers (1994), Schmitt (1987), Sen
and Rubenstein (1989), and Steele (1987, 1988). As one of
our interviewees said, ‘‘The customer knows the direction,
but lacks the expertise; researchers have the expertise, but
lack the direction.’’ Tier 2 researchers and managers are
judged both for their competence in developing technol-
ogies and for their ability to align the values of R,D&E
with those of the firm (Steele 1987). Our interviewees said
that development succeeds if it gets the programs right.
However, researchers in tier 2 must also have the incen-
tives to invest the right amount of scientific, engineering,
and process effort.

R,D&E researchers (and managers) appear to have
more expertise and knowledge than top-level managers
about the specifics of the development programs. Thus,
firms use metrics to encourage tier 2 researchers to select
the right programs and to put forth sufficient scientific,
engineering, and process effort to develop those pro-
grams. We heard concerns that net present value metrics
favor short-term, predictable, incremental development
programs (Steele 1988, Irvine 1988). Our interviewees be-
lieved that tier 2 metrics should not imply a penalty for
failure that is too strong. Such penalties encourage re-
searchers to focus only on safe technologies and not take
sufficient risks. Failure was part of the territory (estimates
of failure ranged from 20% to 80%); interviewees felt that
metrics that eliminated failure also eliminated success. In-
stead, we often found metrics such as patents,
publications, citations, citations to patents, and peer re-
view. See also Edwards and McCarrey (1973), Henderson
and Cockburn (1996), Irvine (1988), Miller (1992), Pappas
and Remer (1985), and Shapira and Globerson (1983).
These metrics appear to be surrogates for the scientific,
engineering, and process effort that is devoted to devel-
opment programs. There appears to be a tension, when

designing a tier 2 evaluation system, between market-
outcome metrics and effort-indicator metrics.

Model
Figure 3 represents our conceptual model of tier 2 activ-
ities. In step 1, researchers select programs based on the
ongoing results of basic research (tier 1) explorations.2

Naturally, tier 2 researchers do so anticipating potential
outcomes but taking uncertainty into account. In step 2,
researchers evaluate each program to resolve some of
the uncertainty. In this evaluation they determine re-
search scope (mj) and concentrations (aj’s for each busi-
ness unit). This step also clarifies uncertainty in the
value (to the firm) of the program so that business unit
managers and applied engineers have sufficient infor-
mation to estimate the parameters for Equations (1)–
(4). If the program shows sufficient potential, then, in
step 3, development researchers invest significant sci-
entific, engineering, and process efforts to develop the
program into potential applied projects.

Because development researchers select programs be-
fore they know the outcomes of the development pro-
grams, we model a key parameter, research scope, as a
random variable, m̃j. Specifically, we model the process
of determining m̃j as if there were Mj potential appli-
cations within the firm. During step 2, the researcher

2 We refer to development decisions and efforts as if they were made
by researchers. The same analyses apply to teams of researchers and
managers (as long as we account for free riding within teams).
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determines how many of these applications apply to the
firm—a priori each applies with a probability, qj. (Esti-
mates of Mj and qj are based on the result of basic re-
search explorations and on expertise in evaluating the
outcomes of these explorations.) We define vj as the
value of each realized application.

We model the scientific, engineering, and process ef-
fort in step 3 with an additive parameter, ej, that mea-
sures the expected incremental profit to the firm of this
effort.3 The effort by development researchers to obtain
these results is costly to the researchers and this cost
may be difficult for the firm to observe. We call this
cost, dj(ej), and assume that it is convex in ej. Finally,
there is some fixed cost to the firm, Kj, of developing
program j.

Each program might have different anticipated time
streams of net revenues and development researchers
might be more short-term oriented than the firm. We
model this by a discount factor, Gj. We allow researchers
to be (constantly) risk averse. (We expect that Gj õ gj

because of longer time lags associated with develop-
ment programs. The case of no short-termism is repre-
sent by Gj Å 1 and the case of risk neutrality is repre-
sented by r r 0.)

To focus on key phenomena and avoid redundancy,
we have simplified our model in this section. Each of
these simplifications can be relaxed readily. First, we set
kj Å 0 to simplify the options analysis that has already
been discussed. (Options analysis applies to tier 2 in the
same manner that it applies to tier 3.) Second, we model
uncertainty in m̃j but not vj because the effect of uncer-
tainty in vj would only reinforce the effects due to m̃j.
Finally, we model the effort allocated in step 3 but not
the effort allocated in step 2. The basic intuition would
be the same, but the algebra would be unnecessarily
complicated. None of these simplifications change the
basic insights derived here.

3 We define ej based on effort that is induced incrementally by the
metrics system above and beyond any effort that the researcher would
put forth based solely on his or her base wage. We might consider
alternative formulations treating either ej or (1 / ej) as multiplicative
terms. These formulations provide the same qualitative implications
when we focus on program choice or effort allocation. However, scal-
ing constants and the detailed optimizations vary.

Development Metrics
Recently, many firms have adopted development met-
rics that are based on comparing market outcomes to
development costs. For example, see McGrath and
Romeri (1994). However, some of our interviewees be-
lieve that such schemes distort development decisions.
Thus, we want to contrast these metrics with effort-
indicator metrics.

Because many firms try to measure effort directly
with metrics such as publications, citations, patents, ci-
tations to patents, and peer review, we represent these
metrics with a normal random variable, ẽj, with mean ej

and variance, The uncertainty in this measure rep-2s .e

resents the fact that these metrics are, at best, noisy in-
dicators of the incremental profit to the firm of the re-
searchers’ efforts.

Market outcomes result from the value and scope of
the chosen program and from the researchers’ efforts.
To explore development metrics, we recognize that the
market outcomes in our model are m̃jvj/ ẽj and the costs
are Kj. This implies a net market-outcome metric of m̃jvj

/ ẽj 0 Kj. To represent our observations that firms com-
bine market-outcome and effort-indicator metrics, we
consider a more general metric that allows a weight of
h1 on market outcomes, h2 on effort, and h3 on costs. If
we define bv Å h1, be Å h1 / h2, and bK Å h3, then this
implies the linear development metric given by Equa-
tion (5).

Development metric Å b Im v / b Ie 0 b K . (5)v j j e j K j

In this notation, the metric advocated by McGrath and
Romeri is represented by a special case where bv Å be

Å bKÅ 1, or equivalently, h1Å h3 and h2Å 0.4 The linear
function suffices to demonstrate the basic tension in de-
velopment metrics. However, future analyses might im-
prove on observed practice by introducing nonlinear re-
ward systems.

Development metrics enable top management to mo-
tivate researchers to choose those development

4 Specifically, their effectiveness index (EI) is equal to (% of revenue
from new products)*[(% of revenue that is profit)/(% of revenue
spent on R&D) / 1]. For clarity of exposition our representation is a
linear rather than a ratio function. We might also note that their metric
does not include the impact of development activities on existing
products.
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programs (and allocate effort) that are in the best inter-
ests of the firm. Top management would have less need
for these metrics if it could simply dictate to the re-
searchers the programs on which they should work and
then monitor costlessly how hard they work. The met-
rics enable top management to delegate the selection of
programs and the allocation of scientific, engineering,
and process effort to those who have the unique tech-
nical knowledge and experience necessary to judge the
merits of the programs.

To represent how researchers will evaluate rewards,
explicit or implicit, that are based on this metric, we first
recognize that researchers will find effort to be costly.
Thus, we subtract dj(ej). Secondly, we recognize that
there is a time lag in observed outcomes, but not costs.
Thus, we discount observed outcomes. Furthermore, if
ẽj is observed before m̃jvj, then we allow different dis-
counting constants, and Finally, if researchersm e 5G G .j j

are risk averse they will perceive the uncertainty in m̃j

and ẽj to be costly. Thus, we represent the uncertain
rewards with their certainty equivalent. In the appendix
we derive the researcher’s certainty equivalent based on
the development metric:

m ec.e. Å b G M q v / b G e 0 b K 0 d (e )v j j j j e j j K j j j

2 m 2 2 2 e 2 20 (r/2){b (G ) M q (1 0 q )v / b (G ) s }. (6)v j j j j j e j e

It is immediately clear that either bv or be must be non-
zero. Otherwise, researchers would select no programs
for development and allocate no effort.

In contrast to researchers, the (risk neutral) firm
wants to select those programs that maximize the ex-
pected value of the program (net of the wages the firm
must pay). To calculate this value we use standard
agency theory methods (e.g., Holmstrom 1989) to rep-
resent the profit the firm can earn. First, we recognize
that Mjqj is the expected value of m̃j and ej is the expected
value of ẽj. Thus, before wages, the firm’s expected prof-
its are Mjqjvj / ej 0 K. However, if the firm is to retain
its employees, it must pay them their market wages net
of switching costs, wo, and it must reimburse them for
any effort costs and for any risk costs. (By definition, wo

represents the minimum amount that would be re-

5 We have chosen to define the Gs with respect to the bs rather than
the hs. It is possible to derive one from the other.

quired to retain a researcher who did not have to incur
incremental effort and risk costs on the firm’s pro-
grams.) Thus, the firm’s profit is given by:

*Firm’s profit Å M q v / ej* j* j* j*

*0 K 0 d(e ) 0 w 0 risk costs, (7)j* j* o

where j* indicates the researchers’ program selection
and indicates the researchers’ response to the firm’s*ej*

choice of the b’s. The firm will select the b’s to maximize
its profit. This optimization will, by implication, deter-
mine the program choice and the effort that the re-
searchers allocate.

In principle, we could solve the complete agency
problem by choosing the b’s to maximize Equation (7),
recognizing that the certainty equivalent of the re-
searchers’ wages is given by Equation (6). The resulting
solution would balance the tension between inducing
the best choice and motivating the optimal effort. How-
ever, we gain greater insight into this tension with a
simpler approach that analyzes the problem in stages.
We begin by holding effort constant and illustrating
how bv and bK affect the choice among programs. We
then hold research scope constant to show how be af-
fects the researchers’ efforts. This allows us to interpret
the relative magnitudes of bv, bK, and be.

Selecting the Right Programs
For this subsection, we assume that and do not* *e d(e )j j

vary by research program and that Å 0. Under these2se

conditions, the anticipated effort allocation will not af-
fect program choice.6 With efforts constant among pro-
grams, the effort benefits, effort costs, and fixed wages
would simply shift Kj by a fixed constant in the follow-
ing discussion. Thus, we can normalize 0 0 wo]* *[e d(e )j j

Å 0 without loss of generality.
Differential discounting õ 1) and risk aversion (rm(Gj

ú 0) cause the researcher’s c.e. to differ from the ex-
pected profit the firm could earn if it did not need to
rely on metrics and could dictate the choice of program.

6 The technical conditions of the problem formulation assure us that

we can choose independently of and Thus, all terms involv-*b* b* b .e v K

ing e will be the same for each project being compared. For a multi-
plicative formulation, ej would scale the value and would scale the2ej

variance. If ej Å 1 for the multiplicative formulation, then Figure 4
would be the same.
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Figure 4 How Development Metrics Affect Program Choice

a.The effect of differential discounting b. False rejection due to risk.

c. False selection due to risk. d. Combined false rejection and false selection.

In the latter case the firm’s profit would be Mjqjvj 0 Kj.
For program choice to matter to the researcher, Equa-
tion (6) requires non-zero bv. However, larger bv in-
creases the firm’s risk costs. Furthermore, Equation (6)
suggests that bv could distort program choice. That is,
differential discounting and risk aversion might cause
researchers to reject some programs that would be prof-
itable for the firm and to favor less profitable programs
(for the firm) over more profitable programs.

We find it is easier to illustrate these effects graphi-
cally. Figure 4 maps the magnitude of the phenomena
for the case of two alternative research programs and

for representative values of the parameters (given in the
appendix). The horizontal and vertical axes represent
the values (vj) of programs 1 and 2, respectively.

Figure 4a isolates the effect of discounting (with risk
neutrality). Equations are derived in the appendix. If
researchers discount the time stream of revenue, then
some programs will be falsely rejected (inverse L-
shaped region in Figure 4a). If revenues from one re-
search program occur faster than another úm m(G G ),1 2

then researchers will be more likely to choose the pro-
gram with better short-term prospects (diagonal false
selection region in Figure 4a). We can eliminate the false
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rejection regions if bK Å but eliminating the falsemG b ,j v

selection region requires, in addition, that we allow bv

to vary by program.
Figure 4b isolates the effect of risk on false rejection.

(We expand the scale in Figure 4b, vs. Figure 4a, to illus-
trate this effect.) When m̃j is a random variable and re-
searchers are risk averse, the certainty equivalent will be
less than the expected value (see also Holmstrom 1989).
For a given cost (Kj), when the value (vj) and implied risk
become large, the certainty equivalent becomes negative
and researchers no longer find it attractive to begin de-
velopment even though the program provides a very
large expected return to the firm. The areas where both
programs are falsely rejected are shaded. (We might also
shade the regions above the upper bound to illustrate
that at least one program is falsely rejected.) If the firm
wants to eliminate these false rejection regions, it must
make bv sufficiently small, such that the false rejection
regions are beyond any feasible outcome, but large
enough so that researchers prefer high-expected-return
programs. Placing too large a weight on market-outcome
metrics leads to a tendency by researchers to avoid high-
expected-return development programs that are risky
and/or long-term.

Figure 4c isolates the effect of risk on false selection.
The concept is similar to that of false rejection. In the
shaded regions of Figure 4c, uncertainty and risk aver-
sion cause researchers to avoid high-return develop-
ment programs when the returns are risky and/or long-
term. The firm can eliminate these false selection
regions by making bv sufficiently small.

Figure 4d summarizes the effects of both discounting
and risk. The regions are more complex, but the phe-
nomena are the same—discounting and risk aversion
lead to large regions of false rejection and false selection
when researchers are evaluated too heavily on market-
outcome metrics.

Encouraging Tier 2 Scientists and Engineers to Put
Enough Effort into Developing a Program
In this subsection we focus on the effort that is allocated
after a program is selected. We hold the realized scope
(m̃j), the value (vj), and costs (Kj) constant and focus on
step 3 in Figure 4. With only effort being analyzed, the
selection of a weight (be) to encourage researchers to
allocate optimal efforts is a standard agency theory

problem. See Holmstrom (1989). In the appendix we
show that the firm can choose an optimal be such that
researchers allocate the scientific, engineering, and pro-
cess effort that maximizes the firm’s profits. The optimal
weight is:

012 *Ì d(e )je 01 2b* Å (G ) 1 / rs . (8)e j eF G2Ìej

Because is convex, √ [0, 1]. When research-e*d(e ) G b*j j e

ers are very good at anticipating the outcomes of their
efforts, will be close to 0.0. When the effort metrics2se

are observed much faster than market outcomes, eG j

will be close to 1.0. Under these conditions, will beb*e
close to 1.0.

We now see the tension. If market outcomes were the
only metrics available, then the metrics would measure
m̃jvj and ẽj simultaneously. To avoid false program
choice the firm would want the weight on market out-
comes to be small, but to induce the right research and
process efforts the firm would want the weight on mar-
ket outcomes to be large. One way to finesse this tension
is for the firm to search for metrics that correlate with
effort, but not necessarily with market outcomes. The
firm can then implement a small weight on m̃jvj and a
large weight on ẽj by placing a small weight on market
outcomes and a large weight on the effort-indicator
metrics.7 The firm finds it attractive to use effort-
indicator metrics more than market outcomes because
(1) effort-indicator metrics can be observed sooner than
market outcomes and (2) the measurement uncertainty
relating the effort-indicator metrics to true effort is less
than the uncertainty in predicting ultimate market out-
comes. The reduced discounting and risk motivate re-
searchers to allocate the most profitable amount of effort
to the development programs. The effort-indicator met-
rics make it feasible for the firm to place a small, but
positive, weight on market outcomes. A small weight
on market outcomes avoids false selection and false re-
jection in the choice of development programs.

Selecting the Right Programs and Allocating
Sufficient Effort
If returns to effort vary by development program, then,
in step 2 of Figure 4, for a given set of bs, researchers

7 Returning to the hs for a moment, we see that bv small and be large
imply h1 small and h2 large, and vice versa.
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will select among programs anticipating the effort that
they will allocate in step 3. Technically, we incorporate
this effect by using all the details of Equations (6) and
(7) to redo the analyses that led to Figure 4 and Equation
(8). For each potential program, these optimal values of
effort do not depend upon the realized value of the re-
search scope because, in our model, m̃j and ẽj are inde-
pendently distributed (and researchers are constantly
risk averse). More complete analysis could determine
the optimal metrics (bs).8 However, this more compli-
cated analysis does not change the qualitative lessons
that can be derived from our simpler analyses.

Implications for Practice
Our simple analyses seem to conform to practice. De-
velopment metrics do appear to be based on both
market-outcome metrics and effort-indicator metrics. In
particular, many firms use metrics such as patents,
publications, citations, citations to patents, and peer re-
view. Such metrics have proven to be correlates of in-
cremental value, and by implication, scientific, engi-
neering, and process effort. See Griliches (1990), Koenig
(1983), Miller (1992), Stahl and Steger (1977), and Ten-
ner (1991). Indeed, if more than one such measure of
effort is available, the firm can do better by using a lin-
ear combination of measures (Holmstrom 1989). When
the measures are independent indicators, the optimal
weights are inversely proportional to the variance of the
measures (see the appendix for equations). Thus, when
metrics can be found that are indicators of development
effort, the firm should weigh these metrics more heavily
than market-outcome metrics. If these indicators can be
observed before market outcomes õ and if them e(G G )j j

measures are less uncertain from the perspective of de-
velopment researchers, then effort-indicator metrics
help to avoid distortions due to short-termism and risk
aversion.

Our analysis is contrary to calls in the popular press
for greater market accountability of development and is

8 The profits that result from optimal bs will be less that the (‘‘first-
best’’) profits the firm could obtain if it had the knowledge and ca-
pabilities to dictate program choice. The metrics-based profits are less
because the firm must reimburse the researcher for the risk costs that
the development metrics impose. Future authors might reduce the risk
costs with a nonlinear system to obtain ‘‘second-best’’ profits. (Opti-
mization over all potential linear or nonlinear functions.)

contrary to many of the schemes advocated (but not yet
fully evaluated) in the R,D&E literature. We predict that
a simple comparison of market outcomes and research
costs (e.g., McGrath and Romeri 1994) will lead re-
searchers to avoid long-term and/or risky programs.
(Indeed, one senior manager, who indicated to us that
his firm uses these measures, found that the measures
increased for a few years, but now appear to be decreas-
ing.)

In addition to combining market-outcome and effort-
indicator metrics, the firm can also attempt to develop
metrics that measure directly the ability of researchers
to choose the right programs. For example, some firms
reward development researchers for ‘‘strategic vision’’
and for decisions that are aligned with the firm’s goals
(Steele 1987).

We summarize our analyses with some testable im-
plications.

IMPLICATION 2. Development programs (tier 2) should
be evaluated on market outcome metrics such as profits, rev-
enues, sales, or business-unit evaluations, but the weight on
those metrics should be small. Otherwise, researchers favor
short-term programs with less risk. On the other hand, met-
rics such as publications, citations, patents, citations to pat-
ents, and peer review should have a much higher weight (1)
if these metrics correlate with the amount of value-enhancing
scientific, engineering, and process effort and (2) if they can
be observed sooner and with less uncertainty than market
outcomes.

Tier 1—Basic Research Explorations:
The Role of Research Tourism
We now focus on basic research explorations (tier 1)
that provide the raw material for development pro-
grams. The uncertainty and time lag for these explora-
tions is even larger than that for development programs
and line managers must rely even more on the special-
ized knowledge of tier 1 managers and researchers.
Many of the lessons from previous tiers apply to tier 1.
For example, effort-indicator metrics should be given a
higher weight than market-outcome metrics. The addi-
tional challenge in tier 1 is to provide the right incen-
tives so that tier 1 researchers and managers explore a
sufficiently broad set of new ideas, concepts, technol-
ogy, and science.
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Qualitative Ideas
We found that basic research (tier 1) is more likely than
the other tiers to be funded from corporate coffers; more
likely to be located in central laboratories; and more
likely to focus on long-term concepts. (One of our in-
terviewees, the CEO of a $2 billion company, said that
one of his main responsibilities was to protect the basic
research budget from his business unit managers.) See
also Chester (1994), Krause and Liu (1993), Mansfield
(1981), Mechlin and Berg (1980), Reynolds (1965), and
Szakonyi (1990). Tier 1 is organized more often by sci-
entific discipline than by markets served (see also Ches-
ter 1994). It accounts for roughly 5% to 15% of R,D&E
spending, but appears to be the seed for new ideas, con-
cepts, technology, and science.

Our interviewees stressed the need to maintain the
best, most creative basic researchers (see also Steele
1988). We observed that management provided these
people with sufficient protected space and discretion
in which to innovate. This included special privileges,
such as ‘‘Research Fellows’’ at IBM and 3M or ‘‘Man
on the Job’’ at the U.S. Army, that are not unlike the
tenure system at research universities. However,
judging the best people was difficult because the suc-
cess of a research exploration depends, in part, on as-
yet-undiscovered natural phenomena. Indeed, some
researchers provide value to the firm by identifying
which directions not to explore. As a result, basic re-
searchers are often judged by the quality of the re-
search that they, themselves, perform (Platt 1964).
Fame, recognition, and salary appear to depend more
on that which a researcher originates than on ideas,
concepts, technology, and science that are ‘‘arbi-
traged’’ from outside sources.

In contrast, many of the most profitable new ideas,
concepts, technology, and science come from outside
the firm. Our interviewees stressed the need to maintain
expertise in the scientific disciplines in order to identify
ideas from universities, from other firms in the industry,
and from other industries. They called this activity re-
search tourism. One of our interviewees stressed that his
firm’s competitive advantage was to identify and de-
velop outside ideas better than anyone else in the in-
dustry. Research tourism opens ‘‘new fishing grounds’’
for corporate development (Griliches 1990) and spill-
overs can be quite large (Acs et al. 1992, Bernstein and

Nadiri 1989, Griliches 1992, Jaffe 1989, Ward and Dra-
nove 1995). In an econometric study of 1,700 firms, Jaffe
(1986) suggests that, while the direct effect of R,D&E
spending by competitive firms lowers profitability, the
indirect effect of spillovers is sufficiently large to make
the net effect positive.

However, encouraging research tourism is not easy.
A common problem at many research laboratories is a
Not-Invented-Here (NIH) attitude (Griffin and Hauser
1996). The outputs of internal explorations are easier to
measure, hence it is tempting to evaluate researchers
based on that which they originate rather than the total
number of ideas, concepts, technology, and science that
they bring into the firm. This is perpetuated by evalu-
ation systems (e.g., Galloway 1971) that trace successful
new products back to their idea source. Other firms en-
courage work within the organization to avoid ‘‘buy-
ing’’ technological results (Roussel et al. 1991). EIRMA
(1995) suggests that the inability to incorporate spill-
overs and spin-offs appears to be one of the weaknesses
of the evaluation systems used by European firms.

The Right Reward System Encourages Research
Tourism; the Wrong Reward System Encourages
‘‘Not Invented Here’’
We focus on how the firm should evaluate researchers
so that they have incentives to seek out the right amount
of ideas, concepts, technology, and science. For ease of
exposition, we refer to these outputs simply as ideas.
(Previously, we addressed how researchers and man-
agers chose which idea to develop as a tier 2 program.)
By right amount, we seek the number of ideas that max-
imizes the value of the ideas minus the cost of obtaining
them. Some ideas are better than others, but for the pur-
pose of this section we treat all ideas equally.

Our interviews and the literature (e.g., Cohen and
Levinthal 1989) suggest that more and better internal
research provides a greater ability to identify and use
outside ideas. Let h be the number of internal explo-
rations and assume that each exploration leads to an
idea. Suppose that for each internal idea identified, the
basic researcher can also identify m ideas from the out-
side. Thus, the total number of ideas, n, will be equal
to h / mh. Let ki be the cost of exploring an internal
idea and let ko be the cost of exploring each external
idea. (The subscripts are mnemonic for inside and
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outside, respectively.) Naturally, ki ú ko. Let V (n) be
the value of n total ideas (appropriately discounted).
We assume that V is a concave function of n. For ex-
ample, V (n) might be the maximum of n draws from
a normal distribution. (The effects of risk and differ-
ential discounting on V will be similar to those cov-
ered in the previous section. In this section, we focus
on the implications of choosing either n or h as the
metric. Therefore, we treat V (n) as if it imposes no
risk and no time lag on the researchers.)

The potential for spillovers (mú 0) decreases the cost
per idea, hence, for concave V, the optimal number of
ideas increases when spillovers are possible. However,
even though spillovers make internal explorations more
efficient, this efficiency might imply fewer internal ex-
plorations. In the appendix we show formally that this
means that the optimal number of internal explorations
might actually decrease. We summarize this analysis as
testable implications.

IMPLICATION 3. When spillovers are possible, (a) the op-
timal number of explorations increases but (b) the optimal
number of internal explorations might decrease.

Implication 3 suggests why tier 1 researchers might
adopt an NIH attitude. If a researcher’s (or research man-
ager’s) status is based on the number of the internal ex-
plorations that the firm funds, then seeking spillovers
might decrease this internal empire. To illustrate the phe-
nomenon more formally, suppose that the firm can eval-
uate researchers on either internal ideas alone (the size of
the research ‘‘empire’’) or on the total number of ideas
that are identified—whether or not they originate inter-
nally. That is, the firm evaluates tier 1 researchers based
either on h or on n. We call these evaluation functions gh(h)
and gn(n). Suppose that the researcher’s rewards, either
explicit or implicit, are based on these evaluations.

Tier 1 researchers can choose whether or not to seek
spillovers. We model this ability by allowing them to
choose how many external ideas they explore. That is,
they choose a value mo from the set [0, such that theVm]
total number of ideas they explore is h / moh. Let m* be
the value they choose (in their own best interests). If m*
Å 0 then this is equivalent to NIH; if m* Å then thisVm,
is equivalent to research tourism.

We now examine how the choice of metric affects the
researchers’ reactions to the evaluation system. To make

the comparison meaningful, we select functions such
that the researcher would earn the same reward when-
ever he or she acts in the best interests of the firm. We
choose evaluation functions that accurately reflect the
value to the firm of the ideas that the researcher ex-
plores. These assumptions imply that gh(h) Å V[(1
/ and gn(n) Å V(n). The firm would choose thisVm)h]
gh(h) if it fully expected researchers to explore spillovers
and rewarded them accordingly, but did not anticipate
that the choice of a research metric affects the research-
ers’ choice of mo. (We might also assume that the firm
can anticipate the value of mo that researchers will
choose. If the firm were restricted to using h, but could
anticipate mo it would choose gh(h) Å V(h); if it were
allowed to use n, it would choose gn(n) Å V(n) as the
reward function. We obtain similar results for these as-
sumptions.9)

The formal results are derived in the appendix. We
provide the intuition here. When researchers are eval-
uated on the metric, n, the evaluation structure for re-
searchers is similar to that by which the firm evaluates
its profits. The cost per idea decreases with mo, thus re-
searchers, like the firm, will find it in their own best
interests to set Å Their objectives will parallelm* Vm.n

those of the firm and they will choose the optimal num-
ber of explorations. However, when the researchers are
evaluated based on the metric, h, the cost per unit gain
in gh(h) increases as mo increases, hence the researchers
will want to keep mo small. With ú 0 and Å 0,*

Vm mh

researchers are rewarded as if there were spillovers, but
they incur costs as if there were no spillovers. Because
rewards are concave, this leads to more internal explo-
rations. However, it does not necessarily imply more
ideas. That depends upon the relative costs of internal

9 We could analyze this as a formal agency problem, in which case,
the firm could obtain maximal profits by paying tier 1 researchers via
V(n)/wo/ (ki/ kom)/(1/ m)n*0V(n*). Because we have abstracted
from risk in this section (it is covered in previous sections), this makes
tier 1 researchers the residual claimants. Alternatively, we could re-
strict the firm to rewards of the form g(h) / constant. In this case, the
optimal rewards would be g(h) Å V(h). This case is analyzed in the
appendix. It provides similar, but not identical, results. In the text we
have chosen to compare the two reward systems that we feel represent
practice. We leave analysis with risk aversion and differential dis-
counting to future extensions.
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and external explorations. We state these testable results
as Implication 4.10

IMPLICATION 4. (a) If tier 1 researchers are evaluated on
all ideas, new concepts, new technology, and new science,
including that identified outside the firm, they will set m*n
Å and invest in the optimal number of explorations for theVm

firm. (b) If researchers are evaluated on the results of internal
explorations only, they will adopt an NIH attitude by setting
Å 0. They will work on more internal explorations and*mh

may develop fewer ideas, new concepts, new technology, and
new science than would be optimal for the firm.

Summary and Implications for Basic
Research Metrics
Our analysis of spillovers suggests that the common
practice of rewarding basic researchers for original
ideas leads them to (1) ignore ideas that were ‘‘not in-
vented here’’ and (2) build ‘‘research empires’’ by un-
dertaking too many internal explorations. This may lead
to fewer ideas. The firm can be more profitable if it en-
courages research tourism by evaluating researchers for
ideas generated internally and for ideas identified from
sources outside the firm. Fortunately, progress is being
made. The recent vision statement adopted by General
Motors includes the phrase ‘‘Develop more highly val-
ued innovations, no matter their source, than any other
enterprise.’’ (Emphasis added. Vision statement ob-
tained by private communication to the author.)

Summary and Future Research
Arthur Chester (1995), Senior Vice President for Research
and Technology for GM Hughes Research Laboratories,
states that ‘‘measuring and enhancing R&D productivity
or R&D effectiveness . . . has gained the status of survival
tactics for the R&D community.’’ R,D&E evaluation is an
important policy issue in Japan (Irvine 1988) and Europe
(EIRMA 1995). Erickson and Jacobson (1992) provide ev-
idence that there are no supranormal returns to R&D
spending, but that ‘‘obtaining a comparative advantage
. . . depends crucially on the specific nature of the expen-

10 If tier 1 researchers are evaluated on g(h)ÅV(h), then the equivalent
result is that researchers will develop fewer ideas and may work on
fewer internal explorations.

diture and how it interacts with the firm’s asset and skill
base.’’ CEOs and CTOs use metrics to evaluate and man-
age people, objectives, programs, and projects. In many
ways, metrics determine whether or not a firm’s R,D&E
activities are well managed. While the identification of
specific measures for each firm is an empirical question
beyond the scope of this paper, we have attempted to
identify the properties of those metrics that enable firms
to manage R,D&E effectively.

First, it is clear that metrics must vary by tier. Market-
outcome metrics make sense for applied engineering proj-
ects that provide relatively predictable and immediate re-
turns. However, the incentives of business-unit managers
may not be aligned with those of the firm. Thus, the cost
of applied projects should be subsidized to adjust for
short-termism, risk aversion, and scope. Ideally, these sub-
sidies should vary by project and by business unit.

For development programs with longer-term and
more-risky payoffs, market-outcome metrics should be
given less weight. This is contrary to popular wisdom.
Indeed, too great a stress on market-outcome metrics
will encourage managers and researchers to avoid long-
term, risky programs that have high profit potential. In-
stead, for development programs, the firm should place
a small weight on market outcomes and a larger weight
on effort-indicator metrics such as publications, cita-
tions, patents, citations to patents, and peer review. This
combination of metrics provides managers and re-
searchers with the incentives to choose the right pro-
grams and allocate the right amount of value-enhancing
scientific, engineering, and process effort.

Basic research is even further from the market, hence
more difficult for line managers and business unit man-
agers to evaluate. As a result, firms rely more heavily
on the judgment of basic research managers and scien-
tists. They often seek indicators of the quality of these
people and the quality of their work. Unfortunately,
many organizations evaluate these people based only
on the ideas, concepts, technology, or science that they
originate. Such evaluations encourage them to do only
internal explorations and build research empires that are
too large. A firm can do better by encouraging research
tourism. It should reward research managers and sci-
entists for the ideas that they originate and for the ideas
that they identify from outside the firm. Problems with
‘‘not invented here’’ result from the wrong evaluation
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system. They can be avoided with the right evaluation
system.

Our analyses can be extended. For example, Draper
Laboratories (Pien 1997) has begun to use these insights
to identify a set of metrics that provides researchers and
managers with the right incentives throughout the tiers
of R,D&E. Pien’s metrics also show promise in predict-
ing the success of tier 1 explorations. We are extending
these analyses to other corporations. We have begun
other research to test whether metrics affect people in
the ways predicted in this paper. For example, we are
sending questionnaires to CTOs to determine whether
the metrics used by a cross-section of organizations
have the predicted properties.

Other research directions include the integration of
R,D&E metrics with internal customer evaluation sys-
tems and/or customer satisfaction measures (Hauser et
al. 1994, 1996), the exploration of self-selection on risk
aversion (Holmstrom 1989), strategic behavior to with-
hold information or support (Rotemberg and Saloner
1995), internal patent systems and research tourna-
ments (Taylor 1995), product platforms (Utterback
1994), and the role of R,D&E as a crucible for growing
technical managers.

Finally, there are personal and cultural issues in a re-
search community. Many scientists are driven by an in-
herent need to know and many scientists believe
strongly in a research culture. Hopefully, our analyses
are complementary to these sociological and anthropo-
logical approaches to R,D&E management.11

11 This research was funded by the International Center for Research
on the Management of Technology (ICRMOT) and the Center for In-
novation in Product Development (CIPD), M.I.T. We wish to thank
the managers, scientists, and engineers who donated their time to talk
to us about this important topic. This paper has benefited from pres-
entations at the M.I.T. Marketing Group Seminar, Stanford University
Marketing Seminar, the U.S. Army Soldier Systems Command, the
ICRMOT sponsors meeting, the Marketing Science Conference at the
University of Florida, the Marketing Science Institute’s conference on
Interfunctional Issues in Marketing, and at the University of California
at Los Angeles. Special thanks to Florian Zettelmeyer who completed
most of the qualitative interviews described in this paper. I have dis-
cussed many of these ideas with him and have benefited greatly from
his feedback. Complete listings of related working papers are available
at http://web.mit.edu/icrmot/www/ and at http://web.mit.edu/
cipd.

Appendix: Derivations and Proofs
For ease of exposition, we drop the j subscript in the derivations when
there is no ambiguity. We assume that all functions are thrice differ-
entiable and, when appropriate, all maxima are interior.

Tier 3: Applied Engineering for R,D&E’s Customers
Equation (1). Following the decision tree in Figure 2, we obtain

expected net rewardsÅ (g[(1 0 p)·0 / p·Prob{t õ t }·0c

/ p·Prob{t ¢ t }·{am(E[tÉt ¢ t ] 0 c)}]c c

minus the costs, k. Using the properties of the exponential process we
obtain Prob{t ¢ tc} Å exp(0tc/l) and E[tÉt ¢ tc] Å l / tc. Alterna-
tively, we obtain the result by direct integration of f(t)Å l01 exp(0t/
l). Thus, by substitution and simplification, the

expected net rewardsÅ gamp(l / t 0 c) exp(0t /l) 0 k.c c

Differentiating the expected net rewards and setting the derivative to
zero yields tc Å c. Finally, substitution yields Equation (1).

Equation (2). E(u) Å (1 0 p)·0 / p·Prob{t õ tc}·0 / p·Prob{t
¢ tc}E[u(gamt 0 c)]. Dropping terms that equal zero, substituting defi-
nitions, and using the properties of the exponential process, we obtain:

`
0t /l 0rgma(t0c) 01 0(t0t )/lc cE[u] Å pe (1 0 e )l e dt*

tc

`
0t /l 01 0x/l 0rmag(t 0c)c cÅ pe l e dx 0 eF*

0

`
0(rmag)x 01 0x/l1 e l e dx .* G

0 (A1)

Recognizing the first integral as an integration over the range of a
probability density function and the second integral as the Laplace
transform of the exponential density, we obtain:

0rmag(t 0c)ce0t /lcE[u] Å pe 1 0 . (A2)F G1 / rmagl

Solving for the optimal cutoff (tc Å c) and substituting yields:

10c/lE[u] Å rmaglpe . (A3)F G1 / rmagl

For the constantly risk averse utility function, c.e. Å 0(1/r) log[1
0 E(u)]. If we substitute Equation (A3) into the expression for the c.e.
and if we approximate log[1 0 z] É z / second order terms, we get
the result in the text. Because the utility function is constantly risk
averse, we just subtract the certain costs, k. When the approximation
does not hold, we use Equation (A3) directly.

Equation (3). The derivation of value to the firm follows that for
the business unit manager except that gF Å 1 and a Å 1. Equation (3)
derives from the (risk neutral) condition that expected value ¢ costs.

Equation (4). With subsidies, the conditions for the business unit
(manager) to select a project are Rampg exp(0c/l) ¢ sk. If s Å agR,
then this is equivalent to Equation (3). If the business unit manager is
risk neutral, then R Å 1.
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Tier 2: Development Programs to Match or Create
Core Technological Competence

Equation (5). This equation is a definition. In the following, as-
sume the tier 2 researchers are rewarded based on Equation (5), de-
velopment metric Å bvm̃v / beẽ 0 bKK.

Equation (6). Following the text we assume that the scope, m̃,
results from M independent draws from a Bernoulli process with suc-
cess probability q. Thus, the expected value and variance of the re-
searcher’s rewards are:

m eE[rewards] Å b G Mqv / b G e 0 b K 0 d(e),v e K

2 m 2 2 2 e 2 2var[rewards] Å b (G ) Mq(1 0 q)v / b (G ) s . (A4)v e e

We use the DeMoivre-Laplace Theorem (Drake 1967, p. 219) to rep-
resent the Bernoulli process outcomes with a normal approximation.
For normally distributed outcomes and constantly risk averse utility
functions, the c.e. Å expected value 0 (r/2)(variance of outcomes).
(The result is also approximate for other density functions.) For both
results, see Keeney and Raiffa (1976, pp. 161, 202).

Figure 4. To illustrate the effect on program choice we, temporar-
ily, ignore e by assuming that e and d(e) do not vary by program. Thus,
only bv and bK will affect program choice. See Footnote 5. For Figure
4, we normalize e* 0 wo 0 d(e*) to 0 as this does not change the basic
concepts.

Figure 4a. To demonstrate the effect of discounting we assume risk
neutrality and focus on E[rewards]. Because we are temporarily as-
suming risk neutrality, there are no risk costs to the researchers. Thus,
the condition for positive profits for the firm simplifies to v¢K/(Mq).
Furthermore, the choice of program by researchers will be based on
only the bv and bK terms in E[rewards]. For the researchers who dis-
count rewards, we rearrange E[rewards] to obtain the cutoff as v
¢ (bK/bv)K/(GmMq). The conditions for choosing program 2 over
program 1 are then:

mM q G b (K 0 K )1 1 1 K 2 1Researcher: v ¢ v / ,2 1m mM q G b G M q2 2 2 v 2 2 2

M q (K 0 K )1 1 2 1Firm: v ¢ v / . (A5)2 1M q M q2 2 2 2

Figure 4b. We now allow the researcher to be risk averse. If the
firm could select the programs itself (and not rely on the implications
of the development metrics) it would not have to pay risk costs. In this
case, the firm’s cutoff value would not change. However, if the firm
relies on development metrics, the researcher’s minimum c.e. condi-
tion becomes

m 2 m 2 2b G Mqv 0 (r/2)b (G ) Mq(1 0 q)v ¢ b K.v v K

This quadratic equation will yield both a minimum cutoff (v too small)
and a maximum cutoff (v too risky). That is,

____________________√
mv ¢ [1 0 1 0 2b Kr(1 0 q)/Mq]/[rb G (1 0 q)],K v

____________________√
mv ° [1 / 1 0 2b Kr(1 0 q)/Mq]/[rb G (1 0 q)]. (A6)K v

Figure 4c. The conditions for choosing program 2 over program 1
become

m 2 m 22b G M q v 0 (r/2)b G M q (1 0 q )v 0 b Kv 2 2 2 2 v 2 2 2 2 2 K 2

m 2 m 22¢ b G M q v 0 (r/2)b G M q (1 0 q )v 0 b K .v 1 1 1 1 v 1 1 1 1 1 K 1

This is a quadratic equation that will yield hyperbolic boundaries in
(v1, v2)-space. For Figure 4c we have used the special conditions of K1

Å K2 and M2q2/M1q1 Å (1 0 q2)/(1 0 q1). These conditions reduce the
boundaries to straight lines to demonstrate the regions more clearly.
The intuitive reasoning for Figure 4c is that, for a given v2, as v1 gets
very large, program 1 becomes less attractive due to risk. There will
be regions where the researcher prefers a less risky program 2 over
program 1, even though program 1 has a higher expected value.

Figure 4d. The effects from both figures 4b and 4c are plotted.
The specific values used are K1 Å K2 Å 2, M1q1 Å 10, M2q2 Å 8, mG1

Å 0.9, Å 0.6, bv Å bK Å 1, and r Å 2 (Figures 4b, c, d) or r Å 0mG2

(Figure 4a).
Equation (7). Because m̃ and ẽ are independently distributed, for

a given choice of program, the firm can select so that the researcherb*e
puts in the optimal effort e* as given in Equation (8) below. To retain
the researcher as an employee, the firm must pay at least market
wages, wo. However, to assure participation, the firm must reimburse
its employee for the extranormal costs of effort, d(e*). In addition, the
firm must reimburse the employee for any risk costs that its reward
system induces the employee to undertake. Recognizing that the firm’s
market outcomes are Mqv/ e* and that the firm (ultimately) bears the
development cost, K, yields Equation (7). The subscript, j*, indicates
optimal program selection.

Equation (8). Following the arguments above, the certainty equiv-
alent for a given e is given by:

e 2 e 2 2c.e. Å b G Mqv 0 (r/2)b (G ) Mq(1 0 q)vv v

e 2 20 b K / b G e 0 d(e) 0 rb s /2.K e e e

Since v is given, this reduces to c.e.Å constant/ beG
ee0 d(e). The tier

2 researcher will choose e such that (Ìd/Ìe) Å beG
e. By the Implicit

Function Theorem, this implies (Ìe/Ìbe) Å Ge(Ì2d/Ìe2)01. In equilib-
rium, the firm must reimburse the tier 2 researcher for effort and risk
costs, thus the firm will maximize {e 0 d(e) 0 Recog-2 e 2 2rb (G ) s /2}.e e

nizing that e is an implicit function of be, we solve this maximization
problem to obtain Equation (8). We find the optimal efforts, e*, by
solving (Ìd*/Ìe) Å [1 / 2 2 2 01rs (Ì d*/Ìe )] .e

Effort Indicators. Suppose that y and z are effort indicators, such
as patents, publications, citations, or peer review, and suppose that y,
z are jointly distributed as independent normal variates with vari-
ances, and respectively. Both have means of e. Holmstrom2 2s s ,y z

(1989) demonstrates that the optimal contract is linear in y and z. Using
this fact, we derive the tier 2 researcher’s optimal e for a given set of
weights, ay and az. This yields (Ìd/Ìe) Å ay / az. (Note that if Ge Å 1
then the tier 2 researcher is rewarded now rather than later.) The Im-
plicit Function Theorem yields Ìe/Ìay Å Ìe/Ìaz Å (Ì2d/Ìe2)01. The
firm will then set wages to assure that the researcher participates, that
is, the c.e. of the wages will at least equal the researcher’s reservation
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wage. Because, in equilibrium, it must reimburse for effort and risk
costs, the firm will maximize {e 0 d(e) 0 0 Rec-2 2 2 2ra s /2 ra s /2}.y y z z

ognizing that e is an implicit function, we solve this maximization
problem to show that Å This is the result quoted in the text.2 2a s a s .y y z z

Tier 1: Basic Research Explorations: The Role of
Research Tourism

IMPLICATION 3. When spillovers are possible, (a) the optimal number
of explorations increases but (b) the optimal number of internal explorations
might decrease.

(a) We show Ìn*/Ìmú 0. The firm wishes to maximize V(n)0 kih
0 mkoh with n Å h / mh. Hence, the firm maximizes V(n) 0 [(ki

/ mko)/(1 / m)]n which implies the optimality condition of ÌV(n*)/
Ìn Å (ki / mko)/(1 / m). Implicit differentiation yields

2 2 01 2Ìn*/Ìm Å [Ì V(n*)/Ìn* ] (k 0 k )/(1 / m) .o i

Thus, Ìn*/Ìm ú 0 because V(n) is concave and ko õ ki . (The firm
prefers m to be as large as possible because

Ì{V[h* / mh*] 0 k h* 0 mk h*}/Ìmi o

Å [ÌV(n*)/Ìn0 k ]h*o

Å [(k / mk )/(1 / m) 0 k ]h* ú 0 for m ú 0.)i o o

(b) To prove the result we must only establish that an example ex-
ists such that internal explorations decrease. We establish existence
with the example V(n) Å Vo log(n / 1). Notice that V(n Å 0) Å 0. For
this example we show that Ìh*/Ìm is ambiguous. In terms of h, the
firm maximizes {Vo log(h/ mh/ 1)0 kih0 komh}. Differentiating and
solving for h* yields h* Å Vo/(ki / mko) 0 1/(1 / m). For h*ú 0, this
requires Vo/(ki / mko) ú 1/(1 / m). Differentiating again we obtain

2 2 2Ìh*/Ìm Å 1/(1 / m) 0 (k /V )(V /[k / mk ] ).o o o i o

For ko r 0, Ìh*/Ìm ú 0. For

2k r k , Ìh*/Ìm r [1 0 V /k ]/(1 / m) ,o i o i

hence Ìh*/Ìmõ 0 whenever Vo ú ki. This last condition is necessary for
n*ú 0. (If n* were not positive, there would be no need for tier 1.) h

IMPLICATION 4. (a) If tier 1 researchers are evaluated on all ideas, new
concepts, new technology, and new science, including those identified outside
the firm, they will set Å and invest in the optimal number of explorationsm* Vmn

for the firm. (b) If tier 1 researchers are evaluated on internal explorations
only, they will adopt an NIH attitude by setting Å 0. They will work on*mh

more internal explorations and may develop fewer ideas, new concepts, new
technology, and new science than would be optimal for the firm.

(a) We first consider the case when tier 1 researchers are evaluated on
gn(n)ÅV(n). Tier 1 researchers will select moÅ and nÅ n* to maximizem*n

o o{V(n) 0 k n/(1 / m ) 0 k mn/(1 / m )}.i o

Differentiating, we obtain:

o o oÌ{V(n) 0 k n/(1 / m ) 0 k mn/(1 / m )}/Ìmi o

o 2Å n(k 0 k )/(1 / m ) ú 0.i o

Thus, it is optimal for the researcher to set Å With mo Å andm* Vm. Vmn

gn(n) Å V(n), the researcher’s objectives match those of the firm.
(b) Let n* and h* be the optimal values that result from a metric of

the form gn(n) and let no and ho be the optimal values that result from
a metric of the form gh(h). Following the text, we now consider the
case when tier 1 researchers are evaluated on gh(h) Å V[(1 / Vm)h]
where is announced by the firm as a parameter of the reward func-Vm

tion. Tier 1 researchers select mo Å and h Å ho to maximize {gh(h)*mh

0 kih 0 kom
oh}. Since

o oÌ{g (h) 0 k h 0 k m h}/Ìm õ 0,h i o

researchers will set Å 0. The revised choice of ho is given by ÌV(ho)/*mh

Ìn Å ki/(1 / The firm’s optimal is given by ÌV(n*)/Ìn Å (kiVm).
/ ko)/(1 / where n* Å (1 / Hence,Vm) Vm)h*.

oÌV[h (1 / Vm)]/Ìn õ ÌV[(1 / Vm)h*]/Ìn.

Since V(·) is concave, this implies that (1 / ú (1 / henceo
Vm)h Vm)h*,

ho ú h*. We establish the ambiguity of the comparison of no with n*
by using the example from Implication 3 to prove existence. Because
the metric induces researchers to set Å 0, no Å ho, we compute ho*mh

Å [Vo(1/ 0 ki]/(ki / ki) and n*Å [Vo(1/ 0 ki 0 ko]/(ki/ ko).Vm) Vm)
As ko r ki , hoú n*. As ko r 0, n*ú ho by the condition that h*ú 0. h

Footnotes 9 and 10. If gh(h) Å V(h), then tier 1 researchers may work
on more internal explorations and will develop fewer ideas than would be
‘‘optimal’’ for the firm.

These footnotes cover the case where the firm rewards only on internal
ideas, but anticipates that tier 1 researchers will adopt NIH and set *mh

Å 0. Under these conditions (and no risk aversion) the firm will select
gh(h) Å V(h). With Å 0, tier 1 researchers maximize V(h)0 kih, hence*mh

ÌV(ho)/Ìh Å ki and no Å ho. The firm’s optimal is given by ÌV(n*)/Ìn
Å (ki / ko)/(1 / Thus, ho Å no õ n* because V(·) is concave and kiVm).
ú (ki / ko)/(1 / We establish the ambiguity of ho vs. h* with theVm).
example of Implication 3. We first compute ho Å (Vo 0 ki)/ki and

h* Å [V (1 / Vm) 0 k 0 k ]/[(k / k )(1 / Vm)].o i o i o

As ko r 0, h* ú ho and as ko r ki , h* õ ho. h
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