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Greedoid languages provide a basis to infer best-fitting noncompensatory decision rules from full-rank con-
joint data or partial-rank data such as consider-then-rank, consider-only, or choice data. Potential decision

rules include elimination by aspects, acceptance by aspects, lexicographic by features, and a mixed-rule lexi-
cographic by aspects (LBA) that nests the other rules. We provide a dynamic program that makes estimation
practical for a moderately large numbers of aspects.
We test greedoid methods with applications to SmartPhones (339 respondents, both full-rank and consider-

then-rank data) and computers (201 respondents from Lenk et al. 1996). We compare LBA to two compensatory
benchmarks: hierarchical Bayes ranked logit (HBRL) and LINMAP. For each benchmark, we consider an uncon-
strained model and a model constrained so that aspects are truly compensatory. For both data sets, LBA predicts
(new task) holdouts at least as well as compensatory methods for the majority of the respondents. LBA’s relative
predictive ability increases (ranks and choices) if the task is full rank rather than consider then rank. LBA’s
relative predictive ability does not change if (1) we allow respondents to presort profiles, or (2) we increase
the number of profiles in a consider-then-rank task from 16 to 32. We examine trade-offs between effort and
accuracy for the type of task and the number of profiles.
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1. Noncompensatory Decision
Processes

We explore new methods to study heuristic decision
processes. These methods use “greedoid languages”
and dynamic programming to solve combinatorial
computational problems significantly more efficiently
than as reported in the extant literature. We demon-
strate how the methods can be used to identify
the heuristic decision processes that best describe
observed consideration and/or choice. Because the
methods work with either rank-order data or con-
sider-then-rank data, we are able to examine empir-
ically how well each data-collection format pre-
dicts choice. A consider-then-rank task might be
more enjoyable and less effortful for respondents
(e.g., Malhotra 1986, Oppewal et al. 1994, Srinivasan
and Park 1997) and, hence, might mean shorter

questionnaires (less cost) and might encourage more
respondents to complete the task (fewer nonresponse
issues).
Noncompensatory decision processes are important

both academically and managerially. Academically,
there is ample evidence in the psychology, consumer
behavior, and marketing science literatures that con-
sumers simplify consideration and/or choice with
a heuristic process.1 Such processes are identified
using a variety of methodologies ranging from verbal

1 Examples include Bettman et al. (1998), Bettman and Park (1980),
Bröder (2000), Einhorn (1970), Einhorn and Hogarth (1981),
Gigerenzer and Goldstein (1996), Hauser (1978), Hauser and Wern-
erfelt (1990), Johnson and Meyer (1984), Luce et al. (1999), Mar-
tignon and Hoffrage (2002), Montgomery and Svenson (1976),
Payne (1976), Payne et al. (1993), Roberts and Lattin (1991), Shugan
(1980), Urban and Hauser (2004).
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Figure 1 Cell Phones and SmartPhones

process tracing to information display mechanisms
(e.g., Mouselab), and researchers have studied how
consumers adapt and/or construct decision processes
based on the characteristics of the decision environ-
ment (see Payne et al. 1993 for a review). Greedoid
methods attempt to infer such processes from less
intrusive observations where respondents are asked
either to rank profiles, provide partial profile orders,
or indicate whether or not they will consider a profile.
These methods are, thus, complementary to existing
methods.
Consider Figure 1 from a SmartPhone Web site2 that

encourages consumers to select SmartPhones for fur-
ther consideration based on features such as carrier,
brand, size, and price. Consumers can choose to keep
or eliminate levels of these features to form a consid-
eration set. If consumers use a heuristic, noncompen-
satory process and we can identify the features that
drive the process, then the Web site designer knows
which features to use, the product designer knows

2 http://www.myphonefinder.com/, used with permission.

which features to include in the product line, and the
advertising manager knows which features to empha-
size.
Typically, compensatory conjoint analysis methods

are used in these situations to identify the features
with the largest partworths. Such methods are com-
putationally tractable and often provide excellent
paramorphic approximations of consumer considera-
tion and/or choice processes. However, if consumers
are not making compensatory trade-offs among fea-
tures but, rather, are using noncompensatory heuris-
tics, a method to identify those heuristics might be
appealing. Heretofore, analyzing rank, partial rank,
or consideration data to infer noncompensatory pro-
cesses has not been computationally feasible for
moderately sized problems because the number of
potential noncompensatory descriptions grows as n!
where n is the number of distinct feature levels
(aspects).3 We provide an algorithm that can identify

3 Excellent methods exist for small numbers of aspects and for
approximations to the best fit. Examples include Gensch (1987),
Gilbride and Allenby (2004), Kohli and Jedidi (2004).
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the best-fitting heuristic in seconds (rather than days).
We illustrate the algorithm on two data sets and
with experiments that vary the consumers’ decision
environment. Some of these experimental manipula-
tions are designed to replicate existing findings; some
experimental manipulations are new.
The paper proceeds as follows. First, we briefly re-

view the literature on heuristic processes and provide
examples. Next, we describe the respondents’ tasks.
We present greedoid-based methods and discuss the
traditional methods to which they are compared. We
test the methods empirically in a 2 × 2 experiment
in which 339 respondents choose from 32 Smart-
Phones chosen from a fractional factorial 4324 design.
We examine the impact of the number of profiles,
the respondents’ tasks, and sorting on the relative
predictability of noncompensatory models. For com-
parison, we reanalyze classic data in which 201
respondents rated 16 computers chosen from a frac-
tional factorial 213 design. Finally, we close by illus-
trating how greedoid analysis provides managerial
insight.

2. Brief Review of Noncompensatory
Decision Processes

We consider decision processes in which products are
represented by their features and consumers decide
which product to purchase or consume. While the
process by which consumers encode products into
features can be complex and important (Einhorn and
Hogarth 1981), that topic is beyond the scope of this
paper. Our scope includes situations in which such
encoding is feasible and reasonably descriptive of
consumer decision processes. For practical applica-
tions, we might use voice-of-the-customer methods to
identify a representative set of features (e.g., Griffin
and Hauser 1993, Zaltman 1997). When a feature is
binary, it is called an aspect (e.g., Tversky 1972). Multi-
level features can be considered collections of aspects
that are related (Verizon versus Cingular versus Nex-
tel versus Sprint for SmartPhone service providers).
A profile is the aspect description of a product.

Noncompensatory Processes
In a compensatory process, high levels on some as-
pects compensate for low levels on other aspects.
In a noncompensatory process, high levels on some
aspects cannot compensate for low levels on other
aspects. One well-known noncompensatory process
is a lexicographic process: Consumers evaluate pro-
files first by one feature, then another, until a judg-
ment or choice is made (Fishburn 1974, Nakamura
2002). For example, consider an illustrative exam-
ple in which consumers rank SmartPhones that dif-
fer on the features of brand and operating system. As

illustrated by the first row of Figure 2, a consumer
might rank first on the feature of brand, putting
first all BlackBerry SmartPhones, then Nokias, Sam-
sungs, and, last, Sony Ericsson, then rank on the fea-
ture of operating system (within brand) by putting
all Microsoft-based SmartPhones before palm-based
SmartPhones. We call this process lexicographic by
features (LBF).
Other heuristics are possible. A consumer might

rank SmartPhones by aspects, say, by first accepting
BlackBerry SmartPhones, then Microsoft-based Smart-
Phones, Nokias, and, finally, Samsungs until all
SmartPhones are ranked (second row of Figure 2).
(Whenever there is a tie, the consumer moves to the
next aspect in the lexicographic order.) For ease of
reference, we call such processes acceptance by aspects
(ABA). ABA is related to Tversky’s elimination-by-
aspects process (EBA) in which consumers succes-
sively eliminate aspects (third row of Figure 2).
Tversky defines EBA as a random process in which
the probability that an aspect is chosen is proportional
to its measure. In this paper, we follow Johnson et al.
(1989), Montgomery and Svenson (1976), Payne et al.
(1988), and Thorngate (1980), and use EBA to refer
to a deterministic process in which an aspect order
is given. Finally, consumers may mix acceptance and
elimination criteria. We call such a mixed process lex-
icographic by aspects (LBA). Because ABA, EBA, and
LBF are special cases of LBA, we focus on LBA.
When a feature has more than two aspects, elimi-

nating an aspect (Sony Ericsson) is the same as accept-
ing its complement (BlackBerry ∪Nokia ∪ Samsung),
but EBA is not equivalent to an ABA process of
accepting BlackBerry, then Nokia, then Samsung.
The ABA process orders BlackBerry-Nokia-Samsung,
while the EBA process does not. However, for two-
level aspects, there exists an equivalent EBA process
for every ABA process. Figure 3 illustrates this equiv-
alency for SmartPhones that differ on three binary
aspects (brand, operating system, and carrier).
ABA, EBA, LBA, and LBF define orderings and

hence can be used to explain either full or partial
rankings, including respondent tasks such as rank all
profiles, choose a single profile, or indicate which pro-
files are worth further consideration. Finally, the pro-
cesses can be modified to include constraints within
features such as “lower prices are always preferred to
higher prices.”

Compensatory Processes
Many authors represent a compensatory process as an
arithmetic rule in which each aspect receives a weight
and consumers sum the weights associated with the
aspects in a profile to form “utility.” Consumers then
choose the product with the highest “utility.” How-
ever, not all sets of aspect partworths imply a com-
pensatory process. If the aspect partworths follow
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Figure 2 Examples of Lexicographic Heuristic Processes
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an appropriate geometric sequence (e.g., 21−n for the
nth aspect), then an additive model produces a lex-
icographic process in which no set of lower ranked
aspects can compensate for the lack of a higher
ranked aspect (Jedidi et al. 1996, Kohli and Jedidi
2004, Olshavsky and Acito 1980). Thus, we reserve
the word “compensatory” for additive models that
are truly compensatory, e.g., when the partworths are
constrained so that the presence of other aspects can
compensate for the lack of an important aspect.

Constructive Processes
Research suggests that consumer decision processes
are contingent on many context effects including the
range of aspects, correlation among aspects, base-rate
information, reference points, the size of the choice
set, the relevance of the decision, and the difficulty
of comparison (see review in Payne et al. 1993). To
the extent that data collection approximates the essen-
tial characteristics of real choice environments, gree-
doid methods provide insight into how context affects
respondents’ tendency to use noncompensatory deci-
sion rules. Our empirical experiments illustrate this
context-dependent variation.

Existing Methods to Infer Noncompensatory
Processes
Many measurement examples in the marketing sci-
ence literature are consistent with noncompensatory
decision processes. For example, both Srinivasan and
Wyner’s (1988) Casemap and Johnson’s (1991) adap-
tive conjoint analysis (ACA) include steps in which
respondents are asked to eliminate unacceptable lev-
els. Because this task is often difficult for respondents
(Green et al. 1988, Klein 1988), other researchers have
attempted to infer the elimination process in a sin-
gle estimation step (DeSarbo et al. 1996, Gilbride and
Allenby 2004, Gensch 1987, Gensch and Soofi 1995,
Jedidi and Kohli 2005, Jedidi et al. 1996, Kim 2004,
Roberts and Lattin 1991, Swait 2001). For example,
Gilbride and Allenby (2004, p. 399) use hierarchical
Bayes methods to analyze choice-based conjoint data
to infer screening rules for cameras. They estimate
that 58% of the respondents screen on a single fea-
ture, 33% on two features, 2% on three features, and
8% use fully compensatory processes.
In psychology, Bröder (2000) analyzes choices

among two profiles described by four aspects. He
compares the fit of an unconstrained additive model
to two additive models: (1) a model in which the
aspects are constrained to 21−n (noncompensatory),
and (2) a model with equal weights (Dawes’ 1979
model). In one experiment, 28% of the 40 respon-
dents are classified as noncompensatory while none
are classified as Dawes’. The remaining 72% could
not be classified. Bröder’s (2000) method is feasible

for a small number of aspects—with four aspects,
the ratio of the largest-to-smallest partworth in a
noncompensatory model is 23 → 8�1. For 16 aspects,
as in our experiments, the range of partworths in
a noncompensatory model would be at least 215 →
32�768�1, a ratio that puts severe strains on any statis-
tical regression-like procedure.4

Kohli and Jedidi (2004) propose a greedy heuris-
tic to estimate a linear representation of lexicographic
processes from metric conjoint data.5 They modify
Bröder’s (2000) procedure by computing the number
of violated pairs between predicted and observed
rank orders for both additive and 21−n models. Their
t-statistics suggest that a 21−n representation is not
significantly different from an unconstrained additive
model for 67% of the 69 respondents who evaluated
profiles with 5 features (11 aspects). Our approach
differs from Kohli and Jedidi (2004) along a num-
ber of dimensions including respondent task, estima-
tion algorithms, and focus. Nonetheless, these parallel
independent studies suggest many opportunities to
apply discrete optimization methods to infer noncom-
pensatory processes.

3. The Respondents’ Tasks
It is easier to understand greedoid methods if we first
review the respondents’ tasks as illustrated with an
example from our empirical experiments.6 In Figure 4,
respondents are first introduced to the product cate-
gory and the 7 features (16 aspects). Figure 4a is one
of many screens. Respondents are then presented with
SmartPhone profiles (Figure 4b). Respondents in the
consider-then-rank cells simply click on those profiles
they would seriously consider—part of the screen is
shown in Figure 4c. These respondents then see only
their considered profiles; they are asked to rank them
by successively clicking on the profile they would
choose from the offered set (Figure 4d). That profile
disappears and they choose again until all considered
profiles are chosen. Respondents in the full-rank cells
skip the consideration task. In Figure 4, we illustrate
an additional twist. Some, but not all, respondents
were allowed to presort the profiles in either or both
tasks. A priori, we expect the ability to sort tasks to
encourage lexicographic processing. In a later section,
we describe the full experimental protocol (incentives,

4 The ratio is not as severe if we allow partial lexicographic orders.
However, Bröder’s (2000) method cannot handle partial orders
without first solving the combinatorial problems we describe later.
5 Both approaches were developed independently. We became
aware of one another’s approaches after all empirical work had
been completed and papers written.
6 Greedoid analysis can be extended to tasks such as those used
by Bröder (2000), Gigerenzer and Goldstein (1996), or Gilbride and
Allenby (2004).
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Figure 4 Illustrative Respondent’s Task

(a) Describing aspects to respondents (b) Example profiles

(c) Consideration judgment task (d) Choice from consideration set
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Note. These figures have been modified from the originals to avoid the prominent use of corporate logos.

filler tasks, holdout measures, etc.) and provide statis-
tics such as response rates.
Two comments are in order. First, respondents are

not asked to indicate unacceptable feature levels
(aspects) directly. Elimination aspects, if any, are
inferred from the data. Second, the measurement
tasks themselves do not assume that either judgment
(consideration) or decision (choice or rank) processes
are compensatory or that they are noncompensatory.

4. Identifying Lexicographic Processes
with Greedoid Languages

For ease of exposition, we focus our discussion on lex-
icographic aspect orders that represent acceptance-by-
aspects (ABA) decision rules. Elimination by aspects
(EBA) can be estimated with the same algorithm by
redefining aspects by their negation; lexicographic by
features (LBF) can be estimated by imposing con-
straints on the aspect orders; and lexicographic by
aspects (LBA) can be estimated with only a slight
modification in the algorithms.

To identify the best lexicographic representation for
a given set of observed data, we develop a proce-
dure to identify the aspect order that maximizes fit
(minimizes errors) on some metric. Unfortunately, as
Martignon and Hoffrage (2002, Theorem 2, p. 39)
demonstrate, this problem is NP-hard. They suggest
exhaustive enumeration. For example, they sought
to determine the aspect order (state capital, soccer
team in the national league, etc.) that best explains
the relative populations of pairs of German cities.
Because their problem had nine aspects, they needed
to search 9! orderings—“a UNIX machine” took two
days to find the best ordering. Their problem is a
relatively small problem. For our 4324 empirical prob-
lem, exhaustive enumeration needs to check 7!× �4!�3
orders for LBF, 16! aspect orders for ABA or EBA, and
216×16! orders for LBA.7 Because 7! × �4!�3 = 192× 9!,
their algorithm would have taken over a year per
respondent for LBF. Because 16! = 300�300× 7!× �4!�3,
their algorithm would have taken over 300 millennia
for ABA or EBA and substantially longer for LBA.

7 In a 4324 design, there are 3× 4+ 4× 1= 16 aspects.
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Although faster computers help, it is clear that prac-
tical analysis for moderate-to-large problems requires
a more efficient algorithm.
We address computational efficiency in two steps.

We first demonstrate that the collection of lexico-
graphic orders of aspects, as they relate to a partial
ordering of profiles, forms a “greedoid language.”8

This enables us to use established results to find
the appropriate lexicographic aspect order, if one
exists, much more efficiently than existing methods.
Because the profile ordering need only be partial, we
can handle consideration, partial-rank, full-rank, or
choice data.
A perfect lexicographic ordering of aspects is ex-

tremely rare. With 32 profiles, there are 32! rank
orders but only 216 × 16! aspect orders. Thus, the
chances that an arbitrary profile order is consistent
with an aspect order is less than 5�2× 10−18. Further-
more, any respondent errors are likely to cause the
data to be inconsistent with an aspect order.9 Using
the greedoid structure, we prove that a dynamic
program can find the lexicographic ordering that
maximizes a commonly used goodness-of-fit metric.
The dynamic programming algorithm substantially
reduces computation and makes it feasible to iden-
tify the best lexicographic ordering for large sam-
ples of respondents and moderately large numbers
of aspects. For example, for 16 aspects, the dynamic
program need only consider 216 = 65�536 subsets of
aspects, much less than the 1�4× 1018 potential LBA
aspect orders. We begin with notation and definitions.

Partial Orders and Consistency
Let N be the total number of aspects, and let L =
�L1� � � � �La� be an ordered subset of a aspects where
a ≤ N . For a given profile P , we let Li�P� be one
if profile P contains aspect Li, and zero otherwise.
We write P 
L P

′ if Li�P� = 1 and Li�P
′� = 0, where i

is the first (smallest) index for which Li�P� �= Li�P
′�.

For example, in the ABA row of Figure 2, L =
�BlackBerry�Microsoft�Nokia�Samsung�. The first
ranked SmartPhone is P = BlackBerry�Microsoft�.
L1�P� = 1, L2�P� = 1, L3�P� = 0, and L4�P� = 0. P =
BlackBerry�Microsoft� 
L P

′ = BlackBerry�PalmOS�
because L2�P�= 1 and L2�P

′�= 0.
Each totally ordered set L of aspects implies a

unique order of profile preferences, but the converse
is not true. Different orders of aspects can lead to

8 Early theory examined partially ordered set greedoids such as
might be defined on orderings of profiles. The greedoid in this
paper describes aspects as they relate to profiles, not profiles
directly.
9 Interestingly, less that one-tenth of 1% of the profile orderings
are consistent with linear combination of aspect measures. This
includes both compensatory and noncompensatory linear combina-
tions.

the same order of profiles. This is particularly true
for the consideration task. If a respondent will con-
sider only Verizon SmartPhones that flip open, then
the orders L = �Verizon�flip� and L′ = �flip�Verizon�
are both consistent with the respondent’s considera-
tion process.
Suppose that X is a partial order of profiles revealed

by the respondent. For example, X might define
which profiles are in a consideration set and which are
not, or X might define a rank order within a consid-
eration set. We write P 
X P ′ if profile P is preferred
to (or ranked higher than) profile P ′ according to X.
We say that an ordered subset L of aspects is lexico-
inconsistent with a partial order X of profiles if there
are profiles P and P ′ that are ranked differently by
aspect order L and profile order X. In symbols, L and
X are inconsistent if there exist P and P ′ such that
P 
X P ′ while P ′ 
L P . Otherwise, we say that L and
X are lexicoconsistent. For example, in the ABA row of
Figure 2, the aspect order in the ranking rule column
(BlackBerry, Microsoft, Nokia, Samsung) is lexicocon-
sistent with the order of the eight profiles in the final
column.
If L is an ordered subset of aspects and e  L is

an aspect, then let �L� e� denote the ordered subset of
aspects obtained by appending aspect e to the end
of L. Let L\Y denote the set L with all elements of
Y deleted. For example, if L= �BlackBerry�Microsoft�
Nokia�Samsung�, e = flip, and Y = (Samsung), then
�L� e� = �BlackBerry�Microsoft�Nokia�Samsung�flip�
and L\Y = �BlackBerry�Microsoft�Nokia�. Finally, let
� be the empty set, and let the number of elements
in a set L be denoted by �L�.
Greedoid Languages
Greedoid languages were developed by Korte and
Lovász (1985) to study conditions under which a
greedy algorithm can solve optimization problems.10

They have proved useful in sequencing and alloca-
tion problems (e.g., Niño-Mora 2000). We believe that
this is the first application in marketing or consumer
behavior. Björner and Ziegler (1992) and Korte et al.
(1991) are excellent references that provide numerous
examples of greedoids. In this work, we introduce a
new type of greedoid where partial orders of profiles
(X� induce a greedoid language defined on aspect
orders (L�. It is this linkage that enables us to identify
LBA and other aspect- or feature-based explanations
of profile orders.
Let E be a set of aspects and let G be a collection

of ordered subsets of E. We say that G is a greedoid
language if the following conditions are satisfied:

10 Greedoids were initially formulated in the context of set sys-
tems. However, the language representation is equivalent and more
appropriate for our application.
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1. �∈G.
2. If L ∈G, and if element e ∈ E is the last element

of L, then L\e ∈G.
3. If L ∈G and if L′ ∈G and if �L′�> �L�, then there

is an element e in L′\L such that L̂= �L� e� and L̂ ∈G.
In the appendix, we demonstrate that the set of par-

tial orderings of the aspects that are consistent with a
partial ordering of the profiles form a greedoid lan-
guage. Corollary 1 follows from Proposition 1 because
Algorithm 1 is a greedy algorithm that either finds
a lexicoconsistent aspect order, L ∈ G, of maximum
length or terminates early.11

Proposition 1. Let E be the set of aspects, and let X
be a partial order on the profiles. Let G be the collection
of ordered subsets of E that are lexicoconsistent with X.
Then, G is a greedoid language.

Corollary 1. Algorithm 1 determines whether there
exists a lexicographic ordering of aspects L that is lexico-
consistent with a profile ordering X and, if an ordering
exists, finds an ordering.

Algorithm 1 (for determining if L is lexicoconsistent
with X).
begin

L=�
while �L�< �E� do
begin
if (there exists e in E\L such that �L� e� is

lexicoconsistent with X)
replace L with �L� e�

else
quit (because X is not lexicographic)

end
end

Finding Lexicographic Descriptions that
Maximize Fit
If there is no ordering of aspects that is lexicoconsis-
tent with a profile order, i.e., Algorithm 1 terminates
with �L�< �E�, we might still like to find ordering(s) of
aspects that best fit a profile order. As a measure of fit
between aspect orders (L� and profiles (X�, we relate
“closeness” to the number of inconsistencies (violated
pairs) between the profile order induced by L and
that observed in X.12 We now develop an algorithm
to find the closest lexicographic ordering. We begin
with Proposition 2, which explores the implications
of the greedoid structure. Proposition 2 implies Algo-
rithm 2, which is a dynamic program on the set of

11 Kohli and Jedidi (2004) use a greedy algorithm on permutation
matrices to identify a metric representation of a lexicographic order-
ing when there is no response error. They apply their algorithm to
metric data.
12 Minimizing violated pairs is equivalent to maximizing Kendall’s
tau (1975) where � = 1− 2 ∗ (fraction violated).

all subsets of the aspects. Because this set has dimen-
sionality 2n, and because 2n is substantially less than
n!, Algorithm 2 can still be feasible when exhaustive
enumeration is not.
In the appendix, we prove Proposition 2 by show-

ing that the marginal inconsistencies induced by ad-
ding a new aspect to an existing aspect order depend
only on that aspect and the set of aspects preceding
it, but not on the order of the preceding aspects. This
implies a (forward) recursive structure that allows
the problem to be solved with dynamic program-
ming (Corollary 2). This dynamic program is similar
to Held and Karp’s (1962) classic dynamic program-
ming algorithm for the traveling-salesman problem.
For those readers not familiar with dynamic program-
ming, we provide a technical appendix (available at
http://mktsci.pubs.informs.org on the Marketing Sci-
enceWeb site) that illustrates how Algorithm 2 would
apply to a simple playing card example.

Proposition 2. Let L and L′ be two different permuta-
tions of a subset E ′ of aspects, and let e be any aspect not
in E ′. Then, the number of lexico-inconsistencies directly
caused by e in �L� e� is the same as the number of incon-
sistencies caused by e in �L′� e�.

Corollary 2. Algorithm 2 identifies the lexicographic
ordering of aspects L that best fits the (partial) ordering of
profiles X.

When Algorithm 2 terminates, J �E� is the minimum
number of lexico-inconsistencies between the respon-
dent’s profile ordering X and any ordering of the
aspects in E. L�E� are the best-fitting lexicographic
orders, which might or might not be unique. Algo-
rithm 2 applies directly to either acceptance by aspects
or elimination by aspects. Fortunately, for lexico-
graphic by aspects, the number of steps in the algo-
rithm only doubles. This is a significant improvement
relative to exhaustive enumeration, which would
cause the number of steps to grow by a factor of 2n for
LBA. Specifically, in the innermost loop of Algorithm 2
we need only check both i and its negation. We call
Algorithm 2 a greedoid-based dynamic program.

Algorithm 2 (for finding aspect order L that provides
the best fit to profile order X).
begin

J ���= 0
for k= 1 to �E�
for all (unordered) subsets, S ⊆ E of size k
for all i ∈ S

c�S\i�� i�= number of inconsistencies caused
by aspect i following set S\i

next i
J �S�=mini∈S�J �S\i��+ c�S\i�� i��
L�S� is the ordering of aspects in S yielding

J �S� [retained]
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next S
next k

end

We programmed Algorithm 2 in Java running on an
IBM 1.7-GHz laptop. For a 16-aspect problem, the run
time was approximately 1.85 seconds per respondent.
Relative to Martignon and Hoffrage (2002), some sav-
ings are due to Algorithm 2 and some are due to faster
computers. We project that Martignon and Hoffrage’s
(2002) exhaustive enumeration would take 14 years
for a 16-aspect EBA problem on the same computer.13

We provide two further results. Proposition 3 ex-
tends the theory (and Algorithms 1 and 2) to allow the
researcher to place greater emphasis on some ordered
pairs in X, say, the ordered pairs corresponding to
highly ranked profiles. Proposition 4 reduces the run-
ning time of Algorithm 2 by enabling it to begin
with any consistent ordered subset of aspects (e.g., the
largest such ordered subset) and then use the dynamic
program on the remaining aspects.

Proposition 3. If weights are associated with each or-
dered pair in X, then (1) the new G is a greedoid language,
(2) Algorithm 1 determines whether there exists an L lexi-
coconsistent with X, (3) Proposition 2 extends to the new
G, and (4) Algorithm 2 finds the best fit if c�·� is rede-
fined to c�S\i�� i�= sum of weighted violations caused by
aspect i following set S\i.
Proposition 4. Suppose that L is an ordered subset of

aspects that is lexicoconsistent with the preferences of X.
Then, there is an optimal ordering of aspects that begins
with the order L.

5. Benchmarks
To evaluate the ability of the greedoid methods to fit
partial- or full-rank data and predict holdout val-
idations, we identify benchmark models. Because
hierarchical Bayes methods appear to be the most
popular method to estimate additive models, our pri-
mary comparison is a hierarchical Bayes-ranked logit
model (HBRL, e.g., Rossi and Allenby 2003). We pro-
vide an alternative benchmark with linear program-
ming estimation (LINMAP). We use the most recent
version of LINMAP, which enforces strict rankings
(Srinivasan 1998). Both benchmark methods predict
holdouts slightly better than either traditional LIN-
MAP (Srinivasan and Shocker 1973) or analytic center
estimation (Toubia et al. 2003).14

With HBRL (or LINMAP) we must address the con-
ceptual issue that additive models nest lexicographic

13 Exhaustively enumerating LBA would take over 900 millennia.
Exhaustively enumerating a nine-aspect problem would take nine
seconds for EBA (or ABA), but 1.3 hours for LBA.
14 Details on classical LINMAP and analytic-center estimation are
available from the authors.

models. The best-fitting additive model might esti-
mate partworths that are equivalent to a lexicographic
process. For example, estimated partworths that sat-
isfy a 21−n relationship have this property. This would
be fine if our only interest were predictive ability.
However, we also seek to use greedoid methods to
gain insight on consumers’ heuristic processes.
To estimate additive models that do not nest lexico-

graphic models, we constrain the additive model so
that all estimated partworths are truly compensatory.
By the principle of optimality, such a constraint can-
not be estimated by fitting data.15 On the other hand,
such a constraint might improve holdout performance
by the principle of complexity control (Cui and Curry
2005, Evgeniou et al. 2005).
The form of our constraints is motivated by be-

havioral researchers who have sought to identify
whether compensatory or noncompensatory models
fit or predict observed choices better. For example,
Bröder (2000) defines a respondent as compensatory
if the respondent’s partworths are “not too extreme.”
Specifically, Bröder requires that wic =wlc for all l �= i,
where wic is the partworth of the ith aspect for
respondent c. We generalize Bröder’s (2000) prece-
dent by defining a respondent as “q-compensatory”
if wic ≤ qwlc for all l �= i. With this definition, we
can examine a continuum between Dawes’ (1979)
model as tested by Bröder �q = 1� and the unre-
stricted additive benchmark �q =�� that nests lexico-
graphic models. Because there is no a priori theory
with which to select q, we provide holdout predic-
tions for values of q ranging from 1 to �. We estimate
q-compensatory benchmarks with rejection sampling
in the hierarchical Bayes sampler or by imposing
additional constraints on the linear program. We
label these q-compensatory benchmarks HBRL(q� and
LINMAP(q�. In a supplemental appendix (available
on the Marketing Science Web site), we use synthetic
data to explore the implications of q for “true” mod-
els that vary from highly compensatory to highly
lexicographic. For these simulations, selecting q = 4
provides a reasonable ability to discriminate respon-
dents with “compensatory” partworths from those
with “lexicographic” partworths.

6. SmartPhone Empirical Study
To test greedoid methods, we invited respondents to
complete a web-based questionnaire about Smart-
Phones. The respondents were students drawn from
the undergraduate and graduate programs at two uni-
versities. To the best of our knowledge, they were
unaware of greedoid methods or the purpose of

15 Unconstrained models necessarily fit better than the constrained
models that they nest; thus, fit cannot be used as a criterion.
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our study. As an incentive to participate, they were
offered a one-in-ten chance of winning a laptop bag
worth $100, yielding a 63% response rate. Pretests
in related contexts suggested that SmartPhones were
likely to include noncompensatory features and thus
represented an interesting category for a first test of
greedoid methods.
The survey consisted of six phases. The first three

phases are as described in Figure 4: Respondents re-
viewed the category and SmartPhone features, indi-
cated which SmartPhones they would consider (in
half the cells), and successively chose SmartPhones
in order to rank their considered products (or rank
all products, depending on cell). Respondents then
completed a mini-IQ test to cleanse memory—a task
which pretests suggested was engaging and challeng-
ing. Following this filler task, respondents completed
a holdout task consisting of two sets of four Smart-
Phones chosen randomly from a different 32-profile
fractional factorial design.16 The final task was a short
set of questions about the survey itself—data which
we use to compare task difficulty. For the holdout
task, to avoid unwanted correlation due to common
measurement methods, we used a different interface.
Respondents used their pointing device to shuffle the
profiles into a rank order as one might sort slides
in PowerPoint. Pretests suggested that respondents
understood this task and found it different from the
task in Figure 4d.
The survey was programmed in PHP and debugged

through a series of pretests with 56 respondents cho-
sen from the target population. By the end of the
pretests, all technical glitches were removed. Respon-
dents understood the tasks and found them realistic.

Experimental Design
Respondents were assigned randomly to experimen-
tal cells. The basic experimental design is a 2 × 2
design in which respondents complete either a full-
rank or a consider-then-rank task and are given the
opportunity to presort profiles or not (Figure 5). In the
consider-then-rank sort cell, respondents could sort
prior to consideration and prior to choice. Respon-
dents in the sort cells could re-sort as often as they
liked. We also included an additional cell (described
below) to test whether the results vary by the num-
ber of profiles presented to the respondents in the
consider-then-rank cells. This experimental design
enables us to test greedoid methods with different
data collection tasks and to illustrate how greedoid
methods might be used to explore how context affects
respondents’ processing strategies.

16 Future research might investigate the effect of wear-out on lexi-
cographic processing with cells that place the holdout tasks earlier
in the survey. See also Hauser and Toubia (2006) and Liechty et al.
(2005).

Figure 5 SmartPhone Experimental Design (32 Profiles in 4324

Fractional Design

Consider-then-rank Full-rank

No sorting

Cell 3
87 resps

consider 6.7

Cell 4
81 resps

rank 32

Cell 1
89 resps

consider 6.4

Cell 2
82 resps

rank 32

Sorting allowed

Task Difficulty
Greedoid methods can be used to analyze any full-
or partial-order respondent task. We first examine
whether the consider-then-rank task is more natural
and easier for respondents than the full-rank task.
The results are reported in Figures 6a and 6b. We
oriented both axes such that down is better. In the
base condition of no sorting, the consider-then-rank
task is seen as significantly more enjoyable, accu-
rate, and engaging (t = 2�2, p = 0�03), saves substan-
tial time (3.75 minutes compared to 8.75 minutes,

Figure 6 Task Difficulty (Less Is Better on Both Graphs)
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t = 2�8, p = 0�01), and appears to increase comple-
tion rates (94% versus 86%, t = 1�7, p= 0�09). Sorting
(as implemented) mitigates these advantages: Neither
attitudes, time, nor completion rates are significantly
different between the full-rank and consider-then-
rank tasks when respondents can presort profiles.17 A
possible explanation is that sorting made the full-rank
task “easier” (though not necessarily more enjoyable)
and the consider-than-rank task more complex.

Predictive Ability
We first compare the most general greedoid method
(LBA) to the unconstrained additive models HBRL
and LINMAP, as averaged across respondents (see
Table 1). Holdout predictions are based on two
metrics. Hit rate provides fewer observations per
respondent (two) and leads to more ties, but it is not
optimized directly by either greedoid methods or the
benchmarks. The percent of violated pairs provides
more observations per respondent (12 potential pairs
from two sets of four ranked profiles), but it is the
metric optimized by greedoid methods and, to some
extent, by LINMAP. Empirically, the two metrics are
significantly correlated (< 0�001 level) for all methods
and provide similar comparative qualitative interpre-
tations.18

As expected, the unconstrained LINMAP, which
nests LBA and optimizes a metric similar to the fit
metric, provides the best fit. However, LBA fits almost
as well. The more interesting comparisons are on the
two holdout metrics. For both metrics, LBA is better
than both benchmarks and significantly better on hit
rates. It appears that, for these data, greedoid meth-
ods are more robust than the unconstrained addi-
tive models that could, in theory, fit a lexicographic
process. This apparent robustness is consistent with
predictions by Mitchell (1997) and Martignon and
Hoffrage (2002, p. 31). We address the last column of
Table 1 later in this section.

Comparison to q-compensatory Processes
Following Bröder (2000), we examine whether respon-
dents are described better by lexicographic or q-com-
pensatory processes. Three comments are in order.
First, this description is paramorphic. We say only
that respondents rank (choose, consider) profiles as
if they were following one or the other process. Sec-
ond, we have some confidence in the descriptions
because LBA predicts better for synthetic respondents

17 For the sorting cells, attitudes (t = 0�9, p = 0�37), time (t = 0�4,
p= 0�70), and completion rate (t = 1�1, p= 0�26) are not significantly
different. Using analysis of variance, there is an interaction between
sorting and task for time, but it is not significant (F = 2�6, p= 0�11).
For attitudes only, task is significant (F = 4�9, p= 0�03).
18 For example, correlations between the metrics are 0.70 for LBA,
0.64 for HBRL, and 0.66 for LINMAP.

Table 1 Comparison of Fit and Prediction for Unconstrained Models

Hierarchical
Lexicographic Bayes Lexicographic
by aspects ranked logit LINMAP by features

Fit (percent pairs) 0�955∗ 0.871 0�969† 0.826
Holdout percent pairs 0�745∗ 0.743 0�737 0.658
Holdout hit rate 0�597∗∗ 0.549 0�549 0.481

∗LBA significantly better than LBF. ∗∗LBA significantly better than HBRL,
LINMAP, and LBF. †LINMAP significantly better than LBA and HBRL. Tests at
the 0.05 level.

who are lexicographic, and a constrained additive
model (q-compensatory) predicts better for synthetic
respondents who are q-compensatory (see supple-
mental appendix available on the Marketing Science
Web site). Third, for simplicity of exposition, we com-
pare LBA to the HBRL benchmark. This benchmark
does slightly better than LINMAP in Table 1 and, as
we will see later, better for a second data set. Com-
parisons to LINMAP are in a supplemental appendix
(available on the Marketing Science Web site).19

Figure 7 plots holdout predictions as a function of
q. Predictions improve as the models become less con-
strained (larger q�, consistent with a perspective that
some aspects are either being processed lexicograph-
ically or have large relative partworths. HBRL(q�
approaches LBA’s holdout percent pairs predicted for
large q but falls short on holdout hit rates.
At the level of the individual respondent, compar-

isons depend upon the choice of q. As an illustration,
we use q = 4. When q = 4, the respondent is acting
as if he or she is making trade-offs among aspects by
weighing their partworths. Furthermore, the analysis
of synthetic data suggests that at q = 4 respondents
who are truly compensatory are classified as compen-
satory and respondents who are truly lexicographic
are classified as lexicographic.
For holdout percent pairs, LBA predicts better than

HBRL(4) for 56% of the respondents, worse for 43% of
the respondents, and tied for 1% of the respondents.
On average, LBA’s predictive ability is about five per-
centage points higher than HBRL(4). The correspond-
ing comparative percentages for hit rates are 46%,
30%, and 24%.20 On average, LBA’s hit rate is about
11 percentage points higher than HBRL(4). Figure 8
provides a visual comparison of the distributions of
holdout metrics for individual respondents. Positive
numbers (darker bars) indicate those respondents for
which LBA predicts better than HBRL(4). These per-
centages and Figure 8 suggest that greedoid methods

19 For the SmartPhone data, for some values of q, LINMAP does
better than HBRL. The relative performances of the benchmarks are
interesting but beyond the scope of this paper.
20 At the level of individual respondents, hit rates are coarser
measures than the percent of violated pairs, hence more ties are
observed.
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Figure 7 Comparison of Holdout Prediction for q-compensatory
Models
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are a viable method to complement more traditional
methods to evaluate whether respondents are using
compensatory or noncompensatory processes.

Constructed Processes—Full Rank vs. Consider
Then Rank; Sorting vs. Not Sorting
Behavioral researchers hypothesize that consumers
construct their decision processes as they make their

Figure 8 Histograms of Comparative Predictive Ability
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Figure 9 Predictive Ability by Experimental Cell, Lexicographic vs.
q-compensatory Processes
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decisions and hence that these decision processes can
be influenced by the nature of the decision task. We
examine this issue by comparing the influence of task
(consider then rank versus full rank) and the avail-
ability of a presorting mechanism (sorting allowed
versus not allowed). Figure 9 compares the predictive
ability (holdout violations) for the four cells of our
basic experiment. Some insights from Figure 9 are:
• Allowing respondents to presort SmartPhones

does not have a significant effect on either LBA or
HBRL(4). Task has a significant effect on both LBA
and HBRL(4).21

• On average, LBA predicts significantly better
than a q-compensatory model in full-rank cells (t =
6�0, p = 0�0) but not in the consider-then-rank cells
(t = 0�4, p= 0�69).
• A lexicographic model predicts better than a

q-compensatory model for more respondents in the

21 Using analysis of variance, task is significant for both LBA (F =
51�1, p= 0�00) and HBRL(4) (F = 3�7, p= 0�05). Sorting is not signifi-
cant for either LBA (F = 2�1, p= 0�14) or HBRL(4) (F = 0�1, p= 0�79).
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full-rank cells than in the consider-then-rank cells
(62% versus 50%, t = 2�2, q = 0�03).22
We obtain a similar pattern of results for hit rates,
with the exception that hit rates are a coarser measure
at the level of the individual respondent (more ties)
and require a relative measure.23

Constructed Processes—Predictive Ability vs. Effort
Data in the previous section are consistent with a
hypothesis that the more effortful experimental cells
(full rank versus consider then rank) lead to more lex-
icographic processing. We can also manipulate effort
by the number of profiles that the respondent is asked
to evaluate. Indeed, behavioral theory suggests that
respondents are more likely to use a lexicographic
process for choice (rank) if there are more profiles (e.g.,
Bettman et al. 1998, Johnson et al. 1989, Lohse and
Johnson 1996). Payne et al. (1993, pp. 253–254) suggest
as important research the study of such manipulations
on consideration set formation.
To examine this issue, we assigned an additional 86

respondents to a fifth cell in which respondents eval-
uated fewer profiles (16 versus 32) using the consider-
then-rank task. With this manipulation, we found no
significant differences in the relative predictive abil-
ity of LBA versus HBRL(4) between cells (t = 0�2, p=
0�88 for percent pairs predicted, and t = 1�0, p = 0�31
for the percent of respondents for whom LBA pre-
dicts better). We obtain the same pattern of results
with hit rates. Interestingly, the differences in effort
are also not significant for 16 versus 32 profiles when
the task is consider then rank.24 Perhaps the number
of profiles has less of an effect on consideration than
that reported in the literature for choice—an empirical
result worth examining in future experiments. Alter-
natively, the 16-profile task might have already been
sufficiently difficult to trigger the use of simplifying
heuristics for consideration.
We did not include a cell in which respondents

were asked to provide full ranks for 16 profiles. How-
ever, to gain insight, we simulate a 16-profile full-rank
cell by randomly choosing one-half of the 32 profiles
for estimation. Predictions degrade with half the pro-
files, but the loss is less than three percentage points
(80.8% versus 77.9%, t = 4�3, p= 0�00).25

22 This observation is tempered with the realization that the full-
rank cells provide more ordered pairs than the consider-then-rank
cells (496 versus 183, on average).
23 For many respondents, the hit-rate prediction of LBA is tied with
HBRL(4). Among those that are not tied, significantly more fit better
with LBA in the full-rank cells than in the consider-then-rank cells
(t = 2�3, p= 0�02).
24 The comparisons are enjoyment, interest, and accuracy (2.07 ver-
sus 2.04, t = 0�1, p= 0�90); task time (3.40 versus 3.75 minutes, t =
0�5, p= 0�64) for 16 versus 32 profiles in a consider-then-rank task.
25 Hit rates are worse by 2.9 percentage points, but the difference
is not significant �t = 1�7, p = 0�00�. Because the predicted holdout

The effect of task type seems to have a larger impact
than the number of profiles. LBA estimates from the
full-rank task predict significantly better than those
from the consider-then-rank task (review Figure 9).
On average (combining sort and no-sort cells), 81%
of the holdout pairs are predicted correctly in the
full-rank cells compared to 69% in the consider-then-
rank cells (t = 2�6, p = 0�01). On the other hand, the
consider-then-rank task took significantly less time to
complete in the no-sort cell (8 34 versus 3

3
4 minutes).

The three effort comparisons (full rank versus con-
sider then rank, 16 versus 32 profiles for consider then
rank, 16 versus 32 profiles for full rank) suggest an
interesting managerial trade-off between predictive
ability and task time. With specific loss functions on
predictability and task time, such comparisons enable
managers to design more efficient market research
studies.

Aspects vs. Features
Finally, we address whether respondents process pro-
files by features or by aspects when they use lex-
icographic processes. Recall that lexicographic by
features (LBF) is a restricted form of LBA where
respondents rank by features (e.g., Verizon versus
Sprint versus Nextel versus Cingular) rather than
aspects (Verizon versus not Verizon). Because LBA
nests LBF, LBA’s fit statistics will be better. However,
there is no guarantee that LBA’s holdout predictions
will be better than those of LBF. If respondents pro-
cess profiles by features, then LBF could predict as
well as LBA, perhaps better if LBA exploits random
variations.
Table 1 compares LBA to LBF. On average, LBA

predicts significantly better on both holdout viola-
tions and hit rates. LBA predicts better in all four cells
and significantly better in three of the four cells (t’s=
1.8, 7.1, 2.4, and 4.5; p’s= 0.07, 0.00, 0.02, and 0.00 in
cells 1–4). However, LBF predicts better for about a
third of the respondents (35% for holdout violations
and 34% for hit rates, with no significant differences
between experimental cells).

7. Analysis of Computer Data from
a Study by Lenk et al. (1996)

We were fortunate to obtain a classic conjoint-analysis
data set in which respondents evaluated full profiles
of computers that varied on 13 binary features: tele-
phone service hotline, amount of memory, screen size,
CPU speed, hard disk size, CD ROM, cache, color,
availability, warranty, bundled software, guarantee,
and price. Respondents were presented with 16 full

percentages are based only on the full-rank cells, they differ slightly
from those in Table 1.
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profiles and asked to provide a rating on a 10-point
likelihood-of-purchase scale. They were then given a
holdout task in which they evaluated four additional
profiles on the same scale. These data were collected
and analyzed by Lenk et al. (1996), who suggest excel-
lent fit and predictive ability with hierarchical Bayes
compensatory models. Based on their analysis and
our intuition, we felt that the features in this study
were more likely to be compensatory than those in
the SmartPhone study. However, this is an empirical
question.26

We first degraded the data from ratings to ranks.
For example, if Profile A were rated as a 10 and
Profile B were rated as a 1, we retained only that
Profile A was preferred to Profile B. Because there
were 10 scale points and 16 profiles, there were many
ties—an average of 6.6 unique ratings per respon-
dent. Interestingly, even though there were many ties,
there were approximately 96 ranked pairs of pro-
files per respondent—80% of what would be obtained
with full ranks. Because the degraded data are par-
tial ranks, we can analyze the data with greedoid
methods and compare predictions to HBRL��� and
HBRL�q�.27

Table 2 reports the fit and prediction results for
the computer data. As with the SmartPhone data, we
address the predictive ability of LBA compared to (1)
an unconstrained additive model and (2) a q-compen-
satory model. On these data, the unconstrained addi-
tive model predicts better than LBA, significantly so
for holdout pairs. (The difference in hit rates is only
1 respondent out of 201 respondents.) However, LBA
predicts significantly better than the q-compensatory
model. Comparisons for other values of q are avail-
able in a supplemental appendix available on theMar-
keting Science Web site.
For the computer data, LBA predicts better for 58%

of the respondents compared to 25% for HBRL(4); the
remainder are tied. We distinguish fewer respondents
by hit rate because hit-rate classification is a coarser
measure: 32% LBA, 20% HBRL(4), and 47% tied.
Interestingly, LBA on the degraded data does as

well as metric hierarchical Bayes on the ratings data
(0.687; Lenk et al. 1996, p. 181) and better than either
OLS (0.637; Lenk et al. 1996, p. 181) and latent class
analysis (0.408; Lenk et al. 1996, p. 181).28 In this case,

26 There are other differences between the data sets that are worth
further study. For example, the rating task might induce more com-
pensatory processing than the full-rank or consider-then-rank tasks.
27 For the Lenk et al. (1996) data, HBRL predictions are significantly
better than those by LINMAP. For holdout pairs, LINMAP predicts
0.734 (t = 5�3, p = 0�00). For hit rates, LINMAP predicts 0.597 (t =
2�6, p= 0�01).
28 We compare to the highest hit rate they report—that for hierarchi-
cal Bayes estimated with 12 profiles. For 16 profiles, they report a
hit rate of 0.670. For other statistics, hierarchical Bayes with 16 pro-
files performs better than with 12 profiles (Lenk et al. 1996, p. 181).

Table 2 Comparison of Fit and Prediction for Computer Data (Lenk
et al. 1996)

Hierarchical Hierarchical
Lexicographic Bayes Bayes ranked
by aspects ranked logit logit (q = 4�

Fit (percent pairs) 0�899∗ 0�906∗ 0.779
Holdout (percent pairs) 0�790∗ 0�827∗∗ 0.664
Holdout hit rate 0�686∗ 0�692∗ 0.552

∗LBA and HBRL significantly better than HBRL(4)—at 0.05 level. ∗∗HBRL
significantly better than LBA and HBRL(4).

a reduction in effort (ranking versus rating) might
have had little effect on predictive ability. For further
discussion of ranking versus rating data, see Huber
et al. (2002).
Table 2 is consistent with the analysis of metric data

by Jedidi and Kohli (2005), who found that a differ-
ent lexicographic model (binary satisficing, LBS) fit
almost as well as an unconstrained additive model
(0.93 fit pairs for LBS versus 0.95 for classic LINMAP;
no data available on holdouts). The Jedidi and Kohli
(2005) context is remarkably similar to that of Lenk
et al. (1996): metric ratings of 16 laptop computers
described by memory, brand, CPU speed, hard drive
size, and price (in a 3322 fractional design).
Comparing the SmartPhone and computer data,

we get surprisingly similar respondent-level compar-
isons. LBA predicts at least as well as HBRL(4) for
57% of the SmartPhone respondents and 75% of the
computer respondents.29 Jedidi and Kohli (2005) did
not test a q-compensatory model, but they did find
that an unconstrained additive model was not signif-
icantly different from LBS for 67% of their respon-
dents. Thus, on all data sets for more than half of the
respondents, noncompensatory models predict hold-
out data at least as well as q-compensatory models.
We can also compare the predictive ability of LBA

to an unconstrained additive model. LBA predicts
at least as well as HBRL for 49% of the SmartPhone
respondents and 62% of the computer respondents.
Thus, even compared to an unconstrained additive
model, LBA is promising as a predictive tool.

8. Managerial Implications
Manufacturers, retailers, or Web site designers seek to
design products, store layouts, or Web sites that have
(or emphasize) those aspects that strongly influence
which products customers select for further consid-
eration. They seek to avoid those aspects that cus-
tomers use to eliminate products. In the parlance of
product development, these are the “must-have” or
“must-not-have” aspects or features (Hauser et al.
2005). Both General Motors and Nokia have indicated

29 The corresponding percentages for hit rates are 71% and 80%.
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Table 3 Top Lexicographic Aspects for SmartPhones (for Our Sample)

Affect Top
Aspect ABA or EBA consideration∗ (%) aspect† (%)

Price—$499 EBA 49.2 26�1
Flip ABA 32.0 10�4
Small ABA 29.4 10�0
Price—$299 EBA 19.8 4�2
Keyboard ABA 17.3 7�5
Price—$99 ABA 14.5 4�8

∗Column sums to 300% over all aspects. †Column sums to 100% across
all aspects. Most aspects not shown.

to us that the identification of must-have aspects is
an extremely important goal of their product devel-
opment efforts (private communication). Table 3 lists
the six aspects that were used most often by Smart-
Phone respondents and indicates whether they were
used to retain profiles as in ABA or eliminate profiles
as in EBA (second column), the percentage of con-
sumers who used that aspect as one of the first three
aspects in a lexicographic order (third column), and
the percent who used that aspect as the first aspect in
a lexicographic order (fourth column).
Table 3 has a number of implications. First, for our

student sample, there are clear price segments—for
almost half the sample, high price is an EBA aspect.
Second, “flip” and “small” are each ABA aspects for
about 30% of the respondents. For this sample, any
manufacturer would lose considerable market share
if it did not include SmartPhones that were small
and flip. The keyboard aspect is interesting. Key-
board is an ABA aspect for 17.3% of the respondents
and an EBA aspect for 7.5% of the respondents (not
shown). On this aspect, a manufacturer would be best
advised to offer both SmartPhones with keyboards
and SmartPhones without keyboards. Finally, brand,
service provider, and operating system are not high
in the summary of lexicographic orderings.
It is interesting that in our data price aspects were

often, but not always, EBA aspects, while all other
aspects were ABA aspects. (This is true for aspects not
shown in Table 3.) We do not know if this general-
izes to other categories. Furthermore, although “high
price” was the top lexicographic aspect in our study,
this could be a consequence of the category or our stu-
dent sample. We do not expect price to be the top lex-
icographic aspect in all categories nor do we feel that
this result affected the basic scientific and method-
ological findings about lexicographic processing or
predictive ability.

9. Summary, Conclusions, and
Future Research

In this paper, we propose methods to estimate non-
compensatory process descriptions with either full-
rank or partial-rank data. Estimation is a nontrivial

combinatorial problem which has hitherto been too
time-consuming to solve. Greedoids provide a struc-
ture and theory to transform an n! problem into a 2n

problem, which for practical problems decreases run-
ning time by a factor the order of 1013.
We tested greedoid methods empirically for Smart-

Phones and computers. The data suggest that the
estimated lexicographic models predict well. Non-
compensatory models predict at least as well as
compensatory models for more than half of the re-
spondents in both studies. Greedoid methods are
flexible. We applied the methods with full-rank,
consider-then-rank, and degraded ratings tasks, but
the methods apply to any partial-order task, including
repeated choice tasks. We believe they are promising
for the study of noncompensatory decision rules.
Based on simulations, the SmartPhone data, and the

computer data, we present the following summary.

Methodological
• It is feasible to estimate noncompensatory pro-

cesses with a greedoid dynamic program.
• Noncompensatory estimates predict holdout

pairs and holdout hit rates well.
• Greedoid methods appear to be robust—they

predict well even though additive models can repre-
sent lexicographic processes.
• A consider-then-rank task reduces task time,

increases completion rates, and improves perceived
enjoyment, accuracy, and interest, although at some
loss in predictive ability.
• Doubling the number of profiles from 16 to 32

improves predictive ability slightly for the full-rank
task, but has no significant effect for the consider-
then-rank task.
• Enabling respondents to sort profiles by aspects

is seen as more difficult and time-consuming, but
does not increase predictive ability.

Consumer Behavior
• Compared to a q-compensatory model, LBA pre-

dicts at least as well for more than half of the respon-
dents.
• More respondents appear to process aspects

rather than features lexicographically.
• The full-rank task (versus a consider-then-rank

task) does increase the percent of respondents for
whom a lexicographic model fits better than a q-com-
pensatory model.
• Enabling respondents to sort profiles does not

increase the percentage of respondents for whom LBA
predicts better than a q-compensatory model.
• Increasing the number of profiles in a consider-

then-rank task does not increase the percentage of
respondents for whom LBA predicts better than a
q-compensatory model; this varies from the literature
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that finds that increasing the number of profiles does
increase heuristic processing for a choice �rank� task.

Managerial (for Our Sample and Category)
• Price is often used as an EBA aspect. Nonprice

aspects seem to be used as ABA aspects.
• “Small” and “flip” are key aspects for Smart-

Phones.

Future Directions
Greedoid methods provide a promising tool to study
consumer behavior. Researchers can use the gree-
doid inference engine to investigate many impacts
of consumers’ constructive judgment and decision
processes—manipulations that might be too intrusive
if implemented by verbal protocols or information
display tasks.
Methodologically, the exact dynamic program is

still exponential in the number of aspects. We handled
16 aspects in 1.85 seconds. At this rate, greedoid meth-
ods can be used to evaluate up to 21 aspects in under
a minute. However, we can handle much larger prob-
lems if we concentrate on the first few lexicographic
aspects in a respondent’s LBA process. Because the
theory applies to partial orders, we can stop the dy-
namic program after m aspects yielding a running
time proportional to nCm. For example, we could iden-
tify the top 5 out of 50 aspects in approximately
1 minute. Partial-order greedoid methods can be used
to identify satisficing processes in which some aspect
levels are considered as equivalent by respondents.
Other heuristics might also be used (Kohli and Jedidi
2004, Kohli et al. 2006).
Finally, there are interesting commonalities and dif-

ferences between the SmartPhone and computer data
sets and, perhaps, some empirical generalizations.
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Appendix. Proofs of the Formal Propositions

Proposition 1. Let E be a set of aspects, and let X be a par-
tial order on the profiles. Let G be the collection of ordered subsets
of E that are lexicoconsistent with X. Then, G is a greedoid lan-
guage.

Proof. We show that greedoid properties (2) and (3) hold
for collection G. Property (1) is implied by (2). Property (2):
Lexicoconsistent means that there is no pair of profiles P
and P ′ with P 
L P ′ and P ′ 
X P . So, if L is consistent
with X, then L\e is consistent with X because the relations
with respect to L\e are a subset of the relations with respect
to L. Property (3): Let e be the first aspect in L′ such that
e  L. Such an e is guaranteed to exist since �L′� > �L�. We
show that (L�e� ∈G via a contradiction. Suppose that there
are profiles P and P ′ with P 
L�e P

′ and P ′ 
X P . Because L
and X are consistent, it follows that P and P ′ are unrelated
with respect to L and, thus, P 
e P

′. Let L′′ be aspects in L′

prior to e. Then, L′′ ⊆ L, so P and P ′ are unrelated in L′′. It
follows that P 
L′′� e P

′ and, thus, P 
L′ P
′, contradicting that

L′ is consistent with X. We conclude that Property 3 is true.

Proposition 2. Let L and L′ be two different permutations
of a subset E ′ of aspects, and let e be any aspect not in E′. Then,
the number of inconsistencies directly caused by e in (L, e) is the
same as the number of inconsistencies caused by e in (L′� e��

Proof. Suppose that for profiles P and P ′, P 
X P ′.
Aspect e causes an inconsistency with respect to profiles P
and P ′ in �L� e� if and only if the following conditions hold:
(i) profiles P and P ′ are undifferentiated by the aspects in L,
and (ii) P ′ 
e P . These are the same conditions under which
e causes an inconsistency with respect to P and P ′ in �L′� e�.

Proposition 3. If weights are associated with each ordered
pair in X, then (1) the new G is a greedoid language, (2) Algo-
rithm 1 determines whether there exists an L consistent with
X, (3) Proposition 2 extends to the new G, and (4) Algorithm
2 finds the best lexicographic description if c(·� is redefined to
c�S\i�� i�= sum of weights of violations caused by aspect i fol-
lowing set S\i�.

Proof. Proposition 1 and Algorithm 1 are unaffected by
nonunit weights because the determination of consistency
does not depend on the weights associated with incon-
sistencies. Proposition 2 extends easily to the case where
nonunit weights are allowed. With essentially the same
proof, it can be shown that the sum of the weights of incon-
sistencies directly caused by aspect e in order �L� e� is still
independent of the permutation of the preceding aspects L.
With the redefinition of c�S\i�� i�, the validity of the new
dynamic programming formulation follows from the exten-
sion of Proposition 2.
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Proposition 4. Suppose that L is an ordering of a subset of
aspects that is consistent with the preferences of X. Then, there is
an optimal ordering of aspects that begins with the order L.

Proof. Suppose that L′ is an optimal ordering of aspects,
that is, it is the one that minimizes the number of incon-
sistencies with respect to X. Let L′′ be obtained from L′ by
moving the aspects of L to the front of the order. We will
show that any inconsistency with respect to L′′ is also an
inconsistency with respect to L′, thus showing that L′′ is
at least as optimal as L′. Suppose that for profiles P and
P ′, P 
X P ′ and P ′ 
L′′ P . Let e be the first aspect in L′′ that
differentiates P and P ′. Because L is consistent with X, it
follows that e  L. Therefore, e is also the first aspect in L′

that differentiates P and P ′, so P ′ 
L′ P . It follows that P and
P ′ also cause an inconsistency with respect to L′, proving
the proposition.
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