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1 Labor Input as a Composite Service and Human-

Capital Depreciation

This section provides a more elaborate model of the labor market, which reproduces the

path of labor income over an agent’s life, as postulated in equations (10) and (11). The

main difference between the baseline model and the model of this section is that the labor

income process results from general-equilibrium wage effects, rather than assumptions on

agents’ endowments of labor efficiency units.

To draw this distinction, we assume that workers’ efficiency units are only affected by

aging and experience. Specifically, workers endowments of labor efficiency units evolve de-

terministically over their life according to ht,s = h (1 + δ)t−s. Thus, the innovation shocks ut

no longer have any effect on agents’ endowment of labor efficiency units.

Assume, moreover, that labor is not a homogenous service. Instead, the units of labor

that enter the production function of final goods and intermediate goods are measured in

terms of a composite service, which is a constant-elasticity-of-substitution (CES) aggregator

of the labor efficiency units provided by workers belonging to different cohorts. Specifically,

one unit of (composite) labor is given by

Lt =

(
t∑

s=−∞

v
1
b
t,s (lt,s)

b−1
b

) b
b−1

, (1.1)

where lt,s denotes the labor input of cohort s at time t, vt,s > 0 controls the relative im-

portance of this input and b > 0 is the elasticity of substitution. The production function

of final goods continues to be given by (3) and it still takes one unit of the composite la-

bor service to produce one unit of the intermediate good. Equation (1.1) captures the idea

that different cohorts have different skills and hence they are imperfect substitutes in the

production process. Next, we let

v
1
b
t,s ≡ (1− φ)(

b−1
b ) qt,sh

1
b
t,s. (1.2)

Before proceeding, we note that using (1.2) inside (1.1), recognizing that in equilibrium lt,s =
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ht,s, and noting that
∑t

s=−∞ qt,sht,s = 1 implies that the aggregate supply of (composite)

labor efficiency units is constant and equal to (1− φ) .

Since labor inputs by agents belonging to different cohorts are imperfect substitutes, we

need to solve for the equilibrium wage wt,s of each separate cohort. This process is greatly

facilitated by first constructing a “wage index”, i.e., taking a set of cohort-specific wages as

given, and then minimizing (over cohort labor inputs) the cost of obtaining a single unit of

the composite labor input. As is well established in the literature, this wage index for CES

production functions is given by

wt =

(
t∑

s=−∞

vt,s (wt,s)
1−b

) 1
1−b

.

With this wage index at hand, the cohort-specific input demands for a firm demanding

a total of Lt units of the composite good are given by

wt,s = wtv
1
b
t,s

(
lt,s
Lt

)− 1
b

. (1.3)

It is now straightforward to verify that an equilibrium in such an extended model can be

determined by setting wt = wt (where wt is given by [46]) and then obtaining the cohort-

specific wages by setting lt,s = ht,s, and Lt = (1− φ) in equation (1.3) and solving for wt,s.

To see this, note that by making these substitutions and using (1.2) inside (1.3) leads to the

per-worker income process

wt,sht,s
(1− φ)

= wtqt,s , (1.4)

which coincides with the labor income process in the baseline model. Furthermore, by setting

wt = wt, the market for total (composite) labor units clears by construction, whereas the

cohort specific wages implied by (1.4) clear all cohort specific labor markets, since they

satisfy equation (1.3) for all markets.

2 A Multi-Sector Extension

It is straightforward to extend the model to allow for multiple sectors, with potentially

different degrees of innovation within each sector. Such an extension can help illustrate that
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even when technological progress is different accross industries, the value premium is likely

to be particularly salient within industries, as it is in the data.

To introduce such an extension, we modify the baseline setup, so that the production of

the final good is given by

Yt = Zt
(
LFt
)1−(α1+α2)

(∫ At

0

xα1
j,tdj

)(∫ Bt

0

x̃α2
j,tdj

)
, (2.1)

where α1 > 0, α2 > 0 , and α1 +α2 < 1, and xj,t denotes the intermediate input j in sector A

and x̃j,t denotes the intermediate input j in sector B. (To simplify the exposition and avoid

inessential notation, specification (2.1) implicitly sets the weights ωj,t on the intermediate

goods equal to one). At and Zt evolve as in the baseline version of the model and Bt evolves

similarly to At, i.e.,

logBt+1 = logBt + ũt+1,

where ũt+1 is a non-negative random variable that captures technological advancements in

sector B. We allow the shocks ut and ũt to be correlated. At each point in time t, the

representative final-good firm chooses LFt , xj,t, and x̃j,t so as to maximize its profits

πFt = max
LFt ,xj,t,x̃j,t

{
Yt −

∫ At

0

pj,txj,tdj −
∫ Bt

0

p̃j,tx̃j,tdj − wtLFt
}
, (2.2)

where pj,t and p̃j,t are the prices of intermediate goods in sectors A and B, respectively, and

wt is the prevailing wage (per efficiency unit of labor).

Production of intermediate goods (in either sector) still takes the simple form described

in the paper (i.e., it takes one unit of labor to produce one unit of intermediate good j,

irrespective of the sector). Accordingly, the total labor demand of both sectors is

LIt =

∫ At

0

xj,tdj +

∫ Bt

0

x̃j,tdj. (2.3)

Finally, to simplify matters, we assume that new firms are specific to sectors and can

own only sector-A or sector-B blueprints (but not both). Differentiating (2.2) leads to the
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following two first-order conditions with respect to xj,t and x̃j,t.

xj,t =

 pj,t

α1Zt (LFt )
1−(α1+α2)

(∫ Bt
0
x̃α2
j,tdj

)
 1
α1−1

, (2.4)

x̃j,t =

 p̃j,t

α2Zt (LFt )
1−(α1+α2)

(∫ At
0
xα1
j,tdj

)
 1
α2−1

. (2.5)

Maximizing the profits of intermediate-good firms leads to the same first-order condition as

in the baseline version of the model, namely:

pj,t =
wt
α1

, (2.6)

p̃j,t =
wt
α2

. (2.7)

Combining (2.4) with (2.6) and (2.5) with (2.7) and using the definition of Yt leads to

xj,t =

[
wt
α2

1Yt

(∫ At

0

xα1
j,tdj

)] 1
α1−1

(2.8)

x̃j,t =

[
wt
α2

2Yt

(∫ Bt

0

x̃α2
j,tdj

)] 1
α2−1

. (2.9)

Since all intermediate goods within a sector face the same demand curve and the same

cost structure, we look for a symmetric equilibrium, in which xj,t = xt and x̃j,t = x̃t. Under

this supposition,
∫ At

0
xα1
j,tdj = Atx

α1
t and

∫ Bt
0
x̃α2
j,tdj = Btx̃

α2
t , so that equations (2.8) and (2.9)

simplify to

xt = α2
1

(
Yt
wt

)
1

At
, (2.10)

x̃t = α2
2

(
Yt
wt

)
1

Bt

. (2.11)

Finally, the final-good firm’s first-order condition with respect to labor gives (1− α1 − α2)Yt =

wtL
F
t , which implies that

Yt
wt

=
LFt

1− α1 − α2

. (2.12)

Labor-market clearing can be expressed as

LFt + Atxt +Btx̃t = (1− φ) . (2.13)
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Using (2.12) inside (2.10) and (2.11), and then using the resulting expressions inside (2.13)

and solving for LFt leads to

LFt =
1− α1 − α2

1− α1 − α2 + α2
1 + α2

2

(1− φ) . (2.14)

Combining (2.10), (2.11), (2.12), and (2.14) gives

xt =
α2

1

1− α1 − α2 + α2
1 + α2

2

1− φ
At

, (2.15)

x̃t =
α2

2

1− α1 − α2 + α2
1 + α2

2

1− φ
Bt

. (2.16)

Combining (2.14) with (2.15) and (2.16) yields

Yt =
(1− φ) (1− α1 − α2)1−(α1+α2) α2α1

1 α2α2
2

1− α1 − α2 + α2
1 + α2

2

ZtA
1−α1
t B1−α2

t . (2.17)

Equation (2.17) states that output is proportional to ZtA
1−α1
t B1−α2

t . From a practical

perspective, this implies that the model with multiple sectors behaves like a single-sector

model, where the technology shock ut is replaced by a weighted sum of the technology

shocks to the two sectors.1 In particular all the conclusions regarding the displacement

effect are unaltered, with the understanding that the shock ut in the baseline model is now

an appropriate weighted average of the shocks in the two sectors.

Even though the extension to multiple sectors adds little in terms of the model’s general-

equilibrium properties, it helps clarify that even when technological progress is concentrated

in one sector, most of the cross-sectional differences in returns manifest themselves within

a sector, rather than across sectors. To see this, note first that per-firm profits in sector A

1To see this, note that

∆ log Yt = εt + (1− α1)ut + (1− α2) ũt.

Defining u∗t = (1− α1)ut+ (1− α2) ũt shows that the output growth in the multisector model is identical to

the one in the single-sector model, with u∗t defined appropriately to capture the total effect of all displacement

shocks.
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and B are given by

πAt = α1 (1− α1)

(
Yt
At

)
,

πBt = α2 (1− α2)

(
Yt
Bt

)
.

Now suppose that technological advancements are concentrated in one sector (say, sector

A), so that ut is random, but ũt is a constant. Take any stock in sector B. Since ũt is non-

random, there will be no difference between the rates of return of different firms in sector

B.2 By contrast, stocks in sector A exhibit a non-trivial value premium, with “pure” growth

options in sector A having a lower expected return than sector-B stocks (since they act as a

hedge against the u-shock) and pure value stocks in sector A having higher expected returns

than sector-B stocks. As a result, the “HML” factor in this economy is driven exclusively

by return differentials within sector A.

3 Robustness of the Cohort Methodology: Implica-

tions for the Permanent Component of the Stochas-

tic Discount Factor

In this section we show two results: First, the cohort methodology that we use relies only on

a minimal set of assumptions, which are shared by several overlapping generations models.

Second, even when these identifying assumptions are relaxed, our main conclusions remain

2To see this, let Rat denote the return of a “pure” asset in place in sector B, and Rot the return on a

“pure” growth option in sector B. The definitions of Rat and Rot in the paper imply that logRat+1− logRot+1

is a non-random constant. Indeed, it is zero, since

1 = Et

(
elogR

a
t+1

ξt+1

ξt

)
= Et

(
elogR

a
t+1−logR

o
t+1 × elogR

o
t+1

ξt+1

ξt

)
= elogR

a
t+1−logR

o
t+1 × Et

(
elogR

o
t+1

ξt+1

ξt

)
= elogR

a
t+1−logR

o
t+1

and hence logRat+1 = logRot+1.
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unaltered, provided that we interpret our results as pertaining to the permanent component

of the stochastic discount factor.

Specifically, to see the first point, take any OLG model satisfying the following two

assumptions:

1. Existing agents’ consumption satisfy Euler equations of the form

βt−s
(
ct,s
cs,s

)−γ
=
ξt
ξs
, (3.1)

where ξt is the stochastic discount factor, and the rest of the notation is explained in

the text. (For the purposes of the extended appendix we ignore, for simplicity, the

type of external habit formation that is allowed in the paper.)

2. An incoming generation’s consumption is a stationary fraction of aggregate output,

i.e., zs ≡ cs,s
Ys

is a stationary process.

Just based on the above two assumptions, the permanent component of a time-series

of consumption cohort effects can help uncover the permanent component of the stochastic

discount factor that is due to displacement.

To see why, suppose that we first take logarithms in equation (3.1), and then estimate

cohort effects as. Mathematically, the identification of cohort effects relies on the difference

in the time-t consumption of different cohorts:3

∆as+1 ≡ as+1 − as ≡ log (ct,s+1)− log (ct,s) (3.2)

= ∆ log zs+1 + ∆ log Ys+1 −
1

γ
∆ log ξs+1 +

1

γ
log β, (3.3)

where the second line follows upon substituting (3.1) into (3.2). Using (3.3) to solve for

∆ log ξs+1 and computing
∑t−1

s=0 ∆ log ξs+1 leads to

log ξt = B0 − γ log zt − γ log Yt + γat + t log β,

3If we include also age effects, then we need to compute second differences (with respect to s) of log ct,s

as we explain in detail the paper. For simplicity, we ignore age effects here, but we allow for them in the

paper.
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where B0 is a constant given by log ξ0+γ log z0Y0−γa0−log β. Using the standard, Beveridge-

Nelson definition of the permanent component of a time-series4, and noting that by assump-

tion 2, zt is stationary implies that

perm. comp. (log ξt) = −γperm. comp. (log Yt)︸ ︷︷ ︸
“rising-tide component”

+ γperm. comp. (at)︸ ︷︷ ︸
“intergenerational distribution”

. (3.4)

Equation (3.4) shows that assumptions 1 and 2 directly imply that the cohort effects at

identify variations in the permanent component of the log-stochastic discount factor that are

distinct from variations caused by aggregate output shocks.

We would like to make three observations about the decomposition of the stochastic

discount factor derived in (3.4).

First, the above calculations apply to any OLG model, as long as it satisfies the two

(rather basic) assumptions outlined above. Second, equation (3.4) does not depend on any

theory about what drives the lack of intergenerational risk sharing. This is attractive since

it separates the identification of distributional disturbances due to lack of intergenerational

risk sharing from the exact “story” driving such imperfect risk sharing across generations.

Third, equation (3.4) shows that cohort effects identify distributional shocks that potentially

matter for asset pricing, since they are reflected in the stochastic discount factor.

One may argue that equation (3.1) may be common across many models, but fails in

the data. Indeed, in the data there is evidence that risk is imperfectly shared even among

existing generations. Such imperfect risk sharing between coexisting cohorts is most likely

related to borrowing constraints, limited participation, etc., which drive a wedge between

βt−s
(
ct,s
cs,s

)−γ
and ξt

ξs
. This wedge is more likely to be prevalent early in life, when an agent

has more human capital rather than financial wealth. We proceed now to argue that our

previous conclusions on the the relationship between the permanent components of cohort

effects and the stochastic discount factor are unaffected by such a wedge, as long as it is

4The Beveridge Nelson definition states that for a series yt the permanent component is defined as

lim
T→∞

[Etyt+T − TE∆yt+1] .
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transient.

To study the implications of such a wedge for our identification strategy, suppose that

the consumption of an agent belonging to cohort s is given by

∆ log ct+1,s =

 1
γ

log β − 1
γ
∆ log ξt+1 − 1

γ
ηt+1 if t− s = 1

1
γ

log β − 1
γ
∆ log ξt+1 otherwise,

(3.5)

where ηt is an Euler-equation residual. We remain agnostic as to the underlying friction.

Equation (3.5) is simply meant to generalize (3.1) by leaving room for deviations from the

Euler equation early in life.

Iterating (3.5) forward leads to a generalized version of (3.1):

βt−s
(
ct,s
cs,s

)−γ
=
ξt
ξs
eηs+1 .

Now, postulating again that zs = cs,s
Ys

is stationary and simply repeating the same calculations

as the ones we gave above leads to

∆as+1 = ∆ log zs+1 + ∆ log Ys+1 −
1

γ
∆ log ξs+1 +

1

γ
log β +

1

γ
∆ηs+2. (3.6)

Even though equation (3.6) is different from (3.2), equation (3.4) still holds. Indeed, com-

puting
∑t−1

s=0 ∆ log ξs+1 from (3.6) and using that zs and ηs are both stationary we have once

again

perm. comp. (log ξt) = −γperm. comp. (log Yt)︸ ︷︷ ︸
“rising tide component”

+ γperm. comp. (at)︸ ︷︷ ︸
“intergenerational distribution”

, (3.7)

which is identical to (3.4). Equation (3.7) shows that our conclusions about the relationship

between the permanent component of the stochastic discount factor and the permanent com-

ponents of consumption cohort effects is not affected by the presence of transient deviations

from Euler relationships in an agent’s life.

To give some economic substance to what the first-period Euler residual (ηs) may capture,

in the next section of this extended appendix we present a concrete example where agents do

not participate in asset markets in the first period of their lives. That example illustrates in a

specific case that lack of risk sharing between existing generations may affect the “short-run”
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dynamics of the stochastic discount factor, but does not impact the long-run relationship

(3.7).

The same conclusion would hold if we extended the above example to allow for deviations

from the Euler equation over the agent’s life-time. In that case the first line of (3.5) would

not only apply at age t − s = 1, but also at t − s = 2, 3, etc. To preserve (3.7), the main

assumption we would have to make in this case is that the sum of the standard deviations

of these residuals is finite over the life cycle. For instance, that would automatically happen

if these Euler-equation residuals are present while an agent is young and has substantial

human capital, and then “dissipate” later in life as the agent accumulates financial wealth.

To conclude, incomplete risk sharing between existing cohorts will in general affect the

dynamics of the stochastic discount factor; however, under reasonable economic assumptions,

the permanent component of the stochastic discount factor is still correctly identified by

our methodology. Importantly, the permanent component of the stochastic discount factor

controls the pricing of risk for long-run returns. Therefore, as long as we interpret our

results as pertaining to the properties of long-run returns, our conclusions are robust to the

introductions of frictions preventing perfect risk sharing between existing generations.

4 Imperfect Consumption Correlation across Existing

Cohorts: an Example

We simplify some aspects of the model for tractability. One of the stylized assumptions

is that innovating agents receive their blueprints “at birth.” In reality, though, it takes

time to start a firm, and each cohort of agents does not innovate simultaneously. Moreover,

innovation shocks ut are more likely to follow a moving-average process rather than being

independent, as we assume. We provide a simple example to illustrate why such frictions and

perturbations of the baseline model are unlikely to affect our conclusions about the long-run

properties of the model-implied asset returns.

Suppose that all agents are born as workers with an initial endowment of labor efficiency
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units of h (1− φ) qs,s. Furthermore, suppose that a fraction φ of them become entrepreneurs

in the second period of their lives and permanently drop out of the workforce, whereas the

ones that remain workers have an endowment of labor efficiency units equal to the baseline

model from the second period of their lives onward, namely h(1 + δ)t−sqt,s for all t ≥ s+ 1.5

Finally, assume that agents can only access financial markets in the second period of their

lives, while in the first period they consume their wage income. These assumptions capture

the idea that an agent’s “birth” cohort and the date at which that agent innovates may not

coincide. Moreover, exclusion from markets captures in a stylized manner the idea that the

agent cannot smooth consumption between the “birth” date and the innovation arrival date

— say, due to borrowing constraints.

Repeating the argument of Section 3.2, the equilibrium stochastic discount factor in this

modified setup is

ξt+1

ξt
= β

(
Yt+1

Yt

)−1+ψ(1−γ)

υ̂(ut+1, ut)
−γ,

where

υ̂(ut+1, ut) = (1− λ)−1

(
1− λyt

Ct

)−1
1− λ (1− λ)

∑
i∈{w,e}

φi
cit+1,t

Ct+1

− λ yt+1

Ct+1


and yt denotes an agent’s initial wage income. Furthermore, the same reasoning as in the

proof of Lemma 4 implies that the variance of the permanent component of log consumption

cohort effects equals V ar (υ̂(ut+1, ut)).

This simple example illustrates the fact that the frictions affecting agents’ life-cycle of

earnings change the transitory dynamics of cohort effects, returns, and the stochastic discount

factor. Such frictions do not alter our main qualitative conclusion that the permanent

component of cohort effects captures the permanent component of the displacement factor,

as reflected in the stochastic discount factor.

5Note that since agents are born with h (1− φ) qs,s rather than hqs,s efficiency units, the total supply of

labor efficiency units remains equal to the baseline model.
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5 Robustness of the Cohort-Effect Methodology to Slug-

gish Adjustment in Consumption

The CEX is a repeated cross section. In the CEX one can observe the consumption of an in-

dividual household for about a year, so that the observed consumption growth per household

is about three quarters. The set of households that are observed changes from cross-section

to cross-section. This poses a problem for asset-pricing estimations, if consumption does not

adjust to news over short-run intervals. To frame ideas, we shall assume one specific friction,

namely inattention in the spirit of Duffie and Sun (1990), Gabaix and Laibson (2002), and

Abel et al. (2010). In these papers agents observe the stock market infrequently, and hence

an agent’s consumption does not immediately respond to aggregate news.

To study the implications of such a short-run friction in our framework, we study a

stylized framework of inattention, based on the key insights of that literature. Specifically,

we assume that a fraction q of existing agents observes aggregate outcomes and participates

in Arrow-Debreu markets every period of their life, while the remaining agents observe

aggregate outcomes and participate in Arrow-Debreu markets only in even periods of their

life. We will refer to the first set of agents as “attentive” agents and the latter as “inattentive”

agents. All agents participate in the money market every period of their life. To expedite

the presentation, we assume that all agents have CRRA preferences.

The consumption of attentive agents satisfies the usual stochastic Euler relationship

c
(A)
t+1,s

c
(A)
t,s

=

(
β−1 ξt+1

ξt

)− 1
γ

(5.1)

in all periods of their life. (Throughout, the superscript I to refer to inattentive agents and

A to attentive agents.) However, the consumption of inattentive agents satisfies a stochastic

Euler relationship only between even periods of their life:

c
(I)
t+2,s

c
(I)
t,s

=

(
β−2 ξt+2

ξt

)− 1
γ

if
t− s

2
∈ {0, 1, 2...}. (5.2)
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When t− s is odd, the consumption of inattentive agents is given by

c
(I)
t,s

c
(I)
t−1,s

=

(
β−1Et−1

(
ξt
ξt−1

))− 1
γ

. (5.3)

Note that when t− s is odd, the consumption of inattentive agents satisfies a deterministic

Euler equation. In particular, consumption in an odd period of an agent’s life depends

deterministically on information available at the preceeding even period, consistent with the

notion of inattentiveness: The consumer observes her wealth and assets in an even period

of life; during those periods he makes a deterministic optimal plan that characterizes her

consumption in the ensuing odd period.

An implication of equations (5.1)–(5.3) is that the average marginal rate of substitution

of existing agents does not provide a valid pricing kernel:

qβ

(
c

(A)
t+1,s

c
(A)
t,s

)−γ
+ (1− q) β

(
c

(I)
t+1,s

c
(I)
t,s

)−γ
6= ξt+1

ξt
.

Cohort analysis can still help recover the stochastic discount factor. Iterating equation

(5.1) gives

c
(A)
t,s

c
(A)
s,s

=

(
β−(t−s) ξt

ξs

)− 1
γ

,

while equations (5.2) and (5.3) lead to

c
(I)
t,s

c
(I)
s,s

=


(
β−(t−s) ξt

ξs

)− 1
γ

if t−s
2
∈ {0, 1, 2...}(

β−(t−s) ξt−1

ξs
Et−1

(
ξt
ξt−1

))− 1
γ

otherwise
. (5.4)

Using overbars to denote cross-sectional averages for fixed current and birth dates, we

obtain the following expression for the difference in the consumption of two successive cohorts

when t− s is even:

log ct,s − log ct,s−1 = −1

γ
log β + log cs,s +

1

γ
log ξs − log cs−1,s−1 −

1

γ
log ξs−1

−1− q
γ

[
log

ξt
ξt−1

− logEt−1

(
ξt
ξt−1

)]
.
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When t− s is odd, we obtain

log ct,s − log ct,s−1 = −1

γ
log β + log cs,s +

1

γ
log ξs − log cs−1,s−1 −

1

γ
log ξs−1

+
(1− q)
γ

[
log

(
ξt
ξt−1

)
− logEt−1

(
ξt
ξt−1

)]
.

OLS estimates of first differences in cohorts are formed by averaging log ct,s − log ct,s−1

across t = 1...T .6 Letting T1 be the number of even observation and T2 the number of odd

observations, we obtain

1

T

T∑
t=1

(
log ct,s − log ct,s−1

)
= −1

γ
log β + log cs,s +

1

γ
log ξs − log cs−1,s−1 −

1

γ
log ξs−1 (5.5)

−(1− q)
γ

 1

T1

∑
t: t

2
∈{1,2...}

log

(
ξt
ξt−1

)
− 1

T1

∑
t: t

2
∈{1,2...}

logEt−1

(
ξt
ξt−1

)
+

(1− q)
γ

 1

T2

∑
t: t

2
/∈{1,2...}

log

(
ξt
ξt−1

)
− 1

T2

∑
t: t

2
/∈{1,2...}

logEt−1

(
ξt
ξt−1

) .
As T becomes large, each of the the last two lines approaches zero. Indeed, a law of large

numbers implies that 1
T1

∑
t: t

2
∈{1,2...} log

(
ξt
ξt−1

)
converges in probability to E log

(
ξt
ξt−1

)
. Sim-

ilarly, a law of large numbers implies that 1
T1

∑
t: t

2
∈{1,2...} logEt−1

(
ξt
ξt−1

)
= E logEt−1

(
ξt
ξt−1

)
.

The same obtains for the case where the summation runs over t : t
2
/∈ {0, 1, 2...}. Therefore

the terms inside square brackets become asymptotically equal, so that the last two lines on

the right-hand side of (5.5) disappear.

Interestingly, the terms on the first line of equation (5.5) are the same, whether there

is inattention or not. Hence, all the conclusions that we derive in the paper about the

permanent components of cohort effects and their relationships to the stochastic discount

factor remain intact.

6As we explain in the text such cohort differences are exactly identified when we only include time and

cohort effects along with a constant in the regression. When we additionally include age dummies, then the

differences in cohort effects are identified up to a constant. Since our results depend on the variances and

covariances of differences in cohort effects, the fact that we cannot identify the constant is inconsequential.
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We conclude with a clarifying remark. The above derivations are not meant to convey

that inattention will not impact the stochastic discount factor. In general it will. Our claim

is that the permanent components of cohort effects will still reveal log (ξt)+γ log (Ct) , which

in the model is equal to the displacement factor. Hence, the conclusion of the paper that

changes in the permanent component of cohort effects combined with aggregate consumption

growth provide an accurate description of the stochastic discount factor remains valid in the

presence of inattention.

6 Declining Prices of Intermediate Goods

Our model makes three assumptions: a) the cost of producing an intermediate good is

constant, i.e., it takes one unit of labor to produce a single good, and b) each blueprint

is produced by a firm that holds monopoly rights to its production forever. Coupled with

the simple Dixit-Stiglitz aggregator we use, these assumptions lead to the usual “constant

mark-up” rule:

pj,t =
wt
α
, (6.1)

which is common to many models of monopolistic competition. An implication of equation

(6.1) is that the relative prices of any intermediate goods j and j′ remain the same no

matter how much time has elapsed since their introduction. This implies that in our model

displacement of incumbents’ profits operates exclusively through reductions in the quantities

they produce rather than the prices they charge. Even though this distinction between price

and quantity effects on incumbent profits is inconsequential for the asset pricing conclusions

of our paper, we note that in reality it is not exclusively the quantities, but also the prices

of existing goods that decline in response to innovation.7

There are at least two ways to extend the model so as to account for declining prices

of intermediate goods. We could either assume declining costs of production (say, due to

7See, e.g., Gort and Klepper (1982), Klepper and Graddy (1990).
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learning by doing) or — more realistically — allow for the entry of “immitators”, who

produce perfect (or at least close) substitutes to existing intermediate goods.

The first modification (declining costs of production) is fairly straightforward to incor-

porate into the baseline model. Specifically, letting ϕ ∈ (0, 1) and assuming that it takes(
j
At

)ϕ
units of labor to produce intermediate good j, equation (6.1) becomes

pj,t =

(
j

At

)ϕ
wt
α
.

With this simple modification, the relative price of a fixed intermediate good pj,t compared

to the “high tech” intermediate good pAt,t is declining over time, since
pj,t
pAt,t

=
(

j
At

)ϕ
. (The

same conclusion holds if we compute the relative price of a fixed intermediate good j with

respect to the price index of all intermediate goods). Furthermore, as long as ϕ is small

enough, all the conclusions of our model with respect to displacement etc. continue to hold.

An arguably more realistic alternative to obtain declining intermediate prices is to assume

entry of firms that produce perfect substitutes to intermediate good j. Such an extension

can be easily accommodated within our framework. To illustrate in the simplest possible way

how to extend the model in such a direction, we assume that, in addition to “innovators”

who introduce new blueprints, there exist also “imitators” who introduce perfect substitutes

to existing blueprints. For illustration, suppose that such imitators introduce a new perfect

substitute to intermediate good j with probability p each period. Then the final-goods firm

production function becomes

Yt = Zt
(
LFt
)1−α

∫ At

0

ωj,t

 ∑
nj=1..Nj

x
nj
j,t

α

dj,

where x
nj
j,t is the amount of intermediate goods purchased by producer nj in the market

for blueprint j, and Nj − 1 is the total number of imitators that have entered the market

since its inception by the initial innovator. Assuming that increased competition reduces

markups the prevailing price in market j will gradually decline from wt
α

to wt as more and

more imitators enter. Moreover, the younger the market, the closer the price will be to wt
α

.

By contrast, older markets will have experienced more entry of imitators, and hence the

price will be closer to the marginal cost of production wt.
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One can extend this idea further by introducing endogenous entry into incipient indus-

tries, refinements in the production of existing goods, exit, etc.. Such a model would address

the evolution of market structure within existing industries, while displacement risk — i.e.,

the arrival of new industries — would present a systematic adverse demand shock across all

existing industries.

7 Implications for Optimal Risk Sharing between Agents

In this section we investigate in greater depth how portfolio choices of agents with heteroge-

neous financial-to-total-wealth ratios lead to optimal risk sharing. Specifically, we compute

the equilibrium exposures of the financial and human capital components of aggregate wealth

to the fundamental shocks in the model. Using these exposures, we then infer the heteroge-

neous portfolio holdings (value or growth tilt) of agents with different human-to-total capital

ratios.

To start, we note that a worker’s financial wealth can be determined at any point in time

from the intertemporal budget constraint. To economize on notation, we start by letting

B1 ≡ Et

∞∑
t′=t

(
ξt′

ξt

)
(1− λ)(t′−t)

(
ct′,s
ct,s

)
,

B2 ≡ Et

∞∑
t′=t

(
ξt′

ξt

)
[(1− λ) (1 + δ)](t

′−t)
(
qt′,swt′

qt,swt

)
.

We note that B1 and B2 are constants in our model. Using the definitions of B1 and B2, the

intertemporal budget constraint of a worker at time t can be expressed as

B1ct,s = Wt,s +B2yt,s, (7.1)

where yt,s ≡ hwtqt,s (1 + δ)t−s is the agent’s labor income at time t. Equation (7.1) states

that a worker’s net present value of consumption (B1ct,s) is equal to her total wealth, i.e.

the sum of her financial wealth (Wt,s) and the net present value of her earnings B2yt.

An implication of (7.1) is that

∆ log (Wt+1,s + A2yt+1,s) = ∆ log ct+1,s, (7.2)
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where ∆xt+1 = xt+1 − xt. Importantly, the fact that agents of different cohorts share risk

frictionlessly implies that both the left- and the right-hand sides of (7.2) are independent of

s. (This is an implication of equation 21 in the paper). Focusing on agents with Wt,s > 0,

we next approximate

∆ log (Wt+1,s + A2yt+1,s) ≈ (1− ϑt)
∆Wt+1,s

Wt,s

+ ϑt∆ log (yt+1,s) , (7.3)

where ϑt ≡
(

A2yt+1,s

Wt+1,s+A2yt+1,s

)
is the fraction of total wealth due to the net present value of

labor income. Using the definition of yt inside (7.3) gives

∆ log (yt+1,s) = [(1 + δ)− (ρ+ α− 1)ut+1 + εt+1] . (7.4)

Furthermore, the model implies that

∆ log ct+1,s ≈ εt+1 +

[
(1− α) +

υ′ (0)

υ (0)

]
ut+1, (7.5)

where the function υ (·) is given in equation (25) of the paper. Combining (7.2), (7.3), (7.4)

and (7.5) gives

∆Wt+1,s

Wt,s

≈
[
(1− α) +

1

1− ϑt

(
υ′ (0)

υ (0)
+ ϑtρ

)]
ut+1 + εt+1 −

ϑt
1− ϑt

(1− δ) . (7.6)

The term inside square brackets in equation (7.6) is of particular interest for our purposes.

It captures the proportional change in an agent’s financial wealth in response to a shock to

ut+1. More importantly, this term allows us to infer whether the investor has a “growth” tilt

or a “value” tilt in her portfolio. For instance, if the term inside square brackets is small

in absolute value, this means that the investor has bought enough growth stocks (and/or

shorted value stocks) so as to approximately immunize the exposure of her financial wealth

to displacement risk. By contrast, for investors who choose a high exposure to value stocks,

the term inside square brackets is negative and large in absolute value.

To determine whether agents who have a high human-to-total wealth ratio (ϑt) choose

more or less exposure to displacement risk, we first note that the term inside square brackets

in equation (7.6) is negative, since in our calibration (1− α) + υ′(0)
υ(0)

+ ρ < 0. Furthermore, a
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direct differentiation with respect to ϑt reveals that the term is declining in ϑt.
8 Accordingly,

agents with a high human-to-total wealth (ϑt) ratio choose portfolios that make their financial

wealth more negatively exposed to displacement risk (value tilt). In contrast, agents with a

low ϑt have a less negative exposure to displacement risk (ut+1), i.e., they have a tilt towards

growth stocks in their portfolio.

8 Education Choice, the Skill Premium, and Cross-

Sectional Wage Dispersion

Since the model’s focus is on asset pricing, in its baseline version we abstract from issues

related to education choice. As a result, the baseline model is silent about the skill premium

and cross-sectional wage dispersion. Here we enrich the model to allow for education choice

in a stylized way. We show that allowing for such choice leads to cross-sectional dispersion

in the wages within a given cohort. The cross-sectional dispersion is increasing in the size of

the technological shock us at the time when the cohort enters the workforce.

For simplicity, we ignore external habit formation (ψ = 1) and make such functional-

form choices that the model’s implications for aggregate prices do not change. Specifically,

suppose that at the time of her “birth” s, a worker i chooses (once and for all) her level of

educational attainment eis. The benefit of education is that it raises a worker’s productivity.

Specifically, a worker’s total supply of efficiency units at time t is given by eisqt,s, where qt,s

captures the efficiency units of labor, as specified in the paper.

Assume that education involves only non-pecuniary costs that are lower for agents with

8Direct differentiation of the term with respect to ϑt, along with the fact that υ′(0)
υ(0) + ρ < − (1− α) < 0,

implies that

[
(1− α) +

1

1− ϑt

(
υ′ (0)

υ (0)
+ ϑtρ

)]′
=

1

(1− ϑt)2

[
υ′ (0)

υ (0)
+ ρ

]
< 0.
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stronger scholastic skills. Specifically, the agent maximizes

Es

∞∑
s=t

[β (1− λ)]t−s

[(
1− eis

2zis

)
cit,s

]1−γ

1− γ
, (8.1)

where zis is an idiosyncratic, time-invariant, person-specific shock, meant to capture scholastic

aptitudes. In the specification (8.1) we follow the lead of the seminal RBC paper by King

et al. (1988) and assume that the non-pecuniary costs of education are multiplicatively

separable in a term involving educational attainment eis and the agent’s consumption. As

King, Plosser and Rebello show in the closely related context of the choice between leisure

and work, the multiplicative separability of the utility specification is necessary in order to

ensure that eis remains stationary as the economy grows — “balanced growth”.

We next show that as long as we normalize the distribution of zis judiciously, all equilib-

rium prices remain the same as in the original version of the model. The choice of educational

attainment eis scales agent i’s endowment in each state and at all times by a factor of eis.

Due to the iso-elastic form of the utility function, this in turn scales the agent’s expected

life-time utility of consumption by a factor of (eis)
1−γ. According to (8.1), the non-pecuniary

cost of education further scales the agent’s life-time utility by a factor of (1− eis/(2zis))
1−γ

.

Thus, the net effect of choosing the level of education eis is to scale the life-time utility of

the agent by a factor of[(
1− eis

2zis

)
eis

]1−γ

, (8.2)

and hence the optimal choice of educational attainment is

eis = zis. (8.3)

Equation (8.3) states that workers with higher scholastic aptitude zis choose more educa-

tion. Furthermore, if we normalize E (zis) = 1, the cross-sectional mean E (eis) is unity at all

points in time. As a result, the aggregate value of labor income of the cohort born at time s

is identical to the expression given in the baseline model. Since all prices (aggregate wage,

stochastic discount factor, etc.) are only affected by the aggregate value of labor income ac-
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cruing to each cohort, all equilibrium prices are unaffected by the introduction of education

choice.

Even though equilibrium prices are unchanged relative to the model without education

choice, the allocation of consumption is. Now the model features cross-sectional dispersion

in labor income, simply because agents with higher education earn more labor income.

Interestingly, taking two cohorts s and s′, and computing the cross-sectional variance of

labor income we find that

V ar (eisqt,swt)

V ar
(
eis−1qt,s−1wt

) =
q2
s,se

2ρus

q2
s−1,s−1

. (8.4)

Since qs,s > 0 is an increasing function of us, equation (8.4) implies that us > us−1 leads

to V ar (eisqt,swt) > V ar
(
eis−1qt,s−1wt

)
. Alternatively phrased, cohort s, having experienced

higher technological advancement compared to its preceding cohort, also exhibits a higher

cross-sectional dispersion of wages.

The above calculations show that the model is consistent with the empirical observations

in Attanasio and Davis (1996) on cohort-specific skill-premia, even if educational choice is

purely meritocratic, i.e., exclusively determined by agents’ innate scholastic aptitudes (ei) .

The above qualitative conclusions would not change if we introduced meritocratic educational

choice by allowing education to have monetary costs with workers who can borrow against

the increase of their labor income due to education. (In such a model, an agents’ labor income

would have to be modelled as zieisqt,s). However, such a model would require specifying an

educational sector that uses resources, and the model would become more involved.

9 The Value Premium and the IT Revolution

According to the model, the realized return differential between value and growth stocks

should decline during periods of increased displacement activity. This implication of the

model appears to be broadly consistent with the behavior of the value premium during the

late eighties and nineties, two periods associated with the adoption of IT technology.

Figure 1 plots the 10-year moving average of the annual value spread for the US, so as to
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isolate low frequency movements of the value spread. The figure shows a significant decline

in the value spread in the eighties and particularly in the nineties, when the 10-year moving

average actually turns negative. Accepting the popular view that the eighties and especially

the nineties were periods of accelerated technological growth, this evidence is in line with

the theory put forth in the paper.
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Figure 1: 10-year moving average of the value spread. To enable comparisons with the international

value and growth portfolios of Fama and French, we define the value spread as the difference in

returns between stocks in the top and bottom 30 percent when sorted by book-to-market ratio.

The international data provides further evidence in this direction. If the IT revolution

was a global phenomenon, then we should see declines in the value premium across the world.
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The advantage of international data is that one can exploit the panel dimension to test this

hypothesis. However, a limitation of international data is that the only readily available data

on the value spread start in 1975 (or later) for most countries. Because of this limitation we

cannot produce an analog of figure 1 for each country and “eyeball” the onset of the decline

of the value premium. Therefore, we adopt a regression approach. We choose a period during

which the IT revolution is most likely to be spreading across all countries of the world. Both

because the US is likely to have been one of the early adopters, and because the time-series

dimension of our sample is rather short, we choose the years 1994-1999 for our baseline

estimation. The first row of table 1 reports results of regressing the annual value spread on

country fixed effects and a dummy variable taking the value one during 1994-1999. We find

that the value spread is on average -8.7 percent lower across the world during this period.

To put this in perspective, the average value spread across all year-country observations in

our sample is 4.67 percent. As a robustness check, the second row of the table reports results

when the indicator variable takes the value one in the longer period 1985-1999. The sign

remains the same, but the magnitude and the statistical significance of the results becomes

smaller. (In particular, when standard errors are clustered by year, then the one-sided test

that the coefficient is non-positive is marginally significant at the 5 percent level, but the

two-sided test is not.) In non-reported results we experimented with more starting dates

between 1985 and 1994. The coefficients were negative, and the results became stronger as

the starting date approached 1994. Taken together the international evidence supports the

notion that the value premium declined during the IT revolution, and especially during the

latter half of the nineties.

10 Robustness Checks with respect to the Parameters

in the Baseline Model

Table 2 reports results from some simple robustness exercises. The column titled ψ = 1 helps

isolate the effect of habit formation. This column shows how results change in the case where
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Indicator (1994-1999) Indicator (1985-1999)

Coefficient -8.70 -6.40

t-stat (-3.32) (-3.15)

t-stat (clustered) (-2.45) (-1.67)

Country Dummies Yes Yes

Observations 734 734

Table 1: The value spread during periods of technological expansion: International evidence.

We use an international panel of annual return differentials between value portfolios (top-30th

percentile of the book to market distribution) and growth portfolios (bottom-30th percentile of the

book to market distribution) provided on the website of Kenneth French. We used all countries

(Austria, Australia, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland,

Italy, Japan, Netherlands, New Zeland, Norway, Singapore, Spain, Sweden, Switzerland, UK, and

US) except for Malaysia, because the available sample for that country was too short for our

purposes (1994-2001). The rest of the panel is unbalanced, with most countries having sample

periods starting in 1975. The first line reports the coefficients on a dummy variable taking the

value one in the period 1994-1999 (first row). The second row reports the results for a dummy

taking the value one in the years 1985-1999. Below each coefficient, we report conventional t-stats

and (robust) t-stats clustered by year. Country fixed-effects are included in both regressions, but

not reported.

agents have standard constant relative risk aversion preferences (γ = 10). Comparing this

table to Table 5 in the paper, it is apparent that the absence of habit formation increases

slightly both the equity and the value premium. However, this comes at the cost of also

increasing the riskless rate9 and as a result all the earnings-to-price ratios. The next column

(κ = 0.7) reduces κ to 0.7 while keeping the rest of the parameters unchanged. Recall that

κ reflects the fraction of new blueprints accruing to new firms owned by arriving agents,

9Inspection of equation (24) helps with the intuition behind this result: As ψ increases from 0 to 1, the

exponent of Yt+1

Yt
decreases from −1 to −γ, resulting in a higher volatility of the pricing kernel, but also a

stronger negative drift of the (log) stochastic discount factor.
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Data ψ = 1 κ = 0.7 κ = 0.7

baseline modified

Aggregate (log) consumption growth rate 0.017 0.017 0.017 0.017

Aggregate (log) consumption volatility 0.033 0.032 0.032 0.033

Riskless rate 0.010 0.055 0.024 0.017

Equity premium 0.061 0.046 0.027 0.032

Aggregate earnings / price 0.075 0.144 0.091 0.106

Dividend volatility 0.112 0.108 0.081 0.107

Correl. (divid. growth, cons.growth) 0.2 0.14 0.25 0.12

Std (∆αperm
s ) 0.023 0.029 0.026 0.027

cov(∆αperm
s , growth-value )
var(∆αperm

s )
3.92 3.865 5.257 6.750

Std (∆wperm
s ) 0.022 0.021 0.021 0.023

Earnings / price 90th Perc. 0.120 0.153 0.110 0.140

Earnings / price 10th Perc. 0.04 0.066 0.036 0.042

Average value premium 0.065 0.067 0.065 0.074

Std (growth-value) 0.127 0.116 0.137 0.182

E (Ra −Ro) 0.118 0.096 0.106

Table 2: Robustness Checks. The columns titled ψ = 1 and κ = 0.7 display results when the

parameters ψ and κ are set equal to 1 and 0.7 respectively, while the rest of the parameters

are kept at their baseline values (γ = 10). The last column displays results assuming that

κ = 0.7, χ = 5, ν = 0.06, ρ = 0.8, and the rest of the parameters are kept at their baseline

values.

while (1 − κ) accrues to existing agents. In the baseline case scenario we choose κ = 0.9.

We consider this a plausible value for the following reason: In a fully specified endogenous-

innovation model with capital, where factors of production in the innovation sector are

compensated for their marginal product, κ would capture the share of human capital, labor

and skill in the innovation process (as opposed to the share of capital operated by pre-

existing firms). Assuming that education, entrepreneurial skill, and human effort are the
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most important scarce factors in the innovation process, one would expect κ to be close to

1. (For instance, in the seminal Romer model, labor is the exclusive factor of production

in the development of new ideas). However, to examine the robustness of the results to

this assumption, we also examine what happens when we choose these income shares to be

similar to aggregate income shares in NIPA data. To that end we choose κ = 0.7. The next

to last column reports results when all other parameters are kept at their base values, while

the last column reports what happens when the rest of the parameters are also modified

in order to match the volatility of dividends. As can be seen, even though the results are

slightly weaker when κ = 0.7, the model retains its power to explain a large fraction of the

observed moments in the data.
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