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Abstract

We study the implications of aggregating consumers’ purchase histories into scores

that proxy for unobserved willingness to pay. A consumer interacts with a sequence of

firms in a stationary Gaussian setting. Each firm relies on the consumer’s current score–

a linear aggregate of noisy quantity signals discounted exponentially–to learn about her

preferences and to set prices. We show that a strategic consumer reduces her demand,

driving average prices below the naive-consumer benchmark. Firms, in turn, prefer

scores that overweigh past signals relative to Bayes’ rule with disaggregated data to

mitigate this ratchet effect and maximize their ability to price discriminate. Consumers

with high average willingness to pay benefit from tracking ex ante, because the gains

from low average prices dominate the losses from price discrimination. Finally, hidden

scores–those only observed by the firms–reduce demand sensitivity, increase average

prices, and reduce consumer surplus, sometimes below the naive-consumer level.
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1 Introduction

Consumer scores are metrics that use all available data about individual customers–age,

ethnicity, gender, household income, zip code, and purchase histories–to quantify and predict

their profitability, health risk, job security, or credit worthiness. The best-known example

is the FICO credit score used by every lender in the US. Another prominent, less well-

known example is the Customer Lifetime Value (CLV) that many firms assign to their own

customers in order to personalize prices, products, advertising messages, and various perks.1

In addition to being deployed internally, consumer scores are also traded. Several data

brokers (e.g., Acxiom, Equifax, and Experian) collect information from a variety of sources,

aggregate it into scores, and sell these scores to companies that in turn, use them to refine

their market-segmentation strategies. Critically, the transmission of information through

such scores creates a link between a consumer’s interaction with one firm and the terms of

her future transactions with other firms and industries.2

With the exception of credit markets, consumer scores are not regulated, nor are they

available to consumers. As such, some consumers ignore these links across transactions,

and even the most sophisticated consumers cannot perfectly forecast the impact of their

actions. Awareness of the mechanisms at play is nonetheless increasing quickly over time,

thanks to recent regulatory efforts aimed at improving the transparency of firms’ information

(e.g., the European Union’s General Data Protection Regulation). With consumer awareness

rising at a fast pace, it is essential to understand how technological and market forces affect

incentives. In particular, if the final use of information impacts the distribution of surplus,

the mechanisms by which consumer data are collected, aggregated and transmitted can affect

the terms of the transactions in which the data are generated, and thus, the informational

content of the data itself.3

In this paper, we study the welfare consequences of aggregating purchase histories into

scores that are used for third-degree price discrimination.4 We examine how these conse-

1The composition of CLV scores is a rich area of marketing research (Dwyer, 1989; Berger
and Nasr, 1998). The Wall Street Journal (2018) reports, “every consumer has at least one
[CLV score], more likely several.” NPR provides more information in its Planet Money podcast,
https://www.npr.org/sections/money/2018/11/07/665392227/your-lifetime-value-score.

2For example, the Equifax Discretionary Spending Limit Index is a number 1−1000 that “helps marketers
differentiate between two households that look the same in terms of income and demographics but likely have
considerably different spending power.” Similarly, information about a consumer’s sporting goods purchases
or eating habits can become part of a predictive score for a health insurer (The Economist, 2012).

3Many European consumers are already aware of market-segmentation practices. In a recent survey
(European Commission, 2018), 62% of respondents knew of the personalized ranking of online offers (based
on past behavior or contextual information), and 44% knew of instances of personalized pricing.

4Price discrimination is implicitly used in a number of consumer markets in the form of personalized
coupons, discounts, and fees (Dubé and Misra, 2017). Another related prominent practice is product steer-
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quences depend on the consumers’ degree of sophistication (do they know they are being

scored?) and on the availability of the sellers’ information (can they check their score?).

Our approach embeds a continuous-time model of the ratchet effect into an information

design framework, which enables us to examine how data aggregation and transparency

impact a strategic consumer’s incentives. In our model, a long-lived consumer faces a different

monopolist at every instant of time. The consumer’s preferences are quadratic in the quantity

demanded and linear in her privately observed willingness to pay, which is captured by a

stationary Gaussian process. At any instant of time, an (unmodeled) intermediary observes

a signal of the consumer’s current purchase distorted by Brownian noise and updates a one-

dimensional aggregate of past signals that we refer to as the score process. Only the current

value of the score is revealed to each monopolist, who uses it to set prices.5

We contrast the cases of naive consumers who ignore the link between the current pur-

chased quantity and future prices (Section 3); strategic consumers who understand how firms

react to the score and directly observe their score at all times (Sections 4-6); and strategic

consumers who cannot observe their scores (Section 7).

Overview of the Results (1.) Price discrimination based on purchase histories unam-

biguously harms naive consumers but can benefit strategic consumers. When consumers are

naive, both consumer and total surplus are decreasing (and producer surplus is increasing)

in the precision of the firms’ information.6 More strikingly, the aggregation of information

into scores does not protect consumers at all: the precision of the information transmitted

by the firm-optimal score is the same as if firms observed the entire (disaggregated) history

of the consumer’s purchase signals (Proposition 1).

By contrast, a strategic consumer can manipulate future prices by reducing her quantity

demanded and hence lower her score. To grasp why the consumer can benefit from the

transmission of her score—even if firms ultimately use the information so-gained against

her—consider the following two-period example. The consumer interacts with two firms se-

quentially. Firm 1 sets price P1 using prior information only, while firm 2 privately observes

a signal of the consumer’s first-period quantity before choosing price P2. Because the con-

sumer recognizes the impact of her first period quantity choice on the second period price,

she reduces firm 2’s signal by adopting a lower demand function than myopically optimal.

Firm 1 anticipates the consumer’s manipulation incentives and lowers its price.

ing—changing the order of search results when different consumers search for the same products online to
steer high-value consumers towards high-price products (Hannak, Soeller, Lazer, Mislove, and Wilson, 2014).

5The Wall Street Journal (2018) reports, “At some retailers, the higher the [CLV score] number, the less
likely you are to receive bigger discounts [...] some stores hold back discounts from higher-value customers
until they are at risk of losing them. Why waste a 25% offer when the person is going to buy anyway?”

6This is a well-known property of static models with linear demand (Robinson, 1933; Schmalensee, 1981).
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Figure 1: Strategic Demand Reduction

Figure 1 illustrates the equilibrium outcome: the consumer buys a lower quantity than she

would like (Q′ < Q) but also pays a lower price (P ′ < P ). It is intuitive that a small amount

of demand reduction is beneficial in the first period: the consumer gives up the marginal

unit of consumption but receives an infra-marginal discount. Countering the impact of lower

prices today are the losses from lower consumption today and from tailored prices tomorrow.

However, if the consumer’s average willingness to pay is sufficiently high, so is the average

quantity demanded in the first period (e.g., Q′ in Figure 1 above). When firms reduce prices,

these discounts are applied to a large number of units. In this case, consumers benefit from

lower prices more than they are hurt by personalized pricing.

Having developed some intuition for the effects of strategic demand reduction, we turn

to the role of information aggregation and transparency in shaping equilibrium outcomes.7

(2.) Firms can manage the ratchet effect and limit the resulting information loss by using

relatively persistent scores. As we saw in Figure 1, the ratchet effect drives the average

equilibrium price and quantity levels down relative to the naive case. Furthermore, higher

consumer types (who expect to buy large quantities in the immediate future) have a stronger

incentive to reduce their demand to drive prices downward. This reduces the sensitivity of

the consumer’s actions to her type, the informativeness of the purchase signals, and thus the

firms’ ability to price discriminate based on the score.

However, firms can use the aggregation of purchase histories to induce consumers to

reveal more information about their preferences. With exponential scores, the question of

how to aggregate information reduces to how heavily to discount past quantity signals. The

7Relative to the two-period example, our stationary model has two advantages: it eliminates end-game
effects that can artificially influence policy implications, and it is considerably more manageable than any
finite-horizon version that allows for information aggregation and endogenous learning. Further, continuous
time allows a tractable analysis of how the ratchet effect varies across information structures.
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score’s discount rate is, in turn, inversely related to its persistence.

We show that there is a unique score reveals the same amount of information in equilib-

rium as when firms observe the full history of signals. Because of the ratchet effect, however,

this score does not maximize the firms’ learning in equilibrium: by overweighing past signals,

a more persistent score correlates less with the consumer’s current type, thereby incentiviz-

ing the consumer to signal her preferences more aggressively. On the margin, the latter

effect dominates: learning is optimized by a score that conceals some information about the

consumer’s behavior in exchange for more precise purchase signals. If the underlying signal

technology is sufficiently precise, such a score is also more profitable (Propositions 4 and 5).8

(3.) Making scores available to consumers makes demand more price-sensitive, reduces equi-

librium prices, and increases consumer welfare. Strategic demand reduction can help a

consumer induce lower prices (as in Figure 1) while limiting the amount of information

transmitted by her purchases. In fact, if the underlying signal technology is sufficiently pre-

cise, a strategic consumer who has access to her score is then better off than a naive one

(Proposition 6). For this mechanism to operate successfully, however, score transparency is

essential. We make this point by examining the case in which the consumer is strategic but

the score is hidden.

When scores are hidden, the firms’ beliefs are private, and prices acquire a signaling value:

a high price realization tells the consumer that the firms’ beliefs are high and that prices

will be high in the near future. Because the consumer then expects to purchase relatively

few units, she is less inclined to manipulate her score by reducing her current quantity,

everything else being equal. Thus, with hidden scores, the consumer’s demand becomes less

price sensitive relative to the observable case (Proposition 7).

In equilibrium, firms exploit this reduced sensitivity by making prices more responsive

to the score. This exacerbates the ratchet effect, resulting in lower average quantities and

higher prices (Proposition 8). Moreover, for each level of the score’s persistence, consumer

surplus is lower than with observable scores, provided the underlying signal technology is

precise enough—having access to their score is therefore beneficial to consumers beyond

increasing awareness. Not only that: consumer surplus can even be lower with hidden

scores than with naive consumers (Proposition 9). Consequently, these results can inform

policy interventions: regulations promoting consumer awareness and score transparency have

complementary roles, and one without the other may be detrimental to consumer welfare.

8Aggregating purchase histories into scores can improve equilibrium learning, but introducing noise
in the original signals cannot: a marginal increase in the score’s persistence yields a second-order loss in
information but a first-order gain in the quality of the available signals that more than compensates for
their inefficient aggregation. Conversely, introducing noise has a first-order negative effect that trumps the
associated increase in consumer responsiveness.
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Applied Relevance Our model’s policy implications for real-life consumers hinge upon

three hypotheses: (i) strategic consumers attempt to manipulate the prices they are offered;

(ii) firms use behavior-based data to guide pricing; and (iii) scores compress such data into

statistics that exhibit persistence.

We argue that lack of information by consumers—not lack of sophistication—is presently

the main barrier to observing in practice the ratchet effects we uncover in our model. To sub-

stantiate this claim, Section 8.1 presents anecdotal evidence from both business-to-consumer

(B2C) and business-to-business (B2B) markets. In particular, we discuss several tactics

by which consumers obtain discounts online, including “shopping cart abandonment” for

near-complete purchases, and various attempts to receive lower personalized prices from

ride-sharing services such as Lyft or Uber. We then turn to the market for online display

advertising—a B2B setting in which sellers are website publishers who set dynamic, person-

alized prices for advertising space, and buyers are advertisers looking to reach a targeted

audience.9 The ratchet effect arises because sellers attempt to learn the true distribution of

advertisers’ valuations from their past bids. We describe buyers’ bid-shading behavior, as

well as sellers’ strategies to alleviate the ratchet effect.

In all three examples, consumers are aware of the mechanism that links current purchases

and future prices, and as such, they are able to anticipate the impact of their behavior.

Consistent with our hypothesis, they take costly actions (e.g. delayed purchases, suboptimal

routes, lower current advertising volume) to misrepresent their true willingness to pay and

obtain lower prices.

At the same time, these settings differ from our model because buyers engage repeat-

edly with the same seller. This discrepancy also correlates with the amount of information

available: in the absence of explicit regulation, it is harder for consumers to learn about

the underlying link between the terms of trade across different sellers, and hence, to behave

strategically in seemingly unrelated transactions. A notable exception is the case of FICO

credit scores, where the link between the borrower’s current behavior and the terms offered

by different future lenders is regulated, transparent, and hence quite salient. In Section

8.2, we discuss what we can learn from credit scores about the role of transparency policies

in other consumer markets. Finally, in Section 8.3, we describe settings where all three our

hypotheses may be particularly relevant in the near future.

Related Literature This paper builds on the literature on behavior-based price discrimi-

nation (Villas-Boas, 1999; Taylor, 2004), the results of which are surveyed in Fudenberg and

Villas-Boas (2006), Fudenberg and Villas-Boas (2015), and Acquisti, Taylor, and Wagman

9We describe this market in greater detail in Section S.1 of the Supplementary Appendix.

6



(2016). Closest to our work is the two-period model of Taylor (2004) with observable ac-

tions and stochastic types. Taylor (2004) finds that ratchet forces result in lower equilibrium

prices when consumers are strategic, as in our Figure 1 above. Qualitatively, our results

differ because the noisy signals in our model imply that the consumer’s actions affect the

information available to the firms. Therefore, the score’s persistence and transparency levels

affect the firms’ ability to learn in a non-trivial way.10

Our score process is an instance of the linear Gaussian rating introduced by Hörner and

Lambert (2017), who study information design in the Holmström (1999) career concerns

model. Relative to their setting, we maintain the assumptions of short-lived firms and

additive signals but introduce two additional features. First, our consumer is privately

informed, which makes the informational content of the score endogenous. Second, we allow

for an interaction in the consumer’s payoff function between her action and the firms’ beliefs,

which implies that optimal actions depend on the level of the firms’ beliefs. This dependence

makes the transparency question critical in our setting because the consumer’s incentives now

depend on whether she knows her own score.

The force driving the dynamics of our model is the ratchet effect (e.g., Freixas, Guesnerie,

and Tirole, 1985, Laffont and Tirole, 1988 and, more recently, Gerardi and Maestri, 2016),

which has received experimental validation (Charness, Kuhn, and Villeval, 2011; Cardella

and Depew, 2018). The ratchet effect also underscores the analysis of privacy in settings

with multiple principals. Calzolari and Pavan (2006) consider the case of two principals, and

Dworczak (2017) that of a single transaction followed by an aftermarket.11 Relative to all

these papers, the presence of noise in our model and the restriction to linear pricing limit

the ratchet effect and allow consumers to potentially benefit from information transmission.

The marketing literature (Lewis, 2005) has already suggested the idea that the dynamics

of strategic behavior must be incorporated into consumer valuation methods such as CLV.

Finally, the ratchet effect in online advertising markets is the subject of a growing literature.

In particular, Amin, Rostamizadeh, and Syed (2013) study mechanisms for inferring a single

strategic buyer’s value for a good when interacting repeatedly, and Hummel (2018) studies

how to design dynamic reserve prices in the presence of the ratchet effect. We discuss this

literature more extensively in section S.1 in the Supplementary Appendix.

10Cummings, Ligett, Pai, and Roth (2016) and Shen and Villas-Boas (2017) study models where second-
period advertising is targeted on the basis of the consumer’s first-period purchase. These papers highlight
a trade-off similar to ours, where the value of targeted advertising to the consumer impacts the equilibrium
price of the first-period good, and hence the amount of information revealed by the consumer.

11The ratchet effect appears, with a different interpretation or motivation, in relational contracts (Halac,
2012; Fong and Li, 2016) and in dynamic games with symmetric uncertainty (Cisternas, 2018).
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2 Model

We develop a continuous-time model with a long-lived consumer and a family of short-run

firms. The model is motivated by a discrete-time setting with two key features. First,

the consumer faces a different monopolist in every period. Second, within each period, the

consumer and the current firm play sequential-move stage game: the monopolist initially

posts a unit price for its product based on the current value of a consumer’s score; having

observed the price, the consumer then chooses which quantity to buy. It is instructive to

begin with the observable (or transparent) case: the consumer can observe her score directly.

Players, types, and payoffs Consider an infinitely lived consumer who interacts with a

continuum of firms in continuous time. The consumer has a discount rate r > 0 and, at any

instant t ≥ 0, consuming Qt = q units of a good at price Pt = p results in a flow utility

u(θ, p, q) := (θ − p)q − q2

2
, (1)

where θt = θ is the consumer’s type at t, understood as a measure of her willingness to pay

at that point in time. We assume throughout that the type process is stationary and mean

reverting, with mean µ > 0, speed of reversion κ > 0, and volatility σθ > 0, i.e.,

dθt = −κ(θt − µ)dt+ σθdZ
θ
t , t > 0, (2)

where (Zθ
t )t≥0 is a Brownian motion.12 In particular, (θt)t≥0 is Gaussian, and by stationarity,

E[θt] = µ and Cov[θt, θs] =
σ2
θ

2κ
e−κ|t−s|, for all t, s ≥ 0. (3)

Each firm interacts with the consumer for only one instant, and only one firm operates

at any time t; we refer to the monopolist operating at t simply as firm t. Production costs

are normalized to zero, and hence firm t’s ex post profits are given by PtQt, t ≥ 0.

Score process and information At any t ≥ 0, firm t only observes the current value Yt of

a score process (Yt)t≥0 that is provided by an (unmodeled) intermediary. By contrast, when

scores are observable, the consumer observes the entire history of scores Y t := (Ys : 0 ≤ s ≤ t)

in addition to past prices and quantities and type realizations.13 (In the hidden-scores case

(Section 7), firm t observes only Yt, and the score is not directly observed by the consumer.)

12Stationarity requires θ0 ∼ N (µ, σ2
θ/2κ) independent of (Zθt )t≥0.

13We show in Section 5 that firms observing the whole histories Y t, t ≥ 0, is one instance of our model.
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Building a score process is a two-step procedure that involves data collection followed by

data aggregation. We assume that the intermediary collects information about the consumer

using a technology that records purchases with noise. Specifically, the intermediary observes

dξt = Qtdt+ σξdZ
ξ
t , t > 0,

where (Zξ
t )t≥0 is a Brownian motion independent of (Zθ

t )t≥0, Qt is the realized purchase by

the consumer at t ≥ 0, and σξ > 0 is a volatility parameter.

The intermediary then aggregates every history of the form ξt := (ξs : 0 ≤ s < t) into a

real number Yt that corresponds to the consumer’s time-t score, t ≥ 0. Building on Hörner

and Lambert (2017), we restrict attention to exponential scores, i.e., to Ito processes

Yt = Y0e
−φt +

ˆ t

0

e−φ(t−s)dξs, t ≥ 0, (4)

where φ ∈ (0,∞). Under this specification, the consumer’s current score is a linear function

of the contemporaneous history of recorded purchases, and lower values of φ lead to scores

processes that exhibit more persistence, as past information is discounted less heavily in

those cases.14 In differential form, the score process satisfies

dYt = −φYtdt+ dξt = (Qt − φYt)dt+ σξdZ
ξ
t , t > 0. (5)

Finally, the prior is that (θ0, Y0) is normally distributed; the exact distribution is deter-

mined in equilibrium so that the joint process (θt, Yt)t≥0 is stationary Gaussian along the

path of play.15 In what follows, the expectation operator E[·] is with respect to such prior,

while E0[·] conditions on the realized value of (θ0, Y0). The former is the relevant operator

for studying welfare, while the latter is used in the equilibrium analysis. The conditional

expectations of the consumer and firm t are denoted by Et[·] and E[·|Yt], respectively.

Strategies and equilibrium concept A strategy for the consumer specifies, for each

t ≥ 0, a quantity Qt ∈ R to purchase as a function of the history of prices, types, and score

values, (θs, Ps, Ys : 0 ≤ s ≤ t). Instead, firm t chooses a price Pt ∈ R that conditions on Yt

only, t ≥ 0. A strategy for the consumer is linear Markov if Qt = Q(p, θt, Yt) for all t ≥ 0,

where Q : R3 → R is linear and p is the current posted price (i.e., Q(·, θt, Yt) is the demand

at the history (θt, Yt)). Similarly for firm t, Pt = P (Yt) where P : R→ R is linear, t ≥ 0.

14This class of “aggregators” is natural starting point: since the model is Gaussian, Bayesian updating
using the whole history of signals leads to a posterior mean that falls within this class.

15We elaborate on the stationarity notion in Section 4.1 and in Lemma A.1 in the Appendix.
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We focus on Nash equilibria in linear Markov strategies. Thus, given a linear pricing rule

P (·), an admissible strategy for the consumer is any process (Qt)t≥0 taking values in R and

satisfying (i) progressive measurability with respect to the filtration generated by (θt, Yt)t≥0,

(ii) E0

[´ T
0
Q2
sds
]
< ∞ for all T > 0, and (iii) E0

[´∞
0
e−rt(|θtQt −Q2

t/2|+ |Pt(Yt)Qt|)dt
]
<

∞. Requirement (i) states that, at histories where firms have chosen prices as prescribed by

any candidate equilibrium, the history (θs, Ys : 0 ≤ s ≤ t) captures all the information that

is relevant for future decision-making; (ii) and (iii) are purely technical.16

Definition 1. A pair (Q,P ) of linear Markov strategies is a Nash equilibrium if:

(i) when firms price using P (·), the policy (θ, Y ) 7→ Q(P (Y ), θ, Y ) maximizes

E0

[ˆ ∞
0

e−rtu(θt, P (Yt), Qt)dt

]
subject to (2) and (5), among all admissible strategies (Qt)t≥0; and

(ii) whenever Yt = y, p = P (y) solves max
p∈R

pE[Q(p, θt, y)|Yt = y].

A linear pair (Q,P ) is a stationary linear Markov equilibrium if, in addition, the type-score

process (θt, Yt)t≥0 induced by (θ, Y ) 7→ Q(P (Y ), θ, Y ) is stationary Gaussian.

In a linear Markov (Nash) equilibrium, the optimality of the consumer’s strategy is veri-

fied only when firms set prices according to Pt = P (Yt) for all t ≥ 0, i.e., on the path of play.

Examining deviations from a prescribed price is, however, critical for determining the price

sensitivity of demand, i.e., dQ/dp. In Section 4.2, we select a value for this sensitivity, thus

refining our solution concept to provide an analog of Markov perfect equilibrium. Finally,

the stationarity notion encompasses two ideas: the (controlled) score must admit a long-run

distribution with finite moments, and such a distribution must hold at all times. These two

properties allow us to perform a meaningful welfare analysis that is also time invariant.

3 Naive Consumers

To assess the equilibrium consequences of persistence and transparency, we describe the

benchmark case of naive consumers. Specifically, consider a consumer with preferences as in

16Under (ii), (5) admits a strong solution given any initial condition; therefore, the consumer’s best-
response problem is well-defined (Section 3.2 in Pham (2009)). Finally, (iii) is a mild strengthening of the
condition E0

[´∞
0
e−rt|u(θt, P (Yt), Qt)|dt

]
< ∞ that is usually imposed in verification theorems (Sections

3.2 and 3.5 in Pham (2009)). In particular, it rules out strategies with the unappealing property of yielding
high payoffs by making expenditures,

´∞
0
e−rtPtQtdt, very negative (provided they exist).
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(1) who ignores the link between her current action and future prices. Given a posted price

p, maximizing the consumer’s flow payoff yields a demand with a unit slope Q(p) = θ − p.
Each firm t observes the consumer’s score Yt prior to setting the monopoly price. Letting

Mt := E[θt|Yt], the equilibrium quantity and price are given by

Qt = θt −Mt/2 and Pt = Mt/2.

The ex ante expected profit and consumer surplus levels are given by

Πstatic

Y =
1

4

(
µ2 + Var[Mt]

)
and CSstatic

Y =
1

2
Var[θ] +

µ2

8
− 3

8
Var[Mt],

where the (ex ante) variability of the posterior mean, Var[Mt], measures the precision of the

firms’ information.

Because demand is linear, the average price and quantity levels (both equal to µ/2) are

independent of the information structure. The welfare consequences of using scores to price

discriminate are thus fully determined by the firms’ ability to learn from such signals. On

the one hand, better information increases firms’ profits by allowing them to better tailor

the price to the consumer’s type. On the other hand, with a constant average quantity, total

surplus must fall with greater price discrimination because the correlation between the type

and the price reduces the degree of correlation between the type and the quantity purchased.

Therefore, the consumer must be unambiguously worse off.

When the consumer is naive, each firm t would like to access the full set of disaggregated

purchase signals ξt := (ξs : 0 ≤ s < t), and this benchmark can be attained by an exponential

score. Specifically, as we state in Section 5, the (stationary) posterior expectation that arises

under the observation of disaggregated data in this case, E[θt|ξt], is an affine function of

ˆ t

0

e−φ̂(t−s)dξs, t > 0,

where φ̂ > 0 denotes the (optimal) weight that the Kalman filter uses to discount past in-

formation when purchases follow Qt = θt − E[θt|ξt]/2. This, in turn, implies that learning

from disaggregated data ξt or from the contemporaneous value of a (stationary) score (4)

of persistence φ̂ leads to identical beliefs. Moreover, by definition of the Kalman filter, dis-

counting past recorded purchases with an exponential weight φ̂ maximizes firms’ learning.17

We summarize our findings for the naive case in the next result.

17These results are a particular instance of Proposition 3 in Section 5, where we show that given purchase
process of the form Qt = αθt + βMt + δµ, the persistence level that maximizes the firms’ learning is given
by ν(α, β), where the function ν(·, ·) is defined in (18). Thus, φ̂ = ν(1,−1/2).
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Proposition 1 (Naive Benchmark).

1. Consumer and total surplus are decreasing in the precision of the firms’ information.

2. Firm profits are increasing in the precision of the firms’ information.

3. Firm learning is maximized by observing the disaggregated history of signals.

4. There exists a unique φ̂ > 0 such that observing the value of a score process with per-

sistence φ̂ is equivalent to observing the corresponding disaggregated history of signals.

Two corollaries are distilled from this result. First, scores of persistence φ 6= φ̂ hinder

the firms’ learning, as information then ceases to be aggregated optimally. This is not

qualitatively different from adding noise to the technology (ξt)t≥0: since the behavior of a

naive consumer is fixed, the signal-to-noise ratio in (ξt)t≥0 worsens. Second, because the naive

benchmark is equivalent to a repetition of static interactions (albeit with varying information

on the firms’ side), the only channel through which a strategic consumer can benefit from

information collection is by changing her demand in a dynamic environment.

In contrast, a strategic consumer understands that larger purchases today lead to higher

future prices due to the persistence in the score process. This paves the way for the ratchet

effect. In Section 4, for any given φ > 0, we describe an equilibrium in which realized

purchases follow Qt = αθt + βMt + δµ, which generalizes Qt = θt − Mt/2 in the naive

benchmark. The dependence of the tuple (α, β, δ) on φ > 0 captures the strategic effects of

the score’s persistence, and the difference between (α, β, δ) and the naive values (1,−1/2, 0)

measures the strength of the ratchet effect.

The economic implications of consumer sophistication are twofold. First, the precision of

the firms’ information no longer fully determines the welfare consequences of price discrim-

ination: (α, β, δ) encode demand adjustments in response to scores of different persistence,

which make the average quantity purchased and price paid no longer constant (the level

implications of the ratchet effect). Second, varying φ > 0 not only affects the score’s in-

formativeness directly through the way in which information is aggregated: it also does so

indirectly by endogenizing the signal-to-noise ratio in the purchase signal since the weight

on the type (α) depends on φ (the informational implications of the ratchet effect). In par-

ticular, adding noise to the recorded purchases and sub-optimally aggregating the available

information in a statistical sense cease to have identical implications for learning.

12



4 Equilibrium Analysis with Observable Scores

In this section we characterize a stationary linear Markov equilibrium with realized purchases

Qt = αθt + βMt + δµ, (6)

where the coefficients depend on φ > 0. We proceed in three steps: (i) we characterize

the firms’ (stationary Gaussian) beliefs when learning from the score; (ii) we determine the

price sensitivity of demand that pins down the firms’ monopoly price; and (iii) we solve the

consumer’s dynamic optimization problem.

4.1 Stationary Beliefs

Stationarity imposes two restrictions in our model. First, each firm t must use the same rule

to update its beliefs. Second, the process (θt, Yt) has to admit a long-run distribution with

finite moments that is initialized at time 0 (via an appropriate choice of (θ0, Y0)) and that

is consistent with the firms’ updating rule via (6).

If (θt, Yt) is Gaussian, however, the projection theorem for Gaussian random variables

yields the following linear updating rule,

Mt := E[θt|Yt] = µ︸︷︷︸
=E[θt]

+
Cov[θt, Yt]

Var[Yt]
[Yt − E[Y ]].

We then require that Cov[θt, Yt]/Var[Yt] and E[Y ] are independent of time; denote them λ

and Ȳ , respectively. Thus, Mt = µ+ λ[Yt − Ȳ ] holds at all times.

Lemma A.1 in the Appendix shows that the second restriction reduces to φ−βλ > 0 and

λ =
ασ2

θ(φ− βλ)

α2σ2
θ + σ2

ξκ(φ− βλ+ κ)
. (7)

The first condition states that, for a long-run Gaussian distribution with finite variance to

exist, the score must have a positive rate of decay when Mt = µ + λ[Yt − Ȳ ] enters (6).

The second condition, (7), is the consistency requirement: in λ = Cov[θt, Yt]/Var[Yt], the

right-hand side, via Yt, contains past beliefs that depend on λ via Ms = µ+λ[Ys− Ȳ ], s < t.

The regression coefficient λ measures the responsiveness of beliefs to changes in the score,

and it plays a central role in our analysis. In fact, using Mt = µ + λ[Yt − Ȳ ], we can recast

the problem of controlling the score as one of controlling the firms’ beliefs, namely,

dMt =
[
−φ
(
Mt − µ+ λȲ

)
+ λQt

]
dt+ λσξdZ

ξ
t , t ≥ 0. (8)
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Thus, the consumer’s choice of quantity affects the current firm’s belief linearly with a slope

of λ, and this effect decays at rate φ. The following result underscores a key tension between

the short- and long-term response of beliefs as we vary the persistence of the score:

Lemma 1 (Persistence and Sensitivity). λ that solves (7) is strictly increasing in φ.

Intuitively, as a score puts more weight on past information, it correlates less with the

current type. Beliefs then react less to new information, as captured by λ, and vice-versa. In

particular, endowing beliefs with persistence (and a fortiori, prices) by making scores more

persistent themselves, is not for free: the short-term response of beliefs is diminished.

4.2 Price Sensitivity of Demand and Monopoly Pricing

In this section, we determine the price sensitivity of demand and characterize the firms’

monopoly price. Because the score is observed by the consumer and the firms adopt a linear

strategy, the consumer can perfectly anticipate the candidate equilibrium price. The price

sensitivity of demand is then determined by the (optimal) change in the consumer’s quantity

demanded in response to a price deviation p 6= P (Yt). This poses a challenge in continuous

time: imposing optimality of the consumer’s strategy at such off-path histories does not pin

down her response to a deviation, as every firm operates over a zero-measure set.

To overcome this challenge, we refine our stationary linear Markov equilibrium concept

by requiring that prices be supported by the limit sensitivity of demand along a natural

sequence of discrete-time games indexed by their period length. Along such a sequence, as

the period length shrinks to zero, the limit demand sensitivity is equal to −1.

Heuristically, we consider a discrete-time version of our model in which the period length

given by ∆ > 0 is small. Given any posted price p, we can write the consumer’s continuation

value Vt recursively with Mt as a state,

Vt = max
q

[
(θt − p)q −

q2

2

]
∆ + e−r∆Et[Vt+∆]

= max
q

[
(θt − p)q −

q2

2

]
∆ + e−r∆

{
Vt +

∂Vt
∂Mt

[
−φ
(
Mt − µ+ λȲ

)
+ λq

]
∆︸ ︷︷ ︸

=E[∆Mt] from (8)

+...
}

When ∆ is sufficiently small, the missing terms that are affected by q on the right-hand side

have only second-order effects on the consumer’s payoff; therefore, the impact of quantities

on the continuation value becomes asymptotically linear. Furthermore, because firms do not

observe past prices, the continuation game is unaffected by the actual choice of p. Using the
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fact that e−r∆ ≈ 1− r∆, the consumer’s first-order condition satisfies

Qt = θt − p+ λ
∂Vt
∂Mt

, (9)

where ∂Vt/∂Mt is independent of the posted price, which leads to a slope of demand of value

−1. In other words, the incentives to manipulate the firms’ beliefs affect the intercept but

not the slope of the demand function. Henceforth, except for the case of hidden scores, a

stationary linear Markov equilibrium is understood to have unit price sensitivity.18

Having pinned down this sensitivity, we now characterize the monopoly price process

along the path of play of any stationary linear Markov equilibrium.

Lemma 2 (Monopoly Price). Consider a stationary linear Markov equilibrium in which the

quantity demanded follows (6). Then, prices are given by

Pt = (α + β)Mt + δµ, t ≥ 0. (10)

The intuition is simple: because demand has unit slope, the monopoly price along the

path of play of such an equilibrium satisfies Pt = E[Qt|Yt], t ≥ 0.

Equipped with this result, we can formulate the consumer’s best-response problem to a

price process Pt with parameters (α, β, δ) as a linear-quadratic optimization problem,

max
(Qt)t≥0

E
[ˆ ∞

0

e−rt
[
(θt − Pt)Qt −

Q2
t

2

]
dt

]
s.t. dθt = −κ(θt − µ)dt+ σθdZ

θ
t

dMt = (−φ[Mt − µ+ λȲ ] + λQt)dt+ λσξdZ
ξ
t

Pt = (α + β)Mt + δµ,

where λ satisfies (7).

4.3 Stationary Linear Markov Equilibria

To characterize stationary linear Markov equilibria, we use standard dynamic-programming

tools. In a nutshell, we look for a quadratic value function and impose the condition that

the firms correctly anticipate the consumer’s behavior. This yields a sub-system of equations

for the equilibrium coefficients (α, β, δ) that is coupled with equation (7) to pin down the

18In the Supplementary Appendix (section S.4), we examine a sequence of discrete-time games that employ
the usual discretized version of diffusions in which noise is scaled by

√
∆. We show that along this sequence

(i) linear best replies on the path of play are also optimal after observing off-path prices and (ii) the weight
that linear best replies attach to the current price converges to −1 as the period length goes to zero.
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equilibrium sensitivity of beliefs λ; we then look for a solution that satisfies the stationarity

condition φ − βλ > 0. As we show in the proof of Theorem 1, there is a unique such

solution to this system, which in turn allows us to establish the existence and uniqueness of

an equilibrium in this class. Furthermore, the equilibrium can be computed in closed form,

up to the solution of a single algebraic equation for the coefficient α.

Theorem 1 (Existence and uniqueness). For any φ > 0, there exists a unique stationary

linear Markov equilibrium. In this equilibrium, 0 < α < 1 is the unique solution to

α = 1 +
Λ(φ, α,B(φ, α))αB(φ, α)

r + κ+ φ
, α ∈ [0, 1]. (11)

where the functions B, Λ, and D are defined in (A.7), (A.12), and (A.8). Moreover, β =

B(φ, α) ∈ (−α/2, 0), δ = D(φ, α) ∈ R, and λ = Λ(φ, α,B(φ, α)) > 0.

Figure 2 illustrates the equilibrium coefficients (α,−β, δ), their naive benchmark levels,

and the average equilibrium price (and quantity)

E[Pt] = E[Qt] = [α + β + δ]µ. (12)
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Figure 2: (r, σθ, σξ, κ) = (1/10, 1, 1/3, 1).

4.4 Strategic Demand Reduction: The Ratchet Effect

Recall the first-order condition (9) of the consumer’s problem, Qt = θt−Pt+λ∂V (θ,M)/∂M .

The consumer’s strategic behavior is then summarized by λ∂V (θ,M)/∂M , i.e., by the wedge

between her actual behavior and the myopic counterpart. Intuitively, we would expect this

derivative to represent a ratchet effect. To confirm this intuition, however, we must show that

this derivative actually encodes the value of a downward deviation from a natural benchmark

due to an adversarial incentive scheme in place.
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The next result therefore provides a representation for this derivative in the form of

expenditure savings from inducing a lower price: the natural benchmark is given by myopic

play, and the incentive scheme by the schedule of future prices faced by the consumer. We

further state the level and informational consequences of the ratchet effect.

Proposition 2 (Ratchet Effect).

(i) Value of future savings: equilibrium prices and quantities satisfy

Qt = θt − Pt −Ψt, where (13)

Ψt := λEt
[ˆ ∞

t

e−(r+φ)(s−t)(α + β)Qsds

]
, t ≥ 0. (14)

(ii) Signaling coefficient and average prices and quantities:

1/2 < α(φ) < 1 and E[Pt] = E[Qt] ∈ (µ/3, µ/2).

The process Ψt is the value of future (expenditure) savings from a small reduction in

today’s quantity. In fact, by the Envelope Theorem, the benefit of a marginal reduction

in today’s quantity is equal to the net present value of the associated reduction in future

prices, holding the future quantities constant. Applied to our case, the price Pt+dt falls by

λ(α+β) after such deviation (becauseMt+dt falls by λ), while the impact on subsequent prices

then vanishes at the rate φ at which beliefs decay afterwards.19 Comparing the first-order

condition with (13)–(14) yields λ∂V/∂M = Ψt, and hence a ratchet effect ensues: the larger

the savings, the stronger the incentive to deviate downwards from the static equilibrium.

The ratchet effect implies that, on average, all types purchase less, i.e., the average price

and quantity fall relative to a static interaction. Specifically, using Qs = αθs + βMs + δµ

and taking expectations under the prior distribution of (θt)t≥0 in (13), we obtain

E [Ψt] = λ
(α + β)(α + β + δ)µ

r + φ
. (15)

Because α + β > 0 (Theorem 1) and E[Pt] = E[Qt] = (α + β + δ)µ, one can easily conclude

from (13)–(14) that (15) is strictly positive and that the average quantity demanded contracts

below the static level µ/2, as in Figure 2 (right panel).20

19While we prove the result only in equilibrium, (13)–(14) is an optimality condition and thus holds at a
greater level of generality. Our proof uses the Envelope Theorem and the Feyman-Kac formula, as in Abel
and Eberly (1994). See also Strulovici (2011) for a similar method in a contracting environment.

20Straightforward manipulation of terms reveals that E[Pt] = µ(r + φ)/[2(r + φ) + λ(α+ β)].
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The incentives for demand reduction are not, however, uniform across consumer types.

In particular, the value of future savings in Proposition 2 satisfies

∂Ψt

∂θt
=

λαβ

r + κ+ φ
. (16)

Comparing (16) with the right-hand side of equation (11) from Theorem 1, we conclude that

α(φ) is simply the (static) unit weight attached to the type θ, diminished exactly by the

sensitivity of the value of future savings to θ.21 The benefits of a downward deviation are

then greater for higher types because, due to the persistence in the types process, a high θt

is more likely to buy larger quantities in the future, and hence obtains higher savings from

strategically reducing her demand (i.e., α < 1).

Finally, the lower bounds on the ratchet effect in (ii) are the consequence of the strategic

substitutability between the consumer’s actual choices and the ones conjectured by the firms.

In particular, if the firms believed that the quantity signals were uninformative (α = 0), the

consumer would have no incentive to deviate from optimal myopic behavior α = 1. Several

additional properties of the equilibrium coefficients and outcomes that are key technical steps

for our subsequent results can be found in Lemma A.4 in the Appendix.22

5 Equilibrium Learning

The firms’ ability to price discriminate depends on their ability to learn from the score.

In this section we show that, unlike in the naive benchmark, there is a wedge between

maximizing learning and the use of disaggregated data. Specifically, because of the ratchet

effect, the firms’ learning is maximized by relatively persistent scores: scores that discount

signals too little relative to Bayesian updating based on the histories of observed purchases.

The extent of firms’ learning is summarized by the following quantity:23

Cov[θt, Yt]

Var[θt]Var[Mt]
=

αλ(φ, α(φ), β(φ))

φ+ κ− βλ(φ, α(φ), β(φ))
:= G(φ, α(φ), β(φ)) ∈ [0, 1]. (17)

The function G highlights the two channels through which a score’s persistence affects learn-

ing: directly via φ, which determines the weight attached to past signals (and its resulting

impact on λ), and indirectly via the coefficients of the consumer’s strategy. The presence

21The denominator reflects that a marginal change in today’s type on all future savings decays at rate
r + κ+ φ, due to the rate κ at which the types themselves decay. The numerator indicates that an increase
in θt positively affects not only future types θs but also future belief realizations Ms, s > t.

22These include: tighter bounds as a function of φ, asymptotic behavior as φ→ {0,+∞}; and comparative
statics with respect to the noise volatility σξ. We also establish that φ 7→ α(φ) is quasiconvex.

23By the projection theorem, Var[θt|Yt] = Var[θt](1− Cov[θt, Yt]/Var[θt]Var[Mt]).
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of equilibrium effects thus opens the possibility for a score to give up on its optimality as a

statistical filter, i.e., as an optimal aggregate of the underlying signals, in exchange for an

improvement in the quality of such signals.

The question of how to maximize learning is ultimately one of how to optimally aggregate

information accounting for these two channels. It is natural to use the case of disaggregated

signals (ξs : 0 ≤ s < t) as a reference point. To this end, we hold fixed the consumer’s

behavior (α, β) ∈ R+ × R−, and define

ν(α, β) := κ+
γ(α)α(α + β)

σ2
ξ

, (18)

where γ(α) > 0 is the steady state variance of beliefs when the histories of (ξt)t≥0 are observ-

able.24 We now establish the equivalence between learning from the history of disaggregated

signals and from the current level of a score with persistence ν(α, β) > 0.

Proposition 3 (Disaggregated Histories). Consider (Qt)t≥0 as in (6) with α + β > 0.

1. ν(α, β) > 0 is the unique maximizer of G(·, α, β).

2. If firms observe the histories of (ξt)t≥0 and their beliefs are stationary, then the posterior

mean process is affine in a stationary Gaussian score (4) with φ = ν(α, β).

3. If firms only observe the current value of a stationary Gaussian score with φ = ν(α, β),

their beliefs coincide with those that arise from observing the histories ξt, t ≥ 0.

The persistence level ν(α, β) aggregates the data generated by a linear strategy Q with

coefficients (α, β) without loss of information for a given fixed behavior—it defines what an

optimal score in a statistical sense would look like.25 Given a score with generic persistence

φ > 0, however, a strategic consumer need not choose the coefficients (α(φ), β(φ)) for which

the score is an optimal filter in a statistical sense, i.e., for which φ = ν(α(φ), β(φ)). The

importance of these fixed points is clear: if an equilibrium in which the firms have access to

disaggregated signals exists, then, by Proposition 3, the weight with which the associated

beliefs discount past purchase signals must solve φ = ν(α(φ), β(φ)).

Definition 2 (Non-concealing score). A score with persistence φ > 0 is non-concealing if

φ = ν(α(φ), β(φ)). (19)

24γ(α) is the unique positive root of x 7→ α2x2/σ2
ξ + 2κx− σ2

θ = 0.
25ν(α, β) > κ, reflecting the identification problem faced by the firms while observing (ξt)t≥0. The proof

of Proposition 3 can be found in section S.2.2 of the Supplementary Appendix.
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We now introduce the main result of this section: there exists a unique of a solution to

(19) and the firms’ learning is maximized to the left of it. That is, learning is enhanced by

scores that are more persistent than the unique non-concealing score, despite such scores

concealing some information about the consumer’s behavior (as φ 6= ν(α(φ), β(φ)) in those

cases).26 The reason is that the consumer signals her type more aggressively in that case.

Without fear of confusion, letG(φ) := G(φ, α(φ), β(φ)), denote the equilibrium gain function.

Proposition 4 (Uniqueness of a Non-Concealing Score and Signaling).

(i) There exists a unique φ∗ ∈ R+ solving φ = ν(α(φ), β(φ)).

(ii) The coefficient α(·) is strictly decreasing at the fixed point φ = φ∗.

(iii) The equilibrium gain function G(φ) ∈ [0, 1] is maximized in (0, φ∗).

(iv) The function G(φ;σξ) is decreasing in σξ for all φ > 0.

By the definition of an optimal filter, changing the persistence of the score has only a

second-order effect on learning, holding (α, β) constant.27 Increasing α, however, has a first-

order effect on learning, as the score is now more sensitive to the consumer’s type. Thus, the

indirect effect on the consumer’s incentives to reveal information drives the firms’ learning

around φ∗, while the direct effect of φ dominates away from the optimal filter φ∗. Figure 3

plots G as a function of φ− ν(φ): its maximum is located to the left of the vertical axis.
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Figure 3: (r, σθ, σξ, κ) = (5, 1, 1/5, 1).

26The uniqueness of a non-concealing score establishes the uniqueness of a stationary linear Markov equi-
librium when the histories of (ξt)t≥0 are observable. At the heart of this result is the strategic substitutability
between the firms’ conjectured actions and the consumer’s actual choices, as discussed section 4.4.

27Marginally increasing β at (φ∗, α(φ∗), β(φ∗)), in turn, has no first-order effect on the amount of in-
formation transmitted either: β is the coefficient on Mt in the consumer’s strategy, and at φ∗, the score
perfectly accounts for the contribution of the beliefs to the recorded purchases.
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That a reduction in φ from φ∗ increases α for all discount rates is somewhat surprising:

even a very patient consumer finds it optimal to attach a higher weight to her type, despite

the consequences that more persistent scores can have for long-term prices. Opposing this

force is the fact that a score that attaches an excessive weight to past signals also correlates

less with the consumer’s current type (sensitivity-persistence tradeoff). This results in a

reduced sensitivity of beliefs (and hence, of prices) to changes in the score. In turn, less

sensitive prices make the consumer less concerned about purchasing large quantities.28

To see why the sensitivity effect is relatively stronger for all r > 0, recall that the

coefficient α reflects the relative value of future savings for a marginally higher type θt,

as derived in (16). From Section 4.4, the sensitivity of the value of future savings to the

consumer’s current type reflects both the direct impact of a shock to θt on future types

(which decays at a rate κ) and its indirect impact on future prices (which depreciates at rate

r + φ) via the change in the quantity demanded.

With a linear relationship between (Yt)t≥0 and (θt)t≥0, the equilibrium gain function G(φ)

is also akin to an impulse response, where a shock to a past type θs, s < t, has an impact on

the past score Ys that depreciates at rate φ. However, the type shock itself depreciates at

rate κ. Loosely speaking then, the gain function is akin to the undiscounted impulse response

of the marginal value of future savings to a shock to θt. The gain function and the marginal

value of future savings then differ only in that discounting gives the immediate future more

relevance in the latter. As a result, the sensitivity-persistence tradeoff is tilted in favor of

the sensitivity effect. This, in turn, leads a consumer with any degree of time preference

to become more responsive to her type when the impact of quantities on future prices is

backloaded relative to the non-concealing score φ∗, which facilitates price discrimination.

Finally, part (iv) shows how noise and persistence have qualitatively different effects on

equilibrium learning when consumers are strategic. Lemma A.4 in the Appendix shows that

increasing σξ also increases α, just as reducing φ below φ∗ does. However, while distorting

persistence away from the optimal filter triggers sufficiently strong equilibrium effects, adding

noise to the purchase signals reduces G unambiguously: the intuition is that, unlike moving

φ around φ∗ (a choice variable), increasing σξ (a parameter) has a negative first-order effect

on learning, which trumps the increase in α. In other words, adding exogenous noise to

purchase signals is an inferior means to manage the ratchet effect.29

28The trade-off between persistence and sensitivity also arises in signal-jamming models with symmetric
uncertainty. See, for example, Cisternas (2017) in the context of career concerns.

29In the Supplementary Appendix Section S.2.2 we establish a stronger result for the case of public
disaggregated histories: the equilibrium gain G(φ∗(σξ), σξ) is decreasing in σξ, even though φ∗(·) is itself
decreasing. Thus, additional noise is not conducive to more learning in a world without scores.
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6 Welfare Analysis

We now turn to the welfare consequences of observable scores. We show that firms can profit

from relatively persistent scores, and that such scores do not necessarily hurt consumers

relative to a setting without price discrimination. Omitting the dependence of Pt and Mt on

φ, and using that E[Qt|Yt] = Pt, firm t’s ex ante profits are given by

Π(φ) := E[PtQt] = E[P 2
t ] = E[Pt]

2 + Var[Pt], t ≥ 0. (20)

A similar calculation yields the ex ante flow consumer surplus,

CS(φ) = E[Pt]

(
µ− 3

2
E[Pt]

)
+ L(φ)Var[Pt] + α(φ)

(
1− α(φ)

2

)
Var[θt], (21)

where L(φ) := α(φ)2/2+β(φ)
(α(φ)+β(φ))2

− 3
2

is a negative function.30

We know from Proposition 2 that E[Pt] > µ/3. Therefore, consumer surplus is decreasing,

and producer surplus is increasing, both in the expected price level and in the firms’ ability

to tailor prices based on the information contained in the score, the latter measured by the

ex ante variability of the price.31 Moreover, these two moments respond very differently to

the score’s persistence φ and to the average willingness to pay µ. Indeed, we have

E[Pt] = (α(φ) + β(φ) + δ(φ))µ and

Var[Pt] = (α(φ) + β(φ))2Var[Mt] = (α(φ) + β(φ))2Var[θt]G(φ).

On the one hand, the expected price is largest for uninformative scores (φ = 0 and φ→∞):

the ratchet effect benefits the consumer through a lower expected price for all informative

scores. On the other hand, the variance of the price inherits all of the properties of the

equilibrium gain function G derived in Proposition 4. In particular, it is maximized by some

φ ∈ (0, φ∗), i.e., by an informative and persistent score.32

The effect of the expected price on consumer surplus is proportional to µ2: the benefit of

low prices is higher when the average willingness to pay µ is high, and discounts are applied

30The derivation of the expressions for CS(φ) and Π(φ), as well as the determination of the sign of L can
be found in section S.2.3 in the Supplementary Appendix.

31Moreover, α(φ) ≤ 1 implies that the third term is increasing in α: by shading down her demand, the
consumer moves away from her static optimum, reducing her surplus.

32This is also proved in section S.2.3 in the Supplementary Appendix. The variance of the price can be
interpreted as the value of information to the firms: since Var[Pt] = E[PtQt] − E[Pt] · E[Qt], the variance
Var[Pt] measures the supplemental profits relative to pricing under the consumer’s equilibrium strategy, with
the knowledge of the prior distribution only. As such, it is a good proxy for a monopolist data broker’s profit.
See Bergemann and Bonatti (2019) for a model of intermediation in the market for consumer information.
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to a larger number of units. Instead, the costs of price discrimination for the consumer are

independent of her average willingness to pay µ. Thus, consumers with a high µ benefit more

from the availability of information than those with low µ, and firms derive a net benefit

from informative scores only if µ is low enough. See Figures 4 and 5.
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Figure 4: Consumer Surplus: (σθ, σξ, κ, r) = (1, 0, 1, 0.8) and µ ∈ {1, 2, 3}
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Figure 5: Producer Surplus: (σθ, σξ, κ, r) = (1, 0, 1, 0.8) and µ ∈ {1, 2, 3}

The presence of several nonlinear terms in the expressions for consumer surplus and firms’

profits makes the full characterization of the associated optimal degrees of persistence as a

function of primitives a daunting task. For this reason, we specialize some of our welfare

results to the noiseless limit σξ ↘ 0, in which further insights can be obtained.33

Let φc and φf denote the consumer and firm optimal persistence levels, respectively.

Proposition 5 (Optimal Persistence). For all σξ > 0:

(i) φf is interior for sufficiently low µ > 0, and φf ∈ {0,∞} for µ above a threshold;

(ii) φc is interior for µ above a threshold, and φc ∈ {0,∞} for sufficiently low µ > 0;

In the pointwise limit of Π(·) and CS(·) as σξ ↘ 0:

33When σξ = 0, all coefficients can be solved for in closed form, and the model is of class C1 around that
point (section S.3 in the Supplementary Appendix).
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(iii) for all µ > 0, there exists a firm-optimal φf <∞ = lim
σξ↘0

φ∗(σξ);

(iv) there is an interval of values of r/κ over which φf and φc are continuous and monotone.

Moreover, φf > 0 if and only if µ <
√
r/κ and φc > 0 if and only if µ > 3

√
r/κ.

Parts (i) and (ii) establish sufficient conditions for the informative and uninformative

optima for the firms and the consumer. Part (iii) formalizes our intuition that firms ben-

efit from aggregating information into (excessively) persistent scores.34 Figure 6 illustrates

the result in part (iv): there exists a range of µ over which all market participants prefer

uninformative scores, which is intuitive, because information reduces total surplus.

ϕc

ϕf

2 4 6 8 10 μ

0.5

1.0

1.5
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ϕf , ϕc

Figure 6: Optimal Persistence, (σθ, σξ, κ, r) = (1, 0, 1, 0.8)

Finally, we contrast the expected consumer surplus in the strategic case with the naive-

consumer benchmark (Section 3) in the noiseless limit case. Intuitively, a naive consumer,

who demands the static quantity as in Section 3, suffers the costs of tailored prices without

reaping the benefits of lower average prices. Thus, regardless of whether firms or consumers

would prefer informative or uninformative scores, consumers should be better off acting

strategically than following the myopic demand Qt = θt − p.

Proposition 6 (Näıve vs. Strategic Consumers). In the limit as σξ ↘ 0, consumer surplus

is larger when consumers are strategic than when they are naive for all φ > 0.

In Section 7, we show that this result is more subtle than it seems: strategic consumers

who cannot observe their score would sometimes be better off acting myopically.35

34When σξ ↘ 0, we have φ∗ → ∞ but G(φ∗) → 1 due to λ → ∞. Therefore, the non-concealing score
maximizes learning in this case, but not profits.

35Proposition 6 can be strengthened to hold in neighborhoods of σξ = 0 for compact sets of persistence
levels. This is because the equilibrium variables are of class C1 as functions of (φ, σξ) ∈ (0,∞) × [0,∞),
and so they converge uniformly over compact sets as σξ ↘ 0 (refer to section S.3.3 in the Supplementary
Appendix for details). The same applies to Proposition 9 in the next section.
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7 Hidden Scores

In this section, we study the case in which the score Yt is observed by firm t but hidden to the

consumer for all t ≥ 0. The goal of this exercise is twofold: first, to better understand the

mechanism by which directly observing her score can help a strategic consumer; second, to

predict the welfare implications of growing consumer sophistication (i.e., concerns regarding

discriminatory practices) under alternative information structures.

Relative to Section 2, because the consumer no longer directly observes her score, we

now suppress the dependence of a consumer linear Markov strategy on Yt. Instead, a linear

strategy for the firms is as in the baseline model. Thus, the objects of interest are

Q(θ, p) = δhµ+ αhθ + ζhp and (22)

P (Y ) = πh0 + πh1Y, (23)

where the superscript h stands for hidden. The corresponding concepts of admissible strate-

gies, equilibrium, and stationarity are all straightforward modifications of those introduced

in Section 2.36 We again focus on stationary linear Markov equilibria.

Hidden scores have important strategic implications. First, both the firms and the con-

sumer can now signal their private information. In particular, if πh1 6= 0, the firm’s strategy

is invertible, and hence the consumer perfectly learns her score along the path of play; the

consumer then has the same information as in the observable case on the equilibrium path.

However, by signaling the level of the consumer’s current score, today’s price provides in-

formation about future firms’ beliefs, and hence about future prices. As it turns out, this

informational channel deeply affects the consumer’s incentives.37

Second, from a technical perspective, the price sensitivity of demand ζh is determined

along the equilibrium path, unlike in the case of observable scores, where off-path prices

are required. The motivation comes from discrete time: with a hidden that has full-support

noise, (i) the consumer is not able to predict the next period’s price using today’s observation

and (ii) any price realization is possible. Thus, the price process induced by a linear strategy

exhibits the required intra-temporal variation to be able to identify the slope of demand.38

36For consistency, therefore, we consider admissible strategies that condition on (θt, Pt)t≥0, rather than
on (θt, Yt)t≥0, in the consumer’s problem. Observe, however, that this choice is innocuous when πh1 6= 0.

37See Cisternas and Kolb (2019) for a model in which a myopic player privately monitors the actions of
a long-lived player with private information, but where both players observe actions distorted by noise.

38In continuous time, the price process induced by a linear Markov pricing strategy will have continuous
paths, so deviations can be detected. Because with full-support noise this issue arises only in continuous
time, we refine our equilibrium in the continuous-time game by assuming that the firms conjecture that the
consumer responds to a (intra-temporal) deviation with a sensitivity that coincides with the (inter-temporal)
sensitivity of the quantity demanded along the path of play of a candidate Nash equilibrium. Thus, as in
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7.1 Equilibrium Analysis with Hidden Scores

Turning to equilibrium analysis, it is immediate that any equilibrium must entail ζh < 0.

Hence, firm t sets the monopoly price P (Yt) = −[δhµ + αhMt(Yt)]/[2ζ
h]. We therefore seek

to characterize an equilibrium in which the on-path purchase process is of the form

Qt = δhµ+ αhθt + ζh
[
−δ

hµ+ αhMt

2ζh

]
︸ ︷︷ ︸

=Pt

=
δh

2
µ+ αhθt + βhMt, (24)

where βh := −αh/2 and Mt = µ+ λh[Yt − Ȳ h] for some λh and Ȳ h, t ≥ 0. In particular, the

realized prices and quantities satisfy Pt = −E[Qt|Yt]/ζh along the path of play.39

As in Theorem 1, the quest for stationary linear Markov equilibria reduces to a single

equation for the coefficient αh on the consumer’s type. This equation is identical to (11) in

the observable case, replacing B(φ, α) ∈ (−α/2, 0) with −α/2.40

Proposition 7 (Existence and Uniqueness). There exists a unique stationary linear Markov

equilibrium. In this equilibrium, αh ∈ (0, 1) and the price sensitivity of demand is given by

ζh = − 2(r + 2φ)

2(r + 2φ) + αhλh
∈
(
−1,−r + 2φ

r + 3φ

)
. (25)

Crucially, demand turns out to be less price sensitive than in the observable case (i.e.,

ζh > −1). The reason is the informational content of prices when scores are hidden: by

informing the consumer that her score is high, a high price today is a signal of high prices

tomorrow, and hence of low quantities purchased in the future. This, in turn, diminishes

the scope for scaling back current purchases to reduce the price. Conversely, the advantage

of reducing prices is greater when prices are low, and the consumer is likely to buy more

in the near future. Formally, the marginal value of manipulating future prices downward is

decreasing in p due to the convexity of the consumer’s value function as shown in Figure 7.

This signaling effect of prices reduces the incentives for downward quantity deviations

relative to the observable case, at any given price. However, as we show in Proposition 8

below, the direct effect of reduced price sensitivity drives down the average quantity traded

via higher posted prices. To unify notation, we rewrite the realized demand and prices along

discrete time, the same candidate dynamic policy Q(θ, p) is used by the firms in their pricing problem.
39Since the quantity demanded (24) has the same structure as (6), the characterization of stationary

beliefs in Section 4.1 applies to the hidden case.
40Many properties of the baseline model hold here—see section S.2.4 in the Supplementary Appendix.
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Figure 7: Signaling effect of prices.

the equilibrium path in the observable case in (θ, P ) space, instead of (θ,M), as follows:

Qt = δoµ+ αoθt + ζoPt and Pt = πo0 + πo1Yt. (26)

Let (Qo,Po) and (Qh,Ph) denote the average (quantity, price) pairs in the cases examined.

Proposition 8 (Role of Transparency: strategies). In equilibrium, for all φ > 0:

(i) Sensitivity of price to score: πh1 (φ) > πo1(φ) > 0.

(ii) Sensitivity of demand to type: 1 > αo(φ) > αh(φ) > 0

(iii) Average prices and quantities: µ/2 > Ph(φ) > Po(φ) = Qo(φ) > Qh(φ) > µ/4.

Facing a demand that is less sensitive to price than in the observable case (i.e., 0 > ζh >

−1), each firm charges a price that is more sensitive to changes in the score relative to the

observable case (i.e., πh1 (φ) > πo1(φ) > 0). But when prices are more sensitive to the score,

the ratchet effect is stronger, i.e., Qo > Qh. In fact, by the Envelope Theorem, the value of

future savings in this hidden case takes the form

Qt = θt − Pt − πh1Et
[ˆ ∞

t

e−(r+φ)(s−t)Qsds

]
, t ≥ 0.

Since πh1 > πo1 = λ(α + β), the equilibrium value of a downward deviation increases. These

incentives are also stronger for higher types, explaining the ranking of signaling coefficients.

Finally, while average prices remain below the no-information case, they are higher than

when scores are observed by the consumer: the reduced price sensitivity more than compen-

sates for the strengthening of the ratchet effect.
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7.2 Consumer Surplus: Observable vs. Hidden Scores

The previous properties of prices and quantities strongly suggest that consumers are worse

off without transparency. While it is difficult to prove such conjecture at a general level, we

are able to confirm these intuitions in the noiseless limit case σξ ↘ 0, by taking advantage of

closed-form expressions in the solutions to both models when σξ = 0.41 Furthermore, we show

that, somewhat surprisingly, eliminating consumer naiveté without providing transparent

scores is not necessarily beneficial to the consumer.

Proposition 9 (Role of Transparency: Consumer Surplus). In the limit as σξ ↘ 0:

(i) for all φ > 0 consumer surplus is larger when scores are observable than hidden;

(ii) let ρ := r/κ < 4 and µ < min
{√

4−ρ
2ρ
,

√
2ρ(2ρ+1)

ρ+1

}
. Then, consumer surplus with hidden

scores is larger for all φ when consumers are naive than when they are strategic.

The key behind (i) is that observing the score allows consumers to disentangle current

from future prices: an abnormally high price today does not imply that future prices will be

high. Thus, while transparency does not add to the consumers’ information in equilibrium,

it enables consumers to eliminate the signaling effect of prices; demand is then more price

sensitive, which translates into lower prices and increased consumer surplus. Intuitively, a

consumer buys a considerably lower quantity if the price is too high, in the anticipation of

future discounts, a possibility that is simply absent when scores are hidden. Moreover, it is

possible to show that firms need not be better off with hidden scores: the stronger ratchet

effects (reduced quantities and signaling) can outweigh the benefits of high prices.42

Finally, part (ii) warns against awareness policies that are not combined with trans-

parency: strategic consumers can be hurt by hidden scores relative to the naive case. Intu-

itively, unless the discount rate is high or the ratchet effect is very costly (high µ), committing

to myopic behavior (i.e., ignoring the information content of prices) would benefit consumers,

because it preserves the price sensitivity of demand that is lost when scores become hidden.

41We thank an anonymous referee for this suggestion. Observe that the hidden-scores model exhibits a
discontinuity at σξ = 0. Specifically, by keeping track of her purchases, the consumer always knows her
score when there is no noise: the hidden and observable models then coincide. However, because the price
sensitivity of demand is determined differently in each case, the limits of the (hidden) coefficients as σξ ↘ 0
differ from their observable counterparts. See Supplementary Appendix section S.3 for more details.

42In the proof of this result (Supplementary Appendix section S.2.4) we show that this always happens
for φ sufficiently large. This is due to a permanent wedge between the signaling coefficient in the hidden
case and the observable counterpart as φ grows, which leads to both depressed learning and low quantities.
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8 Applications

Our results have two policy implications for the debate on privacy. First, the results on opti-

mal persistence (Section 6) do not support blanket regulations that eliminate data collection

and transmission, as adverse uses of information can have positive effects for consumers:

when purchase histories are tracked to personalize prices, strategic consumers implicitly de-

mand compensation for the information they reveal.43 Second, the results in Section 7 suggest

the need for joint policy interventions: while transparency policies are always beneficial, they

may be in fact necessary. In other words, partial regulation that promotes awareness may

backfire if it only makes consumers aware of the informational content of prices.

In this section, we evaluate the credibility of these policy recommendations in light of ob-

served behavior in real-world markets. First, recall that our analysis relies on the assumption

that strategic consumers—who are aware of the underlying mechanisms—manipulate their

scores. To validate this assumption, we document various consumer responses to behavior-

based price discrimination in a number of economically relevant settings. Put differently,

lack of information, and not consumer naiveté, is the main obstacle to score manipulation.

Second, our transparency recommendation exploits an equilibrium phenomenon by which

strategic consumers become more price sensitive when they can independently verify the

information used to set prices. Along these lines, Section 8.2 validates the plausibility of this

mechanism by looking at evidence from the use of FICO credit scores in the U.S. Finally,

relying on a growing suggestive evidence of personalized pricing that it is argued is happening

today, Section 8.3 describes concrete markets where score-based price discrimination is likely

to play a critical role in the near future.

8.1 Buyers’ Strategic Behavior

Shopping cart abandonment There is widespread evidence of this problem for online

merchants that occurs whenever shoppers fail to complete a purchase after selecting a prod-

uct.44 Abandonment often triggers an email by the vendor with a promotional offer, which

suggests the profitability of searching for a specific product, and then waiting for a lower

price.45 Salesforce reports that approximately 40% of consumers open emails from stores

43This is in sharp contrast to any information obtained by the firms from exogenous sources. As in our
naive case, this information is bound to benefit firms and to harm consumers if it is later used against them.

44Salescycle reports that approximately 77% of carts go unfinished (for a myriad reasons). See
https://blog.salecycle.com/infographics/infographic-the-remarketing-report-q3-2018/.

45“Let it be: If you can bear to wait, try leaving your item in the shopping cart for a day. The retailer
might send you an email offering a discount on that item. Or you might find a discount in your social feeds,”
https://clark.com/shopping-retail/online-shopping-hacks/.
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about their abandoned shopping carts—a response rate far higher than for regular market-

ing material, which is consistent with consumers’ attempts to induce discounts.

Rideshare services Most consumers in the US are aware that rideshare platforms such

as Uber personalize prices on the basis of individual and market characteristics, e.g., the

use of a personal vs. business credit card, but also their past behavior on the app (The

Guardian, 2018). In an attempt to lower their prices, many consumers experiment with

various techniques to get around the algorithm. These strategies include requesting and then

rejecting quotes for unnecessary rides, so to simulate greater price sensitivity; and changing

the destination address mid-route, which leverages discrepancies the pricing algorithm.46

Online display advertising In this market, any publisher or website owner can be a

seller of advertising space; and the demand for space comes from advertisers who wish to

reach a targeted population of final consumers.47 Sellers are able to price discriminate, both

across buyers and over time, by choosing personalized reserve prices in real-time auctions

for advertising space (Kanoria and Nazerzadeh, 2017). Information about past auction

outcomes is aggregated and distributed by Supply-Side Platforms—technology platforms

that help sellers manage their space, and can also set reserve prices on their behalf (European

Commission, 2018).48

A growing body of theoretical and empirical work recognizes the importance of the ratchet

effect in this market. Furthermore, the ratchet effect influences practical algorithm and

market design by technology platforms. Lahaie, Munoz Medina, Sivan, and Vassilvitskii

(2018) develop tests based on bid perturbations to identify the relationship between past

bids and future reserve prices. Similarly, the demand-side platform Criteo advertises its

ability to reduce bids when (static) second-price auction mechanics are manipulated by the

seller (Abeille, Calauzènes, Karoui, Nedelec, and Perchet, 2018).

All three examples are consistent with the role of information in enabling consumers’

strategic behavior: buyers are aware of the potential for dynamic price discrimination, and

they do attempt to manipulate prices. Sellers are also wary of the ratchet effect, although

they differ in their approach to mitigating its consequences. Consistent with our model, some

46See https://therideshareguy.com/uber-is-ripping-off-frequent-riders-and-heres-how-to-avoid-it/. Inter-
estingly, consumer perception of personalization may go well beyond the actual extent of price discrimina-
tion. For example, a consumer may mistake a surge in price due to market-level demand and supply for a
personalized price, and hence take unnecessarily costly actions to reduce her fare.

47Worldwide spending on online display ads totaled $53 billion in 2018, i.e., 20% of all digital advertising
revenues (Statista DMO 2019, https://www.statista.com/outlook/216/100/digital-advertising/worldwide).

48Supplementary Appendix S.1 provides a comprehensive description of this market.
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sellers view the value of information as sufficiently high to encourage dynamic personalized

pricing, while others prefer to limit the value of strategic behavior. For example, the Rubicon

Project (a supply-side platform that places almost $1 billion in advertising spending per year)

has recently stopped allowing reserve prices to adjust based on past behavior specifically

citing concerns over buyer manipulation (The Rubicon Project, 2014).

At the same time, these examples fail to capture some important features of our model.

Most notably, consumer scores of the kind just described do not guide the prices set by

different sellers. Instead, a single seller interacts with the buyer over time. While this makes

it more likely that consumers are aware of behavior-based price discrimination, it also limits

the likelihood that purchase histories are aggregated into scores of arbitrary persistence.

(In terms of our model, for example, Uber and Google have access to the full history of

signals.) Furthermore, repeated interaction with the same seller introduces the potential

for non-Markov equilibria and seller reputation effects, which can generate very different

dynamics along the path of play. The sellers in our three examples express concerns over

buyers’ responses that are consistent with both types of equilibria.49

8.2 The Role of Score Transparency

“Consumer scores stand today where credit scores stood in the 1950s: in the shadows”

(Dixon and Gellman, 2014). Not surprisingly, consumers’ experience with credit scores in

various countries helps us cast our results on transparency in a concrete setting.50

In the U.S., FICO credit scores are used to determine the borrowing conditions (interest

rates, maximum amounts) for consumers. It is well-known that consumers can manipulate

such scores to improve their borrowing opportunities. Indeed, countless websites explain

how to improve scores (e.g., do not apply for credit cards, avoid bad credit, consolidate debt,

etc.) and also offer score simulations to check the consequences of a hypothetical default

on a bill payment. Most relevant to our results, the FICO Score Open Access program is

designed such that the score the customer sees exactly matches a score version the lender

uses within their risk management decisions.51 Credit bureaus advertise the transparency of

their products as enabling consumers to “stop overpaying for credit.”

A similar message applies to consumer scores used to set prices. For example, consider

49The marketing agency ActiveCampaign warns firms, “If you regularly use coupons and discounts to move
merchandise, [...] people wait for sales before they buy” (https://www.activecampaign.com/blog/abandoned-
cart-coupon/). Similarly, The Rubicon Project (2014) claims, “Using buy-side dimensions when setting price
floors results in buyer distrust [and] changes in bidding behavior.”

50Transparency policies have proved effective in other settings, such as in the analysis of overdraft fees
(Grubb, 2015). Although data brokers make few attempts at improving transparency, recent state laws in
California and Vermont, and proposed legislation in New York attempt to hold brokers more accountable.

51See https://www.fico.com/en/products/fico-score-open-access/.

31



the Equifax Discretionary Spending Index (DSI)—a hidden score from 1 to 1000, whose ob-

jective is to “Better understand how much customers can spend [in order to] create targeted

promotions that appeal to them.”52 Ezrachi and Stucke (2016) suggest that the inability to

access scores such as this one in real time prevents consumers from “assessing their outside

options” correctly, and leads them to accept higher prices. This mechanism is quite close to

the one at work in our model with hidden scores: the forces that make a strategic consumer

more price sensitive cannot operate unless the consumer can correctly estimate the quantity

she will demand in the future, and hence the value of manipulating her score.53

8.3 Future Trends

The key features of our model—that firms use behavior-based data to guide pricing, and

that scores compress such data into low-dimensional statistics that exhibit persistence—are

becoming increasingly relevant in a number of consumer markets. In particular, there is

growing evidence of discriminatory pricing online, more so than when the practice was first

brought to the public’s attention (Dixon and Gellman, 2014; Council of Economic Advisers,

2015). A recent petition filed to the Federal Trade Commission lists retail and travel websites

as sectors where prices and products are often personalized. Although the price differences

across individuals are not huge, the business volume of these sellers is such that “it is likely

that they are inflicting a relatively small harm on a large number of consumers under the

FTC’s standard” (Section III. in Represent Consumers (2019)).

In addition to consumer retail, an area of increasing public concern in the US is health

insurance. As documented by Allen (2018), insurance companies are using data from various

sources to learn more about their clients and map them into scores (“social determinants of

health”); further, experts say that these practices are entirely legal, as the Health Insurance

Portability and Accountability Act (HIPPA) only restricts the use of medical information

for insurance pricing. As awareness of the linkages between consumer behavior and the

information collected by insurance companies is likely to increase over time, we expect the

use of consumer metrics for pricing policies to give rise to similar tradeoffs as our model.

The use of scores-based price discrimination is also bound to increase dramatically in the

market for consumer credit worldwide. This expansion mostly by the creation of new credit

scores in China. In particular, Ant Financial (a division of Alibaba) produces the Zhima

(Sesame) Credit score on the basis of several dimensions in addition to consumer’s financial

52See https://www.equifax.com/business/discretionary-spending-index/.
53The language of outside options suggests a search model with unit demand. Although our consumer’s

utility is additively separable in the quantity purchased at different times, the link between current con-
sumption and future prices makes purchases at different times substitutes in our model.
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history. These dimensions include mobile wallet transactions on Alipay, online browsing and

shopping behavior, personal characteristics, and even interpersonal relationships on social

media.54 Tencent developed a similar score with data from WeChat Pay (Wired, 2018).

In addition to these new data sources, what brings these scores closer to our model is

that a wide variety of vendors and lenders can access them on the Alipay and Tencent plat-

forms: de la Mano and Padilla (2019) report, “Ant Financial’s Zhao Cai Bao marketplace

allows third-party financial institutions to offer loans to small and medium enterprises, and

individuals [...]” As further evidence of the use of scores by third parties (i.e., not just Ant

Financial), consider that Ant Credit Pay (Alipay’s consumer credit product) has 100 million

active users, but Zhima Credit Scores cover more than 300 million Chinese consumers. Fi-

nally, both the Alibaba and Tencent scores inform the Chinese government’s Social Credit

System. This creates an interesting natural experiment on transparency, whereby the gov-

ernment score is hidden to the public, but the credit scores it is based on are observed by

individual consumers.

9 Conclusions

We have explored the informational and welfare consequences of using purchase histories to

price discriminate, with special emphasis on the use of scores and their transparency, a topic

of central importance for recent regulatory efforts aimed at protecting consumers. Critically,

we have uncovered an equilibrium mechanism by which transparency can help consumers.

Our model makes a number of simplifying assumptions, the strongest of which is perhaps

the restriction to a continuous score with exponential weights. From an applied standpoint,

moreover, consumer scores used to set prices also have other effects. In the case of insurance,

a consumer attempting to manage her score might adopt better driving habits. In the case of

marketing, scores are partly based on the idea of excluding “bad customers” and targeting

the firm’s effort in sales or service. Furthermore, scores clearly have other uses beyond

price discrimination. For example, Brayne (2017) describes the role of risk and merit scores

in driving law enforcement’s “stratified surveillance” practices. Thus, our model is just a

natural benchmark for starting an informed debate on the economics of consumer scores.

54See https://www.alibabagroup.com/en/news/article?news=p150128.
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Appendix: Proofs

Proofs for Section 3

Proof of Proposition 1. Parts 1 and 2 follow from the expressions for consumer and

producer surplus. Part 3 follows directly from the weight on θt not responding to the firms’

information structure. Finally, 4 is a special case of Proposition 3. �

Proofs for Section 4

The statements in Section 4.1 follow from the next

Lemma A.1 (Stationarity and Beliefs). A process (θt, Yt)t≥0 with (Qt)t≥0 as in (6) and

Mt = E[θt|Yt] for all t ≥ 0 is stationary Gaussian if and only if:

(i) Mt = µ+ λ[Yt − Ȳ ], with Ȳ = µ(α + β + δ)/φ and λ =
ασ2

θ(φ−βλ)

α2σ2
θ+σ2

ξκ(φ−βλ+κ)
;

(ii) the score process (4) is mean reverting: φ− βλ > 0;

(iii) (θ0, Y0) ∼ N ([µ, Ȳ ]>,Γ) is independent of (Zθ
t , Z

ξ
t )t≥0, where the long-run covariance

matrix Γ is given in (A.2).

Proof of Lemma A.1. Suppose that (θt, Yt)t≥0 is stationary Gaussian. By stationarity,

E[Yt] and Cov[θt, Yt]/Var[Yt] are independent of time; let Ȳ and λ denote their respective

values (to be determined). Moreover, by normality, Mt := E[θt|Yt] = µ+ λ[Yt − Ȳ ], t ≥ 0.

Let δ̂ := δµ + β(µ − λȲ ) and β̂ = βλ. We can then write the quantity demanded (6)

as Qt = δµ + αθt + βMt = δ̂ + αθt + β̂Yt, t ≥ 0. Using that dξt = Qtdt + σξdZ
ξ
t , we can

conclude that (θt, Yt)t≥0 evolves according to

dθt = −κ(θ − µ)dt+ σθdZ
θ
t ,

dYt = [−(φ− β̂)Yt + δ̂ + αθt]dt+ σξdZ
ξ
t t > 0.

The previous system is linear, and thus admits an analytic solution. Specifically, letting

X :=

[
θ

Y

]
, A0 :=

[
κµ

δ̂

]
, A1 :=

[
κ 0

−α φ− β̂

]
, B :=

[
σθ 0

0 σξ

]
and Z :=

[
Zθ
t

Zξ
t

]
,

we can write dXt = [A0 − A1Xt]dt+BdZt, t > 0, which has as unique (strong) solution

Xt = e−A1tX0 +

ˆ t

0

e−A1(t−s)A0dt+

ˆ t

0

e−A1(t−s)BdZs, t ≥ 0, (A.1)

34



where eA1t denotes the matrix exponential (Section 1.7 in Platen and Bruti-Liberati (2010)).

From the additive structure of (A.1), Xt is Gaussian for all t ≥ 0 if and only if X0

is Gaussian. But this implies that X0 must be independent of Z := (Zt)t≥0 for Z to be

a Brownian motion under the (null-sets augmented) filtration generated by Z and X0.55

Letting N (~µ,Γ) denote the stationary distribution of Xt, t ≥ 0, it follows that ~µ ∈ R2 and

the 2× 2 covariance matrix Γ must satisfy the equations

E[Xt] = ~µ ⇔ e−A1t~µ+ [A−1
1 − e−A1tA−1

1 ]A0 = ~µ and

Var[Xt] = Γ ⇔ e−AttΓe−A
T
1 t + e−A1tVar

[ˆ t

0

eA1sBdZs

]
e−A

T
1 t = Γ,

where Var[·] and T denote the covariance matrix and transpose operators, respectively.

Observe that the first condition leads to ~µ = A−1
1 A0 provided A1 is invertible. This,

in turn, happens when φ − βλ 6= 0—we assume this in what follows. Regarding the sec-

ond condition, differentiating it and using that Var
[´ t

0
eA1sBdZs

]
=
´ t

0
eA1sB2eA

T
1 sds yields

−A1Γ − ΓAT1 + B2 = 0. Using that ~µ = (E[θt],E[Yt])
T = (µ, Ȳ )T , and that Γ11 = Var[θt],

Γ12 = Γ21 = Cov[θt, Yt] and Γ22 = Var[Yt], it is then easy to verify that

~µ =

[
µ

δ̂+αµ

φ−β̂

]
and Γ =

[
σ2
θ

2κ

ασ2
θ

2κ(φ−βλ+κ)
ασ2

θ

2κ(φ−βλ+κ)

α2σ2
θ+κσ2

ξ (φ−βλ+κ)

2κ(φ−βλ)(φ−βλ+κ)

]
. (A.2)

To guarantee that the previous expressions indeed correspond to the first two moments

of stationary Gaussian process, however, we must verify that Γ is both positive semi-definite

and finite. Since σ2
θ/2κ > 0, positive semi-definiteness reduces to

det(Γ) ≥ 0⇔
σ2
ξκ(φ− β̂ + κ)2 + α2σ2

θκ

(φ− β̂ + κ)2(φ− β̂)
> 0⇔ φ− β̂︸︷︷︸

=βλ

≥ 0.

Because φ−βλ 6= 0, however, it follows that φ−βλ must be strictly positive. As a byproduct,

Γ22 > 0 is finite. This proves (ii) and (iii).

To finish the proof, we find λ and Ȳ that are consistent with Bayes’ rule given a score

process that is driven by (6). Using (A.2),

λ =
Cov[θt, Yt]

Var[Yt]
=

ασ2
θ(φ− βλ)

α2σ2
θ + κσ2

ξ (φ+ κ− βλ)
and Ȳ =

µ[α + β + δ]

φ

55Denote such filtration by (Gt)t≥0. In the absence of independence, there must t ≥ 0 such that Zt is not
independent of G0; but this violates the independent-increments requirement of a Brownian motion.
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where the last equality follows from Ȳ = [δ̂ + αµ]/(φ − βλ) and δ̂ = δµ + β(µ − λȲ ); this

proves (i). The converse part of the Proposition is true by the previous constructive argu-

ment. This concludes the proof. �

Proof of Lemma 1. It follows from partially differentiating (7) with respect to φ. �

Proof of Lemma 2. Consider a linear Markov strategy Q(p, θ, Y ) for the consumer with

weight equal to −1 on the contemporaneous price. Because the time-t monopolist assumes

that past purchases followed (6), we have that Mt = µ + λ[Yt − Ȳ ], t ≥ 0, where Ȳ and

λ are given in (i) in Lemma A.1. Thus, we can write Q(p, θt,Mt) = q0 + αθt + q2Mt − p

for some coefficients q0, α and q2. Importantly, the weight that the strategy attaches to the

contemporaneous price does not change under this linear transformation.

It is then direct from here that the equilibrium price and quantity are given by

Pt =
q0

2
+
α + q2

2
Mt and Qt =

q0

2
+ αθt +

q2 − α
2

Mt,

and so if realized purchases are given by Qt = δµ + αθt + βMt, contemporaneous prices

satisfy Pt = δµ + (α + β)Mt, t ≥ 0. Importantly, once the coefficients (α, β, δ) are de-

termined, simple algebra shows that prices are supported by the linear Markov strategy

Q(p, θt, Yt) = 2δµ+ [µ− λȲ ][α+ 2β] + αθt + λ[α+ 2β]Yt − p. This concludes the proof. �.

Proof of Theorem 1. Under the set of admissible strategies defined in Section 2, Verifi-

cation Theorem 3.5.3 in Pham (2009) applies. Specifically, we look for a quadratic solution

V = v0 + v1θ + v2M + v3M
2 + v4θ

2 + v5θM to the HJB equation

rV (θ,M) = sup
q∈R

{
(θ − [(α + β)M + δµ])q − q2/2− κ(θ − µ)Vθ

[λq − φ
(
M − µ+ λȲ

)
]
∂V

∂M
(θ,M) +

λ2σ2
ξ

2

∂2V

∂M2
+
σ2
θ

2

∂2V

∂θ2

}
subject to standard transversality conditions. To find a stationary linear Markov equilibrium,

however, (i) we impose the fixed-point condition that the optimal policy is of the form

δµ + αθ + βM , and (ii) with the use of the equation for λ (equation (7)), find coefficients

that satisfy the stationarity condition φ− βλ > 0 (part (ii) in Lemma A.1).

To this end, observe that the first-order condition of the HJB equation reads

q = θ − [δµ+ (α + β)M ] + λ[v2 + 2v3M + v5θ]

= −δµ+ λv2 + [1 + λv5]θ + [2λv3 − (α + β)]M
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which leads to the following system matching-coefficient conditions:

δµ = −δµ+ λv2, α = 1 + λv5, and β = 2λv3 − (α + β). (A.3)

By the Envelope Theorem, moreover,

(r + φ)[v2 + 2v3M + v5θ] = −(α + β)[δµ+ αθ + βM ]− κ(θ − µ)v5

+[λ(δµ+ αθ + βM)− φ(M − µ+ λȲ )]2v3, (A.4)

which yields the following system of equations
(r + φ)v2 = −(α + β)δµ+ κµv5 + [λδµ+ φ(µ− λȲ )]2v3

(r + 2φ)2v3 = −(α + β)β + 2v3λβ

(r + κ+ φ)v5 = −(α + β)α + 2v3λα.

(A.5)

Using that v2, v3 and v5 can be written as a function of α, β and δµ, (A.5) becomes

(r + φ)2δµ
λ

= −(α + β)δµ+ κµα−1
λ

+ [λδµ+ φ(µ− λȲ )]α+2β
λ

(r + 2φ)α+2β
λ

= −(α + β)β + β(α + 2β)︸ ︷︷ ︸
=(β)2

(r + κ+ φ)α−1
λ

= −(α + β)α + α(α + 2β)︸ ︷︷ ︸
=αβ

.

(A.6)

where we have assumed that λ 6= 0. In fact, since φ−βλ > 0 in any stationary linear Markov

equilibrium, the equation for λ (i.e., (7)) implies that λ 6= 0 as long as α 6= 0; but the latter

is a corollary of the following lemma.

Lemma A.2. Any stationary linear Markov equilibrium must satisfy α ∈ (0, 1).

Proof. Consider a stationary linear Markov equilibrium with coefficients (α, β, δ). Straight-

forward integration shows that the consumer’s equilibrium payoff is quadratic, and thus the

system of equations (A.6) holds.

Suppose that α = 0. From (7), λ = 0, and so Mt = µ for all t ≥ 0; but this implies

that prices are constant, and hence, it is optimal for the consumer to behave myopically by

choosing Qt = θt − p, a contradiction. If instead α < 0, the last equation in (A.6) yields

φ− βλ = (r + κ)

(
1

α
− 1

)
+
φ

α
< 0,
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which is a contradiction with the equilibrium being stationary ((ii) in Lemma A.1).

The case α = 1 can be easily ruled out too: since λ > 0 in this case, the last equation

in the system (A.6) yields that β = 0, but the second equation then implies that α = 0, a

contradiction. As a corollary, β 6= 0 in a stationary linear Markov equilibrium.

Suppose now that α > 1. The last two equations of (A.6) can be used to solve for β

and thus to find an expression for λ as a function of φ, α, and the parameters r and κ. In

addition, from the last equation in (A.6),

L := φ− βλ =
φ− α(κ+ r) + κ+ r

α
,

and hence, we can solve for φ = φ(α,L). We conclude that in the equation for λ, (7), φ can

be replaced by expressions that depend on L and α. Specifically, the resulting equation is

αLσ2
θ

κ(κ+ L)σ2
ξ + α2σ2

θ

+
(α− 1)(κ+ L+ r)(3α(κ+ L+ r)− 3κ+ L− r)

α(2α(κ+ L+ r)− 2κ− r)
= 0.

By stationarity, L > 0. Since α > 1, however, this implies that the left-hand side of this

expression is strictly positive, which is a contradiction. Thus, α ∈ (0, 1). �

We continue with the proof of the proposition. From the proof of the previous lemma,

β 6= 0. In the system (A.6), we can multiply the second equation by α 6= 0 and the third by

β 6= 0 to obtain (r + 2φ)α(α + 2β) = (r + κ+ φ)β(α− 1). From here, β = B(φ, α) where

B(φ, x) :=
−x2(r + 2φ)

2(r + 2φ)x− (r + κ+ φ)(x− 1)
∈
(
−x

2
, 0
)

when x ∈ (0, 1). (A.7)

Moreover, since α ∈ (0, 1) and φ − βλ > 0, it follows from (7) that λ > 0. However, when

α > 0 and β < 0, the unique strictly positive root of (7) is given by

Λ(φ, α, β) :=
σ2
θα(α + β) + κσ2

ξ (κ+ φ)−
√

[σ2
θα(α + β) + κσ2

ξ (κ+ φ)]2 − 4κ(σθσξ)2αβφ

2βκσ2
ξ

.

(A.8)

In particular, since α2 + αB(φ, α) = α[α + B(φ, α)] ≥ α2/2 > 0 when α ∈ [0, 1], σ2
θα(α +

B(φ, α)) + κσ2
ξ (κ+ φ) > 0 over the same range.

We conclude that λ = Λ(φ, α,B(φ, α)) in equilibrium, and so, using the last equation of

(A.6), we arrive to equation (11): namely, α ∈ (0, 1) must satisfy A(φ, α) = 0, where

A(φ, x) := (r + κ+ φ)(x− 1)− Λ(φ, x,B(φ, x))xB(φ, x), x ∈ [0, 1]. (A.9)
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We now establish the existence and uniqueness of a solution to this equation, along with

regularity properties with respect to φ > 0 and σ2
ξ > 0 that will be used later on.

Lemma A.3. For every φ > and σ2
ξ > 0, there exists a unique α ∈ (0, 1) satisfying the

previous equation. Moreover, the induced function α : (0,∞)2 → (0, 1) is of class C1.

Proof : Fix φ > and σ2
ξ > 0; the dependence of A on σ2

ξ > 0 is via Λ, and we omit

it until needed. Observe that as x → 1, B(φ, x) → −1/2 and lim
x→1

Λ(φ, x,B(φ, x)) > 0.

Hence, lim
x→1

A(φ, x) > 0. Similarly, as x → 0, B(φ, x) → 0 and B(φ, x)Λ(φ, x,B(φ, x)) → 0.

Hence, lim
x→0

A(φ, x) < 0. The existence of α ∈ (0, 1) satisfying A(φ, α) = 0 follows from the

continuity of x ∈ [0, 1] 7→ A(φ, x) and the Intermediate Value Theorem.

To show uniqueness, we prove that x 7→ −Λ(φ, x,B(φ, x))xB(φ, x) is strictly increasing

in [0, 1]. To this end, notice first that since

H(φ, x) := −Λ(φ, x,B(φ, x))B(φ, x) > 0, x in (0, 1), (A.10)

it suffices to show that x 7→ H(φ, x) is strictly increasing in the same region.

From the previous limits, lim
x→0

H(φ, x) = 0 and lim
x→1

H(φ, x) > 0; thus, there must exist

a point at which Hx(φ, x) > 0. Towards a contradiction, suppose that there is x̂ ∈ (0, 1)

s.t. Hx(φ, x̂) = 0, where Hx denotes the partial derivative of H with respect to x. Also, let

`(φ, x) := σ2
θx(x+B(φ, x)) + κσ2

ξ (κ+ φ). At any such x̂,

`x(φ, x̂) [`(φ, x̂)−
(
`2(φ, x̂)− 4κσ2

ξσ
2
θB(φ, x̂)x̂φ

)1/2
]︸ ︷︷ ︸

<0, as B<0

= 2κ(σθσξ)
2[Bx(φ, x̂)x̂+B(φ, x̂)]φ.

(A.11)

Moreover, straightforward algebra shows that

Bx(φ, x)x = B(φ, x)︸ ︷︷ ︸
<0

− x2(r + 2φ)(r + κ+ φ)

[2x(r + 2φ)− (r + κ+ φ)(x− 1)]2︸ ︷︷ ︸
>0

< 0 for x ∈ [0, 1],

so Bx(φ, x)x + B(φ, x) < 0, x ∈ [0, 1]. Thus, `x(φ, x̂) = σ2
θ [2x + Bx(φ, x̂)x̂ + B(φ, x̂)] > 0;

otherwise the left-hand side of (A.11) is positive, while the other side is negative.

Isolating the square root and squaring both sides in the first-order condition leads to the

cancellation of `2`2
x in (A.11). Dividing the resulting expression by 4κ(σθσξ)

2φ then yields

0 = `x(φ, x̂) {`(φ, x̂)[−Bx(φ, x̂)x̂−B(φ, x̂)] + `x(φ, x̂)B(φ, x̂)x̂}︸ ︷︷ ︸
K:=

+κ(σθσξ)
2[−Bx(φ, x̂)x̂−B(φ, x̂)]2φ︸ ︷︷ ︸

>0

.
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But since `x(φ, x̂) > 0, we must have that K < 0. In particular, using that `(φ, x) =

σ2
θx[x+B(φ, x)] + κσ2

ξ (φ+ κ) and κσ2
ξ (φ+ κ)[−Bx(φ, x̂)x̂−B(φ, x̂)] > 0, it must be that

σ2
θ{[x̂2 + x̂B(φ, x̂)][−Bx(φ, x̂)x̂−B(φ, x̂)] + [2x̂+ x̂Bx(φ, x̂) +B(φ, x̂)]x̂B(φ, x̂)} < 0

⇔ x̂2[−x̂Bx(φ, x̂) +B(φ, x̂)] < 0.

However, from the expression for Bx(φ, x)x, we have that −xBx(φ, x) + B(φ, x) = x2(r +

2φ)(r+κ+φ)/[2x(r+2φ)−(r+κ+φ)(x−1)]2 ≥ 0, reaching a contradiction. The continuity

of Hx implies that x 7→ H(φ, x) is strictly increasing.

To conclude, since (0, 1) × (0,∞)2 7→ A(x, φ, σ2
ξ ) is of class C1 and ∂A/∂x > 0, our ex-

istence result allows us to apply the Implicit Function Theorem: namely, around any point

(φ, σ2
ξ ) ∈ (0,+∞)2 there exists a unique function, (φ, σ2

ξ ) ∈ (0,∞)2 7→ α(φ, σ2
ξ ) ∈ (0, 1) sat-

isfying the equation, and such function is of class C1. However, since we already established

that existence and uniqueness holds over the whole domain (0,∞), the local property of con-

tinuous differentiability trivially extends globally. This concludes the proof of the lemma. �

It remains to characterize δ. Recall that the first equation in (A.6) reads

(r + φ)
2δµ

λ
= −(α + β)δµ+ κµ

α− 1

λ
+ [λδµ+ φ(µ− λȲ )]

α + 2β

λ
,

where Ȳ = µ[δ + α + β]/φ. Plugging this expression in the previous equation yields[
2(r + φ)

λ
+ α + β

]
δµ = µ

[
κ(α− 1)

λ
+
α + 2β

λ
[φ− (α + β)λ]

]
.

Observe that since α + β > 0, the bracket on the left-hand side is strictly positive. If µ = 0

this equation is trivially satisfied, i.e., the price and quantity demanded along the path of

play have no deterministic intercept (and v2 = 0, leaving the rest of the system unaffected).

If µ 6= 0, we have that δ = D(φ, α) where

D(φ, x) :=
κ(α− 1) + [α + 2B(φ, α)][φ− (α +B(φ, α))Λ(φ, α,B(φ, α))]

2(r + φ) + (α +B(φ, α))Λ(φ, α,B(φ, α))
, (A.12)

for (φ, x) ∈ (0,∞)× (0, 1), which is well-defined for all values φ > 0.

To conclude the proof, there are two final steps: determining the rest of the coefficients

and checking transversality conditions and the admissibility of the candidate equilibrium

strategy. Both are verified in section S.2.1 in the Supplementary Appendix. �
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Proof of Proposition 2. Consider the partial differential equation (PDE)

−(α + β)[δµ+ αθ + βM ] + LF (θ,M)− (r + φ)F (θ,M) = 0

lim
r→∞

e−rtE0[F (θϑt ,M
m
t )] = 0,

where LF := −κ(θ−µ)Fθ + [−φ(M −µ+ λȲ ) + λ(δµ+αθ+ βM)]FM +
σ2
θ

2
Fθθ +

(λσξ)
2

2
FMM

and (θϑt ,M
m
t ))t≥0 is the type-belief process starting from (θ0,M0) = (ϑ,m) ∈ R2.

From the proof of Proposition 1, the previous equation admits as solution the function

VM(θ,M) = v2 + 2v3M + v5θ where v2, v3 and v5 are the coefficients of the consumer’s value

function on M , M2, and Mθ, respectively. In fact, display (A.4) shows that the previous

function satisfies the PDE, while the transversality condition follows directly from (θϑt )t≥0

and (Mm
t )t≥0 being mean reverting and VM being linear.

Importantly, VM(·, ·) (i) is of class C2 and (ii) exhibits quadratic growth. Thus, the

Feynman-Kac Representation (Remark 3.5.6 in Pham 2009) applies: namely, VM(ϑ,m) =

−E0

[´∞
0
e−(r+φ)t(α + β)Qtdt

]
, ∀t ≥ 0, where we used that Qt = δµ + αθt + βMt in

equilibrium. The result then follows from VM(θt,Mt) = −E0

[´∞
0
e−(r+φ)t(α + β)Qtdt

]
=

−Et
[´∞
t
e−(r+φ)(s−t)(α + β)Qsds

]
if (θt,Mt)= (θ0,M0) = (ϑ,m) ∈ R2.

Part (ii) is proved as part of the next auxiliary lemma. This concludes the proof. �

Lemma A.4 (Equilibrium Properties).

(i) Uninformative scores: lim
φ→0,∞

(α(φ), β(φ), δ(φ)) = (1,−1/2, 0), lim
φ→0

λ(φ) = 0, lim
φ→∞

λ(φ) =

σ2
θ/κσ

2
ξ , lim

φ→0
λ(φ)/φ = 2σ2

θ/[σ
2
θ + 2σ2

ξκ
2] and lim

φ→0,∞
E[(Pt − µ/2)2] = 0.

(ii) Bounds on the strength of ratchet effect: for all φ > 0,

1/2 <
r + κ+ φ

r + κ+ 2φ
< α(φ) < 1; −α(φ)/2 < β(φ) < 0; and E[Pt] ∈ (µ/3, µ/2).

(iii) Strategic demand reduction across types: α(·) is strictly quasiconvex.

(iv) Effect of noise: α(φ) and E[Pt] are increasing in σξ/σθ for all φ > 0.

Proof of Lemma A.4. (i) Limits. Let `(φ, α) := ασ2
θ [α +B(φ, α)] + κσ2

ξ (φ+ κ) and

J(φ) :=
√

[`(φ, α(φ))]2 − 4κ(σξσθ)2B(φ, α(φ))α(φ)φ− `(φ, α(φ)).
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With this in hand, observe that (11) (or, equivalently, A(φ, α(φ)) = 0, where A(φ, x) is

defined in (A.9)), becomes (r + κ+ φ)(α(φ)− 1) + α(φ)J(φ)/[2κσ2
ξ ] = 0.

Since α(φ) ∈ (0, 1) for all φ > 0, and 0 < |B(φ, α)| < 1/2 for all α ∈ (0, 1) and φ > 0, we

have that 0 < −4κ(σξσθ)
2β(φ)α(φ)φ → 0 as φ → 0. In addition, because α(φ) + β(φ) > 0,

it follows that `(φ, α) > κ2σ2
ξ . Using that β(φ) = B(φ, α(φ)) then yields,

0 < J(φ) =
−4κ(σξσθ)

2β(φ)α(φ)φ√
[`(φ, α(φ))]2 − 4κ(σξσθ)2β(φ)α(φ)φ+ `(φ, α(φ))

<
−4κ(σξσθ)

2β(φ)α(φ)φ

2κ2σ2
ξ

.

We conclude that lim
φ→0

α(φ) exists and takes value 1.

As for the limit to +∞, notice that since `(φ, α(φ)) ≥ κσ2
ξφ and α(φ)B(φ, α(φ)) < 0,

0 < J(φ) =
−4κ(σξσθ)

2B(φ, α(φ))α(φ)√[
`(φ,α(φ))

φ

]2

− 4κ(σξσθ)2B(φ,α(φ))α(φ)

φ
+ `(φ,α(φ))

φ

≤ −4κ(σξσθ)
2B(φ, α(φ))α(φ)

2σ2
ξκ

.

But since α(·) and B(·, α(·)) are bounded, J(·) is bounded too. Thus, from A(φ, α(φ)) = 0,

we have 1− α(φ) = [α(φ)J(φ)/2κσ2
ξ ](r + κ+ φ)−1. Because [α(φ)J(φ)/2κσ2

ξ ] is bounded, it

follows that 1− α(φ)→ 0 as φ→∞.

Regarding the limit values for β(φ) = B(φ, α(φ)), these follow from the limit behavior of

α(φ) and (A.7). To study the limit behavior of δ(φ), we first examine λ(φ).

To this end, lim
φ→0

λ(φ) = 0 is direct consequence of the first bound in (A.15) which we

establish shortly in the proof of part (ii) of this lemma. Also, letting `(φ, α) := σ2
θ [α +

B(φ, α)] + κσ2
ξ [φ+ κ], it is straightforward to verify that

λ(φ) =
4κ(σξσθ)

2α(φ)

2κσ2
ξ

(√[
`(φ,α(φ))

φ

]2

− 4κ(σξσθ)2B(φ,α(φ))α(φ)

φ
+ `(φ,α(φ))

φ

) → 4κ(σξσθ)
2

2κσ2
ξ [κσ

2
ξ + κσ2

ξ ]
=

σ2
θ

κσ2
ξ

as φ → ∞. Thus, the second limit holds. Finally, it is easy to see that the limit of λ(φ)/φ

as φ↘ 0 follows directly from the first equality in the previous display.

Returning to δ(φ), recall from (A.12) that

δ(φ) =
κ(α(φ)− 1) + [α(φ) + 2β(φ)][φ− (α(φ) + β(φ))λ(φ)]

2(r + φ) + (α(φ) + β(φ))λ(φ)
.

Using that α(φ) → 1, λ(φ) → 0, and α(φ) + 2β(φ) → 0 as φ → 0, and that α(φ) + β(φ) >

0, it is direct that δ(φ) → 0 as φ → 0. Also, using that λ(φ) → σ2
θ/κσ

2
ξ as φ → ∞,

[φ− (α(φ)+β(φ))λ(φ)]/[2(r+φ)+(α(φ)+β(φ))λ(φ)]→ 1/2 as φ→∞. The limit δ(φ)→ 0
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as φ→∞ then follows from α(φ)→ 1 and α(φ) + 2β(φ)→ 0 as φ→∞.

To establish the convergence of prices, we first show that lim
φ→0,+∞

Var[λ(φ)Yt] = 0. In fact,

recall that (δ(φ), α(φ), β(φ))→ (0, 1,−1/2) as φ→ 0 and +∞. Also, from (A.2),

Var[Yt] =
1

2(φ− β(φ)λ(φ))

[
σ2
ξ +

α(φ)σ2
θ

κ[φ− β(φ)λ(φ) + κ]

]
. (A.13)

We deduce that 0 = lim
φ→∞

Var[Yt] = lim
φ→∞

Var[λ(φ)Yt]. Now, writing (A.13) as

Var[λ(φ)Yt] =
1

2( φ
λ(φ)
− β(φ))︸ ︷︷ ︸

→ constant

λ(φ)︸︷︷︸
→0

[
σ2
ξ +

α(φ)σ2
θ

κ[φ− β(φ)λ(φ) + κ]

]
︸ ︷︷ ︸

→σ2
ξ+σ2

θ/κ
2

→ 0 as φ→ 0.

The L2-limits then follow directly from the following results: (δ(φ), α(φ), β(φ))→ (0, 1,−1/2)

as φ→ 0,∞; Pt = δµ+(α+β)Mt and Mt = µ+λ[Yt−Ȳ ]; E[Pt] = µ[α(φ)+β(φ)+δ(φ)]→ µ/2

as φ→ 0 and +∞; and the triangular inequality.

(ii) Bounds. Observe that the bounds for β(φ) were already determined from (A.7) and

α(φ) ∈ (0, 1). As for the lower bound for α, we will show the stronger result

max

{
r + κ+ φ

r + κ+ 2φ
,

r + κ+ φ

r + κ+ φ+ σ2
θ/2κσ

2
ξ

}
≤ α(φ).

The bound is tight in the sense that it converges to 1 when φ→ 0 and +∞.

To obtain the bound, observe that from (A.8), λ(φ) satisfies

λ(φ) =
2σ2

θα(φ)φ√
`2(φ, α(φ))− 4κ(σθσξ)2α(φ)B(φ, α(φ))φ+ `(φ, α(φ))

<
σ2
θα(φ)φ

`(φ, α(φ))
, (A.14)

where `(φ, α(φ)) := σ2
θα(φ)[α(φ) +B(φ, α(φ))] + κσ2

ξ [φ+ κ]. From here, we get two bounds:

λ <
2φ

α(φ)
and λ <

σ2
θ

κσ2
ξ

. (A.15)

In fact, since B(φ, α(φ)) ≥ −α/2, then `(φ, α(φ)) > σ2
θα(φ)2/2; but using this in (A.14)

leads to the first inequality in (A.15). Similarly, the second upper bound follows from (A.14)

using that α(φ) < 1 and that `(φ, α(φ)) > κσ2
ξφ due to α+B(φ, α) > 0. In particular, λ(φ)

is bounded over R+, and it converges to zero as φ→ 0, as promised.
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Consider now the locus A(φ, α(φ)) = 0. Using the first bound in (A.15) yields

0 = (r + κ+ φ)(α(φ)− 1) + λ(φ)︸︷︷︸
≤2φ/α(φ)

α(φ) [−B(φ, α(φ))]︸ ︷︷ ︸
∈(0,α(φ)/2)

< (r + κ+ φ)(α(φ)− 1) + φα(φ)

⇒ α(φ) >
r + κ+ φ

r + κ+ 2φ
>

1

2
, for all φ > 0.

Similarly, using the second bound, 0 < (r+κ+φ)(α(φ)−1)+[σθα(φ)]2/[2κσ2
ξ ]; the desired

second bound for alpha follows from imposing that α2 < α in the previous inequality.

We conclude this part by establishing the bounds for the expected price, omitting the

dependence of (α, β, δ, λ) on φ. Observe that E[Pt] = [δ + α+ β]µ. Now, adding the second

and third equation in the system (A.6) yields (α + 2β)(α + β)λ = (r + 2φ)(α + 2β) + (r +

κ+ φ)(α− 1) + (α + β)2λ. Using (A.12), straightforward algebra then yields

δ =
κ(α− 1) + [α + 2β][φ− (α + β)λ]

2(r + φ) + (α + β)λ
=
−(r + φ)[2(α + β)− 1]− (α + β)2λ

2(r + φ) + (α + β)λ
,

from where it is easy to conclude that

E[Pt] = µ[α + β + δ] = µ
r + φ

2(r + φ) + (α + β)λ
. (A.16)

In particular, E[Pt] < µ/2 when µ 6= 0 follows directly from λ(α + β) > 0.

On the other hand, from (A.14) and `(φ, α) > σ2
θα[α +B(φ, α)] = σ2

θα[α + β],

(α + β)λ < (α + β)
σ2
θαφ

`(φ, α)
< (α + β)

σ2
θα(φ)φ

σ2
θα[α + β]

= φ.

Using this latter bound in (A.16) leads to E[Pt] > µ/3 whenever µ 6= 0, as r > 0, .

(iii) Quasiconvexity of α. To prove this property, it is more useful to solve the last two

equations in the system (A.6) for λ and β, namely,

λ(φ, α) = −(α− 1)(κ+ r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

α3(r + 2φ)
, (A.17)

β(φ, α) = − α2(r + 2φ)

κ+ α(−κ+ r + 3φ) + r + φ
. (A.18)

Substituting both expressions into (7) that defines λ, and recalling s := σ2
ξ/σ

2
θ , we obtain an

44



alternate locus (φ, α(φ)) that satisfies

Ã(φ, α) :=
(α− 1)(κ+ r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

α3(r + 2φ)
+
α(κ− α(κ+ r) + r + φ)

α3 + κs(κ− αr + r + φ)
= 0.

(A.19)

Observe that Ã is increasing in α whenever Ã(φ, α) = 0. In fact, since Proposition 1

establishes the uniqueness of an equilibrium, there is a unique α(φ) ∈ [0, 1] solving Ã(φ, α) =

0. In addition, Ã(φ, 1) = φ/[κs(κ+ φ) + 1] > 0. Thus, Ã(φ, ·) must cross zero from below.

Now, the second partial derivative

∂2Ã(φ, α)

(∂φ)2
= −2(α− 1)2(2κ+ r)2

(r + 2φ)3
− 2α5κs (α2 + κ2s)

(α3 + κs(κ− αr + r + φ))3

is strictly negative because, by inspection, the first term is nonpositive and the second term

is strictly negative. Furthermore, φ 7→ α(φ) is twice continuously differentiable.56 Combined

with the fact that Ã is increasing in its second argument whenever Ã = 0, the Implicit

Function Theorem implies that α′′(φ) > 0 at any critical point α′(φ) = 0.

(iv) Effect of noise terms σξ/σθ. To show that φ 7→ α(φ) is increasing in σξ/σθ point-wise,

consider again the locus Ã(φ, α) = 0 in (A.19), and differentiate with respect to s := σ2
ξ/σ

2
θ :

∂Ã

∂s
= −α

4κ((1− α)(κ+ r) + φ)(κ+ (1− α)r + φ)

(α3 + κs(κ+ (1− α)r + φ))2 < 0.

Because Ã is increasing in α at (φ, α(φ)), we conclude that α is increasing in s.

Finally, using the three equations (A.17)–(A.19), the derivative of the expected price

[α + β + δ]µ with respect to α can be written as

µ
α(r + φ)(r + 2φ)(κ+ r + φ)(2(κ+ r + φ)− α(2κ+ r))

[α2 (κ2 + r(κ+ 2r) + 5rφ+ 3φ2)− α(2κ+ r)(κ+ r + φ) + (κ+ r + φ)2]2
> 0.

Moreover, when using (A.17)–(A.19), the expected price does not depend on s directly. Thus,

using that φ 7→ α(φ) is increasing in σξ/σθ, the expected price is also increasing in s. �

Proofs for Section 5

The following lemmas (proved in Supplementary Appendix S.2.5) are used in this section.

56This follows from α′(φ) =
1−α(φ)−α(φ)Hφ(φ,α(φ))

r+κ+φ+H(φ,α(φ))+α(φ)Hα(φ,α(φ)) , with H as in (A.10) in Lemma A.3, and the

right-hand side of the previous equality being continuously differentiable in φ.
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Lemma A.5. Suppose α > 0 and β < 0 satisfy ν(α, β) > 0, where ν(α, β) is defined in

(18). Then, φ 7→ G(φ, α, β) has a unique maximizer located at φ = ν(α, β). Moreover,

(i) Λφ(ν(α, β), α, β) = Λ(ν(α, β), α, β)/(ν+κ), where Λφ(φ, α, β) denotes the partial deriva-

tive of Λ(φ, α, β) with respect to φ, and,

(ii) Λ(ν(α, β), α, β) = αγ(α)/σ2
ξ , where γ(α) = σ2

ξ [(κ
2+α2σ2

θ/σ
2
ξ )

1/2−κ]/α2 is the posterior

belief ’s stationary variance when the histories ξt, t ≥ 0, are public.

Lemma A.6. κ < arg minα < ∞, and [α + β]′(φ) < 0, φ ∈ [κ, arg minα]; hence, α + β is

strictly decreasing at any point satisfying (19). If r > κ, [α+β]′(φ) < 0 for φ ∈ [0, arg minα].

Proof of Proposition 3. Refer to the Supplementary Appendix section S.2.2. �

Proof of Proposition 4. We begin the proof by establishing that α′(φ) < 0 at any φ

satisfying (19), i.e., φ = ν(α(φ), β(φ)). To this end, recall that α(φ) is the only value in

(0, 1) satisfying (r + κ+ φ)(α(φ)− 1) + α(φ)H(φ, α(φ)) = 0, where

H(φ, α) := −Λ(φ, α,B(φ, α))B(φ, α) =

√
`2(φ, α)− 4κ(σξσθ)2αB(φ, α)φ− `(φ, α)

2κσ2
ξ

and `(φ, α) := σ2
θα[α + B(φ, α)] + κσ2

ξ [φ + κ]. Also, recall from the proof of Lemma A.3 in

the proof of Proposition 1 that α 7→ H(φ, α) is strictly increasing over [0, 1].

Thus, denoting the partial derivatives with subindices,

α′(φ) [r + κ+ φ+H(φ, α(φ)) + α(φ)Hα(φ, α(φ))] = 1− α(φ)− α(φ)Hφ(φ, α(φ)).

Consequently, because H > 0, we conclude that the sign of α′ is always determined by the

sign of the right-hand side of the previous expression. We now show that the latter side is

negative at any point φ s.t. φ = ν(α(φ), β(φ)) = κ+ α(φ)γ(α(φ))[α(φ) + β(φ)]/σ2
ξ .

To simplify notation, let ∆(φ, α) :=
√
`2(φ, α)− 4κ(σξσθ)2αB(φ, α)φ. Omitting the

dependence on (φ, α(φ)) of H, ∆, `, B, and of their respective partial derivatives,

Hφ =
1

2κσ2
ξ

[
``φ − 2κ(σξσθ)

2α[φBφ +B]

∆
− `φ

]
.

Moreover, since `φ = σ2
θαBφ + κσ2

ξ we can write

Hφ =
κσ2

ξ [`−∆]− 2κ(σξσθ)
2αB

2κσ2
ξ∆

+
σ2
θαBφ[`−∆]− 2κ(σξσθ)

2αφBφ

2κσ2
ξ∆

.
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Consider now the first term of the previous expression. In fact,

κσ2
ξ [`−∆]− 2κ(σξσθ)

2αB

2κσ2
ξ∆

= −B∂Λ

∂φ
(φ, α,B).

From Lemma A.5, moreover, Λφ(ν(α, β), α, β) = Λ(ν(α, β), α, β)/[ν(α, β) + κ]; therefore,

this equality must holds at any φ such that (φ, α(φ), β(φ)) = (ν(α(φ), β(φ)), α(φ), β(φ)).

On the other hand, the second term of Hφ can be written as

σ2
θBφ

∆

[
α
`−∆

2κσ2
ξ

− φα

]
=
σ2
θBφ

∆
[(r + κ+ φ)(α− 1)− φα] ,

where we used that αH = α(∆− `)/2κσ2
ξ . We deduce that, at the point of interest,

1− α− αHφ = 1− α +
λαβ

φ+ κ︸ ︷︷ ︸
K1:=

− σ
2
θαBφ

∆
[(r + κ+ φ)(α− 1)− φα]︸ ︷︷ ︸

K2:=

. (A.20)

Straightforward differentiation shows that

Bφ =
∂

∂φ

(
−α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)

)
=

α2(α− 1)(r + 2κ)

[2(r + 2φ)α− (r + κ+ φ)(α− 1)]2
< 0,

so K2 > 0. As for the other term, (r + κ+ φ)(α− 1)− λαβ = 0 yields

K1 =
(φ+ κ)(1− α) + λαβ

φ+ κ
=
r(α− 1)

φ+ κ
< 0.

We conclude that α′(φ) < 0 at any point satisfying (19), provided any such point exists.

For existence, let η(φ) := φ− ν(α(φ), β(φ)), where ν(α, β) = κ+ αγ(α)[α + β]/σ2
ξ , and

γ(α) :=
σ2
ξ

α2

[√
κ2 + α2

σ2
θ

σ2
ξ

− κ

]
,

(i.e., γ(α) is the unique positive solution of 0 = σ2
θ − 2κγ − (αγ/σξ)

2). Since α ∈ (1/2, 1),

γ is bounded, and so η(φ) > 0 for φ large. Also, using that lim
φ→0

(α(φ), β(φ)) = (1,−1/2), we

have that lim
φ→0

η(φ) < 0. The existence of φ s.t. η(φ) = 0 follows from the continuity of η(·).
We now turn to uniqueness. Observe first that α > 0 and α + β > α/2 > 0 imply

that ν(α(φ), β(φ)) > κ for all φ > 0. Also, since α is quasiconvex, α(φ) ∈ (1/2, 1) if

φ > 0, and lim
φ→0

α(φ) = 1, we have that α is decreasing in [0, arg minα), and non-decreasing
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thereafter. Since κ < arg minα (Lemma A.6) and α is strictly decreasing at any point

satisfying φ = ν(α(φ), β(φ)), we conclude that any such point must lie in [κ, arg minα].

Given this observation, it then suffices show that [ν(α(φ), β(φ))]′ < 0 over [κ, arg minα].

In fact, because the identity function is increasing, the existence of two such points would im-

ply the existence of an intermediate third point at which φ = ν(α(φ), β(φ)) and [ν(α(φ), β(φ))]′ >

0, yielding a contradiction. To this end, write

[ν(α(φ), β(φ))]′ =
d

dφ

(
α(φ)γ(α(φ))

σ2
ξ

)
(α(φ) + β(φ)) +

(
α(φ)γ(α(φ))

σ2
ξ

)
d(α(φ) + β(φ))

dφ
.

From Lemma A.6, α(φ) +β(φ) is strictly decreasing over [κ, arg minα]. Since α+β > 0 and

αγ(α(φ)) > 0 is suffices to show that [α(φ)γ(α(φ))]′ < 0 over the same region. However,
αγ(α)

σ2
ξ

=
σ2
θ

σ2
ξ

[(
κ2

α
+

σ2
θ

σ2
ξ

)1/2

+ κ
α

]−1

, which is strictly increasing in α. We conclude by using that

α′ < 0 over [κ, arg minα].

Equipped with (i) and (ii), we now turn to (iii). Recall that G(φ) = α(φ)λ(φ)/[φ + κ−
β(φ)λ(φ)] ≥ 0, where λ(·) = Λ(·, α(·), β(·)). Since λ(φ) is bounded (second bound in (A.15)),

lim
φ→∞

G(φ) = 0. Also G(0) = 0. By continuity, G has a global optimum that is interior.

From ν(α, β), G(φ) := G(φ, α(φ), β(φ)) ≤ G(ν(α(φ), β(φ)), α(φ), β(φ)), with equality

only at φ∗. Also, from Lemma A.5, Λ(ν(α, β), α, β) = αγ(α)/σ2
ξ . Thus,

G(ν(φ), α(φ), β(φ)) =
α(φ)Λ(ν(φ), α(φ), β(φ))

ν(φ) + κ− β(φ)Λ(ν(φ), α(φ), β(φ))
=

α2(φ)γ(α(φ))

α2(φ)γ(α(φ)) + 2κσ2
ξ

, (A.21)

where we used that ν(φ) := ν(α(φ), β(φ)) = κ+ α(φ)γ(α(φ))[α(φ) + β(φ)]/σ2
ξ .

However, by definition of γ(α), α2γ(α) = σ2
ξ [(κ

2 +α2(φ)σ2
θ/σ

2
ξ )

1/2−κ]; thus, from (A.21),

G(ν(φ), α(φ), β(φ)) is decreasing when α(φ) is decreasing. Since G(φ) is bounded from above

by a decreasing function of φ on [φ∗, arg minα], G(φ∗) > G(φ) over the same interval.

We now show that G(φ) is decreasing when α(φ) is increasing, i.e., over (arg minα(φ),∞).

Using that G(φ, α, β) := αΛ(φ, α, β)/[φ+ κ− βΛ(φ, α, β)], and equations (A.17) and (A.18)

to substitute for λ and β, we obtain that G(φ) = G̃(φ, α(φ)) where

G̃(α, φ) := (1− α)
(κ+ r + φ)

(κ+ (1− α)r + φ)

(κ+ α(−κ+ r + 3φ) + r + φ)

α(r + 2φ)
. (A.22)

Using that α ∈ (0, 1), it is easy to verify that the two fractions on the right-hand side are

strictly positive and strictly decreasing in φ. Thus, ∂G̃/∂φ < 0. Also, up to a positive

multiplicative term, ∂G̃
∂α

= −((ρ + f + 1) − αρ)2 + α2(f + 1)(2ρ + 3f − 1), where ρ :=

r/κ and f := φ/κ. However, −((ρ + f + 1) − αρ)2 + α2(f + 1)(2ρ + 3f − 1) < −(f +
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1) (α2(2ρ+ 3f − 1) + f + 1) and the latter term is strictly negative for α ∈ [0, 1]. The

quasiconvexity of α then yields that dG̃
dφ

= ∂G̃
∂α
α′(φ) + ∂G̃

∂φ
< 0 for φ ∈ (arg minα,∞).

Part (iv) (i.e., G is decreasing in σξ) follows immediately from the fact that G̃ is decreasing

in α for a fixed φ, because α is itself increasing in σξ (Lemma A.4). �

Proofs for Section 6

Proof of Proposition 5. We begin by showing the conditions for interior optima in (i) and

(ii). From (A.16), α + β + δ > 1/3. Thus, omitting the dependence on φ,

Π(φ) := µ2[α + β + δ]2 +
σ2
θ

2κ
(α + β)2G(φ) ≥ µ2

9
+
σ2
θ(α + β)2

2κ
G(φ), for all φ > 0.

On the other hand, from the proof of Proposition 4, lim
φ→0,∞

G(φ) = 0. Moreover, α + β is

bounded. Therefore, lim
φ→0,∞

(α + β)2G(φ) = 0, and so lim
φ→0,∞

Π(φ) = µ2/4.

Thus, if
µ2

9
+
σ2
θ(α + β)2

2κ
G(φ) ≥ µ2

4
⇔ µ2 ≤ 18σ2

θ

5κ
(α + β)2G(φ),

it follows that Π(φ) > µ2/4. Since φ 7→ [α(φ) + β(φ)]2G(φ) is continuous, strictly positive,

and converges to 0 as φ→ 0 and +∞, it has a global maximum; denote it by φ†. Thus, φf

is interior if µ <
[

18σ2
θ

5κ
(α(φ†) + β(φ†))2G(φ†)

]1/2

.

Now, let CSµ(φ) denote her surplus for a given µ and observe that CSµ(φ) = CS0(φ) +

µ2R(φ), where R(φ) := [α(φ) + β(φ) + δ(φ)]
(
1− 3

2
[α(φ) + β(φ) + δ(φ)]

)
and

CS0(φ) =
σ2
θ

2κ
G(φ)L(φ) +

σ2
θ

2κ

[
α(φ)− [α(φ)]2

2

]
.

Importantly since α(φ) + β(φ) + δ(φ) → 1/2 as φ → 0 and +∞, we have that lim
φ→0

R(φ) =

lim
φ→+∞

R(φ) = 1/8. In addition we know that 1/3 < α(φ) + β(φ) + δ(φ) < 1/2 for all φ > 0.

Because x 7→ x− 3x2/2 is strictly decreasing in [1/3, 1/2], R(φ) > 1/8, for all φ > 0.

Fix any φ̂ > 0. Then, using that CSµ(0) = µ2/8,

CSµ(φ̂)− CSµ(0) = µ2

[
R(φ̂)− 1

8

]
+
σ2
θ

2κ

[
G(φ̂)L(φ̂) + α(φ̂)− (α(φ̂))2

2
− 1

2

]
︸ ︷︷ ︸

=:K(φ̂)

.

Observe that K(·) and R(·) are independent of µ, so we can choose µ arbitrarily large such

that the right-hand side is strictly positive. Since CSµ(0) = lim
φ→∞

CSµ(0), φc becomes interior.
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We now prove the corner solutions. Towards a contradiction, suppose that there are

sequences µn ↗∞ and φn > 0, n ∈ N, such that Πµn(φn) ≥ Πµn(0) = Πµn(+∞). Then,

Πµn(φn) ≥ Πµn(0)⇔ σ2
θ

2κ
[α(φn) + β(φn)]2G(φn) ≥ µ2

n

[
1

4
− [α(φn) + β(φn) + δ(φn)]2

]
Observe first that (φn)n∈N cannot have a cluster point different from zero. Otherwise, along

such subsequence, say (φnk)k∈N, both [α(φnk) +β(φnk)]
2G(φnk) and 1/4− [α(φnk) +β(φnk) +

δ(φnk)]
2 converge to strictly positive numbers; the inequality is then violated for large k.

Suppose now that there is a subsequence (φnk)k∈N that diverges. Using that α+ β + δ =

(r + φ)/[2(r + φ) + λ(α + β)] and G = αλ/[φ+ κ− βλ], we obtain

Πµnk
(φnk) ≥ Πµn(0)⇔ σ2

θ

2κ

4(α + β)2αλ[2(r + φ) + λ(α + β)]2

[4(r + φ)(α + β)λ+ (α + β)2λ2](φ+ κ− βλ)

∣∣∣
φ=φnk

≥ µnk .

However, because α, β and λ are all bounded and (α, β, λ)→ (1,−1/2, σ2
θ/[κσ

2
ξ ]) as φ→ +∞,

both the numerator and denominator are O(φ2) for large φ, so the limit of the left-hand side

of the second inequality exists. The inequality is then violated for large k, a contradiction.

From the previous argument, the only remaining possibility is that (φn)n∈N converges to

zero. However, from Lemma A.4, lim
φ→0

(α(φ), β(φ), λ(φ)) = (1,−1/2, 0), and so

4(α + β)2αλ[2(r + φ) + λ(α + β)]2

[4(r + φ)(α + β)λ+ (α + β)2λ2](φ+ κ− βλ)
=

4(α + β)2α[2(r + φ) + λ(α + β)]2

[4(r + φ)(α + β) + (α + β)2λ](φ+ κ− βλ)

converges to 2r/κ as φ→∞ and so the same inequality is again violated, a contradiction.

The case for the consumer is proved in an analogous fashion. Namely, towards a contra-

diction, assume that there are (µn)n∈N decreasing towards zero and (φn)n∈N strictly positive

such that CSµn(φn) ≥ CSµn(0). Straightforward algebraic manipulation shows that

CSµn(φn) ≥ CSµn(0)⇔ 1
Var[θt]

2

(
(α(φn)−1)2

R(φn)−1/8
− 2L(φn) G(φn)

R(φn)−1/8

) ≥ 1

µn
,

with R(φ) defined in part (i) of the proof and L(φ) := α(φ)2

2
+ β(φ) − 3

2
(α(φ) + β(φ))2 < 0.

As in the firms’ case, there can’t be a subsequence of (φn)n∈N converging to a value different

from zero; otherwise, the left-hand side of the inequality on the right converges, but the

right-hand side does not. Also, in the Supplementary Appendix (section S.2.3) we show that

lim
φ→0,+∞

[α(φ)− 1]2

R(φ)
= 0, and lim

φ→0,+∞

G(φ)

R(φ)− 1/8
> 0. (A.23)
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But since lim
φ→0,+∞

L(φ) = −1/8, the left-hand side of the same inequality is again violated.

Thus, there exists µc > 0 such that for all µ < µc, CSµ(0) > CSµ(φ) for all φ ∈ (0,∞).

For (iii), by pointwise convergence (section S.3.3 in the Supplementary appendix), we

can directly consider the case of noiseless signals (σξ = 0). In this case, it is possible to show

that both surplus levels are decreasing as φ→∞. Up to a positive multiplicative constant,

the Mathematica file scores.nb shows that

lim
φ→∞

φ2Π′(φ) = −
(

4µ2r − 3
√

3 + 6
)
− 2r

κ
< 0 and lim

φ→∞
φ2CS ′(φ) < 0.

On the other hand, φ∗ → ∞ as σ2
ξ → 0 (section S.3.2 in the Supplementary appendix).

Therefore, expected profits in the noiseless case converge to their limiting value from above,

which means that the firm-optimal score satisfies φf <∞ for all values of µ ≥ 0.

We conclude by addressing (iv). Differentiating CS and Π with respect to φ and setting

equal to zero yields two loci µf (φ) and µc(φ) that describe the critical points of the surplus

levels. The expressions for these loci are in the Mathematica file scores.nb posted on the

authors’ websites. In the Mathematica file, we also establish the following properties: (a)

µf (φ) is strictly quasiconcave, and µc(φ) is strictly quasiconvex; (b) if r/κ > 1
16

(√
337− 7

)
≈

0.71, then µf ′(0) < 0; and (c) if ρ := r/κ satisfies ρ(26 − ρ(24ρ + 31)) + 25 < 0 (i.e., if

ρ < ρ̄ ≈ 0.96), then µc′(0) > 0. Therefore, when ρ lies in the (approximate) range [0.71, 0.96],

the expected surplus levels admit at most one critical point for each µ. Because both surplus

levels are decreasing at φ =∞, this critical point is a local maximum. Furthermore, because

the inverses µf and µc are respectively quasiconcave and quasiconvex, as well as decreasing

and increasing at φ = 0, these loci are also monotone.

Finally, at φ = 0, we have Π′(0) ∝ r/κ2 − µ2 and CS ′(0) ∝ µ2 − 3r/κ2. Therefore,

the conditions in part (iv) of the statement describe the values of µ for which the expected

surplus levels admit an interior maximum. �

Proof of Proposition 6. Fix φ > 0. By the continuity of the equilibrium variables at

σξ = 0 (Supplementary Appendix section S.3.3), we can directly evaluate at σξ = 0.

The expected price level with strategic consumers when σξ = 0 is below the naive bench-

mark for all φ.57 Thus, it suffices to show that consumer surplus in the strategic case exceeds

57E[Pt] = µ r+φ
2r+3φ ∈ (µ/3, µ/2); this follows from (A.16) using that λ = φ

α+β when σξ = 0.
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the naive level when µ = 0. We therefore compare the following expression in the two cases:

Var[θ]

(
α− α2

2

)
+ Var[θ]

(
α2

2
− 3

2
(α + β)2 + β

)
αλ

−βλ+ φ+ κ︸ ︷︷ ︸
=G(φ,α,β)

.

In both cases, we let λ = φ/(α+β). In the naive case, we further impose α = 1 and β = −1/2,

while in the strategic case β satisfies (A.18). Solving for s from (A.19), and imposing that the

solution is positive, we obtain the equilibrium restriction α2 (ρ(2f − 1) + 3f 2 − 1) + α(ρ +

2)(ρ+f+1)−(ρ+f+1)2 > 0, where ρ := r/κ and f := φ/κ. We then show (Mathematica file

scores.nb) that for no triple (α, f, ρ) ∈ [1/2, 1]×R+×R+ such that the previous condition

holds, consumer surplus with naive consumers exceed the one with strategic consumers. �

Proofs for Section 7

Refer to section S.2.4 in the Supplementary Appendix.
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