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Abstract

Logistic regression is one of the most popular methods in binary classification, wherein esti-
mation of model parameters is carried out by solving the maximum likelihood (ML) optimization
problem, and the ML estimator is defined to be the optimal solution of this problem. It is well
known that the ML estimator exists when the data is non-separable, but fails to exist when the
data is linearly separable. First-order methods are the algorithms of choice for solving large-
scale instances of the logistic regression problem. In this paper, we introduce a pair of condition
numbers that measure the degree of non-separability or separability of a given dataset in the
setting of binary classification, and we study how these condition numbers relate to and inform
the properties and the convergence guarantees of first-order methods. When the training data
is non-separable, we show that the degree of non-separability naturally enters the analysis and
informs the properties and convergence guarantees of two standard first-order methods: steepest
descent (for any given norm) and stochastic gradient descent. Expanding on the work of Bach,
we also show how the degree of non-separability enters into the analysis of linear convergence
of steepest descent (without needing strong convexity), as well as the adaptive convergence of
stochastic gradient descent. When the training data is separable, first-order methods rather
curiously have good empirical success – a behavior that is not well understood in theory. In the
case of separable data, we demonstrate how the degree of separability enters into the analysis of
ℓ2 steepest descent and stochastic gradient descent for delivering approximate-maximum-margin
solutions with associated computational guarantees as well. This suggests that first-order meth-
ods can lead to statistically meaningful solutions in the separable case, even though the ML
solution does not exist.
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1 Introduction

Logistic regression is arguably one of the most popular methods for binary classification – in
contrast to SVM-based classifiers, logistic regression provides estimates of the probability of class
membership, which is useful for uncertainty quantification and statistical inference. Moreover, the
logistic loss function (and its multiclass extension, the cross-entropy loss) is an essential ingredient
of several popular and powerful statistical methods, such as boosting [11], kernel methods [32], and
deep learning [13].

Let us recall the setting of binary classification and logistic regression. Given a binary response
y ∈ {−1, 1} and feature vector x ∈ R

p, we consider a probability model of the form:

P (y = +1 | x) =
1

1 + exp(−βTx)
, (1)

for a vector of coefficients β ∈ R
p. The standard procedure for estimating the (unknown) coefficients

β in (1) based on a given dataset of n observations (x1, y1), . . . , (xn, yn) is to apply the principle
of maximum likelihood (ML) estimation. After some basic algebraic manipulations, maximum
likelihood estimation yields the following convex optimization problem:

LR : L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln

(

1 + exp
(

−yiβTxi

))

s.t. β ∈ R
p .

(2)

The above objective function Ln(·) is referred to as the logistic loss function, the ith term of which
measures the value of the logistic loss t 7→ ln(1 + exp(−t)) on the ith observation (xi, yi).

Due in part to classical studies [1,30] pertaining to the existence of a ML estimator for the logistic
regression problem as well as the prevalence of support vector machines (SVMs), it has become
natural and customary to characterize binary classification problems in terms of their separability
properties. More formally, a given dataset is either separable, in which case the set of observations
with yi = +1 may be separated from the set of observations with yi = −1 by a (linear) hyperplane,
or is non-separable, in which case no such linear separator exists. Earlier work in the statistics
literature by [1, 30] have shown that a ML estimator for logistic regression exists when the data is
non-separable, and it does not exist when the data is separable. Fairly recently, [8] studies phase
transitions of the existence of a solution when the features arise from a Gaussian ensemble. A
related important theme pertains to algorithms for computing a solution to problem LR. Informally,
it is well-known that computational schemes for fitting a logistic regression model by solving the
problem LR are “well-behaved” when the dataset is non-separable. Indeed, by simply examining
(1), it is evident that if the data is truly generated according to a probabilistic model satisfying (1),
then with enough samples the dataset will eventually be non-separable; therefore non-separability
is somehow an essential characteristic of logistic regression. On the other hand, separability of a
dataset (especially when n > p) suggests that there actually is a linear model that can discriminate
between the two classes with high accuracy. In this case, it is well understood that the SVMmethod
may be used to identify a “good” linear separator. Furthermore, although the logistic loss function
encourages models that linearly separate the data, it does not distinguish between such models, i.e.,
all linear separators are “equally favored” by the logistic loss function. This is in contrast to the
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SVMmethod which can be used to find a particularly good (i.e., large margin) linear separator. The
behavior of computational schemes for LR when the dataset is separable is not so well understood
in theory, though there is recent work on first-order methods [16], [31], [18], [14], [19]. One of
the main goals of this paper is to formalize the “informal” computational and statistical intuitions
regarding logistic regression and to provide formal results that validate (or run counter to) such
intuitive statements. In particular, a natural set of questions is: can we quantify the degree of
non-separability or separability of a particular dataset, and how might such a formalism inform
the computational or statistical properties of solution methods for LR? Herein, we address these
questions in the context of first-order methods, which are the methods of choice in the high-
dimensional regime (n≫ 0 and/or p≫ 0).

In recent years, with growing volumes of data, there has been an ever-increasing need to fit accurate
logistic regression models to very large datasets with n ≫ 0 and/or p ≫ 0. First-order methods
for tackling the problem LR are appealing in this large-scale regime for several reasons. First, the
computational cost per iteration of first-order methods is relatively low compared to alternatives
such as Newton’s method (i.e., iteratively reweighted least squares). Second, first-order methods
often tend to produce statistically interesting solutions before they reach convergence. In particular,
several first-order methods such as gradient descent and its generalizations – steepest descent and
stochastic gradient descent – are known to impart implicit regularization which induces models with
good out-of-sample performance on the interior of the sequence of coefficient iterates. Moreover, at
least one special case of steepest descent, namely greedy coordinate descent, also imparts desirable
sparsity properties along the sequence of coefficient iterates. In this paper, we focus on the method
of steepest descent in an arbitrary given norm ‖ · ‖ – a method that encompasses both standard
gradient descent and greedy coordinate descent, among others – as well as the method of stochastic
gradient descent (SGD), which is particularly appealing for problems with n ≫ 0 since SGD only
needs to sample a handful of data observations at each iteration.

Towards improving our understanding of steepest descent and SGD for logistic regression, we
introduce a pair of condition numbers that measure the degree of non-separability or separability
of the dataset (x1, y1), . . . , (xn, yn). In the case when the data is not separable, we introduce a
condition number DegNSEP∗ that precisely quantifies the degree of non-separability of the dataset,
namely datasets that are “more non-separable” have larger values of DegNSEP∗. We then show that
DegNSEP∗ naturally informs the computational guarantees of steepest descent in the sense that the
guarantees improve when DegNSEP∗ is larger. Furthermore, we extend the definition of DegNSEP∗

to measure the degree of non-separability of an arbitrary distribution over the data, which allows
us to analyze the role of DegNSEP∗ in the computational guarantees of SGD in full generality.
In particular, we demonstrate that better convergence bounds – and therefore less data samples
from a statistical learning point of view – are achieved when DegNSEP∗ is larger. In the case of
separable data, we use the well-known concept of the margin [9], which we refer to as DegSEP∗,
to precisely quantify the degree of separability of the dataset, whereby datasets that are “more
separable” have larger values of DegSEP∗. We then develop computational guarantees for both ℓ2
steepest descent and SGD that naturally depend on DegSEP∗ and that demonstrate convergence
towards approximate-maximum-margin solutions. We also demonstrate that both DegNSEP∗ and
DegSEP∗ may also be interpreted through the lens of data perturbations and the “distance to
ill-posedness” introduced by Renegar [25].

There has recently been other research activity on the analysis of the performance of steepest descent
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and SGD for solving the logistic regression optimization problem (2). Ji and Telgarsky [16], Soudry
et al. [31], Nacson et al. [18], Gunasekar et al. [14], and Nacson et al. [19] analyze the convergence
properties of steepest descent and/or SGD in terms of the loss function values and iterate values
when the problem instance is separable (or partially separable, this latter case not having received
any previous attention that we are aware of). We discuss the results in these papers relative to
ours in the relevant sections herein.

The paper is organized as follows. In Section 2 we present a pair of condition numbers for logistic
regression instances, one for instances that are non-separable and another for instances that are
separable. In Section 3 we examine the steepest descent algorithm (in any given norm) and show
how the degree of non-separability naturally informs computational guarantees of steepest descent.
In the separable case, we develop computational guarantees for ℓ2 steepest descent that are informed
by the degree of separability and show convergence towards an approximate-maximum-margin
solution. Expanding on Bach [2,3], we also show how the degree of non-separability enters into the
analysis of linear convergence of steepest descent (without needing strong convexity). In Section
4 we examine the stochastic gradient descent (SGD) method and we show how our condition
numbers inform the computational guarantees of SGD. In the non-separable case, we show how the
degree of non-separability informs standard guarantees of SGD as well as the adaptive guarantee
developed by Bach in [3]. In the separable case, we develop computational guarantees for SGD
that are informed by the degree of separability and show convergence in probability towards an
approximate-maximum-margin solution.

1.1 Notation

For a vector x ∈ R
p, xj denotes the jth coordinate; we use superscripts to index vectors in a

sequence {xk}. Let ej denote the jth unit vector in R
p, and let e = (1, . . . , 1). We will make use

of a generic given norm ‖ · ‖ on R
p as well as the ℓq norm denoted by ‖ · ‖q with unit ball Bq for

q ∈ [1,∞]. For the given norm ‖ · ‖, ‖ · ‖∗ denotes the dual norm defined by ‖s‖∗ = max
x:‖x‖≤1

sTx. Let

Dist(v, S) := minx∈S ‖x − v‖ denote the distance from a point v to a set S. Let ‖v‖0 denote the
number of non-zero coefficients of the vector v.

For A ∈ R
n×p, let ‖A‖·,q := max

x:‖x‖≤1
‖Ax‖q be the operator norm using the given norm ‖ · ‖,

and let ‖A‖q1,q2 := max
x:‖x‖q1≤1

‖Ax‖q2 be the operator norm where the given norm is the ℓq1 norm.

Furthermore, let null(A) := {x ∈ R
p : Ax = 0} denote the null space of A. For a symmetric matrix

M , we write “M � 0” to denote that M is positive semidefinite, “M ≻ 0” to denote that M is
positive definite, and let λmin(M) denote the smallest eigenvalue of M .

For a scalar α, sgn(α) denotes the sign of α, and α+, α− denote the positive and negative parts of
α, respectively. The notation “ṽ ← argmax

v∈S
{f(v)}” denotes assigning ṽ to be any optimal solution

of the problem max
v∈S
{f(v)}.

4



2 Logistic Regression, and a Pair of Condition Numbers for Non-

Separable and Separable Training Data

Let us review the setting and notation of logistic regression and the basic properties of the op-
timization problem LR. Recall that we have n observed training data points (x1, y1) . . . , (xn, yn)
where xi ∈ R

p is the vector of feature values and yi ∈ {−1, 1} is the (binary) class of observation i,
for i = 1, . . . , n. Let X be the matrix whose ith row is xi, for i = 1, . . . , n. The well-known logistic
loss function is Ln(·) : Rp → R defined by:

Ln(β) :=
1

n

n
∑

i=1

ln
(

1 + exp
(

−yiβTxi

))

, (3)

where β ∈ R
p. Throughout the paper, we denote the univariate logistic loss function by ℓ(t) :=

ln(1 + exp(−t)), the gradient of Ln(·) by ∇Ln(·), and the Hessian of Ln(β) by H(β).

As mentioned previously, LR, the problem of minimizing the logistic loss function Ln(·) over β ∈ R
p

arises from maximum likelihood estimation for the model (1). Note that Ln(β) > 0 for all β,
hence L∗

n ≥ 0 and is therefore finite. Unlike, for example, the least-squares loss function for
linear regression, it is not clear a priori if the logistic regression problem LR has an optimal
solution. Indeed, in the case when the data is separable, i.e., there exists a vector β ∈ R

p satisfying
yiβ

Txi > 0 for i = 1, . . . , n, then Ln(θβ)→ 0 = L∗
n as θ → +∞, and hence LR does not attain its

optimum.

In order to better understand the behavior of the logistic regression problem in general as well
as the behavior of the steepest descent and SGD for logistic regression, we now develop a pair
of condition numbers that measure the degree of non-separability and separability of the dataset
(x1, y1) . . . , (xn, yn). In particular, we show in this section that the behavior of LR in terms of
existence of optima, as well as the existence of low-norm optima, can be characterized in terms of
these condition numbers.

2.1 Non-Separable Data

Let us first consider the case of non-separable data. We say that observation i is correctly classified
by β if yiβ

Txi > 0, and is misclassified by β if yiβ
Txi ≤ 0. Letting Y denote the diagonal

matrix whose ith component is yi, then with this notation observation i is correctly classified or
misclassified by β if (YXβ)i > 0 or (YXβ)i ≤ 0, respectively. We say that the training data is
non-separable if there is no β that correctly classifies every observation, i.e., there is no β that
satisfies YXβ > 0, and in this case we write “(X, y) is not separable” to denote that the data
(X, y) are not separable.

Clearly, some non-separable datasets might be “more non-separable” than others, so let us now
introduce a way to measure the extent to which the dataset is non-separable. Let ‖ · ‖ denote the
given norm on the space Rp of model coefficients β. We define the degree of non-separability of the
training data (with respect to the norm ‖ · ‖) to be:
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DegNSEP∗ := min
β∈Rp

1
n

∑n
i=1[yiβ

Txi]
−

s.t. ‖β‖ = 1 ,

(4)

which states that DegNSEP∗ is the smallest (over all normalized models β) average misclassification
error of the model β over the n observations. We emphasize that here and for the remainder of
this paper that the norm ‖ · ‖ on the space of model coefficients Rp is given and fixed. (In Sections
3.4 and 4 we will require the norm ‖ · ‖ to be the ℓ2 norm, but otherwise it is generic.)

Define β0 := 0 ∈ R
p. Noticing that Ln(β

0) = ln(2), the following object measures the maximum
distance from any β in the level set of β0 – namely {β ∈ R

p : Ln(β) ≤ ln(2)} – to the set of optimal
solutions of LR:

Dist0 = max
β:Ln(β)≤ln(2)

{

min
β∗:Ln(β∗)=L∗

n

‖β − β∗‖
}

. (5)

The following proposition shows that the behavior of the logistic regression problem LR can be
characterized in terms of the degree of non-separability DegNSEP∗.

Proposition 2.1. If DegNSEP∗ > 0, then:

(i) there is a unique optimal solution β∗ of the logistic regression problem LR,

(ii) H(β∗) ≻ 0 ,

(iii) ‖β∗‖ ≤ L∗
n

DegNSEP∗ ≤
ln(2)

DegNSEP∗ , and

(iv) Dist0 ≤
ln(2) + L∗

n

DegNSEP∗ ≤
2 ln(2)

DegNSEP∗ .

Proof: Suppose that DegNSEP∗ > 0. Notice that this implies that null(X) = {0} since if this is
not the case, then there exists β̄ ∈ null(X) with ‖β̄‖ = 1 which implies that DegNSEP∗ = 0. For
any β ∈ R

p, a simple calculation yields that H(β) = 1
nX

TGX where G is the n×n diagonal matrix

whose ith component is Gii = ℓ′′(yiβTxi) = exp(yiβ
T
xi)

(exp(yiβTxi)+1)2
> 0. Therefore, for any β ∈ R

p, we

have that null(H(β)) = null(X) = {0}, and it then follows that H(β) ≻ 0. This implies that Ln(·)
is globally strictly convex.

Notice that ln(1 + e−t) ≥ t− for any t, and hence the objective function of (4) satisfies Ln(β) ≥
1
n

∑n
i=1[yiβ

Txi]
− for any β. It then follows from (4) that Ln(β) ≥ DegNSEP∗‖β‖ for all β ∈ R

p,
which rearranges to:

‖β‖ ≤ Ln(β)

DegNSEP∗ for all β ∈ R
p . (6)

Notice that Ln(0) = ln(2), and therefore the level set {β ∈ R
p : Ln(β) ≤ ln(2)} ⊂ {β ∈ R

p : ‖β‖ ≤
ln(2)/DegNSEP∗} and hence is a nonempty compact set. It then follows from the continuity of
Ln(·) in conjunction with the Weierstrass Theorem that LR attains its optimum. Since Ln(·) is
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strictly convex there is a unique optimal solution β∗, which proves (i). By the previous discussion

we have that H(β∗) ≻ 0, which proves (ii), and it follows from (6) that ‖β∗‖ ≤ L∗
n

DegNSEP∗ , which
proves (iii). If β satisfies Ln(β) ≤ ln(2) it follows that

‖β − β∗‖ ≤ ‖β‖+ ‖β∗‖ ≤ ln(2)

DegNSEP∗ +
L∗
n

DegNSEP∗ ,

which then implies (iv).

Part (iii) of Proposition 2.1 states that the norm of the unique optimal solution of the logistic
regression problem LR is bounded inversely proportional to DegNSEP∗, and part (iv) of Proposition
2.1 presents a similar bound on Dist0. Part (ii) of Proposition 2.1 states that H(β∗) is positive
definite, i.e., that the logistic loss function is locally strongly convex at the optimum β∗. We can
measure the degree of local strong convexity by defining, for any symmetric positive semidefinite
matrix M , the local strong convexity constant of M (with respect to the norm ‖ · ‖) to be:

ν∗(M) := min
β∈Rp

βTMβ

s.t. ‖β‖ = 1 .

(7)

Part (ii) of Proposition 2.1 immediately implies that ν∗(H(β∗)) > 0. Notice that when the norm
‖ · ‖ is the ℓ2 norm, then ν∗(M) = λmin(M). It also follows from norm equivalence that there
exist constants C1 and C2 with 0 < C1 ≤ C2 such that C1λmin(M) ≤ ν∗(M) ≤ C2λmin(M) for
all symmetric positive semidefinite matrices M . Proposition 2.2 below provides a lower bound on
ν∗(H(β∗)) that depends entirely on DegNSEP∗ and magnitude properties of X.

Proposition 2.2. If DegNSEP∗ > 0, then:

ν∗(H(β∗)) ≥ 1
4nν

∗(XTX) exp

(

− ln(2)‖X‖·,∞
DegNSEP∗

)

> 0 ,

where β∗ is the unique optimal solution of LR.

Proof: Recall that H(β∗) = 1
nX

TGX where G is the n× n diagonal matrix whose ith component
Gii = ℓ′′(yi(β∗)Txi) satisfies

Gii =
exp(yi(β

∗)Txi)

(exp(yi(β∗)Txi) + 1)2
≥ 1

4 exp(−|yi(β
∗)Txi|) ≥ 1

4 exp(−‖xi‖∗‖β∗‖) ≥ 1
4 exp

(

− ln(2)‖X‖·,∞
DegNSEP∗

)

,

where the final inequality uses part (iii) of Proposition 2.1 and ‖X‖·,∞ = max
i∈{1,...,n}

‖xi‖∗. Therefore,
for any β ∈ R

p, we have

βTH(β∗)β = 1
n(Xβ)TG(Xβ) ≥ 1

4n exp
(

− ln(2)‖X‖·,∞
DegNSEP∗

)

βT (XTX)β ,

and taking the minimum of both sides of the above inequality over all β satisfying ‖β‖ = 1 yields
the desired result.

It turns out that DegNSEP∗ can also be interpreted as the minimal perturbation of the data for
which the perturbed problem data is separable. This will be given a precise definition and proof in
Section 2.3.
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2.2 Separable Data

We say that the training data is separable if there exists β for which YXβ > 0, i.e., there is a model
β that correctly classifies every observation, and we write “(X, y) is separable” to denote that the
data (X, y) are separable. Akin to the case of non-separable data, some separable datasets might
be “more separable” than others. Employing the standard lens of statistical machine learning [15],
we can measure the degree of separability using the well-known concept of the “margin” [9], which
we now review for completeness. Suppose that (X, y) is separable, and let β be a model that
correctly classifies all observations, namely YXβ > 0. Then the margin of β is denoted by ρ(β)
and is defined to be the least classification value of β over all observations:

ρ(β) := min
i∈{1,...,n}

[yiβ
Txi] .

We define the degree of separability of the data to be the maximum margin over all normalized
models β, namely:

DegSEP∗ := max
β

ρ(β)

s.t. ‖β‖ ≤ 1 .

(8)

Proposition 2.3. If (X, y) is separable, then DegSEP∗ > 0, L∗
n = 0, and LR does not attain its

optimum.

Proof: If (X, y) is separable, it follows from the definition of the margin that DegSEP∗ > 0, and
there exists a vector β̄ ∈ R

p satisfying ‖β̄‖ ≤ 1 and yiβ̄
Txi ≥ DegSEP∗ > 0 for i = 1, . . . , n,

whereby Ln(θβ̄) → 0 as θ → +∞. Since Ln(β) > 0 for any β, it also follows that L∗
n ≥ 0, and

hence L∗
n = 0 and LR does not attain its optimum.

The following lemma relates the margin function ρ(·) to the gradient of the logistic loss function.
In Lemma 2.1 and elsewhere in this paper we use the convention ln(a) = −∞ for a ≤ 0, i.e., ln(·)
is an extended-real-valued concave function.

Lemma 2.1. Suppose that the data (X, y) is separable, i.e., DegSEP∗ > 0. Then for any β ∈ R
p

it holds that:
ρ(β) ≥ ln

(

DegSEP∗

n‖∇Ln(β)‖∗ − 1
)

.

Proof: Recall that

ρ(β) := min
i∈{1,...,n}

[yiβ
Txi] = min

i∈{1,...,n}
(YXβ)i = min

w∈∆n

wTYXβ ,

where ∆n := {w ∈ R
n : eTw = 1, w ≥ 0}. By minimax strong duality it holds that:

DegSEP∗ := max
β:‖β‖≤1

ρ(β) = min
w∈∆n

‖XTY w‖∗ . (9)
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Straightforward calculation yields that the gradient of the logistic loss function satisfies ∇Ln(β) =
1
nX

TY w∗(β) where w∗(β) ∈ R
n is the vector defined component-wise by:

w∗(β)i =
1

1 + exp(yiβTxi)
, i = 1, . . . , n . (10)

Since w∗(β) > 0 it follows that w∗(β)/‖w∗(β)‖1 is a feasible solution of the right-most optimization

problem in (9), which implies that ‖XT Y w∗(β)‖∗
‖w∗(β)‖1 ≥ DegSEP∗. Thus, since DegSEP∗ > 0, it holds

that

‖w∗(β)‖1 ≤
‖XTY w∗(β)‖∗

DegSEP∗ =
n‖∇Ln(β)‖∗
DegSEP∗ .

In particular, for each i = 1, . . . , n, it holds that w∗(β)i ≤ n‖∇Ln(β)‖∗
DegSEP∗ , which, after simple arithmetic

manipulation using (10), is equivalent to:

yiβ
Txi ≥ ln

(

DegSEP∗

n‖∇Ln(β)‖∗ − 1
)

, i = 1, . . . , n . (11)

Since (11) holds for all i = 1, . . . , n, the result is proved.

It turns out that DegSEP∗ can also be interpreted as the minimal perturbation of the data for which
the perturbed problem data is non-separable. This is developed in the following subsection.

2.3 Data-Perturbation Interpretations of DegNSEP∗ and DegSEP∗

In this subsection we show that both DegNSEP∗ and DegSEP∗ can be interpreted through the lens
of data perturbations that alter the status of the dataset – from non-separable to separable, or vice
versa. Let us view the feature data matrix X as a linear operator, and recall the operator norm
notation ‖X‖·,q := max

β:‖β‖≤1
‖Xβ‖q on the space R

n×p.

Define:

PertSEP∗ := inf
∆X

1
n‖∆X‖·,1

s.t. (X+∆X, y) is separable .

(12)

Then PertSEP∗ is the smallest (or more precisely, the infimum thereof) perturbation ∆X of the
feature data X which will render the perturbed problem instance (X+∆X, y) separable. Here the
size of the perturbation is measured using the (scaled) operator norm 1

n‖·‖·,1. Clearly PertSEP∗ = 0
if (X, y) is separable. If PertSEP∗ > 0, then (X, y) is not separable; and the smaller PertSEP∗ is,
the closer the data is to being separable. Notice that ‖∆X‖·,1 scales proportional to n, which is
counteracted by dividing by n in the objective function of (12). The following result shows that the
condition number DegNSEP∗ introduced and used in Section 2.1 can be alternatively interpreted
as the smallest data perturbation for which the perturbed data (X+∆X, y) is separable.

Proposition 2.4. For any dataset (X, y) it holds that DegNSEP∗ = PertSEP∗.

9



Proof: See Appendix A.1.

Let us also define:

PertNSEP∗ := inf
∆X

‖∆X‖·,∞

s.t. (X+∆X, y) is non-separable .

(13)

Then PertNSEP∗ is the smallest perturbation ∆X of the feature data X which will render the
perturbed problem instance (X+∆X, y) non-separable. Here the size of the perturbation is mea-
sured using the operator norm ‖ · ‖·,∞. Clearly PertNSEP∗ = 0 if (X, y) is not separable. If
PertNSEP∗ > 0, then (X, y) is separable; and the smaller PertNSEP∗ is, the closer the data is to
being non-separable. Notice that we use a different operator norm in the definition of PertNSEP∗

than that used in the definition of PertSEP∗. The following result shows that the condition number
DegSEP∗ introduced and used in Section 2.2 can be alternatively interpreted as the smallest data
perturbation for which the perturbed data (X+∆X, y) is non-separable.

Proposition 2.5. For any dataset (X, y) it holds that DegSEP∗ = PertNSEP∗.

Proof: See Appendix A.1 as well.

Any given dataset (X, y) is either non-separable (in which case DegSEP∗ = 0) or is separable
(in which case DegNSEP∗ = 0). Borrowing from the lexicon of Renegar [25], we may call the
dataset (X, y) “ill-posed” if both DegNSEP∗ = 0 and DegSEP∗ = 0, in which case the dataset is
non-separable but there is an arbitrarily small perturbation of the data that renders the perturbed
dataset separable. It can easily be verified that an example of such a dataset is:

X =









1 0 −1
0 −1 1
−1 −2 3
2 1 −3









, y =









1
−1
1
−1









.

3 Informing Standard Deterministic First-Order Solution Meth-

ods for Logistic Regression

In this section we show how the two condition numbers DegNSEP∗ and DegSEP∗ inform the
computational properties and guarantees of a standard deterministic first-order solution method
for logistic regression, namely the steepest descent method in any given norm ‖ · ‖. After briefly
reviewing steepest descent in the setting of smooth convex optimization in Section 3.1, we examine
steepest descent as applied to logistic regression in two cases: in Section 3.2 we consider the case
of non-separable data and examine steepest descent for any given norm, and in Section 3.4 we
consider the case of separable data and examine steepest descent for the ℓ2 norm.
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3.1 Brief Review of Steepest Descent

We review the steepest descent method for solving the unconstrained optimization problem:

(P): f∗ := min
x∈Rp

f(x) , (14)

where f(·) : Rp → R is a differentiable convex function, and we assume that f∗ is finite but it is
not necessarily attained. Let ‖ · ‖ be the norm on the variables x ∈ R

p. At a given iterate x̄, the
steepest descent direction is defined to be the negative of the normalized direction d̄ that maximizes
∇f(x̄)T d, namely: d̄ ← argmaxd{∇f(x̄)Td : ‖d‖ ≤ 1}. The formal statement of steepest descent
in the norm ‖ · ‖ is presented in Algorithm 1.

Algorithm 1 Steepest Descent in the norm ‖ · ‖
Initialize at x0 ∈ R

p, k ← 0

At iteration k:
1. Compute ∇f(xk)
2. Compute dk ← argmaxd{∇f(xk)T d : ‖d‖ ≤ 1}
3. Choose αk ≥ 0 and set:

xk+1 ← xk − αk · dk

To the best of our knowledge, there is no general computational guarantee associated with steepest
descent for an arbitrary norm without additional assumptions such as bounded optimal solutions,
strong convexity of the function, and/or maximum distances of the starting points and/or the
iterates from the set of optimal solutions (or the set of near-optimal solutions). In the Euclidean
norm case (‖ · ‖ = ‖ · ‖2), steepest descent specifies to the classical gradient descent algorithm,
see [24] and [22]. In the particular case when ‖ · ‖ is the ℓ1 norm ‖ · ‖1, steepest descent specifies to
the greedy coordinate descent method. For works related to greedy coordinate descent, including
block-coordinate descent, cyclic and randomized coordinate descent and variations thereof, see for
example Nesterov [21], Richtárik and Takáč [26], Schmidt and Friedlander [28], and Beck and
Tetruashvili [5].

Recall that f(·) is L-smooth with respect to the norm ‖·‖ if f(·) is differentiable and satisfies:

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ R
p , (15)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.
Let S0 denote the level set of the initial iterate x0, namely S0 := {x ∈ R

p : f(x) ≤ f(x0)}, and let
S∗ denote the set of optimal solutions of (14), i.e., S∗ := {x ∈ R

p : f(x) = f∗}. Then let Dist0
denote the largest distance of points in S0 to the set of optimal solutions S∗:

Dist0 := max
x∈S0

min
x∗∈S∗

‖x− x∗‖ . (16)

The following computational guarantees for steepest descent are an amended and extended version
of mostly well-known results about traditional gradient descent and greedy coordinate descent, see
for example Nesterov [22] and Beck and Tetruashvili [5].

11



Theorem 3.1. (Computational Guarantees for Steepest Descent in the norm ‖ · ‖) Let
{xk} be generated according to the steepest descent method (Algorithm 1) using the step-size sequence
{αk} chosen using the “greedy” rule:

αk =
‖∇f(xk)‖∗

L
for all k ≥ 0 . (17)

If x0 /∈ S∗, then it holds for all k ≥ 0 that:

(i) (optimality gap): f(xk)− f∗ ≤ 2L(Dist0)
2

K̂0 + k
<

2L(Dist0)
2

k

and

(ii) (gradient bound I): ‖∇f(xk)‖∗ ≤
√

2L(f(xk)− f∗) ≤ 2LDist0
√

K̂0 + k

where K̂0 :=
2L(Dist0)

2

f(x0)− f∗ . Furthermore,

(iii) (norm bound): ‖xk − x0‖ ≤
√
k

√

2(f(x0)− f∗)
L

, and

(iv) (gradient bound II): there exists i ≤ k for which ‖∇f(xi)‖∗ ≤
√

2L(f(x0)− f∗)
k + 1

,

where the two inequalities in (i) and the second inequality in (ii) are only relevant when Dist0 is
finite.

For completeness, a self-contained proof of Theorem 3.1 is given in Appendix A.2.

Remark 3.1. If an exact line-search is used instead of the step-size rule (17), then all of the results
in Theorem 3.1 remain valid except for the norm bound in item (iii). This follows easily from the
structure of the proof in Appendix A.2.

Remark 3.2. In the case of the ℓ2 norm, Dist0 can be replaced by the typically much small quantity
Dist(x0,S∗) in items (i) and (ii) of the Theorem 3.1.

3.2 Informing Steepest Descent for Solving Logistic Regression in the Non-

Separable Case

Here we show how the condition numbers DegNSEP∗ and DegSEP∗ inform computational guar-
antees for steepest descent applied to the logistic regression optimization problem (2). In order to
apply Theorem 3.1 to the setting of logistic regression, we use the following smoothness property
of the logistic loss function.

Proposition 3.1. (Lipschitz smoothness of the logistic loss function) The logistic loss
function Ln(·) is L = 1

4n‖X‖2·,2-smooth with respect to the given norm ‖ · ‖ on R
p.

Proof: See Appendix A.3.
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Theorem 3.2. (Steepest Descent for Logistic Regression in the norm ‖·‖: Non-Separable
Case) Suppose that steepest descent (Algorithm 1) is initialized at β0 := 0, and is implemented
using the step-size rule:

αk :=
4n‖∇Ln(β

k)‖∗
‖X‖2·,2

for all k ≥ 0 . (18)

When the data is non-separable, for all k ≥ 0 it holds that:

(i) (training error):

Ln(β
k)− L∗

n ≤
1

1

ln(2)− L∗
n

+
k · n · (DegNSEP∗)2

2‖X‖2·,2(ln(2))2
<

2‖X‖2·,2(ln(2))2
k · n · (DegNSEP∗)2

,

(ii) (shrinkage): ‖βk‖ ≤
√
k
(

1
‖X‖·,2

)

√

8n(ln(2) − L∗
n) ≤

√
k
(

1
‖X‖·,2

)

√

8n ln(2) , and

(iii) (gradient bound): ‖∇Ln(β
k)‖∗ ≤ ‖X‖·,2

√

(Ln(βk)−L∗
n)

2n ≤
‖X‖2·,2 ln(2)√

k · n ·DegNSEP∗ .

Proof: These results are a straightforward application of Theorem 3.1, Proposition 3.1, and Propo-
sition 2.1. Parts (i) and (ii) of Theorem 3.1 present computational guarantees for the steepest de-
scent method for the step-size rule (17) in terms of the initial objective function value (which in this
case is Ln(β

0) = Ln(0) = ln(2)), the Lipschitz constant L, and the distance measure Dist0 defined
in (16). From Proposition 3.1 we can take the Lipschitz constant L of the gradient of the logistic

loss function Ln(·) to be L = 1
4n‖X‖2·,2. And from Proposition 2.1 we have that Dist0 ≤ 2 ln(2)

DegNSEP∗

in the case when the data is non-separable. Substituting these values into the step-size formula
(17) and utilizing parts (i) and (ii) of Theorem 3.1 yields precisely the step-size rule (18) and
the computational guarantees in parts (i) and (iii) of the present theorem. Also, substituting the
bound on L into part (iii) of Theorem 3.1 yields part (ii) of the present theorem.

Notice the manner in which DegNSEP∗ informs the computational guarantees in Theorem 3.2. The
training error bound scales like O(1/(DegNSEP∗)2), and so the computational guarantee on the
training error is smaller for datasets with larger values of DegNSEP∗. Also note that the training
error bound is invariant under constant re-scaling of the data – since rescaling all observations
by a constant γ will rescale both DegNSEP∗ and ‖X‖·,2 by γ and so their quotient is unaffected.
Similarly, the computational guarantee on the norm of the gradient scales like O(1/DegNSEP∗),
and is smaller for datasets with larger values of DegNSEP∗ as well.

3.3 Linear Convergence Results

In a series of papers, Bach [2, 3], as well as Bach and Moulines [4], identified a generalized self-
concordance property of the logistic loss function that has proven to be useful in analyzing the
statistical and computational properties of empirical risk minimization as well as stochastic gradient
descent in this setting. In particular, in the case of non-separable data, Bach demonstrates in [3]
that (averaged) stochastic gradient descent is adaptive to the unknown local strong convexity of
the logistic loss function at the optimum. That is, the convergence rate can be improved from
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O(1/
√
k) to O(1/µk) where µ is the smallest eigenvalue of the Hessian at the optimum. Since it is

known that steepest descent achieves linear convergence in the case of a strongly convex objective
function, it is natural to ask whether steepest descent is also adaptive to the unknown local strong
convexity of the logistic loss function? Here we answer this question in the affirmative.

We show in the case of non-separable data that steepest descent achieves linear convergence with a
rate of linear convergence that naturally depends on the condition number DegNSEP∗ as well as a
measure of local strong convexity at the optimum. Our results provide linear convergence guarantees
both in terms of the training error gap as well as the distance to the optimal solution β∗ measured
in the given norm. Moreover, we show that after a certain number of iterations that scales like
O(1/(DegNSEP∗)2), the rate of linear convergence improves to a faster rate that is independent
of DegNSEP∗. Thus, steepest descent is generally adaptive to the local strong convexity of the
logistic loss function and also achieves faster convergence in a neighborhood of an optimal solution.
The proofs of our results utilize the generalized self-concordance theory of Bach [2,3], with analysis
that is perhaps simpler than the case of stochastic gradient descent examined in [3].

Theorem 3.3 below presents the linear convergence results for steepest descent in the non-separable
case. Recall that ν∗(M) denotes the local strong convexity constant of a symmetric positive semidef-
inite matrix M with respect to the given norm ‖ · ‖, and that part (ii) of Proposition 2.1 implies
that ν∗(H(β∗)) > 0 whenever DegNSEP∗ > 0.

Theorem 3.3. (Linear Convergence of Steepest Descent in the Non-Separable Case)
Suppose that Steepest Descent (Algorithm 1) is initalized at β0 := 0, and is implemented using the
step-size sequence:

αk :=
4n‖∇Ln(β

k)‖∗
‖X‖2·,2

for all k ≥ 0 .

Suppose that the data is non-separable and DegNSEP∗ > 0. Define the “slow” rate of linear
convergence constant:

τslow :=

(

1− 2(DegNSEP∗)ν∗(H(β∗))n

(DegNSEP∗ + 2 ln(2)‖X‖·,∞)‖X‖2·,2

)

< 1 .

Then for all k ≥ 0, it holds that:

(i) (training error): Ln(β
k)− L∗

n ≤ (ln(2) − L∗
n) · (τslow)k , and

(ii) (coefficient convergence): ‖βk − β∗‖ ≤
(

1 +
2 ln(2)‖X‖·,∞
DegNSEP∗

)(

‖X‖·,2
ν∗(H(β∗))

)

√

ln(2)−L∗
n

2n · (τslow)k/2
,

where β∗ is the unique optimal solution of LR. Furthermore, define:

Ǩ :=

⌈

16 ln(2)2‖X‖4·,2‖X‖2·,∞
9n2(DegNSEP∗)2ν∗(H(β∗))2

⌉

,

and the “fast” rate of linear convergence constant:

τfast :=

(

1− ν∗(H(β∗))n

‖X‖2·,2

)

< τslow < 1 .

Then for all k ≥ Ǩ, it holds that:
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(iii) (training error): Ln(β
k)− L∗

n ≤ (Ln(β
Ǩ)− L∗

n) · (τfast)k−Ǩ , and

(iv) (coefficient convergence): ‖βk − β∗‖ ≤ ‖X‖·,2
ν∗(H(β∗))

√

2(Ln(βǨ)−L∗
n)

n · (τfast)(k−Ǩ)/2 .

The proof of Theorem 3.3 is presented in Appendix A.4. As compared to results of a similar flavor
for other algorithms, here we have precise guarantees for both the “slow” and “fast” rates of linear
convergence as well as for the point at which the fast rate is guaranteed to “kick in.” Moreover,
there is a natural dependence on DegNSEP∗ in both the slow rate τslow as well as the iterate Ǩ
by which point the linear convergence rate is improved. Note that the bound on the training error
provided by part (i) of Theorem 3.2, while sublinear, will be superior to the linear convergence
bound provided by part (i) of Theorem 3.3 during the early iterations of steepest descent. On the
other hand, the fast linear convergence bound provided by part (iii) of Theorem 3.3 will eventually
be the superior of all three bounds when k is large enough. Recall that Proposition 2.2 states that
ν∗(H(β∗)) is bounded from below as follows:

ν∗(H(β∗)) ≥ 1
4nν

∗(XTX) exp

(

− ln(2)‖X‖·,∞
DegNSEP∗

)

> 0 ,

which only depends on DegNSEP∗ and the magnitude properties of X. This lower bound can be
leveraged to develop versions of the slow and fast linear convergence rates that depend only on
DegNSEP∗ and the magnitude properties of X. However (and as also noted by Bach in [3]), the
exponential term in the above lower bound is quite pessimistic and in practice ν∗(H(β∗)) tends to
be not much smaller than 1

4nν
∗(XTX), i.e, it is as if the exponential term above is not present.

3.4 Informing ℓ2 Steepest Descent for Solving Logistic Regression in the Sepa-

rable Case

Let us also examine the case when the data is separable. As mentioned earlier, the logistic regression
optimization problem (2) is not naturally designed for the case when the data is separable due to
the fact that in this case there is no optimal solution. Indeed, one would suspect that in this
case most algorithms – in particular elementary algorithms such as steepest descent – would not
exhibit computational guarantees of interest. However, Soudry et al. [31] and Ji and Telgarsky [16]
have recently shown for the case of separable data that steepest descent for the ℓ2 norm delivers
solutions whose normalized values are approximate-maximum-margin solutions. The following
theorem presents our results for ℓ2 steepest descent in the separable case, which adds different and
explicit computational guarantees in the separable case.

Theorem 3.4. (ℓ2 Steepest Descent for Logistic Regression: Separable Case) Suppose
that ℓ2 steepest descent (Algorithm 1 with the ℓ2 norm) is initialized at β0 := 0, and is implemented
using the step-size rule:

αk :=
2‖∇Ln(β

k)‖2
‖X‖22,∞

for all k ≥ 0 . (19)

When the data is separable, it holds for all k ≥ 1 that:
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(i) (margin bound): there exists i ∈ {0, 1, . . . , k} for which the normalized iterate β̄i := βi/‖βi‖2
satisfies

ρ(β̄i) ≥
DegSEP∗ · ln

(

DegSEP∗

n‖X‖2,∞

√

3(k+1)
2 ln(2) − 1

)

2(ln(k) + 1)
, (20)

(ii) (shrinkage): ‖βk‖2 ≤ 2 ln(k)
DegSEP∗ + 2

‖X‖2,∞ , and

(iii) (gradient bound): min
i∈{0,...,k}

‖∇Ln(β
i)‖2 ≤ ‖X‖2,∞

√

2 ln(2)
3(k+1) .

Note that the constant step-size value (19) in Theorem 3.4 is different from the corresponding value
(18) in Theorem 3.2 (when the norm is the ℓ2 norm). Indeed, the step-size value (19) is smaller
than the step-size value (18) since 1

n‖X‖22,2 ≤ ‖X‖22,∞. Therefore, 1
2‖X‖22,∞ is a valid upper bound

on the Lipschitz constant of the gradient and it is straightforward to develop variants of Theorems
3.2 and 3.3 for the step-size (19), wherein 1

4n‖X‖22,2 would be replaced by 1
2‖X‖22,∞ in all of the

bounds.

The bound in item (i) of Theorem 3.4 can be understood as O(1/ ln(k)) relative convergence to at

least DegSEP∗

4 . To demonstrate this, consider setting k := ⌊2 ln(2)Ω
2n2‖X‖2

2,∞

3(DegSEP∗)2 ⌋ for some parameter

Ω ≥ 2. Then the bound in (20) becomes:

ρ(β̄i) ≥ DegSEP∗ · ln (Ω− 1)

4 ln(Ω) + 2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 2

,

and rearranging the above yields:

ρ(β̄i)
DegSEP∗

4

≥ ln (Ω− 1)

ln(Ω) + 1
2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 1
2

= 1 −
ln
(

Ω
Ω−1

)

+ 1
2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 1
2

ln(Ω) + 1
2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 1
2

≥ 1 −
ln(2) + 1

2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 1
2

1
2 ln(Ω

2) + 1
2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 1
2

≥ 1 −
ln(2) + 1

2 ln

(

2 ln(2)n2‖X‖2
2,∞

3(DegSEP∗)2

)

+ 1
2

1
2 ln(k + 1) + 1

2

,

(where the second inequality uses Ω ≥ 2), and letting k grow demonstrates O(1/ ln(k)) convergence
of the iterate margins to DegSEP∗

4 or larger. Interestingly, except for the factor of 4, this result is
similar to Soudry et al. [31] who show O(1/ ln(k)) convergence to DegSEP∗, and to Ji and Telgar-
sky [16], whose work shows O(

√

ln ln(k)/ ln(k)) convergence to DegSEP∗; however our arguments
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appear to be entirely different and they result in an explicit margin bound, whereas the results
in [16] and [31] are less transparent. On the other hand, [16] and [31] of course prove convergence
towards DegSEP∗, not DegSEP∗

4 .

In order to prove Theorem 3.4, we will use the following lemma which bounds the norms of iterates
of ℓ2 steepest descent applied to the logistic regression problem (2), and which is a modified version
of a result in Ji and Telgarsky [16].

Lemma 3.1. (essentially from Ji and Telgarsky [16]) Suppose that ℓ2 steepest descent (Algo-
rithm 1 with the ℓ2 norm) is initialized at β0 := 0 using the step-size sequence {αk}. If DegSEP∗ > 0

and αk ≤ 2‖∇Ln(βk)‖2
‖X‖2

2,∞

for all k ≥ 0, then it holds for all k ≥ 1 that:

‖βk‖2 ≤
2 ln(k)

DegSEP∗ +
2

‖X‖2,∞
.

The proof of this lemma is presented in Appendix A.5.

Proof of Theorem 3.4: We first prove item (iii). Let i ∈ {0, . . . , k}. By the smoothness of the
logistic loss function we have:

Ln(β
i+1) ≤ Ln(β

i) +∇Ln(β
i)T (βi+1 − βi) +

‖X‖2
2,2

8n ‖β
i+1 − βi‖22

= Ln(β
i)− αi‖∇Ln(β

i)‖22 +
α2

i ‖X‖2
2,2

8n ‖∇Ln(β
i)‖22

= Ln(β
i)− 2

‖X‖2
2,∞

‖∇Ln(β
i)‖22 +

‖X‖2
2,2

2n‖X‖4
2,∞

‖∇Ln(β
i)‖22

≤ Ln(β
i)− 2

‖X‖2
2,∞

‖∇Ln(β
i)‖22 + 1

2‖X‖2
2,∞

‖∇Ln(β
i)‖22

= Ln(β
i)− 3

2‖X‖2
2,∞

‖∇Ln(β
i)‖22 .

Summing over all i ∈ {0, . . . , k} yields:

3

2‖X‖22,∞

k
∑

i=0

‖∇Ln(β
i)‖22 ≤ Ln(β

0)− Ln(β
k+1) ≤ ln(2) ,

which implies item (iii) after rearranging and replacing the terms in the summation by their mini-
mum. Item (ii) is a restatement of Lemma 3.1. To prove item (i), let i be a minimizing index in
item (iii), and note by item (iii) and Lemma 2.1 that:

ρ(βi) ≥ ln
(

DegSEP∗

n‖∇Ln(βi)‖2 − 1
)

≥ ln

(

DegSEP∗

n‖X‖2,∞

√

3(k+1)
2 ln(2) − 1

)

.

Combining the above with item (ii) and using DegSEP∗ ≤ ‖X‖2,∞, we obtain:

ρ(β̄i) =
ρ(βi)

‖βi‖2
≥

ln
(

DegSEP∗

n‖X‖2,∞

√

3(k+1)
2 ln(2) − 1

)

2 ln(i)
DegSEP∗ + 2

‖X‖2,∞

≥
ln
(

DegSEP∗

n‖X‖2,∞

√

3(k+1)
2 ln(2) − 1

)

2 ln(k)
DegSEP∗ + 2

DegSEP∗

,

and the proof then follows from rearranging terms in the above inequality.
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While Theorem 3.4 holds only for the case of ℓ2 steepest descent, it is also possible to derive a much
weaker result for any given norm ‖ · ‖ by employing the O(

√
k) iterate norm bound in item (ii) of

Theorem 3.2 instead of the O(ln(k)/DegSEP∗) bound given by Lemma 3.1. We also mention that
Gunasekar et al. [14] show that limk→∞ ρ(β̄k) = DegSEP∗ for steepest descent in an arbitrary norm,
although there is no analysis of the rate of convergence. Of course, it would be very interesting to
see if the tools used to prove these various results can be combined to yield stronger convergence
guarantees about the margin.

4 Informing Stochastic Gradient Descent for Logistic Regression

In this section, we examine the role of the condition numbers DegNSEP∗ and DegSEP∗ in the
computational and statistical properties of the stochastic gradient descent (SGD) method applied
to logistic regression. Throughout this section, we consider a more general version of the logistic
regression problem LR that replaces the empirical average in (2) with an arbitrary distribution.
Let D denote an arbitrary distribution on the data (x, y). We consider the following version of the
logistic regression problem:

LRD : L∗
D := min

β
LD(β) := E(x,y)∼D

[

ln
(

1 + exp
(

−yβTx
))]

s.t. β ∈ R
p .

(21)

Note that there are two important special cases of LRD. When D is the empirical distribution
of the training data (x1, y1) . . . , (xn, yn), then we recover the LR problem (2) that has been the
primary interest of the previous sections of this paper. On the other hand, it is often useful to
conceptualize D as the true underlying distribution of the data (x, y), in which case LRD is the
problem of minimizing the expected logistic loss. Both of these abstractions will be useful in our
analysis of stochastic gradient descent. We refer to LD(·) in both cases simply as the “logistic
loss function” with the implicit understanding that the function LD(·) is able to capture both the
empirical logistic loss as well as the expected logistic loss. Throughout this section, H(·) denotes
the Hessian of LD(·).
After briefly reviewing stochastic gradient descent (SGD) for smooth convex optimization in Section
4.1, we examine SGD as applied to logistic regression in two cases: in Section 4.2 we consider the
non-separable case and examine LRD in fully generality, and in Section 4.3 we consider the separable
case when D is the empirical distribution of a training dataset, i.e., the training data problem LR
in (2).

4.1 Brief Review of Stochastic Gradient Descent

We first review the stochastic gradient descent method for solving the generic unconstrained dif-
ferentiable convex optimization problem (14). By way of motivating context, it is sometimes the
case that computing the gradient ∇f(·) of f(·) is very expensive or even intractable, but it may
be relatively easy to compute a stochastic estimate of ∇f(x) at x, which we denote by ∇̃f(x), via
a stochastic gradient oracle. We say that the oracle computes an unbiased stochastic gradient if
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E[∇̃f(x) | x] = ∇f(x). Notice that by construction ∇̃f(x) is a conditional random variable given x.
The basic stochastic gradient descent (SGD) method is presented in Algorithm 2, whose structure
is the same as steepest descent (Algorithm 1) for the ℓ2 norm, the only difference being that the
stochastic gradient ∇̃f(xi) replaces the exact gradient ∇f(xi) in Step (1.). Also, for simplicity, we
only consider the case of a constant step-size sequence αi := ᾱ > 0 for all i ≥ 0.

Algorithm 2 Stochastic Gradient Descent with constant step-size ᾱ

Initialize at x0 ∈ R
p, i← 0, and set the total number of iterations k ≥ 1.

At iteration i:
1. Call stochastic oracle to compute ∇̃f(xi)
2. Update:

xi+1 ← xi − ᾱ · ∇̃f(xi)
After k iterations:
Option A: Output x̂k ← 1

k+1

∑k
i=0 x

i.

Option B: Output x̂k ← xIk where Ik is a random variable distributed uniformly on {0, 1, . . . , k}.

Stochastic gradient descent, and more generally the idea of stochastic approximation, dates back
to the seminal work of Robbins and Monro [27]. For recent works related to stochastic gradient
descent see, e.g., Nemirovski et al. [20], Bottou [6], Lan [17], Bottou et al. [7], and the references
therein. The output of Algorithm 2 using either Option A or Option B depends on the entire
sequence x0, x1, . . . , xk. Nevertheless in both options x̂k can be updated in an online fashion which
does not require storage of the entire sequence x0, x1, . . . , xk. Clearly in the case of Option A we
have x̂k = k

k+1 x̂
k−1 + 1

k+1x
k for k ≥ 1, where by convention x̂0 = x0. In the case of Option B,

note that we can construct Ik recursively as follows: given Ik−1, which is uniformly distributed
on {0, . . . , k − 1}, we define Ik to be equal to Ik−1 with probability k

k+1 and equal to k with

probability 1
k+1 . Then it holds that Ik is uniformly distributed on {0, 1, . . . , k} and is independent

of x0, x1, . . . , xk. As pointed out in [12], Option B can also be implemented by first generating Ik
uniformly at random on {0, . . . , k} during the initialization stage of the algorithm, and then only
running for Ik iterations before stopping (assuming k is fixed in advance).

In addition to the smoothness condition (15) (with respect to the ℓ2 norm in this case), a con-
dition that is required in the typical analysis of SGD is the following bounded second moment
condition:

E

[

‖∇̃f(x)‖22 | x
]

≤M2 for all x ∈ R
p , (22)

where M is a positive constant. In the case of smooth convex optimization, as is studied in [17]
for example, (22) is often replaced with a bound on the variance of the stochastic gradient oracle
instead, which is smaller. However for our purposes in studying logistic regression, (22) is adequate
and simplifies the analysis.

The following theorem presents a stylized version of computational guarantees for SGD, which is an
amended and extended version of mostly well-known results about stochastic gradient descent, see
for example Nemirovski et al. [20] as well as Ghadimi and Lan [12]. In the theorem, the expectation
in items (i) and (iii) is taken with respect to all of the stochasticity of Algorithm 2.
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Theorem 4.1. (Computational Guarantees for Stochastic Gradient Descent) Let {xk}
be generated according to the stochastic gradient descent method (Algorithm 2) using a constant
step-size ᾱ > 0. Under either Option A or Option B, it holds for all k ≥ 0 that:

(i) (expected optimality gap):

E[f(x̂k)]− f(x) ≤ ‖x0 − x‖22
2ᾱ(k + 1)

+
ᾱM2

2
for all x ∈ R

p , and

(ii) (norm bound):

‖xk − x0‖2 ≤ ᾱ

k−1
∑

i=0

‖∇̃f(xi)‖2 .

Under Option B, it holds for all k ≥ 0 that:

(iii) (expected gradient bound):

E

[

‖∇f(x̂k)‖22
]

≤ f(x0)− f∗

ᾱ(k + 1)
+

ᾱLM2

2
.

For completeness, a self-contained proof of Theorem 4.1 is given in Appendix A.6. Note that when
an optimal solution x∗ of (14) exists, then we can take x ← x∗ in item (i) to obtain a bound on
the expected optimality gap E[f(x̂k)]− f∗. Items (i) and (iii) of Theorem 4.1 present bounds that
hold in expectation; bounds that hold with high probability require additional assumptions such
as moment generating function type assumptions, compactness of the feasible region, etc., see [20]
and [12].

4.2 Informing Stochastic Gradient Descent for Logistic Regression in the Non-

Separable Case

Let us now return to the logistic regression problem LRD, which we examine in full generality in the
case of non-separable data. First we need to extend the definitions of non-separable and separable
datasets to an arbitrary distribution D over the data (x, y). Let supp(D) ⊆ R

p × {−1,+1} denote
the support of the distribution D. Then we say that the data distribution D is separable if there
exists a model β ∈ R

p such that inf(x,y)∈supp(D) yβ
Tx > 0. Otherwise, if inf(x,y)∈supp(D) yβ

Tx ≤ 0
for every model β, then we say that the data distribution D is non-separable.

As in the previously examined case of finite training datasets, clearly some non-separable distribu-
tions might be “more non-separable” than others, so let us introduce a way to measure the extent to
which the distribution is non-separable. We define the degree of non-separability of the distribution
D (with respect to the norm ‖ · ‖) to be:

DegNSEP∗
D := min

β∈Rp
E(x,y)∼D

[

[yβTx]−
]

s.t. ‖β‖ = 1 ,

(23)
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which states that DegNSEP∗
D is the smallest (over all normalized models β) expected misclassifi-

cation error of the model β. Note that the norm ‖ · ‖ in the above definition is any generic given
norm. It is straightforward to extend Proposition 2.1 to this more general setting, and we present
this generalization in Proposition 4.1.

Proposition 4.1. If DegNSEP∗
D > 0, then:

(i) there is a unique optimal solution β∗ of the logistic regression problem LRD,

(ii) H(β∗) ≻ 0 ,

(iii) ‖β∗‖ ≤ L∗
D

DegNSEP∗
D
≤ ln(2)

DegNSEP∗
D

, and

(iv) Dist0 ≤
ln(2) + L∗

D
DegNSEP∗

D
≤ 2 ln(2)

DegNSEP∗
D

.

Proof: The proof follows the same structure as the proof of Proposition 2.1, but requires a more
careful argument to prove that H(β) ≻ 0 for all β ∈ R

p. Suppose that DegNSEP∗
D > 0, and

let β ∈ R
p be given. It can also be demonstrated (e.g., by Section 7.2.4 of [29]) that LD(·) is

twice differentiable and that H(β) = E(x,y)∼D
[

ℓ′′(yβTx)xxT
]

. Note that H(β) � 0 by convexity.

Suppose, by way of contradiction, that there exists β̄ ∈ R
p with ‖β̄‖ = 1 and β̄TH(β)β̄ = 0.

Then we have that 0 = β̄TH(β)β̄ = E(x,y)∼D
[

ℓ′′(yβTx)β̄TxxT β̄
]

= E(x,y)∼D
[

ℓ′′(yβTx)(β̄Tx)2
]

.

Therefore it holds that ℓ′′(yβTx)(β̄Tx)2 = 0 with probability one, and since ℓ′′(yβTx) > 0 we must
have that β̄Tx = 0 with probability one. This then implies that E(x,y)∼D

[

[yβ̄Tx]−
]

= 0, which
implies that DegNSEP∗

D = 0, and this provides the desired contradiction. Therefore H(β) ≻ 0. The
remainder of the proof exactly follows that of Proposition 2.1, and is omitted for brevity.

Throughout this section we assume the following finiteness condition on second moments of D:
Assumption 4.1. (Finite second moments of the data distribution D) The data distribution
D satisfies E

[

‖x‖22
]

< +∞.

Define the second moment matrix Σ := E[xxT ] ∈ R
p×p. It follows from Assumption 4.1 that

Σ is well-defined and finite, and that LD(·) is continuous, convex, differentiable, and satisfies
∇LD(β) = E

[

∇β ln
(

1 + exp
(

−yβTx
))]

for all β ∈ R
p (see, e.g., [29]). We also have:

Proposition 4.2. (Lipschitz smoothness of the logistic loss function) The logistic loss
function LD(·) is L = 1

4λmax(Σ)-smooth with respect to the ℓ2 norm on R
p.

A proof of Proposition 4.2 is given in Appendix A.7.

Denote the scalar logistic loss function by ℓ(t) := ln(1+exp(−t)). We assume the following regarding
the stochastic gradient oracle for the logistic loss function LD(β) of (21):

Assumption 4.2. (Stochastic gradient oracle for the logistic loss function) The stochastic
gradient oracle ∇̃LD(·) is implemented by drawing an independent sample from the distribution
D. That is, for any (possibly random) β ∈ R

p, the stochastic gradient ∇̃LD(β) is computed by
independently sampling (x̃, ỹ) from the distribution D and assigning ∇̃LD(β)← ∇βℓ(ỹβ

T x̃).

Proposition 4.3. (Second moment of the stochastic gradient) The stochastic gradient
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∇̃LD(·) computed from the oracle described in Assumption 4.2 satisfies the second moment up-
per bound (22) with M2 = Tr(Σ).

A proof of Proposition 4.3 is given in Appendix A.8.

Theorem 4.2 presents the main computational guarantees for SGD applied to the logistic regression
problem (21) in the case when the data distribution D is non-separable.

Theorem 4.2. (Computational Guarantees for SGD: Non-Separable Case) Suppose that
SGD (Algorithm 2) for logistic regression is initialized at β0 := 0 and is implemented using the
constant step-size ᾱ > 0, and that the stochastic gradients are computed as in Assumption 4.2.
Under either Option A or Option B of SGD (Algorithm 2), if the data distribution D is non-
separable, then for all k ≥ 0 it holds that:

E

[

LD(β̂
k)
]

− L∗
D ≤

(ln(2))2

2ᾱ(k + 1) · (DegNSEP∗
D)

2
+

ᾱ · Tr(Σ)
2

. (24)

Proof: This result is a straightforward application of Theorem 4.1, Proposition 4.1, and Proposition
4.3. By item (i) of Proposition 4.1 an optimal solution β∗ exists. The result follows by directly

applying item (i) of Theorem 4.1, along with the bound ‖β∗‖ ≤ ln(2)
DegNSEP∗

D
provided by item (ii) of

Proposition 4.1, and the value of M2 = Tr(Σ) from Proposition 4.3.

Theorem 4.2 provides an upper bound on the expected logistic loss that naturally depends on the
condition number DegNSEP∗

D and that holds for any step-size value ᾱ. Given knowledge of the
constants DegNSEP∗

D and Tr(Σ), it is possible to tune ᾱ in order to minimize the upper bound
expression on the right side of (24) for a given k. However, in practice one does not typically know
either of these constants. Indeed, it is more realistic to assume one has knowledge of a deterministic
upper bound on the size of the feature vectors, i.e., there is an available constant R > 0 for which
‖x‖2 ≤ R with probability one. Under this assumption it also follows that Tr(Σ) = E[‖x‖22] ≤ R2.
Corollary 4.1 presents a computational guarantee for SGD in the case of non-separable data under
a slightly weaker assumption and using a step-size that only incorporates knowledge of the constant
R.

Corollary 4.1. Suppose that we have available a constant R such that Tr(Σ) ≤ R2. Consider
running SGD (Algorithm 2) for a total of k iterations, initialized at β0 := 0, with stochastic
gradients computed as in Assumption 4.2, and using the constant step-size

ᾱ :=
ln(2)

R2
√
k + 1

.

Under either Option A or Option B of SGD (Algorithm 2), if the data distribution D is non-
separable it holds for all k ≥ 0 that:

E

[

LD(β̂
k)
]

− L∗
D ≤

ln(2)

2
√
k + 1

(

R2

(DegNSEP∗
D)

2
+ 1

)

.

Theorem 4.2 and Corollary 4.1 present results that highlight the role of the condition number
DegNSEP∗

D in the well-known O(1/
√
k) computational guarantee for stochastic gradient descent.
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It is also possible to study how DegNSEP∗
D informs the adaptive O(1/µk) (where µ is the smallest

eigenvalue of the Hessian at the optimum) guarantees developed by Bach in [3]. Proposition 4.4
below directly follows from Proposition 10 of [3] and demonstrates how DegNSEP∗

D informs the
corresponding computational guarantees developed therein. Note that λmin(H(β∗)) > 0 by part
(ii) of Proposition 4.1. Note that the step-size considered in Proposition 4.4 is larger than that
considered in [3] by a constant factor of 2 ln(2).

Proposition 4.4. (Bach [3], Proposition 10) Suppose that we have available a constant R
such that ‖x‖2 ≤ R with probability one. Consider running SGD (Algorithm 2) for a total of k
iterations, initialized at β0 := 0, with stochastic gradients computed as in Assumption 4.2, and
using the constant step-size

ᾱ :=
ln(2)

R2
√
k + 1

.

Under Option A of SGD (Algorithm 2), if the data distribution D is non-separable and DegNSEP∗
D >

0, then it holds for all k ≥ 0 that:

(i) E

[

LD(β̂
k)
]

− L∗
D ≤

R2

λmin(H(β∗))(k + 1)

(

10R(ln(2))2

DegNSEP∗
D

+ 15

)4

, and

(ii) E

[

‖β̂k − β∗‖22
]

≤ R2

λmin(H(β∗))2(k + 1)

(

12R(ln(2))2

DegNSEP∗
D

+ 21

)4

,

where β∗ is the unique optimal solution of LRD.

Proof: Consider the scaled objective function L̃D(·) := 2 ln(2)LD(·), and denote its Hessian by
H̃(·). It can be verified that L̃D(·) satisfies assumptions (A1) - (A7) of [3] with constant 2 ln(2)R.

Clearly, running SGD with objective LD(·) and constant step-size ln(2)

R2
√
k+1

is equivalent to running

SGD with objective L̃D(·) and constant step-size 1
2R2

√
k+1

, which is required by Proposition 10

of [3]. Therefore, directly applying this proposition to L̃n(·) yields:

E

[

L̃D(β̂
k)
]

− L̃∗
D ≤

(2 ln(2))2R2

λmin(H̃(β∗))(k + 1)
(10R ln(2)‖β∗‖2 + 15)4 .

Finally, using H̃(β∗) = 2 ln(2)H(β∗), the upper bound ‖β∗‖ ≤ ln(2)
DegNSEP∗

D
provided by item (ii) of

Proposition 4.1, and dividing both sides of the above by 2 ln(2) yields part (i) of the theorem. Part
(ii) also directly follows from Proposition 10 of [3] by a similar argument.

Comparing Corollary 4.1 with Proposition 4.4, note that the relative sizes of the constants R,
DegNSEP∗

D, and λmin(H(β∗)), as well as the total number of iterations k will determine which
bound dominates the other. And of course if k is large enough then Proposition 4.4 yields the
better bound.

4.3 Informing Stochastic Gradient Descent for Logistic Regression in the Sep-

arable Case

In this subsection we examine the properties of SGD in the case when the data is separable,
for the previously examined logistic regression problem (2), i.e., we assume that D is the empirical
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distribution of the training data (x1, y1) . . . , (xn, yn) in this subsection and we revert to the notation
used throughout Section 3. The following theorem presents our results in this case.

Theorem 4.3. (Computational Guarantees for SGD: Separable Case) Suppose that we
have available a constant R such that ‖xi‖2 ≤ R for all i ∈ {1, . . . , n}. Consider running SGD
(Algorithm 2) for a total of k iterations, initialized at β0 := 0, with stochastic gradients computed
as in Assumption 4.2, and using the constant step-size

ᾱ :=
ln(2)

R2
√
k + 1

.

Under Option B of SGD (Algorithm 2), when the data is separable it holds for all k ≥ 1 that:

(i) (margin bound): For any γ ∈ (0, 1], with probability at least 1 − γ the normalized iterate
β̄k := β̂k/‖β̂k‖ satisfies

ρ(β̄k) >
DegSEP∗ · ln

(

DegSEP∗√γ 4
√
k+1

nR
√
1.1

− 1
)

2(ln(k) + 1)
(25)

(ii) (shrinkage): ‖β̂k‖2 ≤
2 ln(k)

DegSEP∗ +
2

‖X‖2,∞
, and

(iii) (expected gradient bound): E

[

‖∇Ln(β̂
k)‖22

]

<
1.1 · R2

√
k + 1

.

The margin bound in Theorem 4.3 is similar in flavor to the bound for steepest descent in Theorem
3.4, but is weaker (due to stochasticity). Indeed, by similar arguments as in Section 3.4, the bound
in item (i) of Theorem 4.3 implies a computational guarantee of the form

ρ(β̄k)
DegSEP∗

8

≥ 1− C

ln(k + 1)
with probability at least 1− γ , (26)

for any fixed γ ∈ (0, 1], with C = 4 ln(2) − 2 ln(γ) + ln( (1.1)2n4R4

(DegSEP∗)4 ) + 1. (This should be compared

to the case of deterministic steepest descent where we have deterministic convergence to at least
DegSEP∗

4 .) To demonstrate this, consider setting k := ⌊ Ω
4(1.1)2n4R4

(DegSEP∗)4γ2 ⌋ for some parameter Ω ≥ 2.

Then the bound in (25) becomes:

ρ(β̄k) ≥ DegSEP∗ · ln (Ω− 1)

8 ln(Ω)− 4 ln(γ) + 2 ln
(

(1.1)2n4R4

(DegSEP∗)4

)

+ 2
,

and rearranging the above and using Ω ≥ 2 yields:

ρ(β̄k)
DegSEP∗

8

≥ 1 −
ln(2) − 1

2 ln(γ) +
1
4 ln

(

(1.1)2n4R4

(DegSEP∗)4

)

+ 1
4

ln(Ω)− 1
2 ln(γ) +

1
4 ln

(

(1.1)2n4R4

(DegSEP∗)4

)

+ 1
4

≥ 1 −
ln(2) − 1

2 ln(γ) +
1
4 ln

(

(1.1)2n4R4

(DegSEP∗)4

)

+ 1
4

1
4 ln(k + 1)

= 1− C

ln(k + 1)
.
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This result is similar to results in [19], wherein O(1/ ln(k)) convergence towards DegSEP∗ is demon-
strated for SGD for sampling without replacement. Note that we provide an explicit margin bound
in item (i) above and that we study SGD with sampling with replacement. On the other hand, [19]
of course proves convergence towards DegSEP∗, not DegSEP∗

8 . It would be interesting to see if the
tools used to prove all of these results can be combined somehow to yield stronger convergence
guarantees about the margin for SGD. Note also that the margin bound (25) is proven by applying
Markov’s inequality with the bound on the second moment of ‖∇Ln(β̂

k)‖2 given by item (iii) of
the theorem. In the case of non-separable data, Bach [3] is able to strengthen this second moment
bound to O(1/k) and also derives bounds on the higher-order moments of ‖∇Ln(β̂

k)‖2 (for Op-
tion A of SGD). It would also be interesting to see if similar bounds can be derived and used to
strengthen the margin bound in the case of separable data.

In order to prove Theorem 4.3, we will use the following lemma, which is similar to Lemma 3.1 and
bounds the norms of iterates of SGD applied to the logistic regression problem (2).

Lemma 4.1. (essentially from Ji and Telgarsky [16]) Suppose that SGD (Algorithm 2) is
initialized at β0 := 0 using the constant step-size value ᾱ. If DegSEP∗ > 0 and ᾱ ≤ 2

‖X‖2
2,∞

, then

it holds for all k ≥ 1 that:

‖βk‖2 ≤
2 ln(k)

DegSEP∗ +
2

‖X‖2,∞
.

The proof of this lemma is presented in Appendix A.5.

Proof of Theorem 4.3: Item (ii) follows directly from Lemma 4.1 as well as the fact that ln(·) is an
increasing function. Item (iii) is a straightforward application of item (iii) of Theorem 4.1. Indeed,
recalling that Ln(β

0)−L∗
n = ln(2) (equality holds in the separable case) and λmax(Σ) ≤ Tr(Σ) ≤ R2,

item (iii) follows directly from the definition of ᾱ, Propositions 4.2 and 4.3, and item (iii) of Theorem
4.1.

To prove item (i) first note that Markov’s inequality yields:

P

(

‖∇Ln(β̂
k)‖22 ≥

1.1 ·R2

γ
√
k + 1

)

≤
E

[

‖∇Ln(β̂
k)‖22

]

1.1·R2

γ
√
k+1

< γ ,

where the second inequality follows from item (iii) of the theorem. Therefore with probability at
least 1− γ it holds that:

‖∇Ln(β̂
k)‖22 <

1.1 ·R2

γ
√
k + 1

. (27)

We will now demonstrate that if (27) holds (in addition to everything else) then (25) holds, which
therefore implies that the statement in part (i) is true. Indeed, combining (27) with Lemma 2.1
yields:

ρ(β̂k) ≥ ln
(

DegSEP∗

n‖∇Ln(β̂k)‖2
− 1
)

> ln
(

DegSEP∗√γ 4
√
k+1

nR
√
1.1

− 1
)

.

Combining the above with item (ii) and using DegSEP∗ ≤ ‖X‖2,∞, we obtain:

ρ(β̄k) =
ρ(β̂k)

‖β̂k‖2
>

ln
(

DegSEP∗√γ 4
√
k+1

nR
√
1.1

− 1
)

2 ln(k)
DegSEP∗ + 2

‖X‖2,∞

≥
ln
(

DegSEP∗√γ 4
√
k+1

nR
√
1.1

− 1
)

2 ln(k)
DegSEP∗ + 2

DegSEP∗

,
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and the proof then follows from rearranging terms in the above inequality.

5 Conclusions

The theme of this paper is the interplay between data conditioning, behavior/properties of the
optimization problem, and computational guarantees of first-order methods, all in the context of
logistic regression. We have presented results that make rigorous the intuitive notion that the
optimization problem itself as well as the corresponding algorithms for training a logistic regression
model are well-behaved when the degree of non-separability of the dataset is large. We also have
presented results that demonstrate that the specific algorithmic properties of steepest descent and
stochastic gradient descent lead to large margin solutions in the case of separable data, which
runs counter to the intuition that logistic regression is ill-behaved in this case. We hope that
further examination of the role of data and problem conditioning in the analysis of other statistical
learning problems and other algorithms will extend the general understanding of these problems
and algorithms.
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A Appendix

A.1 Proofs of Propositions 2.4 and 2.5

Proof of Proposition 2.4: Notice that the optimization problem defining (4) has a continuous
objective function and a compact feasible region, whereby it follows from the Weierstrass Theorem
that (4) attains its optimum at some β̄ and therefore DegNSEP∗ = 1

n

∑n
i=1[yix

T
i β̄]

−. It follows
from norm duality that there exists s̄ satisfying ‖s̄‖∗ = 1 and s̄T β̄ = ‖β̄‖ = 1. Let ε > 0 be
given, and now define ∆X := us̄T where ui := yi[yix

T
i β̄]

− + yiε. Notice for each i = 1, . . . , n that
yi(xi+∆xi)

T β̄ = yix
T
i β̄+ yiuis̄

T β̄ = yix
T
i β̄+[yix

T
i β̄]

−+ ε ≥ ε > 0, whereby the perturbed dataset
(X+∆X, y) is separable and hence PertSEP∗ ≤ 1

n‖∆X‖·,1 = 1
n‖u‖1‖s̄‖∗ = 1

n‖u‖1 = DegNSEP∗+ε.
As this is true for any ε > 0 it follows that PertSEP∗ ≤ DegNSEP∗.

We next show that DegNSEP∗ ≤ PertSEP∗, which will complete the proof. Suppose that ∆X
satisfies (X+∆X, y) is separable, and hence there exists β with ‖β‖ = 1 and yi(xi +∆xi)

Tβ > 0
for i = 1, . . . , n. Define the vector v component-wise for i = 1, . . . , n by:

vi :=

{

0 if yix
T
i β ≥ 0

yi if yix
T
i β < 0 ,

and notice in particular that if yix
T
i β < 0 then [yix

T
i β]

− = −yixT
i β < yi(∆xi)

Tβ = vi(∆xi)
Tβ.

Also, if yix
T
i β ≥ 0, then [yix

T
i β]

− = 0 = vi(∆xi)
Tβ. Therefore DegNSEP∗ ≤ 1

n

∑n
i=1[yix

T
i β]

− ≤
1
n

∑n
i=1 vi(∆xi)

Tβ = 1
nv

T∆Xβ ≤ 1
n‖∆X‖·,1 since ‖v‖∞ ≤ 1. Thus DegNSEP∗ ≤ 1

n‖∆X‖·,1 for
any perturbation ∆X for which (X + ∆X, y) is separable, and hence DegNSEP∗ ≤ PertSEP∗,
completing the proof.

Proof of Proposition 2.5: Define ∆n = {λ ∈ R
n : eTλ = 1, λ ≥ 0}. We can write (8) in maxmin

form as:

DegSEP∗ := max
β:‖β‖≤1

min
λ∈∆n

λTYXβ = min
λ∈∆n

max
β:‖β‖≤1

λTYXβ = min
λ∈∆n

‖XTY λ‖∗ , (28)
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where the middle equality follows from minmax strong duality. Furthermore, both the minmax
problem and the maxmin problem attain their optima for some β̄ satisfying ‖β̄‖ ≤ 1 and λ̄ ∈ ∆n

which implies that:

DegSEP∗ := λ̄TYXβ̄ = ρ(β̄) = min
i
(yix

T
i β̄)i = ‖XTY λ̄‖∗ . (29)

Now define ∆X := −yλ̄TYX. Direct substitution yields λ̄TY (X + ∆X) = 0, which then implies
that there does not exist any β satisfying Y (X+∆X)β > 0, and hence (X+∆X, y) is not separable.
Therefore PertNSEP∗ ≤ ‖∆X‖·,∞ = ‖ − yλ̄TYX‖·,∞ = ‖y‖∞‖XTY λ̄‖∗ = DegSEP∗.

We next show that DegSEP∗ ≤ PertNSEP∗, which will complete the proof. Suppose that ∆X
satisfies (X + ∆X, y) is not separable, and hence by a theorem of the alternative there exists
λ ∈ ∆n satisfying λTY (X+∆X) = 0. Using the values β̄ and λ̄ defined above, we have:

DegSEP∗ = λ̄TYXβ̄ ≤ λTYXβ̄ = −λTY∆Xβ̄ ≤ ‖∆X‖·,∞‖β̄‖‖Y λ‖1 ≤ ‖∆X‖·,∞ .

Thus DegSEP∗ ≤ ‖∆X‖·,∞ for any perturbation ∆X for which (X+∆X, y) is non-separable, and
hence DegSEP∗ ≤ PertNSEP∗, completing the proof.

A.2 Proof of Theorem 3.1

Since f(·) satisfies (15), it follows easily from the fundamental theorem of calculus that:

f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖2 for all x, y . (30)

(For a short proof of this fact, see Proposition A.2 of [10] for example.) Applying (30) to the
iterates of the Steepest Descent Method yields the following for each i ≥ 0:

f(xi+1) ≤ f(xi) +∇f(xi)T (xi+1 − xi) + L
2 ‖xi+1 − xi‖2

= f(xi)− αi‖∇f(xi)‖∗ + L
2α

2
i ,

(31)

where the equality follows since ‖∇f(xk)‖∗ = max
d:‖d‖≤1

∇f(xk)Td = ∇f(xk)Tdk. Summing the above

for i = 0, . . . , k yields:

f∗ ≤ f(xk+1) ≤ f(x0)−∑k
i=0 αi‖∇f(xi)‖∗ + L

2

∑k
i=0 α

2
i . (32)

Next notice that
k
∑

i=0

αi‖∇f(xi)‖∗ ≥
(

k
∑

i=0

αi

)

(

min
i∈{0,...,k}

‖∇f(xi)‖∗
)

,

and substituting this inequality above and rearranging yields

min
i∈{0,...,k}

‖∇f(xi)‖∗ ≤
f(x0)− f∗ + L

2

∑k
i=0 α

2
i

∑k
i=0 αi

. (33)
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Now suppose we use the step-sizes (17). Substituting (17) into (31) yields:

f(xi+1) ≤ f(xi)− 1
2L‖∇f(x

i)‖2∗ , (34)

which shows that the values f(xi) are monotone decreasing and hence f(xi) ≤ f(x0), whereby
xi ∈ S0. Substituting the step-sizes (17) into (32) yields after rearranging:

k
∑

i=0

‖∇f(xi)‖2∗ ≤ 2L(f(x0)− f(xk+1)) ≤ 2L(f(x0)− f∗) , (35)

and therefore

(k + 1)

(

min
i∈{0,...,k}

‖∇f(xi)‖∗
)2

≤
k
∑

i=0

‖∇f(xi)‖2∗ ≤ 2L(f(x0)− f∗) ,

and rearranging yields (iv). Now suppose as well that Dist0 is finite, and let xi be an iterate of the
steepest descent method. It was shown above that xi ∈ S0, whereby there exists x∗ ∈ S∗ for which
‖xi−x∗‖ ≤ Dist0, and from the gradient inequality for the convex function f(·) it holds that

f∗ = f(x∗) ≥ f(xi) +∇f(xi)T (x∗ − xi)

≥ f(xi)− ‖∇f(xi)‖∗‖x∗ − xi‖

≥ f(xi)− ‖∇f(xi)‖∗Dist0 ,

and rearranging the above yields ‖∇f(xi)‖∗ ≥ f(xi)−f∗

Dist0
. Substituting this inequality into (34) and

subtracting f∗ from both sides yields:

f(xi+1)− f∗ ≤ f(xi)− f∗ − (f(xi)− f∗)2

2LDist20
.

Define ai := f(xi)− f∗, and it follows that the nonnegative series {ai} satisfies ai+1 ≤ ai− a2i
2LDist2

0

.

A standard induction argument (see for example Lemma 3.5 of [5]) then establishes that

ak ≤
1

1
a0

+ k
2LDist2

0

,

which when rearranged yields the first inequality of (i). The second inequality of (i) follows since
K̂0 > 0.

Rearranging (34) yields ‖∇f(xi)‖2∗ ≤ 2L(f(xi)−f(xi+1) ≤ 2L(f(xi)−f∗), which after taking square
roots proves the first inequality of (ii), and the second inequality of (ii) follows by substituting in
the bound on f(xk)− f∗ from the first inequality of (i).

To prove (iii), use k − 1 in (35), and use the step-lengths (17) to yield:

2L(f(x0)− f∗) ≥
k−1
∑

i=0

‖∇f(xi)‖2∗ = L2
k−1
∑

i=0

α2
i ≥

(

1

k

)

L2

(

k−1
∑

i=0

αi

)2

≥
(

1

k

)

L2‖xk − x0‖2 ,

and rearranging the above yields (iii).
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A.3 Proof of Proposition 3.1

We first present a property of the following “prox” function d(·) : [0, 1]n → R defined by:

d(w) :=
1

n

[

n
∑

i=1

wi ln(wi) + (1− wi) ln(1− wi)

]

, (36)

where α ln(α) := 0 for α = 0.

Proposition A.1. Consider the function d(·) : [0, 1]n → R given by (36). It holds that d(·) is a
σ := 4

n-strongly convex function with respect to the Euclidean norm ‖w‖ := ‖w‖2.
Proof: Let G := [0, 1]n, consider any point w ∈ intG, and let H(w) denote the Hessian matrix of
d(·) at w. The off-diagonal components of H(w) are all zero, and the ith diagonal component is
Hii(w) =

1
n

1
wi(1−wi)

≥ 4
n , and hence vT [H(w)]v ≥ 4

nv
T v for any v. Now let y ∈ intG. Invoking an

intermediate value theorem of calculus, there exists a scalar c ∈ [0, 1] for which it holds that:

d(y) = d(w) +∇d(w)T (y − w) + 1
2(y − w)H(w + c(y − w))(y − w) ,

whereby:

d(y) ≥ d(w) +∇d(w)T (y − w) + 1
2(y − w)

[

4
nI
]

(y − w) = d(w) +∇d(w)T (y − w) + 1
2
4
n‖y − w‖22 .

This proves that d(·) is σ = 4
n -strongly convex on intG, and a continuity argument establishes the

result for all of G.

Proof of Proposition 3.1: We first claim that

Ln(β) = max
w∈[0,1]n

{

−wT [ 1nYX]β − d(w)
}

(37)

where d(·) is given by (36), and the unique optimal solution to the maximization problem in (37)
is:

w∗(β)i =
1

1 + exp(yiβTxi)
, i = 1, . . . , n . (38)

Indeed, it is easy to verify through optimality conditions that the unique optimal solution to the
maximization problem in (37) is given by (38), and direct substitution and simplification of terms
then yields the equality in (37). Using the representation (37), Theorem 1 of [23] implies that
the Lipschitz constant L of the gradient of Ln(·) is at most [ 1n‖X‖·,2]2/σ where σ is the strong
convexity parameter of the function d(·). From Proposition A.1 it holds that σ ≥ 4

n , which implies
that L ≤ [ 1n‖X‖·,2]2/σ ≤ [ 1

4n ]‖X‖2·,2.

A.4 Proof of Theorem 3.3

Following Bach [2, 3], a three-times differentiable convex function f(·) : R
p → R is said to be

generalized self-concordant (with respect to the norm ‖ · ‖) if there is a constant R > 0 such that
for all x, x̂ ∈ R

p, the scalar function ϕ(·) : t 7→ f(x+ t(x̂− x)) satisfies:

|ϕ′′′(t)| ≤ R‖x− x̂‖ϕ′′(t) for all t ∈ R . (39)
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The above definition is a slight modification of that given in [2, 3], which works with the ℓ2 norm.
The following proposition, which is a very minor generalization of a result shown in [2], demonstrates
that the logistic loss function Ln(·) is generalized self-concordant with constant R = ‖X‖·,∞.

Proposition A.2. The logistic loss function Ln(·) is generalized self-concordant (with respect to
the norm ‖ · ‖) with constant R = ‖X‖·,∞.

Proof: Let β, β̂ ∈ R
p be given and define the scalar function ϕ(·) : R→ R by ϕ(t) := Ln(β+ t(β̂−

β)). A simple calculation yields:

|ϕ′′′(t)| =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ℓ′′′(yiβ
Txi + tyi(β̂ − β)Txi) · (yi(β̂ − β)Txi)

3

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

|ℓ′′′(yiβTxi + tyi(β̂ − β)Txi)| · (yi(β̂ − β)Txi)
2 · |yi(β̂ − β)Txi|

≤ 1

n

n
∑

i=1

ℓ′′(yiβ
Txi + tyi(β̂ − β)Txi) · (yi(β̂ − β)Txi)

2 · |yi(β̂ − β)Txi|

≤ 1

n

n
∑

i=1

ℓ′′(yiβ
Txi + tyi(β̂ − β)Txi) · (yi(β̂ − β)Txi)

2 · ‖xi‖∗‖β − β̂‖

≤ ‖X‖·,∞‖β − β̂‖
n

n
∑

i=1

ℓ′′(yiβ
Txi + tyi(β̂ − β)Txi) · (yi(β̂ − β)Txi)

2

= ‖X‖·,∞‖β − β̂‖ϕ′′(t) ,

where the second inequality above uses |ℓ′′′(·)| ≤ ℓ′′(·), the third uses Hölder’s inequality, and the
final inequality uses ‖X‖·,∞ = max

i∈{1,...,n}
‖xi‖∗.

In order to prove Theorem 3.3, we use the following lemma which is a minor extension of Lemma
9 of [3].

Lemma A.1. (essentially Bach [3], Lemma 9) Suppose that DegNSEP∗ > 0. Let β satisfying
Ln(β) ≤ ln(2) be given, and let β∗ be the unique optimal solution of LR. Then it holds that:

(i) Ln(β)− L∗
n ≤

(

1 +
2 ln(2)‖X‖·,∞
DegNSEP∗

)

‖∇Ln(β)‖2∗
ν∗(H(β∗)) , and

(ii) ‖β − β∗‖ ≤
(

1 +
2 ln(2)‖X‖·,∞
DegNSEP∗

)(

‖X‖·,2
ν∗(H(β∗))

)

√

Ln(β)−L∗
n

2n .

If in addition β satisfies
‖∇Ln(β)‖∗‖X‖·,∞

ν∗(H(β∗)) ≤ 3
4 , then it holds that:

(iii) Ln(β)− L∗
n ≤ 2‖∇Ln(β)‖2∗

ν∗(H(β∗)) , and

(iv) ‖β − β∗‖ ≤ ‖X‖·,2
ν∗(H(β∗))

√

2(Ln(β)−L∗
n)

n .

Proof: First note that if β = β∗ then the lemma is trivial, so we assume that β 6= β∗. We will
apply Lemma 13 of [3] to the scalar function ϕ(·) : [0, 1]→ R defined by ϕ(t) := Ln(β

∗+ t(β−β∗)).
Let us define S := ‖X‖·,∞‖β − β∗‖, and note that Proposition A.2 implies that ϕ(·) satisfies
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|ϕ′′′(t)| ≤ Sϕ′′(t) for all t ∈ [0, 1]. Simple calculations yield:

ϕ′(t) = ∇Ln(β
∗+t(β−β∗))T (β−β∗) and ϕ′′(t) = (β−β∗)TH(β∗+t(β−β∗))(β−β∗) for all t ∈ [0, 1] .

In particular, we have ϕ′(0) = 0 by the optimality of β∗ and

ϕ′(1) = ∇Ln(β)
T (β − β∗) ≤ ‖∇Ln(β)‖∗‖β − β∗‖ , (40)

by Hölder’s inequality. Moreover, we have:

ϕ′′(0) = (β − β∗)TH(β∗)(β − β∗) ≥ ν∗(H(β∗))‖β − β∗‖2 > 0 , (41)

by the definition of ν∗(H(β∗)) in (7), part (ii) of Proposition 2.1, and since β 6= β∗. Therefore ϕ(·)
satisfies the hypotheses of Lemma 13 of [3], and a direct application of this lemma yields:

ϕ′(1)
ϕ′′(0)

S ≥ 1− exp(−S) , and ϕ(1) ≤ ϕ(0) +
ϕ′(1)2

ϕ′′(0)
(1 + S) . (42)

Following the proof of Proposition 2.1, we have that S = ‖X‖·,∞‖β − β∗‖ ≤ 2 ln(2)‖X‖·,∞
DegNSEP∗ since

β satisfies Ln(β) ≤ ln(2). Substituting this upper bound on S along with the inequalities (40)
and (41) into the rightmost inequality in (42) yields part (i) of the lemma. Making the same
substitutions into the leftmost inequality in (42) and rearranging yields:

‖β − β∗‖ ≤ S‖∇Ln(β)‖∗
(1− exp(−S))ν∗(H(β∗))

≤
(

1 +
2 ln(2)‖X‖·,∞
DegNSEP∗

) ‖∇Ln(β)‖∗
ν∗(H(β∗))

,

where the second inequality uses S
1−exp(−S) ≤ 1 + S. Applying (34) along with Proposition 3.1 in

this context yields L∗
n ≤ Ln(β) − 2n

‖X‖2·,2
‖∇Ln(β)‖2∗, which after rearranging terms and combining

with the above inequality yields part (ii) of the lemma.

Now suppose that
‖∇Ln(β)‖∗‖X‖·,∞

ν∗(H(β∗)) ≤ 3
4 additionally holds. Then:

ϕ′(1)S
ϕ′′(0)

≤ ‖∇Ln(β)‖∗‖β − β∗‖2‖X‖·,∞
ν∗(H(β∗))‖β − β∗‖2 =

‖∇Ln(β)‖∗‖X‖·,∞
ν∗(H(β∗))

≤ 3

4
.

Hence following Lemma 13 of [3], it holds that ϕ′′(0) ≤ 2ϕ′(1) and ϕ(1) ≤ ϕ(0) + 2ϕ′(1)2

ϕ′′(0) , and

making the same substitutions as before yields parts (iii) and (iv).

Proof of Theorem 3.3: Let k ≥ 0 be given. Applying (34) along with Proposition 3.1 in this
context yields:

Ln(β
k+1) ≤ Ln(β

k)− 2n
‖X‖2·,2

‖∇Ln(β
k)‖2∗ . (43)

In particular, Ln(β
k+1) ≤ Ln(β

k), which implies that Ln(β
i) ≤ Ln(β

0) = ln(2) for all i ≥ 0.
Therefore, we may apply item (i) of Lemma A.1, which yields:

Ln(β
k)− L∗

n ≤
(

1 +
2 ln(2)‖X‖·,∞
DegNSEP∗

) ‖∇Ln(β
k)‖2∗

ν∗(H(β∗))
.
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Combining the above inequality with (43) yields:

Ln(β
k+1) ≤ Ln(β

k)− 2nν∗(H(β∗))(Ln(β
k)− L∗

n)

‖X‖2·,2
(

1 +
2 ln(2)‖X‖·,∞
DegNSEP∗

) .

Finally, subtracting L∗
n from both sides of the above and rearranging terms yields:

Ln(β
k+1)− L∗

n ≤ (Ln(β
k)− L∗

n)

(

1− 2(DegNSEP∗)ν∗(H(β∗))n

(DegNSEP∗ + 2 ln(2)‖X‖·,∞)‖X‖2·,2

)

,

which immediately implies part (i) of the theorem. Part (ii) of the theorem follows by substituting
the bound on Ln(β

k)−L∗
n from part (i) of the theorem into the bound on ‖βk −β∗‖ from part (ii)

of Lemma A.1.

Now assume that k ≥ Ǩ. Part (iii) of Theorem 3.2 implies that:

‖∇Ln(β
k)‖∗‖X‖·,∞

ν∗(H(β∗))
≤

‖X‖2·,2 ln(2)‖X‖·,∞
ν∗(H(β∗))

√
k · n ·DegNSEP∗ ≤

3

4
,

where the final inequality uses the fact that k ≥ Ǩ ≥ 16 ln(2)2‖X‖4·,2‖X‖2·,∞
9n2(DegNSEP∗)2ν∗(H(β∗))2 . Thus we may apply

part (iii) of Lemma A.1, which yields Ln(β
k)−L∗

n ≤ 2‖∇Ln(βk)‖2∗
ν∗(H(β∗)) . By the same arguments as above,

we obtain:

Ln(β
k+1)− L∗

n ≤ (Ln(β
k)− L∗

n)

(

1− ν∗(H(β∗))n

‖X‖2·,2

)

,

which immediately implies part (iii) of the thoerem. Part (iv) of the theorem similarly follows by
substituting the bound on Ln(β

k)−L∗
n from part (iii) into the bound on ‖βk − β∗‖ from part (iv)

of Lemma A.1.

A.5 Proofs of Lemmas 3.1 and 4.1

Denote the univariate logistic loss function by ℓ(t) := ln(1 + exp(−t)). We start with the following
quite general proposition which presents a bound on the iterate sequence {βk} of any algorithm
whose step direction gk is an average of gradients of the logistic loss function over a subset Sk of
the observations, for all k.

Proposition A.3. Consider any algorithm for solving the logistic regression problem (2), and let
{βk} denote the iterate sequence. Suppose that β0 := 0 and {βk} satisfies:

βk+1 = βk − αkgk where gk =
1

|Sk|
∑

i∈Sk

∇βℓ(yi(β
k)Txi) (44)

for some Sk ⊆ {1, . . . , n}, for all k ≥ 0. If αj ≤ 2
‖X‖2

2,∞

for all j ≥ 0, then for all β ∈ R
p and for

all k ≥ 0 it holds that:

‖βk − β‖22 ≤ ‖β‖22 + 2
k−1
∑

j=0

αj

|Sj |
∑

i∈Sj

ℓ(yiβ
Txi) .
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Proof: For any j ∈ {0, . . . , k − 1} it holds that:
‖βj+1 − β‖22 = ‖βj − β − αjgj‖22

= ‖βj − β‖22 − 2αjg
T
j (β

j − β) + α2
j‖gj‖22

≤ ‖βj − β‖22 + 2
αj

|Sj |
∑

i∈Sj
[ℓ(yiβ

Txi)− ℓ(yi(β
j)Txi)] + α2

j‖gj‖22

= ‖βj − β‖22 + 2
αj

|Sj |
∑

i∈Sj
[ℓ(yiβ

Txi)− ℓ(yi(β
j)Txi)] +

α2

j

|Sj |2‖
∑

i∈Sj
∇βℓ(yi(β

j)Txi)‖22

≤ ‖βj − β‖22 + 2
αj

|Sj |
∑

i∈Sj
[ℓ(yiβ

Txi)− ℓ(yi(β
j)Txi)] +

α2

j

|Sj |2
(

∑

i∈Sj
‖∇βℓ(yi(β

j)Txi)‖2
)2

≤ ‖βj − β‖22 + 2
αj

|Sj |
∑

i∈Sj
[ℓ(yiβ

Txi)− ℓ(yi(β
j)Txi)] +

α2

j

|Sj |
∑

i∈Sj
‖∇βℓ(yi(β

j)Txi)‖22
= ‖βj − β‖22 + 2

αj

|Sj |
∑

i∈Sj
ℓ(yiβ

Txi) +
αj

|Sj |
∑

i∈Sj
[αj‖∇βℓ(yi(β

j)Txi)‖22 − 2ℓ(yi(β
j)Txi)] ,

where the first inequality above is an application of the gradient inequality, the second inequality
above uses the triangle inequality, and the third inequality utilizes an inequality between the ℓ1
and ℓ2 norms. Now since αj ≤ 2

‖X‖2
2,∞

, it holds that:

αj‖∇βℓ(yi(β
j)Txi)‖22 = αjℓ

′(yi(β
j)Txi)

2‖xi‖22 ≤ 2ℓ′(yi(β
j)Txi)

2 ≤ 2ℓ(yi(β
j)Txi)) ,

where the last inequality uses ℓ′(·)2 ≤ |ℓ′(·)| ≤ ℓ(·). Therefore:

‖βj+1 − β‖22 ≤ ‖βj − β‖22 + 2
αj

|Sj |
∑

i∈Sj

ℓ(yiβ
Txi) ,

and summing the previous inequality over j ∈ {0, . . . , k − 1} yields the result.

Proofs of Lemmas 3.1 and 4.1: We present a unified proof of these two results. Let β̄ denote
the normalized maximum margin hyperplane, i.e., the optimal solution of (8), and define β̃k :=
(ln(k)/DegSEP∗)β̄. For each i ∈ {1, . . . , n}, we have:

yi(β̃
k)Txi = (ln(k)/DegSEP∗)yiβ̄

Txi ≥ (ln(k)/DegSEP∗)ρ(β̄) = ln(k) .

Furthermore, since ℓ(t) ≤ exp(−t), it holds that:
ℓ(yi(β̃

k)Txi) ≤ ℓ(ln(k)) ≤ exp(− ln(k)) = 1/k . (45)

Clearly, the conditions for Proposition A.3 are satisfied by ℓ2 steepest descent under the assumptions
of Lemma 3.1 (wherein |Sk| = n for all k) as well as SGD under the assumptions of Lemma 4.1
(wherein |Sk| = 1 for all k). (Note that in this proof αj refers to the step-size with respect to the
unnormalized version of ℓ2 steepest descent.) Therefore, in both cases we may apply Proposition
A.3 using β = β̃k to yield:

‖βk − β̃k‖22 ≤ ‖β̃k‖22 + 2

k−1
∑

j=0

αj

|Sj |
∑

i∈Sj

ℓ(yi(β̃
k)Txi) ≤

ln(k)2

(DegSEP∗)2
+

4

‖X‖22,∞
,

where the final inequality uses (45) as well as αj ≤ 2
‖X‖2

2,∞

. Therefore:

‖βk‖ ≤ ‖β̃k‖2 + ‖βk − β̃k‖2 ≤
ln(k)

DegSEP∗ +

√

ln(k)2

(DegSEP∗)2
+

4

‖X‖22,∞
≤ 2 ln(k)

DegSEP∗ +
2

‖X‖2,∞
.
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A.6 Proof of Theorem 4.1

To prove (i), let x ∈ R
p be fixed and notice that for each i ≥ 0 it holds that:

‖xi+1 − x‖22 = ‖xi − ᾱ∇̃f(xi)− x‖22 = ‖xi − x‖22 − 2ᾱ∇̃f(xi)T (xi − x) + ᾱ2‖∇̃f(xi)‖22
Rearranging terms, summing over i ∈ {0, . . . , k}, and dividing by 2ᾱ(k + 1) yields:

1

k + 1

k
∑

i=0

∇̃f(xi)T (xi − x) =
‖x0 − x‖22
2ᾱ(k + 1)

− ‖x
k+1 − x‖22

2ᾱ(k + 1)
+

ᾱ

2(k + 1)

k
∑

i=0

‖∇̃f(xi)‖22

≤ ‖x
0 − x‖22

2ᾱ(k + 1)
+

ᾱ

2(k + 1)

k
∑

i=0

‖∇̃f(xi)‖22 . (46)

Now, by the law of iterated expectations, for each i ∈ {0, . . . , k} it holds that

E

[

∇̃f(xi)T (xi − x)
]

= E

[

E[∇̃f(xi)T (xi − x) | xi]
]

= E

[

E[∇̃f(xi) | xi]T (xi − x)
]

= E
[

∇f(xi)T (xi − x)
]

,

where the last equality follows from the definition of the stochastic gradient, i.e., E[∇̃f(xi) | xi] =
∇f(xi). After taking the expectation of both sides of (46) and combining with the above we
obtain

1

k + 1

k
∑

i=0

E
[

∇f(xi)T (xi − x)
]

≤ ‖x0 − x‖22
2ᾱ(k + 1)

+
ᾱ

2(k + 1)

k
∑

i=0

E[‖∇̃f(xi)‖22]

≤ ‖x0 − x‖22
2ᾱ(k + 1)

+
ᾱM2

2
,

where the second inequality follows from (22). The gradient equality (which holds for each real-
ization of xi) states that f(xi) − f(x) ≤ ∇f(xi)T (xi − x), and averaging the expectation of these
inequalities over i ∈ {0, . . . , k} yields

1

k + 1

k
∑

i=0

E
[

f(xi)
]

− f(x) ≤ 1

k + 1

k
∑

i=0

E
[

∇f(xi)T (xi − x)
]

. (47)

Finally, in the case of Option A, Jensen’s inequality implies (i) and, in the case of Option B, another
iterated expectations argument implies that E[f(x̂k)] = 1

k+1

∑k
i=0 E

[

f(xi)
]

from which (i) directly
follows.

Item (ii) follows directly from the format of the updates in Step (2.) of Algorithm 2 as well as the
triangle inequality. To prove (iii), we use the smoothness of the objective function. In particular,
applying (30) to the iterates of Algorithm 2 yields for each i ∈ {0, . . . , k}:

f(xi+1) ≤ f(xi) +∇f(xi)T (xi+1 − xi) + L
2 ‖x

i+1 − xi‖22
= f(xi)− ᾱ∇f(xi)T ∇̃f(xi) + Lᾱ2

2 ‖∇̃f(xi)‖22 . (48)
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Notice that the law of iterated expectations as well as the definition of the stochastic gradient
yields:

E

[

∇f(xi)T ∇̃f(xi)
]

= E

[

E[∇f(xi)T ∇̃f(xi) | xi]
]

= E

[

∇f(xi)TE[∇̃f(xi) | xi]
]

= E
[

∇f(xi)T∇f(xi)
]

= E
[

‖∇f(xi)‖22
]

.

Therefore, taking the expectation of both sides of (48) and using (22) yields:

E[f(xi+1)] ≤ E[f(xi)]− ᾱ · E
[

‖∇f(xi)‖22
]

+
Lᾱ2M2

2
.

Rearranging terms and summing over i ∈ {0, . . . , k} yields:

ᾱ

k
∑

i=0

E
[

‖∇f(xi)‖22
]

≤ f(x0)− E[f(xk+1)] +
Lᾱ2M2(k + 1)

2
.

Then using f∗ ≤ E[f(xk+1)] and dividing by ᾱ(k + 1) yields:

1

k + 1

k
∑

i=0

E
[

‖∇f(xi)‖22
]

≤ f(x0)− f∗

ᾱ(k + 1)
+

ᾱLM2

2
.

Finally, since we are in the case of Option B, another iterated expectations argument implies that
E
[

‖∇f(x̂k)‖22
]

= 1
k+1

∑k
i=0 E

[

‖∇f(xi)‖22
]

from which (iii) directly follows.

A.7 Proof of Proposition 4.2

Recall that the scalar logistic loss function is denoted by ℓ(·) : R → R, which is defined by

ℓ(t) := ln(1 + exp(−t)). A simple calculation shows that ℓ′′(t) = exp(t)
(exp(t)+1)2

≤ 1
4 for all t ∈ R.

As mentioned in Section 4.2, it follows from item (2.) of Assumption 4.1 that LD(·) is continuous,
convex, differentiable, and satisfies ∇LD(β) = E(x,y)∼D

[

∇βℓ(yβ
Tx)

]

= E(x,y)∼D
[

ℓ′(yβTx) · yx
]

for
all β ∈ R

p (see, e.g., Section 7.2.4 of [29]). Moreover, it can also be demonstrated (again by Section
7.2.4 of [29]) that LD(·) is twice differentiable. Letting H(β) denote the Hessian matrix of LD(β)
at β, then it holds that H(β) = E(x,y)∼D

[

ℓ′′(yβTx)xxT
]

.

Recall that a twice differentiable convex function is L-smooth with respect to the ℓ2 norm on R
p

if and only if H(β) � LIp for all β ∈ R
p, where Ip denotes the p× p identity matrix. Now, for any

(x, y), since ℓ′′(yβTx) ≤ 1
4 , we have that ℓ′′(yβTx)xxT � 1

4xx
T . Therefore, it holds that

H(β) = E(x,y)∼D
[

ℓ′′(yβTx)xxT
]

� 1
4E(x,y)∼D

[

xxT
]

= 1
4Σ � 1

4λmax(Σ)Ip ,

which demonstrates that LD(·) is 1
4λmax(Σ)-smooth.
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A.8 Proof of Proposition 4.3

Again, recalling the notation ℓ(t) := ln(1 + exp(−t)), note that ℓ′(t) = − 1
exp(t)+1 ∈ (−1, 0) for all

t ∈ R. Then the stochastic gradient is ∇βℓ(yβ
Tx) where (x, y) ∼ D and it holds that

E(x,y)∼D
[

‖∇βℓ(yβ
Tx)‖22

]

= E(x,y)∼D
[

‖ℓ′(yβTx) · yx‖22
]

= E(x,y)∼D
[

|ℓ′(yβTx)| · ‖x‖22
]

≤ E(x,y)∼D
[

‖x‖22
]

= Tr(Σ) .
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