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Appendix A. Simulations

In order to investigate the properties of our estimator and compare to traditional quantile re-

gression, we generate data according to the following model:

yig = zig�(uig) + �(u) + xg�(uig) + "g(uig) (10)

xg = ⇡wg + ⌘g + ⌫g (11)

"g(u) = u⌘g � u

2
(12)

where wg, ⌫g, and zig are each distributed exp(0.25⇤N [0, 1]); uig and ⌘g are both distributed U [0, 1];

and random variables wg, ⌫g, zig, uig, and ⌘g are mutually independent. Note that the form

"g(u) = u⌘g � u
2 implies E["g(u)|wg] = E[u⌘g � u/2|wg] = E[u⌘g � u/2] = u/2 � u/2 = 0. The

quantile coe�cient functions are �(u) = �(u) = u1/2 and �(u) = u/2. The parameter ⇡ = 1.

We employ three variants of the data generating process described in (10)–(12). The first case is

exactly as in (10)–(12), with the group-level treatment of interest, xg, being endogenous (correlated

with "g through ⌘g). We estimate �(u) in this case using the grouped IV quantile estimator as well

as standard quantile regression (which ignores the endogeneity as well as the existence of "g). In

the second case xg is exogenous, where we set xg = wg in (11). We estimate �(u) again in this

case using the grouped quantile approach as well as standard quantile regression, where the latter

ignores the existence of "g. In the third case xg is exogenous and no group-level unobservables are

included, where we set xg = wg and "g = 0. In this latter case, both grouped quantile regression

and standard quantile regression should be consistent.

We perform these exercises with the number of groups (G) and the number of observations per

group (N) given by (N,G) =(25,25), (200,25), (25,200), (200,200). 1,000 Monte Carlo replications

were used. The results are displayed in Table H. Each panel displays the bias from the procedure

for each decile (u = 0.1, ..., 0.9) as well as the average absolute value of that bias, averaged over the

nine deciles.

The top panel of Table H demonstrates that in the endogenous group-level treatment case the

magnitude of the bias is much smaller in our estimator than in standard quantile regression, and the

bias of our estimator disappears as N and G increase, while the bias of quantile regression remains



2 Appendix

constant (0.196 on average). The middle panel considers the case where xg is exogenous but group-

level unobservables are present (or, equivalently, left-hand-side measurement error exists in the

quantile regression). At some quantiles, standard quantile regression has a bias which is smaller in

magnitude than the grouped approach, in particular in the cases where N = 25. However, as N

increases, the magnitude of the bias of the grouped estimator falls close to zero on average while

that of standard quantile regression remains about three times as high at 0.01. Finally, the bottom

panel focuses on the case in which no group-level unobservables exist and hence standard quantile

regression is unbiased. In this case, we find that the bias of standard quantile regression is indeed

lower than that of the grouped quantile approach, but the bias of the grouped quantile method

also diminishes rapidly as N and G grow.

To illustrate the computational burden which our estimator overcomes, we redid the first stage

estimation with �(·) and group-level fixed e↵ects—↵g from Section 2—estimated jointly in one large

quantile regression rather than estimating group-by-group quantile regression. We performed 100

replications due to the computational burden of the joint estimation. We found that in the (N,G) =

(25, 25) case the joint estimation took only slightly longer than than the group-by-group approach;

with (N,G) = (200, 25) the group-by-group approach was ten times faster; with (N,G) = (25, 200)

the group-by-group approach was over forty times as fast; and in the (N,G) = (200, 200) the group-

by-group approach was over 150 times as fast, with estimation on a single replication sample for

the nine deciles taking over three minutes, while the the grouped quantile approach performed the

same exercise in 1.22 seconds.23 This exercise illustrates the benefit of the group-by-group approach

to estimating ↵g and also illustrates that, in general, standard quantile regression can be very slow

when a large number of explanatory variable is included. The grouped quantile approach can

greatly reduce this computational burden by handling all group-level explanatory variables linearly

in the second stage (implying that the grouped quantile approach can be especially beneficial if the

dimension of xg is large).

Appendix B. Sub-gaussian Tail Bound

In this section, we derive the sub-gaussian tail bound for the quantile regression estimator. This

bound plays an important role in deriving the asymptotic distribution of our estimator, which is

given in Theorem 1.

Theorem 3 (Sub-Gaussian Tail Bound for Quantile Estimator). Let Assumptions 1-8 hold. Then

there exist constants c̄, c, C > 0 that depend only on cM , cf , CM , Cf , CL such that for all g = 1, ..., G

and x 2 (0, c̄),

P

✓
sup
u2U

k↵̂g(u)� ↵g(u)k > x

◆
 Ce�cx2N

g . (13)

23With G > 200, the computation time ratio drastically increases further, with standard optimization packages

often failing to converge appropriately.



Appendix 3

Remark 3. The bound provided in Theorem 3 is non-asymptotic. In principle, it is also possible

to calculate the exact constants in the inequality (13). We do not calculate these constants because

they are not needed for our results. Since ↵̂g,1(u) is the classical Koenker and Bassett’s (1978)

quantile regression estimator of ↵g(u), Theorem 3 may also be of independent interest. The theorem

implies that large deviations of the quantile estimator from the true value are extremely unlikely

under our conditions. ⇤

Appendix C. Uniform Confidence Intervals

In this section, we show how to obtain confidence bands for �(u) that hold uniformly over U .
Observe that �(u) is a dx-vector, that is, �(u) = (�1(u), . . . ,�d

x

(u))0. Without loss of generality, we

focus on �1(u), the first component of �(u). Let �̂1(u), V (u), and V̂ (u) denote the first component

of �̂(u), the (1, 1) component of C(u, u), and the (1, 1) component of Ĉ(u, u), respectively. Define

T = sup
u2U

p
G|V̂ (u)�1/2(�̂1(u)� �1(u))|, (14)

and let c1�↵ denote the (1� ↵) quantile of T . Then uniform confidence bands of level ↵ for �1(u)

could be constructed as
2

4�̂1(u)� c1�↵

s
V̂ (u)

G
, �̂1(u) + c1�↵

s
V̂ (u)

G

3

5 . (15)

These confidence bands are infeasible, however, because c1�↵ is unknown. We suggest estimating

c1�↵ by the multiplier bootstrap method. To describe the method, let ✏1, ..., ✏G be an i.i.d. se-

quence of N(0, 1) random variables that are independent of the data. Also, let ŵS
g,1 denote the 1st

component of the vector Ŝwg. Then the multiplier bootstrap statistic is

TMB = sup
u2U

1q
GV̂ (u)

GX

g=1

⇣
✏g(↵̂g,1(u)� x0g�̂(u))ŵ

S
g,1

⌘

The multiplier bootstrap critical value ĉ1�↵ is the conditional (1 � ↵) quantile of TMB given the

data. Then a feasible version of uniform confidence bands is given by equation (15) with ĉ1�↵

replacing c1�↵. The validity of the method is established in the following theorem using the results

of Chernozhukov, Chetverikov, and Kato (2013).

Theorem 4 (Uniform Confidence Bands via Multiplier Bootstrap). Let Assumptions 1-8 hold. In

addition, suppose that all eigenvalues of J(u, u) are bounded away from zero uniformly over u 2 U .
Then

P

0

@�1(u) 2
2

4�̂1(u)� ĉ1�↵

s
V̂ (u)

G
, �̂1(u) + ĉ1�↵

s
V̂ (u)

G

3

5 for all u 2 U
1

A ! 1� ↵

as G ! 1.
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Remark 4. Uniform confidence bands are typically larger than the point-wise confidence bands

based on the result (8). The reason is that uniform confidence bands are constructed so that

the whole function {�(u), u 2 U} is contained in the bands with approximately 1 � ↵ probability

whereas point-wise bands are constructed so that for any given u 2 U , �(u) is contained in the

bands with approximately 1�↵ probability. Which confidence bands to use depends on the specific

purposes of the researcher. ⇤

Appendix D. Joint Inference on Group-Specific Effects

In this section, we are concerned with inference on group-specific e↵ects ↵g,1(u), g = 1, . . . , G,

in the model (2)-(3) defined in Section 2. In particular, we are interested in constructing the

confidence bands [↵̂l
g,1, ↵̂

r
g,1] for ↵g,1(u) that are adjusted for multiplicity of the e↵ects, that is, we

would like to have the bands satisfying

P (↵g,1(u) 2 [↵̂l
g,1, ↵̂

r
g,1] for all g = 1, . . . , G) ! 1� ↵. (16)

Thus, the confidence bands [↵̂l
g,1, ↵̂

r
g,1] cover the true group-specific e↵ects ↵g,1 for all g = 1, . . . , G

simultaneously with probability approximately 1� ↵.

The main challenge here is that we have G parameters ↵g,1(u), g = 1, . . . , G, and only Ng obser-

vations to estimate ↵g,1 where Ng is potentially smaller than G (recall that we impose Assumption

3, according to which G2/3(logNG)/NG ! 0 as G ! 1 where NG = ming=1,...,GNg). To decrease

technicalities, in this section we assume that U = {u}, that is, U is a singleton.

It is well-known that as Ng ! 1, N1/2
g (↵̂g,1(u)�↵g,1(u)) ) N(0, Ig) where Ig is the (1, 1)th ele-

ment of the matrix u(1�u)Jg(u)�1Eg[zigz0ig]Jg(u)
�1; see, for example, Koenker (2005). Therefore,

letting c1�↵ be the (1� ↵) quantile of |Y | where Y ⇠ N(0, 1), we obtain

P

 
↵g,1(u) 2

"
↵̂g,1(u)� c1�↵

s
Ig
Ng

, ↵̂g,1(u) + c1�↵

s
Ig
Ng

#!
! 1� ↵ as Ng ! 1. (17)

In practice, Ig is typically unknown, however, and has to be estimated from the data. For example,

one can use a method developed in Powell (1984). Letting Îg denote a suitable estimator of Ig, it

is standard to show that (17) continues to hold if we replace Ig with Îg as long as Îg !p Ig.

The drawback of the confidence bands in (17), however, is that they do not take into account

multiplicity of the e↵ects ↵g,1(u), g = 1, . . . , G. This is especially important given that G is large.

To fix this problem, we would like to adjust the constant c1�↵ in (17) so that the events under the

probability sign in (17) hold simultaneously for all g = 1, . . . , G with probability asymptotically

equal to 1 � ↵. The theorem below shows that this can be achieved by replacing c1�↵ with cM1�↵,

the (1 � ↵) quantile of max1gG |Yg| where Y1, . . . , YG are i.i.d. N(0, 1) random variables. To

decrease technicalities, we assume in the theorem that all Ig’s are known.

Theorem 5 (Joint Inference on Group-Specific E↵ects). Let Assumptions 1-8 hold. In addition,

suppose that Ig � cM for all g = 1, . . . , G and N̄G/NG  CM where NG = min1gGNg and
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N̄G = max1gGNg. Let cM1�↵ be the (1� ↵) quantile of max1gG |Yg| where Y1, . . . , YG are i.i.d.

N(0, 1) random variables. Then

P

 
↵g,1(u) 2

"
↵̂g,1(u)� cM1�↵

s
Ig
Ng

, ↵̂g,1(u) + cM1�↵

s
Ig
Ng

#
for all g = 1, . . . , G

!
! 1� ↵

as G ! 1.

Remark 5. We note that the size of the bands in this theorem, max1gG 2cM1�↵(Ig/Ng)1/2, is

shrinking to zero as G gets large. Indeed, under our assumptions, max1gG Ig  C for some

constant C, which is independent of G. In addition, cM1�↵  (C logG)1/2 for some absolute con-

stant C. Therefore, max1gG cM1�↵(Ig/Ng)1/2  (C logG/NG)1/2 ! 0 by our growth condition in

Assumption 3 (for some possibly di↵erent constant C). ⇤

Appendix E. Clustered Standard Errors

In this section, we consider the model from the main text, which is defined in equations (2)–(3),

but we seek to relax the independence across groups condition appearing in Assumption 1(i). In

particular, in this section we allow for cluster sampling and derive the results that are analogous

to Theorems 1, 2, and 4.

Before presenting these results, we first provide several examples of where this clustering would

be useful, referencing the examples in Section 4, a group is a grade-by-school-by-year cell, and

the researcher may be interested in clustered at the school or school-by-grade level, for example.

In Example 2, a group is a state-by-year combination, and the researcher may be interested in

clustering at the state level. In Example 3, a group is a given MSA, and the researcher may be

interested in clustering at the region level (where a region contains several MSAs). In Example 4, a

group is a market-by-time-period combination, and the researcher may be interested in clustering

at the market level.

We assume that the data consist of M = MG clusters of groups, and that there exists a cor-

respondence CG : {1, . . . ,M} ◆ {1, . . . , G} such that (i) for each m = 1, . . . ,M , CG(m) denotes

the set of groups corresponding to cluster m, (ii) for m,m0 = 1, . . . ,M with m 6= m0, the set

CG(m) \ CG(m0) is empty, and (iii) for any g = 1, . . . , G, there exists m = 1, . . . ,M such that

g 2 CG(m). Thus, the correspondence CG(·) partitions groups into M clusters. Using this nota-

tion, we replace Assumption 1 with the following condition:

A10 (Design). (i) Observations are independent across clusters m = 1, . . . ,M . (ii) For all g =

1, . . . , G, the pairs (zig, yig) are i.i.d. across i = 1, . . . , Ng conditional on (xg,↵g). (iii) For each

m = 1, . . . ,M , the number of elements in the set CG(m) is bounded from above by some constant

C̄, which is independent of G.

Assumption 10(i) relaxes Assumption 1(i) from the main text by requiring independence across

clusters instead of independence across groups. Assumption 10(ii) is the same as Assumption 1(ii).
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Assumption 10(iii) imposes the condition that the number of groups within each cluster remains

small as the number of groups gets large.

In addition, we replace Assumption 6 with the following condition:

A60 (Noise). (i) For all g = 1, . . . , G, E[supu2U |"g(u)|4+c
M ]  CM . (ii) For some (matrix-valued)

function JCS : U ⇥ U ! Rd
w

⇥d
w ,

1

G

MX

m=1

E

2

4

0

@
X

g2C
G

(m)

"g(u1)wg

1

A

0

@
X

g2C
G

(m)

"g(u1)w
0
g

1

A

3

5 ! JCS(u1, u2)

uniformly over u1, u2 2 U . (iii) For all u1, u2 2 U , |"g(u2)� "g(u1)|  CL|u2 � u1|.

Assumptions 60(i) and 60(iii) are the same as Assumptions 6(i) and 6(iii). Assumption 60(ii) is a
modification of Assumption 6(ii) adjusting the asymptotic covariance function ofG�1/2PG

g=1 "g(·)wg

to allow for clustering. When CG(m) contains only one group for each m = 1, . . . ,M , Assumption

60(ii) reduces to Assumption 6(ii).

Like in the classical cross-section cluster sampling setup, allowing for clustering in our model

does not require adjusting the estimator. Therefore, we study the properties of the estimator �̂(u)

of parameter �(u), u 2 U , defined in Section 3. Our first theorem in this section describes the

asymptotic distribution of �̂(u).

Theorem 6 (Asymptotic Distribution under Cluster Sampling). Let Assumptions 10, 2-5, 60, 7,
and 8 hold. Then

p
G(�̂(·)� �(·)) ) GCS(·), in `1(U)

where GCS(·) is a zero-mean Gaussian process with uniformly continuous sample paths and covari-

ance function CCS(u1, u2) = SJCS(u1, u2)S0 where S = (QxwQ
�1
wwQ

0
xw)

�1QxwQ
�1
ww, Qxw and Qww

appear in Assumption 2, and JCS(u1, u2) in Assumption 60.

Next, we discuss how to estimate the covariance function CCS(·, ·) of the limiting Gaussian process

GCS(·). We suggest estimating CCS(·, ·) by ĈCS(·, ·) defined for all u1, u2 2 U as

ĈCS(u1, u2) = ŜĴCS(u1, u2)Ŝ
0, where

ĴCS(u1, u2) =
1

G

MX

m=1

0

@
X

g2C
G

(m)

(↵̂g,1(u1)� x0g�̂(u1))wg

1

A

0

@
X

g2C
G

(m)

(↵̂g,2(u2)� x0g�̂(u2))w
0
g

1

A ,

Ŝ = (Q̂xwQ̂
�1
wwQ̂

0
xw)

�1Q̂xwQ̂
�1
ww, Q̂xw = X 0W/G, Q̂ww = W 0W/G. In the theorem below, we show

that ĈCS(u1, u2) is consistent for CCS(u1, u2) uniformly over u1, u2 2 U .

Theorem 7 (Estimating CCS under Cluster Sampling). Let Assumptions 10, 2-5, 60, 7, and 8 hold.

Then kĈCS(u1, u2)� CCS(u1, u2)k = op(1) uniformly over u1, u2 2 U .
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Finally, we show how to obtain confidence bands for �(u) that hold uniformly over U . Observe

that �(u) is a dx-vector, that is, �(u) = (�1(u), . . . ,�d
x

(u))0. As before, we focus on �1(u), the

first component of �(u), and we suggest constructing uniform confidence bands via a multiplier

bootstrap method. An important di↵erence from the results with no clustering, however, is that

now we should bootstrap on the cluster level.

Specifically, let �̂1(u), V CS(u), and V̂ CS(u) denote the 1st component of �̂(u), the (1, 1)st

component of CCS(u, u), and the (1, 1)st component of ĈCS(u, u), respectively. Define

T = sup
u2U

p
G|V̂ (u)�1/2(�̂1(u)� �1(u))|, (18)

and let c1�↵ denote the (1 � ↵) quantile of T . As in the main text, we estimate c1�↵ by the

multiplier bootstrap method. Let ✏1, ..., ✏M be an i.i.d. sequence of N(0, 1) random variables that

are independent of the data. Also, let ŵS
g,1 denote the 1st component of the vector Ŝwg. Then the

multiplier bootstrap statistic is

TMB = sup
u2U

1q
GV̂ (u)

MX

m=1

✏m

0

@
X

g2C
G

(m)

(↵̂g,1(u)� x0g�̂(u))ŵ
S
g,1

1

A

The multiplier bootstrap critical value ĉ1�↵ is the conditional (1 � ↵) quantile of TMB given the

data. Our final theorem in this section explains how to construct uniform confidence bands using

ĉ1�↵.

Theorem 8 (Uniform Confidence Bands via Multiplier Bootstrap under Cluster Sampling). Let

Assumptions 10, 2-5, 60, 7, and 8 hold. In addition, suppose that all eigenvalues of JCS(u, u) are

bounded away from zero uniformly over u 2 U . Then

P

0

@�1(u) 2
2

4�̂1(u)� ĉ1�↵

s
V̂ (u)

G
, �̂1(u) + ĉ1�↵

s
V̂ (u)

G

3

5 for all u 2 U
1

A ! 1� ↵

as G ! 1.

Appendix F. Proofs

In this Appendix, we first prove some preliminary lemmas. Then we present the proofs of

Theorems 1–5 stated in the main text and in Appendices B–D. In all proofs, c and C denote

strictly positive generic constants that depend only on cM , cf , CM , Cf , CL whose values can change

at each appearance.

We will use the following notation in addition to that appearing in the main text. Let

A(u) = (↵1,1(u), ...,↵G,1(u))
0,

e�(u) = (X 0PWX)�1(X 0PWA(u)), (19)

Jg(u) = Eg[z1gz
0
1gfg(z

0
1g↵g(u))].
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For ⌘,↵ 2 Rd
z , and u 2 U , consider the function f⌘,↵,u : Rd

z ⇥ R ! R defined by

f⌘,↵,u(z, y) = (z0⌘) · (1{y  z0↵}� u). (20)

Let F = {f⌘,↵,u : ⌘,↵ 2 Rd
z ;u 2 U}; that is, F is the class of functions f⌘,↵,u as ⌘,↵ vary over Rd

z

and u varies over U . For ↵ 2 Rd
z and u 2 U , let the function h↵,u : Rd

z ⇥ R ! Rd
z be defined by

h↵,u(z, y) = z(1{y  z0↵}� u),

and let hk,↵,u denote kth component of h↵,u. Let Hk = {hk,↵,u : ↵ 2 Rd
z ;u 2 U}. Note that

Hk ⇢ F for all k = 1, ..., dz.

We will also use the following notation from the empirical process literature,

Gg(f) =
1p
Ng

N
gX

i=1

(f(zig, yig)� Eg[f(zig, yig)])

for f 2 F ,H, or Hk, k = 1, . . . , dz.

Preliminary Lemmas. In all lemmas, we implicitly impose Assumptions 1-8.

Lemma 1. As G ! 1,

Q̂xw =
1

G

GX

g=1

xgw
0
g !p Qxw, (21)

Q̂ww =
1

G

GX

g=1

wgw
0
g !p Qww (22)

where Qxw and Qww appear in Assumption 2.

Proof. We only prove (21). The proof of (22) is similar. To prove (21), observe thatG�1PG
g=1E[xgw0

g] !
Qxw by Assumption 2. Therefore, it su�ces to prove that

1

G

GX

g=1

�
xgw

0
g � E[xgw

0
g]
� !p 0. (23)

In turn, (23) follows from Assumptions 2(iv) and 4(i) and Chebyshev’s inequality. Hence, (21)

follows. This completes the proof of the lemma. ⇤

Lemma 2. As G ! 1,

1

G

GX

g=1

"g(u1)"g(u2)wgw
0
g !p J(u1, u2)

uniformly over u1, u2 2 U .
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Proof. Observe that we cannot apply a uniform law of large numbers with bracketing directly

because the data are not necessarily i.i.d. across g. Therefore, we provide a complete proof.

Since

1

G

GX

g=1

E
⇥
"g(u1)"g(u2)wgw

0
g

⇤ ! J(u1, u2)

uniformly over u1, u2 2 U by Assumption 6(ii), it su�ces to prove that

1

G

GX

g=1

("g(u1)"g(u2)wg,kwg,l � E ["g(u1)"g(u2)wg,kwg,l]) !p 0 (24)

uniformly over u1, u2 2 U for all k, l = 1, . . . , dw.

To this end, fix u1, u2 2 U and k, l = 1 . . . , dw. We first show (24) for these values of u1, u2,

k, and l. Note that we cannot use Chebyshev’s inequality here because E[("g(u1)"g(u2)wg,kwg,l)2]

is not necessarily finite. Instead, we use a more delicate method as presented in Theorem 2.1.7 of

Tao (2012). Let � = cM/4. Then by Hölder’s inequality,

E[|"g(u1)"g(u2)wg,kwg,l|1+�] 
⇣
E[|"g(u1)"g(u2)|2+2�] · E[|wg,kwg,l|2+2�]

⌘1/2
.

In turn,

E[|"g(u1)"g(u2)|2+2�]  E


sup
u2U

|"g(u)|4+4�

�
 CM ,

E[|wg,kwg,l|2+2�]  E
h
kwgk4+4�

i
 CM

by Assumptions 6(i) and 2(iv). Hence,

E[|"g(u1)"g(u2)wg,kwg,l|1+�]  CM ,

and so denoting Xg = "g(u1)"g(u2)wg,kwg,l � E["g(u1)"g(u2)wg,kwg,l], we obtain

E[|Xg|1+�]  C. (25)

With this notation, (24) is equivalent to G�1PG
g=1Xg !p 0.

Now for N > 0 to be chosen later, denote Xg,N = Xg ·1{|Xg|  N} and Xg,>N = Xg ·1{|Xg| >
N}. Then by Fubini’s theorem and Markov’s inequality,

|E[Xg,>N ]|  E[|Xg,>N |] =
Z 1

0
P (|Xg| · 1{|Xg| > N} > t)dt

=

Z N

0
P (|Xg| > N)dt+

Z 1

N
P (|Xg| > t)dt

 N · E[|Xg|1+�]

N1+�
+

Z 1

N

E[|Xg|1+�]

t1+�
dt

=
E[|Xg|1+�]

N �
+

E[|Xg|1+�]

�N �
 CN��
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where in the last inequality we used (25). Hence, by Markov’s inequality, for any " > 0,

P
⇣���

1

G

GX

g=1

Xg,>N

��� > "
⌘
 1

"G

GX

g=1

E[|Xg,>N |]  C

"N �
,

and since |E[Xg,N ]| = |E[Xg,>N ]|  CN��,

P
⇣���

1

G

GX

g=1

Xg,N

��� > "+ CN��
⌘
 P

⇣���
1

G

GX

g=1

(Xg,N � E[Xg,N ])
��� > "

⌘

 1

"2G2

GX

g=1

E[X2
g,N ]  N2

"2G
.

Thus, setting N = G1/3, we obtain G�1PG
g=1Xg !p 0, which is equivalent to (24) for given u1,

u2, k, and l.

Next, to show that (24) holds uniformly over u1, u2 2 U , for � > 0, let U� be a finite subset of U
such that for any u 2 U , there exists u0 2 U� satisfying |"g(u)� "g(u0)|  �. Existence of such a set

U� follows from Assumption 6(iii). Then

sup
u1,u22U

���
1

G

GX

g=1

("g(u1)"g(u2)wg,kwg,l � E["g(u1)"g(u2)wg,kwg,l])
���

 max
u1,u22U

�

���
1

G

GX

g=1

("g(u1)"g(u2)wg,kwg,l � E["g(u1)"g(u2)wg,kwg,l])
���

+
2�

G

GX

g=1

✓
sup
u2U

|"g(u)| · |wg,kwg,l|+ E


sup
u2U

|"g(u)| · |wg,kwg,l|
�◆

= op(1) + � ·Op(1)

by the result above and Chebyshev’s inequality. Since � is arbitrary, this completes the proof. ⇤

Lemma 3. As G ! 1,

1p
G

GX

g=1

wg"g(·) ) G0(·), in `1(U)

where G0 is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function J(u1, u2) for all u1, u2 appearing in Assumption 6.

Proof. For any finite set U 0 ⇢ U , it follows from Assumption 6(ii), Lindeberg’s Central Limit

Theorem, and the Cramér-Wold device (see, for example, Theorems 11.2.5 and 11.2.3 in Lehmann

and Romano (2005)) that

⇣ 1p
G

GX

g=1

wg"g(u)
⌘

u2U 0
) (N(u))u2U 0

where (N(u))u2U 0 is a zero-mean Gaussian vector with covariance function J(u1, u2) for all u1, u2 2
U 0. Therefore, to prove the asserted claim, we can apply Theorem 14. In particular, it su�ces to
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verify conditions (i)–(iii) of Theorem 14 with Zg(u) = G�1/2wg,k"g(u), g = 1, . . . , G and u 2 U , for
all k = 1, . . . , dw. In the verification, we will use the Gaussian-dominated semi-metric ⇢ : U ⇥ U !
R+ defined by ⇢(u1, u2) = C|u2 � u1| for su�ciently large constant C > 0; see discussion in front

of Theorem 14 for the definition of Gaussian-dominated semi-metrics.

Condition (i) of Theorem 14 holds because for any ⌘ > 0 and � = 1 + cM/2,

GX

g=1

E


sup
u2U

|Zg(u)| · 1
⇢
sup
u2U

|Zg(u)| > ⌘

��
 1

⌘�G1/2+�/2

GX

g=1

E


sup
u2U

|"g(u)|1+�|wg,k|1+�

�

 1

⌘�G1/2+�/2

GX

g=1

✓
E


sup
u2U

|"g(u)|2+2�

�
· E
h
|wj,k|2+2�

i◆1/2

! 0

by Hölder’s inequality and Assumptions 2(iv) and 6(i).

Condition (ii) of Theorem 14 holds because for any u1, u2 2 U ,
GX

g=1

E[(Z(u2)� Z(u1))
2] =

1

G

GX

g=1

E[(wg,k"g(u2)� wg,k"g(u1))
2]

 C

G

GX

g=1

E[w2
g,k|u2 � u1|2]  C|u2 � u1|2  ⇢2(u1, u2)

by Assumptions 2(iv) and 6(iii) since the constant C in the definition of ⇢(u1, u2) is large enough.

Finally, condition (iii) of Theorem 14 holds because by Markov’s inequality for any ✏ > 0,

sup
t>0

GX

g=1

t2P

 
sup

⇢(u1,u2)2✏
|Zg(u2)� Zg(u1)| > t

!

 1

G

GX

g=1

E

"
sup

⇢(u1,u2)2✏
|wg,k"g(u2)� wg,k"(u1)|2

#
 C sup

⇢(u1,u2)2✏
|u2 � u1|2  ✏2

by Assumptions 2(iv) and 6(iii) since the constant C in the definition of ⇢(u1, u2) is large enough.

The asserted claim follows from an application of Theorem 14. ⇤

Lemma 4. There exist constants c, C > 0 such that (i) for all u 2 U and g = 1, . . . , G, all

eigenvalues of Jg(u) are bounded from below by c, and (ii) for all u1, u2 2 U and g = 1 . . . , G,

kJ�1
g (u2)� J�1

g (u1)k  C|u2 � u1|.

Proof. For any u 2 U and ↵ 2 Rd
z with k↵k = 1,

↵0Jg(u)↵ � cf↵
0Eg[z1gz

0
1g]↵ � cfcM (26)

where the first inequality follows from Assumption 7(ii) and the second from Assumption 4(ii).

This gives the first asserted claim.

To prove the second claim, observe that

kJ�1
g (u2)� J�1

g (u1)k  kJ�1
g (u1)kkJ�1

g (u2)kkJg(u2)� Jg(u1)k  kJg(u2)� Jg(u1)k
(cfcM )2
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where the second inequality follows from (26). Hence, it su�ces to show that kJg(u2)� Jg(u1)k 
C|u2 � u1| for some C > 0. To this end, note that

|z01g↵g(u2)� z01g↵g(u1)|  kz1gkk↵g(u2)� ↵g(u1)k  CMCL|u2 � u1|
where the second inequality follows from Assumptions 4(i) and 5.

Thus, if |u2 � u1| < cf/(CMCL), then z01g↵g(u2) 2 Bg(u1, cf ), and so

kJg(u2)� Jg(u1)k  ��Eg[z1gz
0
1g ·

��fg(z01g↵g(u2))� fg(z
0
1g↵g(u1))

��]
��

 CfCMCL|u2 � u1| · kEg[z1gz
0
1g]k  CfC

3
MCL|u2 � u1|

where the second inequality follows from Assumption 7(i) and the derivation above, and the third

from Assumption 4(i). On the other hand, if |u2 � u1| � cf/(CMCL), then

kJg(u2)� Jg(u1)k  kJg(u1)k+ kJg(u2)k  2CfkEg[z1gz
0
1g]k

 2CfC
2
M  c�1

f CfC
3
MCL|u2 � u1|

where the first inequality follows from the triangle inequality, the second from Assumption 7(ii),

and the third from Assumption 4(i). This gives the second asserted claim and completes the proof

of the lemma. ⇤

Lemma 5. There exist constants c, C > 0 such that for all g = 1, . . . , G,

kEg[h↵,u(z1g, y1g)]� Jg(u)(↵� ↵g(u))k  Ck↵� ↵g(u)k2, (27)

Eg[(↵� ↵g(u))
0h↵,u(z1g, y1g)] � ck↵� ↵g(u)k2. (28)

for all u 2 U and ↵ 2 Rd
z satisfying k↵� ↵g(u)k  c.

Proof. Second-order Taylor expansion around ↵g(u) and the law of iterated expectation give

Eg[h↵,u(z1g, y1g)] = Eg[z1g(1{y1g  z01g↵}� u)] = Eg[z1g(Fg(z
0
1g↵)� u)]

= Eg[z1g(Fg(z
0
1g↵g(u))� u)] + Jg(u)(↵� ↵g(u)) + rn(u),

where rn(u) is the remainder and Fg(·) is the conditional distribution function of y1g given (z1g, xg,↵g).

The first claim of the lemma follows from Eg[z1g(Fg(z01g↵g(u)) � u)] = 0, which holds because

z01g↵g(u) is the uth quantile of the conditional distribution of y1g, and from krn(u)k  Ck↵�↵g(u)k2
for some C > 0, which holds by Assumptions 4(i) and 7(i).

To prove the second claim, note that if k↵�↵g(u)k is su�ciently small, then k(↵�↵g(u))0rn(u)k 
ck↵� ↵g(u)k2 for an arbitrarily small constant c > 0. On the other hand,

(↵� ↵g(u))
0Jg(u)(↵� ↵g(u)) � ck↵� ↵g(u)k2

by Lemma 4. Combining these inequalities gives the second claim. ⇤

Lemma 6. The function class F , defined in the beginning of this section, is a VC subgraph class

of functions. Moreover, for all k = 1, ..., dz, Hk is a VC subgraph class of functions as well.
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Proof. A similar proof can be found in Belloni, Chernozhukov, and Hansen (2006). We present the

proof here for the sake of completeness. Consider the class of sets {x 2 Rd
z

+1 : a0x  0} with a

varying over Rd
z

+1. It is well known that this is a VC subgraph class of sets; see, for example,

exercise 14 of chapter 2.6 in Van der Vaart and Wellner (1996). Further, note that

{(z, y, t) : f⌘,↵,u(z, y) > t} =
�{y  z0↵} \ {z0⌘ > t/(1� u)}�

[ �{y > z0↵} \ {z0⌘ < �t/u}� .

Therefore, the first result follows from Lemma 2.6.17(ii,iii) in Van der Vaart and Wellner (1996).

The second result follows from the fact that Hk ⇢ F . ⇤

Lemma 7. For any ' � 1, there exists a constant C > 0 such that for all g = 1, . . . , G,

Eg


sup
u2U

kGg(h↵
g

(u),u)k'
�
 C.

Proof. Observe that

Eg


sup
u2U

kGg(h↵
g

(u),u)k'
�
 C

d
zX

k=1

Eg


sup
u2U

|Gg(hk,↵
g

(u),u)|'
�
 C

d
zX

k=1

Eg

"
sup
f2H

k

|Gg(f)|'
#
.

Further, all functions in Hk are bounded by some constant C > 0 by Assumption 4(i) and the set

of functions Hk is a VC subgraph class by Lemma 6. Therefore, combining Theorems 9 and 11

gives Eg[supf2H
k

|Gg(f)|]  C, and so Theorem 13 shows that

Eg

"
sup
f2H

k

|Gg(f)|'
#
 C.

The asserted claim follows. ⇤

Lemma 8. There exist constants c, C > 0 such that for all g = 1, . . . , G,

Eg

"
sup

u22U :|u2�u1|✏
kGg(h↵

g

(u2),u2
)�Gg(h↵

g

(u1),u1
)k4

#
 C✏

for all ✏ 2 (0, c) and u1 2 U .

Proof. Fix some u1 2 U . Observe that

Eg

"
sup

u22U :|u2�u1|✏
kGg(h↵

g

(u2),u2
)�Gg(h↵

g

(u1),u1
)k4

#

 C

d
zX

k=1

Eg

"
sup

u22U :|u2�u1|✏
|Gg(hk,↵

g

(u2),u2
)�Gg(hk,↵

g

(u1),u1
)|4

#
.

Consider the function F : Rd
z ⇥ R ! R given by

F (z, y) = C
�
1{|y � z0↵g(u1)|  C✏}+ ✏

�
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for some su�ciently large C > 0. By Assumptions 4(i) and 5, |z0ig(↵g(u2)� ↵g(u1))|  C|u2 � u1|
for some C > 0. Therefore, for all u2 2 U satisfying |u2 � u1|  ✏,

��hk,↵
g

(u2),u2
(zig, yig)� hk,↵

g

(u1),u1
(zig, yig)

��  F (zig, yig)

by Assumption 4(i). Note that Eg[F 2(zig, yig)]  C✏ for some C > 0 by Assumption 7(ii) if ✏  1.

Also, for M = max1iN
g

F (zig, yig), we have E[M2]  CNg✏. Further, by Lemma 6, Hk is a

VC subgraph class of functions, so that the function class H̃k = {hk,↵
g

(u2),u2
� hk,↵

g

(u1),u1
: u2 2

[u1 � ✏, u1 + ✏]} is a VC type class by Theorem 9. So, applying Theorem 11 with F as an envelope

yields

Eg

"
sup

u22U :|u2�u1|✏
|Gg(hk,↵

g

(u2),u2
)�Gg(hk,↵

g

(u1),u1
)|
#
 C

p
✏,

and so Theorem 13 shows that

Eg

"
sup

u22U :|u2�u1|✏
|Gg(hk,↵

g

(u2),u2
)�Gg(hk,↵

g

(u1),u1
)|4

#
 C✏,

since

Eg

"
max

1iN
g

sup
u22U :|u2�u1|✏

|N�1/2
g (hk,↵

g

(u2),u2
(zig, yig)� hk,↵

g

(u1),u1
(zig, yig))|4

#

 N�1
g max

1iN
g

Eg

"
sup

u22U :|u2�u1|✏
|(hk,↵

g

(u2),u2
(zig, yig)� hk,↵

g

(u1),u1
(zig, yig))|4

#

 N�1
g Eg[F

4(zij , yig)]  C✏.

The asserted claim follows. ⇤

Lemma 9. There exist constants c, C > 0 such that for all g = 1, . . . , G,

Eg

"
sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)k✏

kGg(h↵,u)�Gg(h↵
g

(u),u)k2
#
 C

⇣
✏ log(1/✏) +N�1

g log2(1/✏)
⌘

for all ✏ 2 (0, c).

Proof. Observe that

Eg

"
sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)k✏

kGg(h↵,u)�Gg(h↵
g

(u),u)k2
#

(29)

 C

d
zX

k=1

Eg

"
sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)k✏

|Gg(hk,↵,u)�Gg(hk,↵
g

(u),u)|2
#
. (30)

Consider the function class

H̃k = {hk,↵,u � hk,↵
g

(u),u : u 2 U ;↵ 2 Rd
z ; k↵� ↵g(u)k  ✏}.

By Lemma 6 and Theorem 9, F is a VC type class, and so Theorem 10 implies that H̃k ⇢ F � F
is also a VC type class. In addition, all functions from H̃k are bounded in absolute value by some
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constant C > 0 by Assumption 4(i). Moreover, for any f 2 H̃k, Eg[f(zig, yig)2]  C✏ if ✏  1.

Thus, applying Theorem 11 with the function class H̃k yields

Eg

"
sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)k✏

|Gg(hk,↵,u)�Gg(hk,↵
g

(u),u)|
#
 C

⇣p
✏ log(1/✏) +N�1/2

g log(1/✏)
⌘
,

and so Theorem 13 gives

Eg

"
sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)k✏

|Gg(hk,↵,u)�Gg(hk,↵
g

(u),u)|2
#
 C

⇣
✏ log(1/✏) +N�1

g log2(1/✏)
⌘
.

The asserted claim follows. ⇤

Lemma 10. Uniformly over u 2 U ,

1p
G

GX

g=1

J�1
g (u)Gg(h↵

g

(u),u)w
0
g = Op(1).

Proof. To prove this lemma, we use Theorem 14 with the semi-metric ⇢(u1, u2) = C|u2 � u1|1/4
defined for all u1, u2 2 U and some su�ciently large constant C > 0. Clearly, ⇢ is Gaussian-

dominated; see discussion before Theorem 14 for the definition. Define vg(u) = J�1
g (u)Gg(h↵

g

(u),u)

and

Zg,k,m(u) = vg,k(u)wg,m/
p
G

where vg,k(u) and wg,m denote kth and mth components of vg(u) and wg, respectively. Then the

asserted claim is equivalent to the statement that

GX

g=1

Zg,k,m(u) = Op(1) uniformly over u 2 U (31)

for all k andm. To prove (31), observe first that by Assumptions 1(i) and 2(iii), zero-mean processes

Zg,k,m(·) are independent across g. Also, for any a > 0,

GX

g=1

E


sup
u2U

|Zg,k,m(u)| · 1
⇢
sup
u2U

|Zg,k,m(u)| > a

��

 a�1
GX

g=1

E


sup
u2U

Z2
g,k,m(u) · 1

⇢
sup
u2U

|Zg,k,m(u)| > a

��

 1

aG

GX

g=1

E


sup
u2U

(vg,k(u)wg,m)2 · 1
⇢
sup
u2U

|vg,k(u)wg,m| >
p
Ga

��
. (32)

Further, pick some 0 < ' < 2. The expression under the sum in (32) is bounded from above by

Lemma 4 by

C

a'G'/2
E


sup
u2U

kGg(h↵
g

(u),u)k2+'kwgk2+'

�
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 C

a'G'/2

✓
E


sup
u2U

kGg(h↵
g

(u),u)k
4(2+')
2�'

�◆ 2�'

4 �
E
⇥kwgk4

⇤� 2+'

4  C

a'G'/2
! 0

uniformly over g = 1, . . . , G where the second line follows from Hölder’s inequality, Assumption

2(iv), and Lemma 7. This gives condition (i) of Theorem 14.

Next, we verify condition (ii) of Theorem 14. For any u1, u2 2 U ,
GX

g=1

E
⇥
(Zg,k,m(u2)� Zg,k,m(u1))

2
⇤
=

1

G

GX

g=1

�
E[w4

g,m]
�1/2 · �E[(vg,k(u2)� vg,k(u1))

4]
�1/2

.

Further, using an elementary inequality (a+ b)4  C(a4 + b4) for all a, b 2 Rp gives

Eg[(vg,k(u2)� vg,k(u1))
4]  CEg[kJ�1

g (u2)k4 · kGg(h↵
g

(u2),u2
� h↵

g

(u1),u1
)k4]

+ CEg[kJ�1
g (u2)� J�1

g (u1)k4 · kGg(h↵
g

(u1),u1
)k4]

 CEg[kGg(h↵
g

(u2),u2
� h↵

g

(u1),u1
)k4]

+ CEg[kGg(h↵
g

(u1),u1
)k4] · |u2 � u1|4

where the second inequality follows from Lemma 4. In addition,

Eg[kGg(h↵
g

(u2),u2
� h↵

g

(u1),u1
)k4]  C|u2 � u1| and Eg[kGg(h↵

g

(u1),u1
)k4]  C (33)

where the first inequality follows from Lemma 8 and the second is easy to check directly. Therefore,

Eg[(vg,k(u2)� vg,k(u1))
4]  C|u2 � u1|,

and so
GX

g=1

E
⇥
(Zg,k,m(u2)� Zg,k,m(u1))

2
⇤  C|u2 � u1|1/2  ⇢2(u1, u2)

by Assumption 2(iv) since the constant C in the definition of ⇢(u1, u2) is su�ciently large. This

gives condition (ii) of Theorem 14.

Finally, to verify condition (iii) of Theorem 14 observe that for any ✏ > 0 and u1 2 U ,

sup
t>0

GX

g=1

t2P

 
sup

u22U :⇢(u1,u2)✏
|Zg,k,m(u2)� Zg,k,m(u1)| > t

!


GX

g=1

E

"
sup

u22U :⇢(u1,u2)✏
|Zg,k,m(u2)� Zg,k,m(u1)|2

#

=
1

G

GX

g=1

E

"
sup

u22U :⇢(u1,u2)✏
|vg,k(u2)� vg,k(u1)|2w2

g,m

#
 ✏2

where the second line follows from Markov’s inequality, and the last inequality follows by selecting

su�ciently large constant C in the definition of ⇢ and using the same argument as that in verification
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of condition (ii) since the first inequality in (33) used in the verification of condition (ii) can be

replaced by

Eg

"
sup

u22U :⇢(u1,u2)✏
kGg(h↵

g

(u2),u2
� h�

g

(u1),u1
)k4
#
 c✏4

for arbitrarily small c > 0 by selecting the constant C in the definition of ⇢(u1, u2) large enough

and using Lemma 8. Therefore, for any ✏ > 0 and u 2 U ,

sup
t>0

GX

g=1

t2P

 
sup

u1,u22U :⇢(u1,u)✏,⇢(u2,u)✏
|Zg,k,m(u2)� Zg,k,m(u1)| > t

!

 2 sup
t>0

GX

g=1

t2P

 
sup

u12U :⇢(u1,u)✏
|Zg,k,m(u1)� Zg,k,m(u)| > t/2

!
 ✏2,

and condition (iii) of Theorem 14 holds. The claim of the lemma now follows by applying Theorem

14. ⇤

Proofs of Theorems.

Proof of Theorem 1. The proof consists of two steps. First, we show that
p
G(�̂(u)� e�(u)) = op(1)

uniformly over u 2 U where e�(u) is defined in (19). Second, we show that
p
G(e�(·)� �(·)) ) G(·)

in `1(U). Combining these steps gives the result.

Step 1. Denote Q̂xw = X 0W/G and Q̂ww = W 0W/G. Then

p
G(�̂(u)� e�(u)) =

⇣
Q̂xwQ̂

�1
wwQ̂

0
xw

⌘�1
Q̂xwQ̂

�1
ww

⇣
W 0(Â(u)�A(u))/

p
G
⌘
.

By Lemma 1, X 0W/G !p Qxw and W 0W/G !p Qww where matrices Qxw and Qww have singular

values bounded in absolute values from above and away from zero by Assumption 2(ii), and so

Ŝ =
⇣
Q̂xwQ̂

�1
wwQ̂

0
xw

⌘�1
Q̂xwQ̂

�1
ww !p

�
QxwQwwQ

0
xw

��1
QxwQ

�1
ww = S. (34)

Therefore, to prove the first step, it su�ces to show that

S(u) =
1p
G

GX

g=1

(↵̂g(u)� ↵g(u))w
0
g = op(1)

uniformly over u 2 U . To this end, write S(u) = S1(u) + S2(u) where

S1(u) =� 1p
G

GX

g=1

J�1
g (u)Gg(h↵

g

(u),u)w
0
g/
p

Ng,

S2(u) =
1p
G

GX

g=1

⇣
J�1
g (u)Gg(h↵

g

(u),u) +
p

Ng(↵̂g(u)� ↵g(u))
⌘
w0
g/
p

Ng.

Since NG = ming=1,...,GNg ! 1 by Assumption 3, Lemma 10 implies that S1(u) = op(1) uniformly

over u 2 U .
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Consider S2(u). Let

Kg = C

q
N�1

g logNg (35)

for su�ciently large constant C > 0 so that Theorem 3 implies that

P

✓
sup
u2U

k↵̂g(u)� ↵g(u)k > Kg

◆
 CN�3

g .

Let DG be the event that

sup
u2U

k↵̂g(u)� ↵g(u)k  Kg, for all g = 1, . . . G,

and let Dc
G be the event that DG does not hold. By the union bound, P (Dc

G)  CGN�3
g . By

Assumption 3, CGN�3
g ! 0. Therefore,

S2(u) = S2(u)1{DG}+ S2(u)1{Dc
G} = S2(u)1{DG}+ op(1)

uniformly over u 2 U . Further, kS2(u)k1{DG}  C
PG

g=1(r1,g + r2,g + r3,g)/
p
GNg where

r1,g = sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)kK
g

��J�1
g (u)(Gg(h↵,u)�Gg(h↵

g

(u),u))
�� kwgk,

r2,g = sup
u2U

������
J�1
g (u)

1p
Ng

N
gX

i=1

h↵̂
g

(u),u(zig, yig)

������
kwgk,

r3,g = sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)kK
g

���Eg

hp
Ng(J

�1
g (u)h↵,u(zig, yig)� (↵� ↵g(u)))

i��� kwgk.

We bound the three terms r1,g, r2,g, and r3,g in turn. By Lemma 4 and Hölder’s inequality,

E[r1,g] 
�
E[kwgk2]

�1/2
 
E

"
sup
u2U

sup
↵2Rd

z :k↵�↵
g

(u)kK
g

��Gg(h↵,u)�Gg(h↵
g

(u),u)
��2
#!1/2

 C

 s
logNg

Ng
logNg

!1/2

=
(logNg)3/4

N
1/4
g

where the second line follows from the definition of Kg, Assumption 2(iv), and Lemma 9. Further,

using Lemma 4 again gives

sup
u2U

������
J�1
g (u)

1p
Ng

N
gX

i=1

h↵̂
g

(u),u(zig, yig)

������
 C sup

u2U

������
1p
Ng

N
gX

i=1

h↵̂
g

(u),u(zig, yig)

������
 Cp

Ng

by the optimality of ↵̂g(u) and since yig has a continuous conditional distribution. Hence, E[r2,g] 
C/
p

Ng. Finally, by Lemmas 4 and 5,

E[r3,g]  C
p

NgK
2
g  C logNgp

Ng

.

Hence, by Assumption 3,

E


sup
u2U

kS2(u)k1{DG}
�
 C

p
G(logNG)3/4

N
3/4
G

= o(1),
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implying that
p
G(�̂(u)� e�(u)) = op(1) uniformly over u 2 U and completing the first step.

Step 2. To prove that
p
G(e�(·)� �(·)) ) G(·) in `1(U), observe that

p
G(e�(·)� �(·)) = Ŝ · 1p

G

GX

g=1

wg"g(·).

As explained in Step 1, Ŝ !p S. Also, by Lemma 3,

1p
G

GX

g=1

wg"g(·) ) G0(·), in `1(U)

where G0 is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function J(u1, u2). Therefore, by Slutsky’s theorem,

p
G(e�(·)� �(·)) ) G(·), in `1(U) (36)

where G is a zero-mean Gaussian process with uniformly continuous sample paths and covari-

ance function C(u1, u2) = SJ(u1, u2)S0. Combining (36) with Step 1 gives the asserted claim and

completes the proof of the theorem. ⇤

Proof of Theorem 2. Equation (34) in the proof of Theorem 1 gives Ŝ !p S. Therefore, it su�ces to

prove that kĴ(u1, u2)�J(u1, u2)k = op(1) uniformly over u1, u2 2 U . Note that ↵g,1(u)�x0g�(u) =
"g(u). Hence,

↵̂g,1(u)� x0g�̂(u) = (↵̂g,1(u)� ↵g,1(u))� x0g(�̂(u)� �(u)) + "g(u)

= I1,g(u)� I2,g(u) + "g(u)

where I1,g(u) = ↵̂g,1(u)� ↵g,1(u) and I2,g(u) = x0g(�̂(u)� �(u)). Further, we have

1

G

GX

g=1

"g(u1)"g(u2)wgw
0
g !p J(u1, u2)

uniformly over u1, u2 2 U by Lemma 2. In addition, it was demonstrated in the proof of Theorem

1 that

P

✓
max

g=1,...,G
sup
u2U

k↵̂g(u)� ↵g(u)k > Kg

◆
 CGN�3

g = o(1)

by Assumption 3 where Kg = C(N�1
g logNg)1/2 for su�ciently large constant C. Thus, setting

KG = maxg=1,...,GKg, we obtain
������
1

G

GX

g=1

I1,g(u1)I1,g(u2)wgw
0
g

������
 K2

G

G

GX

g=1

kwgk2 + op(1)

 Op(K
2
G) + op(1) = op(1)
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uniformly over u1, u2 2 U by Assumption 2(iv) and Chebyshev’s inequality. Further,
������
1

G

GX

g=1

I1,g(u1)"g(u2)wgw
0
g

������
 KG

G

GX

g=1

|"g(u2)|kwgk2 + op(1)

 KG

G

GX

g=1

sup
u2U

|"g(u)|kwgk2 + op(1) = op(1)

uniformly over u1, u2 2 U by same argument as that used in the proof of Lemma 2 since Hölder’s

inequality implies that

E


sup
u2U

|"g(u)|kwgk2
�


✓
E


sup
u2U

|"g(u)|2
�◆1/2 �

E[kwgk4]
�1/2  C

by Assumptions 2(iv) and 6(i). Similarly,
������
1

G

GX

g=1

I2(u1)I2,g(u2)wgw
0
g

������
 C

G

GX

g=1

kwgk2 sup
u2U

k�̂(u)� �(u)k2 = op(1),

������
1

G

GX

g=1

I2,g(u1)"g(u2)wgw
0
g

������
 C

G

GX

g=1

|"g(u2)|kwgk2 sup
u2U

k�̂(u)� �(u)k = op(1)

uniformly over u1, u2 2 U by Assumption 4(i). Finally,
������
1

G

GX

g=1

I1,g(u1)I2,g(u2)wgw
0
g

������
 CKG

G

GX

g=1

kwgk2k sup
u2U

k�̂(u)� �(u)k+ op(1) = op(1)

uniformly over u1, u2 2 U . Combining these inequalities gives the asserted claim. ⇤

Proof of Theorem 3. Recall the definition of the function f⌘,↵,u in (20). Since x 7! ⇢u(x) = (u �
I{x < 0})x is convex, for x > 0, k↵̂g(u)� ↵g(u)k  x for all u 2 U if

inf
u2U

inf
⌘2Rd

z ;k⌘k=1

N
gX

i=1

f⌘,↵
g

(u)+x⌘,u(zig, yig)/Ng > 0. (37)

Now, since f⌘,↵,u = ⌘0h↵,u, Lemma 5 implies that

inf
u2U

inf
⌘2Rd

z ;k⌘k=1
Eg[f⌘,↵

g

(u)+x⌘,u(zig, yig)] > cx

if the constant c̄ in the statement of the theorem is su�ciently small. Therefore, it follows that

(37) holds if

inf
u2U

inf
⌘2Rd

z ;k⌘k=1

N
gX

i=1

�
f⌘,↵

g

(u)+x⌘,u(zig, yig)� Eg[f⌘,↵
g

(u)+x⌘,u(zig, yig)]
�
/Ng � �cx,

which in turn follows if

inf
u2U

inf
⌘,↵2Rd

z ;k⌘k=1
Gg(f⌘,↵,u) � �cx

p
Ng. (38)
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Note that for any ⌘ 2 Rd
z satisfying k⌘k = 1, |f⌘,↵,u|  2kzigk  C for some C > 0 by Assumption

4(i). In addition, it follows from Lemma 6 and Theorem 9 that the conditions of Theorem 12 hold

for the function class {f⌘,↵,u 2 F : u 2 U ; ⌘,↵ 2 Rd
z ; k⌘k = 1}. Therefore, Theorem 12 shows that

(38) holds with probability not smaller than

1� C exp(�cx2Ng)

for some c, C > 0. The asserted claim follows. ⇤

Proof of Theorem 4. Observe that the statement

�1(u) /2
2

4�̂1(u)� ĉ1�↵

s
V̂ (u)

G
, �̂1(u) + ĉ1�↵

s
V̂ (u)

G

3

5 for some u 2 U

is equivalent to the statement that T > ĉ1�↵. Therefore, it su�ces to prove that

P (T > ĉ1�↵) ! ↵. (39)

To prove (39), recall the process G(·) = (G1(u), . . . ,Gd
x

(u))0 appearing in Theorem 1. Define a

Gaussian process eG(·) on U with values in R by

eG(u) = V (u)�1/2G1(u), u 2 U

where V (u) = C1,1(u, u), the (1, 1)st component of C(u, u) = SJ(u, u)S0. It follows from conditions

of the theorem that V (u) is bounded away from zero uniformly over u 2 U . Therefore, since G(·)
has uniformly continuous sample paths, the process eG(·) also has uniformly continuous sample

paths. The covariance function of the process eG(·) is

eC(u1, u2) = V (u1)
�1/2C1,1(u1, u2)V (u2)

�1/2.

Further, for G � 1, define processes bGG(·) and eGG(·) on U with values in R by

bGG(u) =
1q

GV̂ (u)

GX

g=1

⇣
✏g(↵̂g,1(u)� x0g�̂(u))ŵ

S
g,1

⌘
, u 2 U

eGG(u) =
1p

GV (u)

GX

g=1

✏g"g(u)w
S
g,1, u 2 U

where wS
g,1 and ŵS

g,1 are the 1st component of the vectors Swg and Ŝwg, respectively, and V̂ (u) =

Ĉ1,1(u, u).
Observe that ĉ1�↵ is the (1 � ↵) conditional quantile of supu2U |ĜG(u)| given the data. Also,

for � 2 (0, 1) and V ⇢ U , let c0�,V be the �th quantile of supu2V |eG(u)|, and let c�,V,G be the �th

quantile of supu2V |eGG(u)| given the data.
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Now, since the process eG(·) has uniformly continuous sample paths, it follows that supu2U |eG(u)| <
1, and so Theorem 2.1 of Chernozhukov, Chetverikov, and Kato (2014b) implies that supu2U |eG(u)|
has continuous distribution. Therefore, for any � > 0, there exists ⌘ > 0 such that

P

✓
sup
u2U

|eG(u)| > c01�↵�⌘,U � ⌘

◆
 ↵+ �,

P

✓
sup
u2U

|eG(u)| > c01�↵+⌘,U + ⌘

◆
� ↵� �.

In addition, Theorem 1 combined with the continuous mapping theorem implies T ) supu2U |eG(u)|,
and so

P (T > c01�↵�⌘,U � ⌘)  ↵+ � + o(1),

P (T > c01�↵+⌘,U + ⌘) � ↵� � + o(1).

Hence, to prove (39), it su�ces to show that for any ⌘ > 0,

P (c01�↵�⌘,U � ⌘  ĉ1�↵  c01�↵+⌘,U + ⌘) ! 1. (40)

To prove (40), fix some ⌘ > 0. Since eG(·) has uniformly continuous sample paths, there exists a

finite U(⌘, 1) ⇢ U such that

c01�↵�⌘,U � ⌘  c01�↵�⌘/2,U(⌘,1) � ⌘/2, (41)

c01�↵+⌘,U + ⌘ � c01�↵+⌘/2,U(⌘,1) + ⌘/2. (42)

Further, let AG be the event that G�1PG
g=1(w

S
g,1)

2  C for some su�ciently large C > 0. Note

that P (AG) ! 1 as G ! 1. Also, on AG, for any u1, u2 2 U ,

E✏

h⇣ 1p
G

GX

g=1

✏g("g(u2)� "g(u1))w
S
g,1

⌘2i
=

1

G

GX

g=1

("g(u2)� "g(u1))
2(wS

g,1)
2  C|u2 � u1|2

by Assumption 6(iii) where E✏[·] denotes expectation with respect to the distribution of ✏1, . . . , ✏G

(and keeping everything else fixed). Therefore, combining Borell’s inequality (see Proposition of

Van der Vaart and Wellner (1996)) and Corollary 2.2.8 of Van der Vaart and Wellner (1996) show

that one can find finite U(⌘, 2) ⇢ U such that on AG,

c1�↵+⌘/2,U(⌘,2),G + ⌘/3 � c1�↵+⌘/3,U ,G + ⌘/4, (43)

c1�↵�⌘/2,U(⌘,2),G � ⌘/3  c1�↵�⌘/3,U ,G � ⌘/4. (44)

Now, observe that whenever the inequalities (41) - (44) are satisfied, the same inequalities are also

satisfied with U(⌘, 1) and U(⌘, 2) replaced by U(⌘) = U(⌘, 1) [ U(⌘, 2).
Next, conditional on the data, (eGG(u))u2U(⌘) is a zero-mean Gaussian vector with covariance

function

eCG(u1, u2) = V (u1)
�1/2

⇣ 1

G

GX

g=1

"g(u1)"g(u2)(w
S
g,1)

2
⌘
V (u2)

�1/2.
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By Lemma 2, eCG(u1, u2) !P
eC(u1, u2) uniformly over u1, u2 2 U(⌘) where eC(u1, u2) is the covari-

ance function of a zero-mean Gaussian vector (eG(u))u2U(⌘). Hence, by Lemma 3.1 of Chernozhukov,

Chetverikov, and Kato (2013),

P (c01�↵+⌘/2,U(⌘) + ⌘/2 > c1�↵+⌘/2,U(⌘),G + ⌘/3) ! 1,

P (c01�↵�⌘/2,U(⌘) � ⌘/2 < c1�↵�⌘/2,U(⌘),G � ⌘/3) ! 1.

Combining this with inequalities (41) - (44) where we replace U(⌘, 1) and U(⌘, 2) by U(⌘) gives
P (c01�↵+⌘,U + ⌘ > c1�↵+⌘/3,U ,G + ⌘/4) ! 1,

P (c01�↵�⌘,U � ⌘ < c1�↵�⌘/3,U ,G � ⌘/4) ! 1.

To complete the proof, it su�ces to show that

P (c1�↵�⌘/3,U ,G � ⌘/4  ĉ1�↵  c1�↵+⌘/3,U + ⌘/4) ! 1. (45)

To prove (45), observe that

sup
u2U

������
1p
G

GX

g=1

✏gx
0
g(�̂(u)� �(u))wS

g,1

������
 sup

u2U
k�̂(u)� �(u)k ·

������
1p
G

GX

g=1

✏gw
S
g,1xg

������
!P 0

since supu2U k�̂(u)� �(u)k !P 0 by Theorem 1 and kG�1/2PG
g=1 ✏gw

S
g,1xgk = OP (1) by Assump-

tions 2(iv) and 4(i). Also,

sup
u2U

������
1p
G

GX

g=1

✏g(↵̂g,1(u)� ↵g,1(u))w
S
g,1

������
!P 0

by the same argument as that used in Step 1 of the proof of Theorem 1. Therefore, since "g(u) =

↵g,1(u) � x0g�(u), supu2U |V̂ (u) � V (u)| !P 0 by Theorem 2, V (u) is bounded away from zero

uniformly over u 2 U , and Ŝ !P S as in the proof of Theorem 1, we obtain

sup
u2U

keGG(u)� bGG(u)k !p 0.

Since ĉ1�↵ is the (1�↵) conditional quantile of supu2U |bG(u)| given the data and c�,U ,G is the �th

conditional quantile of supu2U |eG(u)| given the data, (45) follows. This completes the proof of the

theorem. ⇤

Proof of Theorem 5. We split the proof into two steps.

Step 1. Here we wish to show that for su�ciently large C > 0,

P

 
max

1gG

���J�1
g (u)Gg(h↵

g

(u),u) +
p

Ng(↵̂g � ↵g)
��� >

C(logNG)3/4

N
1/4
G

!
! 0 (46)

Set Kg = C(N�1
g logNg)1/2 for su�ciently large C > 0 so that Theorem 3 implies that

P (k↵̂g(u)� ↵g(u)k > Kg)  CN�3
g .
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Let DG be the event that

k↵̂g(u)� ↵g(u)k  Kg, for all g = 1, . . . , G,

and let Dc
G be the event that DG does not hold. By the union bound, P (Dc

G)  CGN�3
g ! 0.

Now, on the event DG,
���J�1

g (u)Gg(h↵
g

(u),u) +
p

Ng(↵̂g � ↵g)
���  r1,g + r2,g + r3,g

where

r1,g = sup
↵2Rd

z :k↵�↵
g

(u)kK
g

kJ�1
g (u)(Gg(h↵,u)�Gg(h↵

g

(u),u))k,

r2,g =

������
J�1
g (u)

1p
Ng

N
gX

i=1

h↵̂
g

(u),u(zig, yig)

������
,

r3,g = sup
↵2Rd

z :k↵�↵
g

(u)kK
g

kEg[
p
Ng(J

�1
g (u)h↵,u(zig, yig)� (↵� ↵g(u)))]k.

By Lemma 4 and optimality of ↵̂g(u),

r2,g 
������

Cp
Ng

N
gX

i=1

h↵̂
g

(u),u(zig, yig)

������
 Cp

Ng

.

Also, by Lemmas 4 and 5,

r3,g  C
p
NgK

2
g  C logNgp

Ng

.

Finally, by Lemma 4 and Talagrand’s inequality (see, for example, Theorem B.1 in Chernozhukov,

Chetverikov, and Kato (2014b)),

r1,g  C sup sup
↵2Rd

z :k↵�↵
g

(u)kK
g

kGg(h↵,u)�Gg(h↵
g

(u),u)k  C
p
Kg logG =

C log3/4Ng

N
1/4
g

with probability at least 1�G�2. Combining these bounds gives (46) and completes this step.

Step 2. Here we complete the proof. For g = 1, . . . , G and i = 1, . . . , N̄G, define qig as follows.

If i > Ng, set qig = 0. If i  Ng, set

qig = (N̄G/Ng)
1/2I�1/2

g z̄ig(1{yig  z0ig↵g(u)}� u)

where z̄ig denotes the first component of the vector J�1
g (u)zig. By Step 1 and assumptions that

Ig � cM and N̄G/NG  CM , it follows that

P

✓
max

1gG

q
Ng/Ig|↵̂g,1(u)� ↵g,1(u)|  cM1�↵

◆

 P

0

@ max
1gG

������
1p
N̄G

N̄
GX

g=1

(qig � Eg[qig])

������
 cM1�↵ +

C log3/4Ng

N
1/4
g

1

A+ o(1) (47)
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In turn, since under our assumptions |qig|  C, by Corollary 2.1 in Chernozhukov, Chetverikov,

and Kato (2014d), the probability in (47) is bounded from above by

P

 
max

1gG
|Yg|  cM1�↵ +

C log3/4NG

N
1/4
G

!
+ o(1)

 P

✓
max

1gG
|Yg|  cM1�↵

◆
+

C(log3/4NG) · (log1/2G)

N
1/4
G

+ o(1) = 1� ↵+ o(1)

where in the second line we used Theorem 3 in Chernozhukov, Chetverikov, and Kato (2014c).

Thus,

P

✓
max

1gG

q
Ng/Ig|↵̂g,1(u)� ↵g,1(u)|  cM1�↵

◆
 1� ↵+ o(1). (48)

Similar arguments also give

P

✓
max

1gG

q
Ng/Ig|↵̂g,1(u)� ↵g,1(u)|  cM1�↵

◆
� 1� ↵� o(1). (49)

Rearranging the terms under the probability signs in (48) and (49) completes the proof of the

theorem. ⇤

Appendix G. Proofs of Theorems 6-8

The proofs are analogous to those of Theorems 1, 2, and 4. Therefore, we only discuss important

di↵erences. First, the constants c, C > 0 in the proofs now depend on cM , cf , CM , Cf , CL, and C̄.

Second, among Lemmas 1 - 10, Lemmas 4 - 9 deal with within group variation, and so apply under

our conditions without changes. The statement of Lemma 1 holds without changes but in the proof,

Chebyshev’s inequality applies on cluster level, that is, for k = 1, . . . , dx and l = 1, . . . , dw,

E
h⇣ 1

G

GX

g=1

(xg,kwg,l � E[xg,kwg,l])
⌘2i

=
1

G2

MX

m=1

E
h⇣ X

g2C
G

(m)

(xg,kwg,l � E[xg,kwg,l])
⌘2i

 C

G2

MX

m=1

E
h X

g2C
G

(m)

(xg,kwg,l � E[xg,kwg,l])
2
i

=
C

G2

GX

g=1

E[(xg,kwg,l � E[xg,kwg,l])
2] ! 0

where in the second line we used Assumption 10(iii) that the number of groups in each cluster is

bounded from above by C̄.

Lemma 2 should be replaced with the statement that G ! 1,

1

G

MX

m=1

⇣ X

g2C
G

(m)

"g(u1)wg

⌘⇣ X

g2C
G

(m)

"g(u1)w
0
g

⌘
!P JCS(u1, u2) (50)
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uniformly over u1, u2 2 U . To prove this statement, observe that by Assumption 60(ii),

1

G

MX

m=1

E
h⇣ X

g2C
G

(m)

"g(u1)wg

⌘⇣ X

g2C
G

(m)

"g(u1)w
0
g

⌘i
! JCS(u1, u2)

uniformly over u1, u2 2 U . Further, for � = cM/4 and k, l = 1, . . . , dw,

E
h���
⇣ X

g2C
G

(m)

"g(u1)wg,k

⌘⇣ X

g2C
G

(m)

"g(u2)wg,l

⌘���
1+�i

 CE
h X

g,g02C
G

(m)

|"g(u1)wg,k"g0(u2)wg0,l|1+�
i

 CE
h X

g,g02C
G

(m)

⇣
|"g(u1)wg,k|2+2� + |"g0(u2)wg0,l|2+2�

⌘i
 C,

where the last inequality can be proven by the same argument as that used in the proof of Lemma

2. From this point, the proof of (50) is analogous to the proof used in Lemma 2.

The statement of Lemma 3 holds with J(u1, u2) replaced by JCS(u1, u2). To prove the new

statement, first observe that for any finite U 0 ⇢ U ,
⇣ 1p

G

GX

g=1

wg"g(u)
⌘

u2U 0
) (N(u))u2U 0

where (N(u))u2U 0 is a zero-mean Gaussian vector with covariance function JCS(u1, u2) for all

u1, u2 2 U 0. The rest of the proof follows from Theorem 14 by the same arguments as those used

in Lemma 3 and those explained above where we replace Zg(u) = G�1/2wg,k"g(u) by Zm(u) =

G�1/2P
g2C

G

(m)wg,k"g(u), and we replace sums over g = 1, . . . , G by sums over m = 1, . . . ,M

where appropriate.

The statement of Lemma 10 holds without changes but in the proof, we replace Zg,k,l(u) =

vg,k(u)wg,l/
p
G by Zm,k,l(u) =

P
g2C

G

(m) vg,k(u)wg,l/
p
G and we replace sums over g = 1, . . . , G

by sums over m = 1, . . . ,M where appropriate, and employ the arguments explained above.

With the new versions of Lemmas 1 - 10, the proof of Theorem 6 is the same as the proof of

Theorem 1. The proof of Theorem 7 is analogous to that of Theorem 2 where, using the same

notation as that in the proof of Theorem 2, we employ the bound

���
1

G

MX

m=1

⇣ X

g2C
G

(m)

I1,g(u1)wg

⌘⇣ X

g2C
G

(m)

I1,g(u2)w
0
g

⌘���

 1

G

MX

m=1

X

g,g02C
G

(m)

kI1,g(u1)I1,g0(u2)wgw
0
gk  K2

g

G

GX

g=1

kwgk2 + oP (1) = oP (1),

and we bound all other terms in the proof similarly. The proof of Theorem 8 is analogous to that

of Theorem 4.
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Appendix H. Tools

In Appendix F, we used several results from the empirical process theory. For ease of reference,

we describe these results in this section.

Let (T, ⇢) be a semi-metric space. For " > 0, an "-net of (T, ⇢) is a subset T" of T such

that for every t 2 T , there exists a point t" 2 T" with ⇢(t, t") < ". The "-covering number

N(", T, ⇢) of T is the infimum of the cardinality of "-nets of T , that is, N(", T, ⇢) = inf{Card(T") :

T" is an " net of T}.
Let F be a class of measurable functions defined on some measurable space (S,S). For any

probability measure Q on (S,S) and p � 1, let Lp(Q) denote the space of functions f on S with

the norm kfkQ,p = (
R |f(s)|pdQ(s))1/p < 1. The function class F is called VC-subgraph class if

the collection of all subgraphs of the functions in F forms a VC-class of sets; see Section 2.6.2 of

Van der Vaart and Wellner (1996) for the definitions. In addition, we say that the function class

F is VC type class of functions with an envelope F : S ! R+ and constants A � e, and v � 1 if

all functions in F are bounded in absolute value by F and the following condition holds:

sup
Q

N("kFkQ,2,F , L2(Q))  (A/")v

for all " 2 (0, 1) where the supremum is taken over all finitely discrete probability measures Q on

(S,S).
Finally, let X1, . . . , Xn be an i.i.d. sequence of random variables taking values in (S,S) with a

common distribution P . Define the empirical process:

Gn(f) =
1p
n

nX

i=1

⇣
f(Xi)� E[f(Xi)]

⌘
, f 2 F .

The following theorems are used in Appendix F:

Theorem 9. There exists a universal constant K such that for any VC subgraph class F of func-

tions with an envelope F , any p � 1, and 0 < " < 1,

sup
Q

N("kFkQ,p,F , Lp(Q))  KV (F)(16e)V (F)

✓
1

"

◆r(V (F)�1)

where V (F) is a finite constant that depends only on the function class F (and called VC dimension

of the class F). Thus, any VC-subgraph class of functions F is also a VC type class of functions

with some constants A � e and v � 1 depending only on F .

Proof. See Lemma 19.15 in Van der Vaart (1998). ⇤

Theorem 10. Let F1, . . . ,Fk be classes of measurable functions S ! R to which measurable

envelopes F1, . . . , Fk are attached, respectively, and let � : Rk ! R be a map that is Lipschitz in the
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sense that

|� � f(s)� � � g(s)|2 
kX

j=1

L2
j (s)|fj(s)� gj(s)|2,

for every f = (f1, . . . , fk), g = (g1, . . . , gk) 2 F1⇥ . . .Fk = F and every s 2 S, where L1, . . . , Lk are

non-negative measurable functions on S. Consider the class of functions �(F) = {� � f : f 2 F}.
Denote (

Pk
j=1 L

2
jF

2
j )

1/2 by L · F . Then we have

sup
Q

N("kL · FkQ,2,�(F), L2(Q)) 
kY

j=1

sup
Q

j

N("kFjkQ
j

,2,Fj , L2(Qj))

for every 0 < " < 1.

Proof. See Lemma A.6 in Chernozhukov, Chetverikov, and Kato (2014a). ⇤

Theorem 11. Let F be a VC type class of functions with an envelope F and constants A � e and

v � 1. Denote �2 = supf2F E[f(X1)2] and M = max1in F (Xi). Then

E

"
sup
f2F

|Gn(f)|
#
 K

 s

v�2 log

✓
AkFkP,2

�

◆
+

vkMk2p
n

log

✓
AkFkP,2

�

◆!

for some absolute constant K where kMk2 = (E[M2])1/2.

Proof. See Corollary 5.1 of Chernozhukov, Chetverikov, and Kato (2014a). ⇤

Theorem 12. Let F be a class of functions f : X ! [0, 1] that satisfies

sup
Q

N(", C, L2(Q)) 
✓
K

"

◆V

, for every 0 < " < K

where supremum is taken over all probability measures Q. Then for every t > 0,

P

 
sup
f2F

|Gn(f)| > t

!

✓

Dtp
V

◆V

e�2t2

for a constant D that depends on K only.

Proof. See Theorem 2.14.9 in Van der Vaart and Wellner (1996). ⇤

Theorem 13. Let X1, . . . , Xn be independent, zero-mean stochastic processes indexed by an arbi-

trary index set T with joint probability measure P . Then
���kSnk

���
P,p

 K
p

log p

✓���kSnk
���
P,1

+
��� max
1in

kXik
���
P,p

◆

for any p > 1 where Sn = X1 + · · · +Xn, kSnk = supt2T |Sn(t)|, kXik = supt2T |Xi(t)|, and K is

a universal constant.

Proof. See Proposition A.1.6 in Van der Vaart and Wellner (1996). ⇤
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Finally, we provide a reference for Central Limit Theorem with bracketing by Gaussian hypothe-

ses, which we use several times in Section F. A semi-metric ⇢ : F ⇥ F ! R+ is called Gaussian if

it can be defined as

⇢(f, g) =
�
E[(G(f)�G(g))2]

�1/2

where G is a tight, zero-mean, Gaussian random element in l1(F). A semi-metric ⇢ is called

Gaussian-dominated if it is bounded from above by Gaussian metric. In particular, it is known

that any semi-metric ⇢ satisfying
Z 1

0

p
logN(",F , ⇢)d" < 1

is Gaussian-dominated; see discussion on page 212 in Van der Vaart and Wellner (1996).

Theorem 14 (Bracketing by Gaussian Hypotheses). For each n, let Zn1, ..., Znm
n

be independent

stochastic processes indexed by an arbitrary index set F . Suppose that there exists a Gaussian-

dominated semi-metric ⇢ on F such that

(i)
m

nX

i=1

E [kZnikF · 1{kZnikF > ⌘}] ! 0, for every ⌘ > 0,

(ii)
m

nX

i=1

E
⇥
(Zni(f)� Zni(g))

2
⇤  ⇢2(f, g), for every f, g,

(iii) sup
t>0

m
nX

i=1

t2P

 
sup

f,g2B(")
|Zni(f)� Zni(g)| > t

!
 "2,

for every ⇢-ball B(") ⇢ F of radius less than " and for every n. Then the sequence
Pm

n

i=1(Zni �
E[Zni]) is asymptotically tight in l1(F). It converges in distribution provided it converges marginally.

Proof. See Theorem 2.11.11 in Van der Vaart and Wellner (1996). ⇤
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Table A1. Bias of Grouped IV Quantile Regression vs. Standard Quantile Regression

Quantile 
(u)

True 
Coeff. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg.

0.1 0.316 0.042 -0.055 0.040 -0.007 0.038 0.018 0.039 -0.005
0.2 0.447 0.076 0.015 0.078 -0.003 0.077 0.008 0.077 0.000
0.3 0.548 0.116 -0.024 0.116 -0.044 0.117 0.005 0.116 -0.003
0.4 0.632 0.155 -0.128 0.154 -0.031 0.154 0.007 0.155 -0.002
0.5 0.707 0.194 -0.182 0.193 -0.023 0.192 0.010 0.194 -0.006
0.6 0.775 0.236 -0.192 0.233 -0.039 0.228 0.003 0.232 -0.006
0.7 0.837 0.273 -0.161 0.270 -0.067 0.267 -0.002 0.270 -0.004
0.8 0.894 0.312 -0.106 0.311 -0.056 0.306 -0.010 0.309 -0.003
0.9 0.949 0.365 -0.106 0.361 -0.060 0.360 -0.013 0.362 -0.001

0.197 0.108 0.195 0.037 0.193 0.008 0.195 0.003

Quantile 
(u)

True 
Coeff. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg.

0.1 0.316 0.005 0.010 -0.004 -0.016 0.002 -0.011 0.001 -0.006
0.2 0.447 0.005 0.027 0.001 -0.010 0.002 -0.018 0.003 -0.008
0.3 0.548 0.006 -0.006 0.006 -0.012 0.003 -0.017 0.005 -0.005
0.4 0.632 0.011 -0.021 0.007 -0.010 0.005 -0.017 0.007 0.002
0.5 0.707 0.008 -0.039 0.008 -0.002 0.007 -0.020 0.009 0.003
0.6 0.775 0.004 -0.021 0.009 -0.004 0.009 -0.015 0.011 0.002
0.7 0.837 0.006 -0.011 0.007 -0.003 0.009 -0.014 0.011 0.000
0.8 0.894 -0.010 -0.007 -0.011 -0.001 -0.011 -0.008 -0.011 0.000
0.9 0.949 -0.031 0.008 -0.038 0.003 -0.028 -0.009 -0.031 -0.001

0.010 0.017 0.010 0.007 0.009 0.014 0.010 0.003

Quantile 
(u)

True 
Coeff. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg.

0.1 0.316 0.002 0.019 0.001 -0.006 0.000 -0.009 0.000 -0.004
0.2 0.447 0.008 0.009 0.003 -0.002 0.000 -0.008 -0.001 -0.007
0.3 0.548 0.005 -0.023 0.004 0.000 0.001 -0.010 -0.001 -0.007
0.4 0.632 0.007 -0.015 0.004 -0.003 0.002 -0.001 0.000 -0.005
0.5 0.707 0.005 -0.027 0.000 -0.003 0.001 -0.002 0.000 -0.004
0.6 0.775 0.004 -0.037 0.001 -0.011 0.000 -0.002 0.000 -0.002
0.7 0.837 0.003 -0.027 0.000 -0.005 0.000 -0.002 0.000 0.000
0.8 0.894 0.000 -0.022 0.000 -0.003 0.001 0.000 0.000 0.002
0.9 0.949 -0.003 -0.023 0.000 -0.003 -0.001 -0.005 0.000 0.001

0.004 0.023 0.002 0.004 0.001 0.004 0.000 0.004

(N,G) = (200, 200)

Avg. abs. bias

Avg. abs. bias

Avg. abs. bias

(N,G) = (25, 25) (N,G) = (200, 25) (N,G) = (25, 200)
I. Mean Bias for Endogenous Group-level Treatment

II. Mean Bias for Exogenous Group-level Treatment

III. Mean Bias for Exogenous Group-level Treatment and No Group-level Unobservables

Notes: Table shows mean bias for estimation of �(u) from 1,000 Monte Carlo simulations using standard quantile
regression (Q. Reg.) and our estimator (Grouped IV Q. Reg.) for cases where (N,G) = (25,25), (200,25), (25,200),
(200,200). Panel I displays results when the group-level treatment is endogenous, panel II displays results when the
group-level treatment is independent of group-level unobservables, and panel III displays results when there are no
group-level unobservables. Each panel displays results for quantiles u 2 {0.1, ..., 0.9} as well as the average absolute
value of the bias, averaged over the nine deciles.


