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Abstract 

The financial sector is entering a new era of rapidly advancing data analytics as deep 

learning models are adopted into its technology stack.  A subset of Artificial Intelligence, 

deep learning represents a fundamental discontinuity from prior analytical techniques, 

providing previously unseen predictive powers enabling significant opportunities for 

efficiency, financial inclusion, and risk mitigation.  Broad adoption of deep learning, 

though, may over time increase uniformity, interconnectedness, and regulatory gaps.  

This paper maps deep learning’s key characteristics across five possible transmission 

pathways exploring how, as it moves to a mature stage of broad adoption, it may lead to 

financial system fragility and economy-wide risks.  Existing financial sector regulatory 

regimes - built in an earlier era of data analytics technology - are likely to fall short in 

addressing the systemic risks posed by broad adoption of deep learning in finance.  The 

authors close by considering policy tools that might mitigate these systemic risks. 
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Introduction 

Financial history is rich with transformative analytical innovations that improve the 

pricing and allocation of capital and risk.  These innovations date back to antiquity 

including the earliest forms of ledgers, the development of the present value formulas by 

Leonardo Bonacci (aka Fibonacci)3 in the 13th century, and the invention of the Fisher 

Black, Robert Merton, and Myron Scholes options pricing model in the 196os. 

Deep learning, a subfield of AI, is a general-purpose computation tool particularly adept 

at prediction and classification tasks. The technology relies on neural networks 

conceptually inspired by the structure of the brain.  Its models iterate repeatedly to 

optimize for the best approximation function between inputs and outputs.  The advent of 

deep learning builds upon previous technologies but may represent a significant 

discontinuity from prior data analytic techniques used within the financial sector.  

Still in early stages of adoption, deep learning is already being used in finance for fraud 

detection, regulatory compliance, market surveillance, and administration.  It is starting 

to be used in trading, asset management, risk management, credit underwriting, and 

insurance underwriting.  Further, through natural language processing (NLP) 

applications, deep learning is beginning to transform user interfaces, client onboarding, 

and insurance claims processing.  While these applications are not yet truly dominant in 

finance the way they are in vision or speech, deep learning still comes out on top, after 

careful tuning, in many tasks.  It is likely, even if one assumes only today’s modest 

benefits, that much broader adoption is yet to come.  With further advancements in the 

technology, it is likely that deep learning will gain significant traction in critical finance 

functions of credit allocation, insurance underwriting, internal risk management, and 

trading.  

Presenting potential benefits of increased efficiency, greater financial inclusion, enhanced 

user experience, optimized returns, and better risk management, we hypothesize that 

deep learning, as it moves to a more mature stage of broad adoption, also may lead to 

increased systemic risk of the financial sector.   

In this paper, we tell the story of deep learning and financial stability in three acts.  In Act 

1, we introduce our protagonist, deep learning, describing where it lives within finance, 

and identifying its nine key characteristics that, taken together, make it a novel 

advancement.  In Act 2, we introduce a major environmental challenge for deep learning 

in finance - systemic risk and channels of fragility.  In Act 3, we accompany our main actor 

along five journeys, exploring whether when mature deep learning might awaken 

systemic risks’ stormy clouds, whose thunderstorms threaten bystanders far and wide.  

 
3 Goetzmann, “Fibonacci and the Financial Revolution.” 
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Like many dramas, our main character may appear to be living in equilibrium until 

dramatic events reveal underlying vulnerabilities.  A Coda concludes our story, reviewing 

policy considerations and providing a path forward for deep learning and financial 

stability.  

Act 1 of our story establishes the ways in which deep learning represents a significant 

discontinuity when compared to previous advances in data analytics.  We started our 

research exploring what might distinguish deep learning - specific characteristics - from 

traditional data analytic tools used within finance.  This was critical to our assessment of 

the potential effects deep learning might have on the fragility of the financial sector.   

We found nine key characteristics of deep learning relevant to our analysis of financial 

stability.  These characteristics include five intrinsic features of deep learning, hyper-

dimensionality, non-linearity, non-determinism, dynamism, and complexity; three 

heightened challenges of limited explainability, fairness, and robustness; and an 

insatiable hunger for data.  While some of these characteristics might be said to be 

incremental, taken together they represent a significant departure from existing 

technologies. 

Act 2 examines the relationship between deep learning and systemic risk - the likelihood 

that the failure of one actor, firm, or model may propagate out to negatively affect the rest 

of the financial system and economy at large.  From the extensive academic literature and 

public sector regulatory perspectives on systemic risk, we explore our hypothesis through 

three relevant channels of systemic risk propagation: monocultures and herding, network 

interconnectedness, and regulatory gaps. 

Financial crises often arise in one sector, region, or market.  History is replete with shocks 

emanating from one corner of finance in which the pulling of one thread undoes the 

financial knitting across an economy.  Consider the 2008 financial crisis, the epicenter of 

which was the U.S. subprime mortgage market.  Thus, deep learning may not need to 

bring uniformity, network interconnectedness, or regulatory gaps to all sectors.  An 

increase in systemic risk through even one sector may position deep learning as a central 

actor in the after-action reports of the crisis of 2027 or 2037. 

Thus, begins Act 3, where journey with deep learning along five potential pathways - data, 

model design, regulatory, algorithmic coordination, and user interface - through which it 

may heighten systemic risk.  We consider not just the state of deep learning now, but 

where it may end up when more mature.  

In the data pathway we propose that the economics of data aggregation will, over time, 

lead to an increase in concentrated, single-source providers, adding risk via both the 

herding channel and network interconnectedness channel.  Additionally, the exponential 
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growth and usage of alternative data - generally with short time series - introduces 

significant potential uniformity of out of series tail risk.  

Along the model design pathway, we investigate how the development of industry, expert, 

and academic consensus on optimal model type selection, inductive bias, and 

hyperparameter selection, may lead to uniformity, what might be called “mono-models.”  

The emergence of AI-as-a-Service providers - particularly those providing specific models 

- also may increase network interconnectedness.  Along this pathway, deep learning also 

may raise model stability and tail risks given its combination of non-linearity, hyper-

dimensionality, and complexity as well as its reliance on short time-horizon data sets. 

In the regulatory pathway we explore how challenges of explainability, fairness, and 

robustness may lead to regulatory gaps as well as how regulatory design may promote 

homogeneity in deep learning models.  Early stage technologies often outpace the 

development of requisite monitoring capabilities leading to periods of regulation gaps.  

Regulatory approaches to address these challenges inadvertently may lead to model 

uniform.  

Along the algorithmic coordination pathway, we explore how the characteristics of deep 

learning may enable both intentional and unintentional algorithmic collusion.   

In the user interface (UI) pathway, we highlight the potential for UI software providers to 

become concentrated, as well as how the economies of scale of natural language 

processing models are likely to lead to uniformity and network interconnectedness in the 

sector.  There also is risk that advice provided by each virtual assistant becomes 

standardized and commoditized, causing herding of client decision making. 

While deep learning is still in an early stage of adoption within much of the financial 

sector, our analysis is focused on how its key characteristics may increase systemic risk as 

the technology moves to a broader mature stage of adoption.  Early stage technologies 

often see a great deal of diversity due to high levels of experimentation by entrepreneurs 

and developers.  History and economics have shown that following early phases of 

competitive diversity, finance often recedes to more technological uniformity with 

concentrated actors and interconnected systems.   

In the Coda, we consider policy levers that might mitigate the potential systemic risks 

identified in Act 3.  Current model risk management guidance - written prior to this new 

wave of data analytics - will need to be updated.  It will not be sufficient, though, to 

address the increased risks of herding, network interconnectedness or future regulatory 

gaps likely to arise with deep learning.  Model risk management tools, while lowering 

overall risk, primarily address firm-level or so-called micro-prudential risks.  Many of the 

challenges to financial stability which deep learning may pose in the future - uniformity 

of data, monocultures of model design, network interconnectedness with data 
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aggregators and AI-as-a-Service providers, regulatory gaps in the face of limited 

explainability, and possible algorithmic coordination - will require new thinking on 

system-wide or macro-prudential policy interventions.  Additional micro-prudential 

policy levers considered include internal mapping, firm buffers, and regulatory diversity.  

Macro-prudential policy levers considered include external mapping, material external 

dependencies, horizontal reviews, and network buffers.  Finally, there may be a need for 

additional ex-post and crisis management tools for when problems do materialize. 

Our contributions in this paper are fourfold.  Foremost, we propose a framework by which 

to assess the effect of deep learning on financial stability.  Secondly, within that 

framework, we build out and define the key characteristics of deep learning which 

distinguish it from earlier financial data analytics.  Thirdly, through five potential 

pathways, we assess deep learning’s impact on financial fragility.  Lastly, we consider both 

micro and macro prudential policies to potentially mitigate the future challenges deep 

learning may pose to systemic risk. 

Existing Literature 

Others have considered how the adoption of deep learning might affect financial system 

fragility.  Much of that work focuses on how the limited explainability of deep learning 

models may create “black-boxes,” whose opaque inner-workings mask how inputs relate 

to outputs.4  This literature discusses how unexplainable results may lead to a decrease in 

the ability of developers, boardroom executives, and regulators to anticipate model 

vulnerabilities.  The Financial Stability Board (FSB) raised concerns specifically about the 

use of AI in stress testing: a lack of explainability could mean systemic risks are not 

spotted in time.5  Zetzsche et. al. propose a framework with which to address some of 

“black-box” challenges, including “regulatory approaches which bring the human into the 

loop.”6 

There is a smaller selection of work that examines how deep learning augments some of 

key systemic risk transmission channels.  Lin notes that "wider adoption of financial 

artificial intelligence can amplify certain systemic risks for the financial system relating 

to size, speed, and linkage."7  Danielsson, Macrae, et al. focus on the rise of monocultures 

in the financial system due to agents optimizing using the same metrics.8 Similarly, Mark 

Carney highlights the likelihood of increased procyclicality in the financial sector due to 

uniformity.9  Larry Wall and the World Economic Forum raise the risk that economies of 

 
4 Knight, “The Financial World Wants to Open AI’s Black Boxes.” 
5 FSB, “Artificial Intelligence and Machine Learning in Financial Services.” 
6 Zetzsche et al., “Artificial Intelligence in Finance.” 
7 Lin, “Artificial Intelligence, Finance, and the Law.” 
8 Danielsson, Macrae, and Uthemann, “Artificial Intelligence and Systemic Risk.” 
9 Carney, “The Promise of FinTech - Something New Under the Sun?” 
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scale in data aggregation will concentrate data sources, perhaps also leading to additional 

herding behavior.10  The FSB and Buckley et. al. describe the potential risk due to new 

systemically important third-party providers and infrastructure.11  Speaking more 

generally on the digital transformation of finance, Genberg discusses the rise of big data 

and how big tech may soon operate as financial institutions, but outside of the regulatory 

framework.12 

We build on the work of this existing literature, proposing a new framework by which to 

assess the effect of deep learning on financial stability.  Within that framework, we 

identify key characteristics of deep learning distinguishing it from traditional financial 

data analytics and explore how these characteristics may affect systemic risk along five 

potential pathways.  Further, we raise some new micro and macro prudential policy 

considerations that might lessen these risks. 

Act 1 

AI in Finance 

Finance, technology, and data analytics have long existed in symbiosis.  Artificial 

Intelligence (AI) and more specifically deep learning are just the most recent innovations 

in data analytics to be leveraged by the financial sector.  Deep learning builds upon a 

significant period of transition which brought the internet, mobile phones, cloud 

computing, and more recently the open banking movement into the financial sector’s 

technology stack.  The introduction of deep learning, with its data processing capacity and 

its predictive prowess, builds on top of and leverages these existing technologies. 

While traditional quantitative tools are still the mainstay of financial sector data analytics 

and predictive decision making, deep learning is beginning to be used in a variety of 

applications across finance.13  And though deep learning models currently used in finance 

are not yet all that deep,14 they are used to help identify fraudulent transactions as well as 

detect cyber attacks and potential security vulnerabilities.  They streamline 

administrative tasks including check and document processing.  Deep learning is being 

used in customer marketing - predicting behavior, attrition, churn rates, and reaction to 

ads. 

 
10 Wall, “Some Financial Regulatory Implications of Artificial Intelligence.”; “World Economic Forum, 
“Navigating Uncharted Waters.” 
11 FSB, “Financial Stability Implications from FinTech.”; Buckley et al., “The Dark Side of Digital Financial 
Transformation.” 
12 Genberg, “Digital Transformation.” 
13 Dixon, Halperin, and Bilokon, Machine Learning in Finance. 
14 Dixon and Halperin, “The Four Horsemen of Machine Learning in Finance.” 
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It is used in asset management to improve operational efficiency, conduct sentiment 

analysis, and enhance investment returns.15  It is starting to be used to improve credit risk 

management and underwriting decisions.16  Along with new alternative data sources, it 

may become the foundation for alternative credit scoring systems to Fair Isaac 

Corporation (FICO) scores.17  It is beginning to be used by insurance companies to 

improve the pricing and targeting of services to customers.  Some institutions have 

explored the use of deep learning models to help comply with stress testing, liquidity, and 

capital regulations. 

Traders have often been at the cutting edge of model experimentation, looking for 

marginal improvements in speed and predictive power.  Deep learning is starting to be 

adopted in the capital markets by AI-based hedge funds, high frequency traders and the 

large asset management platforms.  It is being used - along with alternative data - to 

generate so-called ‘smart beta’ factors for investing.  It is used to predict buy-sell interest, 

securities lending and capital raising interest.18  Deep learning also is starting to be used 

to help monitor markets for manipulation.19 

Customer interfaces and interactions have been transformed by the deep learning 

subfield of NLP.  It has been key to more intelligent and responsive chatbots and 

automated call centers, enabling more efficient and possibly more effective customer 

service. Robo-advisors and virtual assistants have become abundant, using NLP to 

interview customers, understand their investing preferences, and make trades in the 

market on their behalf. 

These applications are not yet as dominant in finance as they have become in vision 

recognition or language processing.  Having said that, deep learning is still likely to enjoy 

widespread adoption.  After careful tuning, in many tasks it already comes out on top.  

Investing in the market - or playing blackjack against the house - using a tool that helps 

win 51% of the time can lead to significant profits.  In time, with enhancements in 

computational power and model development, it is likely to demonstrate growing 

advantages vs. traditional analytics leading.  It is likely then, even if one assumes only 

today’s benefits, that much broader adoption is yet to come.  

Deep learning models used by companies are both developed internally and sourced 

externally.  AI-as-a-Service is a rising sector, with companies providing out-of-the-box, 

deep learning insights.  In the insurance area, Cape Analytics20 uses geospatial data to 

 
15 Tech at Bloomberg, “Bloomberg - Are You a Robot?” 
16 Caron, “The Transformative Effect of AI on the Banking Industry.” 
17 Berg et al., “On the Rise of FinTechs – Credit Scoring Using Digital Footprints.” 
18 Emerson et al., “Trends and Applications of Machine Learning in Quantitative Finance.” 
19 van Liebergen, “Machine Learning: A Revolution in Risk Management and Compliance?” 
20 Business Wire, “Cape Analytics Secures Investment From State Farm Ventures.” 
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provide deep learning powered real estate property valuations while Tractable21 uses deep 

learning to automatically assess car accident damages and estimate repair costs.  There 

are deep learning driven search engines like AlphaSense22 that inform investment 

decisions as well as companies such as ZestAI23 using deep learning models for credit 

underwriting.  AI-as-a-Service providers are not just finance specific.  Large tech 

incumbents such as Google, Baidu, Amazon, and Microsoft as well as early stage 

companies like OpenAI24 offer plug-and-play deep learning services to finance companies 

to assist in everything from chatbots to document scanning. 

Regulators have also begun to explore deep learning tools.  Some agencies are using them 

to better detect system-level market manipulation and money laundering.  Others are 

eyeing the technology to aid in automating model risk management oversight.25 

Deep learning is still in the early stages of its penetration into the financial system. Some 

companies, specifically amongst FinTech start-ups and hedge funds, have centered their 

entire business model around it, while others, such as many community banks, brokers, 

and smaller asset managers have yet to adopt it over more traditional techniques.  

Promising automated predictive power at speed, though, it is likely that deep learning will 

grow to become a critical tool within most aspects of the financial system.  Appropriate 

understanding of the technology with an informed view of its benefits and risks will be 

critical to the success of this new economy. 

Deep Learning 

Deep learning, a subfield of AI, first theorized in the mid-1950s, has truly established itself 

in the last 5 to 10 years.  This is in part due to widespread advancements in processing 

power, the mass digitization and availability of big data, and fundamental conceptual 

innovations from theoretical computer scientists. 

Deep learning relies on neural networks conceptually inspired by the structure of the 

brain.  Figure 1 is a simple example of a neural network using nodes and edges to enhance 

computational power.  Each node is represented by a circle, each edge connecting nodes 

is represented by a black line, and each layer is distinguished by a unique color.  For each 

edge a weight is calculated that scales the data passing from one node to another.  Each 

 
21 Lomas, “Tractable Claims $25M to Sell Damage-Assessing AIs to More Insurance Giants.” 
22 AlphaSense, “AlphaSense Partners With Leading Investment Banks To Provide Corporations With 
Broad Access To Wall Street Research.” 
23 Zest AI, “Zest AI Secures Investment From Insight Partners To Accelerate Adoption Of Fairer And 
More Transparent Credit Underwriting Software Across Enterprise-Grade Lending Operations.” 
24 Hao, “The Messy, Secretive Reality behind OpenAI’s Bid to Save the World.” 
25 Woodall, “Model Risk Managers Eye Benefits of Machine Learning.” 
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node also has a bias, or offset, term added to it’s inputs.  Taken together, the weights and 

bias terms of a neural network - computed by the model - are called its parameters. 

 

Figure 1. A diagram of a simple neural network. (Ognjanovski, “Everything You Need to Know about 

Neural Networks and Backpropagation — Machine Learning Made Easy….”) 

Through numerous iterations, a deep learning model adjusts parameters (the weights of 

the connections) to create the best approximation function between inputs and outputs. 

This process involves optimizing an objective function, often a reward function or a loss 

function, searching for the objective function’s global minimum.  As the size, dimensions, 

and complexity of the feature space grows, there emerge computational limitations that 

make locating the global minimum impossible.  This leads to a need for regularization 

techniques to help the model generalize better and lessen the chance it becomes stuck in 

a local minima within the data set. 

Despite the highly automated nature of neural networks, there is still much human 

involvement in the modeling process.  Developers set what are known as the 

‘hyperparameters’ including the number of layers, the number of nodes in each layer, the 

nodes’ activation functions, data normalization techniques, and regularization 

techniques, amongst others.  These hyperparameters are adjusted based on the problem 

class and computational resource trade-offs.  Setting hyperparameters creates inductive 

bias, priming models before seeing data. 

One of the fundamental hyperparameters is the selection of overall model type, such as 

deciding to use supervised learning, unsupervised learning, or reinforcement learning - 

each one suited to different problem types.  Supervised learning - which utilizes labeled 

datasets - is best at prediction tasks such as calculating an individual’s credit score.  For 

classification problems such as identifying distinct clusters of customers for marketing 

purposes, unsupervised learning - using unlabeled datasets - is often used.  Finally, 

reinforcement learning helps solve problems that can be modeled as games with rules and 

incentive structures.  The human-beating chess machines and Google DeepMind’s Alpha-
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Go rely on reinforcement learning models.26  Reinforcement learning may have particular 

usefulness for capital market trading and investing.  After all, there may be no bigger 

multi-party competition in the world than the global stock and debt markets. 

Key Characteristics 

We now turn to exploring what might distinguish deep learning from traditional data 

analytic tools used within finance.  These will be critical to our assessment of the potential 

effects deep learning might have on the fragility of the financial sector.   

We find that nine key characteristics of deep learning - some of which might be said to be 

incremental - when taken together represent a significant departure from previous data 

analytics tools.  

Five inherent characteristics:  

● Hyper-dimensionality  

● Nonlinearity  

● Non-determinism  

● Dynamism  

● Complexity 

Three existing challenges exacerbated by deep learning:  

● Limited Explainability  

● Bias  

● Lack of Robustness  

One overarching characteristic: 

● Insatiable demand for data.  

Inherent Characteristics of Deep Learning 

We start with a review of five characteristics inherent to the design and structure of 

neural networks and deep learning. 

Hyper-dimensionality 

The hyper-dimensionality of deep learning both makes exploration for global minima 

both more difficult and computationally expensive and leads to model overfitting and 

instability concerns. 

 
26 Silver et al., “A General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go through 
Self-Play.” 
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The parameter space of deep learning is exponentially larger than that of previous data 

analytics.  As described above, the parameters of neural networks include the weights 

along the edges connecting nodes as well as the bias terms.  Linear regression model 

parameters scale in number linearly with the number of variables included in the model. 

In neural networks, as the network grows in width (number of nodes in each layer) and 

depth (number of layers), the number of parameters grows exponentially.  A simple 

multiple linear model with three input variables will have four parameters - one for each 

explanatory variable and one for the y-intercept constant.  The neural network shown in 

Figure 1 despite also having three input variables has 37 parameters.  GPT-3, the natural 

language generator engine of OpenAI, has 175 billion parameters.27  The cutting edge of 

finance neural networks are not as deep as GPT-3, but can still have thousands to millions 

of parameters.  More modeling parameters increases the likelihood that a model overfits, 

especially when there are orders of magnitude more parameters than input data points to 

train on.  

Deep learning models also are able to use significantly more variables in their predictions 

than previous data analytics.  As a result, deep learning experiences the curse of 

dimensionality - as the dimensionality increases, the volume of the feature space 

increases so fast that the available data becomes sparsely distributed.  The space becomes 

larger, more complex, and diffuse, making clustering observations more difficult and 

locating global minima computationally impossible.  

Nonlinearity 

Nonlinearity of neural networks enables incredible predictive flexibility while also adding 

to complexity and the potential of overfitting predictive outcomes to data. 

While some forms of traditional data analytics involve nonlinearity, for neural networks 

it is central to its design.  Each node in a neural network has a nonlinear function called 

an activation function.  The result or prediction of a neural network is a combination of 

the outputs of these nonlinear functions at each node. It is this nonlinearity that enables 

neural networks to map any relationship between inputs and outputs.  Formally, this 

concept is known as the Universal Approximation theorem. Universal approximation is 

what allows deep learning to surpass previous modeling methods - there is no analog for 

prior techniques.  At the same time, universal approximation also can lead to model 

overfitting.  Regularization - a process of applying constraints to a model to encourage 

generalization and avoid overfitting - addresses this concern but also decreases accuracy.  

Further, non-linearity can cause non-convex prediction spaces (which make exploration 

more difficult and the likelihood of settling in a local minima higher) and can increase 

 
27 Brown et al., “Language Models Are Few-Shot Learners.”; Chen and Chokshi, “16 Minutes on the News 
#37.” 
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complexity and reduce explainability, obfuscating the relationship between individual 

features and outcomes. 

Non-determinism 

Like Forrest Gump reaching into his box of chocolates, each time a neural network is 

trained, the developer does not know what they are going to get. The neural network may 

have a different set of parameters, thus a different algorithm, each time.  For most 

previous statistical analysis tools, a particular modeling technique applied to a dataset 

would be deterministic - producing an identical decision algorithm every time it is 

trained.  The impact of hyper-dimensionality and nonlinearity on the input space of deep 

learning makes calculating a single, global minimum computationally intractable.  The 

input space is too large and complex to fully explore.  In theory, with unlimited 

computational power, deep learning models could be deterministic.  Instead, deep 

learning models rely on stochastic (random) elements in their optimization processes.  

One additional source of non-determinism emerges when the probabilistic output of one 

neural network is fed as an input into another neural network. 

Dynamism 

Deep learning models automatically and dynamically adapt, continuously optimizing 

themselves or ‘learning’, both before and after deployment.  Each deep learning model 

has an optimization process to evaluate its performance while training and adjust its 

parameters to compensate for weaknesses.  

Some types of deep learning such as reinforcement learning are specially designed to be 

dynamic, others optimize by interacting adversarially with other models.  Many previous 

quantitative analysis tools would be effectively set after training, their algorithm and 

parameters unchanging.  Some would be updated daily by modelers given the most recent 

batch of data.  Going further than each of these, many deep learning models automatically 

rebuild themselves, what is known as ‘continuous learning.’  They adjust their parameters 

given more recent data and feedback without any human oversight, and automatically re-

deploy to production. 

Post-deployment optimization is particularly relevant for predicting financial data. 

Markets are dynamic systems with millions of actors continuously making millions of 

decisions, pricing and allocating risk and capital.  Models that continually rebuild 

themselves against the latest relevant data, re-optimizing their parameters, adjusting 

their decision algorithm, and automatically deploying to production decisioning systems, 

are able to predict at higher accuracies. 
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Complexity 

Neural networks are far more complex and intricate than previous quantitative analytics.  

While the math of neural networks to some is not necessarily complicated, the design 

features, hyper-dimensionality, and non-linearity of neural networks lead to a greater 

overall complexity.  

Financial institutions compound the rising degree of complexity by linking together the 

decisions and predictions of many hundreds of their internal models.  These models may 

feed directly into each other and or may use observations from other models to adjust 

their behavior. 

Existing Challenges Exacerbated by Deep Learning 

The following three characteristics – limited explainability, bias, and robustness - are 

challenges that arise from the previous five characteristics.  These challenges are not new, 

existing already in previous methods of data analysis.  But they are greatly accentuated 

by deep learning. 

Limited Explainability 

Deep learning models’ decisions and outcomes are often unexplainable.  Though lacking 

a universally accepted definition, explainability generally captures the notion that 

decisions and outcomes of a model can be explained to customers, management, and 

regulators.  For example, model operators could give reasons why the model qualified one 

person for a loan while it recommended rejecting another.   

But if deep learning predictions were explainable, they wouldn’t be used in the first place. 

Instead, we would use linear models, table lookups, if-then statements, fixed rules and 

other, simpler approaches.  The insights that come out of deep networks should 

inherently be challenging to interpret in terms accessible to humans.  The system is 

learning its own latent representation of the data which may not align with a human 

mental model.  This lack of traditional explainability poses diverse challenges at various 

levels within organizations and regulatory bodies.  Human agency and traditional 

intervention approaches may be lost as a consequence of lack of model explainability and 

transparency.  Current, post-hoc explainable AI techniques including LIME, SHAP, and 

ELI-5 have been devised to try to gain insight into how the models work, but they are each 

limited in their capabilities.28  Regulatory responses to this limited explainability will 

need to consider the tradeoffs between the benefits of enhanced predictive power and the 

need for sufficient explainability.   

 
28 OnClick360, “Interpretable Machine Learning with Lime+ELI5+SHAP+InterpretML.” 
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Bias and Lack of Fairness 

Fairness, the principle that every person will have equal access to financial services 

without discrimination on accord of race, color, religion, national origin, sex, marital 

status, or age, is a critical societal goal.  It is key to financial inclusion,  economic 

opportunity, individual dignity, societal cohesion, and trust in the financial system.  Deep 

learning, however, may make it more difficult to ensure for such fairness.  The outcomes 

of its predictive algorithms may be based on data reflecting historical biases as well as 

latent features which may inadvertently be proxies for protected characteristics.  Further, 

the challenges of explainability, may mask underlying systemic racism and bias in deep 

learning predictive models.  While not the subject of this paper, these are very important 

challenges for deep learning which will need significant work going forward.29 

Problems associated with data analytics, finance and bias unfortunately are not new.  In 

the 1960s, the civil rights movement and concerns about new financial technologies  such 

as general merchant credit cards and related consumer credit data analytics as pioneered 

by FICO, led to new U.S. laws designed to ensure equal access, including the Fair Housing 

Act,30 Fair Credit Reporting Act,31 and Equal Credit Opportunity Act.32  Subsequent 

regulation interpreting and enforcing these laws require various pre-process, in-process, 

and post-process checks.  Pre-process validation requires direct intervention in the data 

to remove discriminatory variables and ensure the data is well distributed and 

representative.  In-process techniques impose restrictions into and onto the model.  Post-

process review requires correcting a model after training, if it becomes clear it is biased. 

Technical and regulatory approaches to the challenges of bias have yet to fully emerge for 

deep learning models.  Considerations may raise tradeoffs between predictive accuracy 

and fairness.  A deep learning model that is thought to be accurate also may bring with it 

more bias, capturing and cementing historic inequities amongst protected groups.  

Addressing fairness likely will require context specific considerations, as the tradeoffs 

may vary in consequence along the spectrum of deep learning applications. 

Lack of Robustness 

The ability of neural networks to extract latent features from datasets is both a source of 

incredible predictive power and a potential source of weakness.  These latent features are 

often unobservable, but highly predictive.  Even after being uncovered, their impact on 

predictions remains difficult for human modelers to understand.33  Small perturbations 

 
29 Johnson, Pasquale, and Chapman, “Artificial Intelligence, Machine Learning, and Bias in Finance.” 
30 “Fair Housing Act.” 
31 “Fair Credit Reporting Act.” 
32 Kreiswirth and Tabor, “What You Need to Know about the Equal Credit Opportunity Act and How It 
Can Help You.” 
33 Ilyas et al., “Adversarial Examples Are Not Bugs, They Are Features.” 
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to these latent input features can result in dramatically different, high-confidence model 

predictions34 and interpretations35 that are later deemed incorrect under human scrutiny.  

Well-targeted latent feature perturbations are also known to be easily transferable 

between models,36 introducing interconnectedness concerns, as well as opening a 

potential avenue for adversarial or cyber attack.  A lack of robustness may also emerge 

from overfitting, a natural consequence of the incredible approximation capability of deep 

learning models.  Research from Tsipras and Madry, et. al. suggests that addressing these 

concerns may involve an inherent tradeoff between robustness and accuracy.37 

Overarching Characteristic 

The eight characteristics just discussed - five intrinsic to neural networks and three 

challenges accentuated by neural networks - contribute to a ninth characteristic - deep 

learning’s insatiable demand for data. 

Demand for Data 

As the size of a training data set increases, deep learning accuracy increases as a power 

law.38  Deep learning models’ insatiable demand for data is a consequence of their hyper-

dimensionality and the techniques necessary for enhancing explainability, reducing bias, 

and increasing robustness.  It is fed by the explosion of big data and alternative data 

sources.   

Alternative data isn’t new - when Galileo Galilei presented his telescope to the Venetian 

Senate in 1609, it provided a new way to see inbound ships and helped merchants get an 

early glimpse of what might change market prices.39  Four centuries later the Internet, the 

digital economy, smartphones, wearables, telematics, and the global positioning system 

(GPS) similarly allow financial market actors to see data sooner and get a jump on 

emerging risks.  Datasets are growing exponentially in height and width - both the 

number of variables and the number of observations.  

Act 2 

Systemic Risk 

Now in Act 2, we turn to consider a major environmental challenge for deep learning - 

systemic risk and channels of fragility in the financial system.  Systemic risk is the risk 

 
34 Nguyen, Yosinski, and Clune, “Deep Neural Networks Are Easily Fooled.” 
35 Ghorbani, Abid, and Zou, “Interpretation of Neural Networks Is Fragile.” 
36 Goodfellow, Shlens, and Szegedy, “Explaining and Harnessing Adversarial Examples.” 
37 Tsipras et al., “Robustness May Be at Odds with Accuracy.” 
38 Hestness et al., “Deep Learning Scaling Is Predictable, Empirically.” 
39 Fowler, “Galileo and the Telescope.” 
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that events or failures involving one actor, either a firm or individual, or one market sector 

propagate out to negatively affect the broader financial system and the economy at large.  

Time and time again, economies around the globe have witnessed such events when 

weaknesses in the banking or financial sector spill out to hurt the general public - with 

millions of bystanders losing their jobs, homes and savings.  

Throughout the nineteenth and early twentieth century numerous economic crises 

emerged from the financial sector.  Modern risk management, financial regulation, 

deposit insurance and central bank backstops have addressed many of the earlier sources 

of such systemic risk.  The basic fundamentals of finance, however, remain - from time to 

time risks internally built up and concentrated within the financial sector harmfully spill 

out to the rest of an economy.  Most recently we witnessed the devastating ramifications 

of the 2008 financial crisis, with millions of people losing their jobs and homes, in the 

USA and around the globe. 

The real-world consequences of the periodic crises have motivated rigorous research on 

systemic risk and underlying firm-level risk sensitivities from both the academic and 

regulatory communities.  Many regulatory organizations around the globe have focused 

on classifying the attributes of firms that may make their failure more likely to propagate 

widely.  Established by the Dodd-Frank Act in 2010, the Financial Stability Oversight 

Council (FSOC) viewed the systemic risk of an institution through three channels: the 

exposure transmission channel, the asset liquidation transmission channel, and the 

critical function or service transmission channel.40  Federal Reserve Governor Daniel 

Tarullo in 2011, identified four ways that distress at one firm can propagate to the rest of 

the system, in what he called: ‘domino effect’, ‘fire-sale effect’, ‘contagion effect’, and 

‘discontinuity of critical function’ effect.41  The European Systemic Risk Board (ESRB) 

intermediate objectives of macro-prudential policy around (i) excessive credit and 

leverage; (ii) excessive maturity mismatch and market illiquidity; (iii) direct and indirect 

exposure concentration; (iv) systemic impact of misaligned incentives; and (v) resilience 

of infrastructure.42  The Financial Stability Board (FSB), a group representing the G20 

nations, identified five broad categories by which to evaluate institutions that may 

materially impact systemic risk: “size, interconnectedness, lack of readily available 

substitutes or financial institution infrastructure, global (cross-jurisdictional) activity, 

and complexity.”43  Building upon these five categories, the Basel Committee of Banking 

Supervision identifies thirteen underlying indicators for assessing systemic risk.44   

 
40 Leydier et al., “Sullivan & Cromwell Discusses FSOC Changes to Nonbank SIFI-Designation Guidance.” 
41 Tarullo, “Regulating Systemic Risk.” 
42 The European Systemic Risk Board, “Recommendation of the European Systemic Risk Board of 4 April 
2013 on Intermediate Objectives and Instruments of Macro-Prudential Policy.” 
43 FSB, “Guidance to Assess the Systemic Importance of Financial Institutions.” 
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There also is a very extensive and important body of academic research concerning 

systemic risk within the financial sector which generally categorizes sources of fragility  

into one of three primary channels.  The first is about uniformity or monocultures, 

including that which arise from herding.45  The second relates to interconnectedness.46  

The third concerns the effect of gaps in the regulatory frameworks themselves. 

The academic and regulatory categorizations are different in some ways, but similar in 

most ways.  For the purposes of this research, we’ve organized our exploration of deep 

learning’s effect on financial stability through the three broad channels proposed by the 

academic literature that encapsulate the perspectives from both camps.    

Herding 

Herding is characterized by multiple individual actors making similar decisions, either 

rational or behavioral, resulting in a monoculture.  Uniformity in finance can also arise 

when many actors in the financial sector rely on a centralized dataset or model.47  Most 

recently herding developed in the subprime mortgage market was observed prior to the 

2008 financial crisis.  This is not a new problem, though.  For example, the 1970s Latin 

debt crisis exposed herding behavior in lending to Latin American countries and the 

intervening four decades featured other crises induced by herding including the U.S. 

Savings and Loan crisis of the late 1980s, the dot-com bubble, and the quant crisis of 

2007.  Outside the U.S., both Japan and Scandinavia suffered banking crises due to credit 

bubbles that burst. 

Network Interconnectedness 

Network interconnectedness refers to either the emergence of a dependency on some 

concentrated infrastructure, data, or operational service provider or an intricate web of 

firm-to-firm relationships, contractual, financial and otherwise, which propagates risk 

across a system.  In 2009, Andrew Haldane, the former head of Financial Stability at the 

Bank of England, described the financial system as a complex, adaptive network with 

similarities to both tropical rainforests and populations during the spread of disease.  

According to Haldane, such networks can be both fragile and robust at the same time with 

feedback mechanisms adding to fragility during times of stress.48  The 2008 subprime 

mortgage crisis had aspects of both of these categories of connectedness - a central 

dependency developed around credit rating agencies, as well as a rise in network 

 
45 For example, Bikhchandani and Sharma, “Herd Behavior in Financial Markets.”; Gennaioli and 
Shleifer, A Crisis of Beliefs. 
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interconnectedness in the derivatives market, resulting in rapid spreading of failures.  The 

Euro area debt crisis, peaking in 2012, saw government debt problems in Greece trigger 

similar problems in Portugal, Spain, Cyprus, and other member countries.  

Regulatory Gaps 

On multiple occasions, gaps in regulatory frameworks have allowed systemic risks to 

build up and spill out to the broader economy.  These gaps can arise when innovations 

outpace updates in regulatory regimes; when firms conduct financial activities outside of 

established regulatory perimeters; and when policy makers reform rules or fail to enforce 

those which are on the books in an effort to lessen regulatory burdens.     

The 2008 financial crisis was a product of numerous regulatory gaps.  Technological 

advancements in asset securitizations such as collateralized debt obligations (CDOs), 

derivatives such as credit default swaps (CDS), faulty credit ratings processes, and 

weakened mortgage underwriting standards outpaced legal constraints, obscuring risks 

in the housing, derivatives, and mortgage markets.  Risks also built up within sectors 

which were either lightly regulated, such as state licensed finance companies or hedge 

funds, or unregulated, such as the swaps markets.  Earlier U.S. crises, from the Great 

Depression to the Savings and Loan crisis, also involved regulatory gaps.     

Act 3 

Transmission Pathways 

We now turn in Act 3 to investigate our hypothesis that broad adoption of deep learning 

in finance is likely to threaten financial stability in meaningful ways.  To explore whether 

the growing maturity of deep learning might awaken systemic risks’ stormy clouds, we 

accompany the technology along five pathways: 

● Data 

● Model Design 

● Regulatory 

● Algorithmic Coordination 

● User Interface 

For each pathway, we examine how the nine key characteristics of deep learning may lead 

to increased systemic risk through underlying firm-level risk sensitivities and the 

channels of herding, network interconnectedness, and regulatory gaps.  We also explore 

how systemic risks may manifest differently in developing economies with less advanced 

technology, finance, and regulation. 

Electronic copy available at: https://ssrn.com/abstract=3723132



19 

We conclude that deep learning is likely to increase systemic risks, though possibly not 

equally along each of these transmission pathways.  The data, model, and regulatory 

pathways pose more readily evident risks.  The algorithmic coordination and user 

interface pathways less so, though each may develop fragility challenges with time. 

It is our hope that this framework can help the public sector, private sector, policy 

community, and academia evaluate appropriate trade-offs and mitigate the risks that 

deep learning poses to financial and economic stability. 

Data Pathway 

Deep learning may lead to increased financial instability and systemic risk through a data 

pathway.  The insatiable demand for data by deep learning models is likely to lead to both 

increased uniformity and network interconnectedness through reliance on concentrated 

data aggregators, increased sensitivity from the growing use of alternative data with short 

sample sizes, and potential exposure to latent feature risks. 

The tendency towards concentrated data sets with sometimes dominant influence is due 

in large part to data economies of scale, scope, and network effects.49  Whether in the 

resource intensiveness of gathering, cleaning, and labeling large datasets or the 

advantages which accrue to a platform at the center of a network or market ecosystem, 

the spoils in data aggregation often goes to the few.  If, as it is said, ‘data is the new oil’, 

then it might be said that there are many in the finance and tech industries aspiring to be 

this era’s John D Rockefeller and Standard Oil. 

There are many such examples throughout financial history  - whether the 15th century 

Medici Bank,50 J.P. Morgan of the late 19th century, or FICO at the center of consumer 

credit data in the late 20th and early 21st century.  Finance presently has a number of 

such aggregators as well.  In the payment and credit space FinTech start-ups such as Plaid 

(agreed to be acquired by Visa)51 and Credit Karma (agreed to be acquired by Intuit)52 

built multi-billion dollar valuations based on data aggregation.  At the time of this writing, 

however, it has been reported that both of these potential mergers are being closely 

reviewed by Department of Justice officials for antitrust considerations.   

Intercontinental Exchange (ICE), a leading exchange company as well as data provider, 

recently acquired Ellie Mae for $11 billion.53  Ellie Mae is said to be the “leading cloud-

 
49 Carriere-Swallow and Haksar, “The Economics and Implications of Data.” 
50 De Roover, The Rise and Decline of the Medici Bank. 
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based platform provider for the mortgage finance industry.”54 ICE already owns 

Simplifile55, the largest mortgage e-record company in the US, and MERS, which has a 

national registry of over 75% of the US mortgage market.56  It has been reported that ICE 

now has a single system of record for close to half of the U.S. mortgage market.57   

Internationally, WeChat Pay and AliPay are highly concentrated payment processing and 

financial services platforms, each servicing over 800 million consumers.58  They each also 

leverage payment data for a broad range of non-financial services.  In what is yet another 

reminder of the significant potential value of data networks, Ant Group, parent to Ant 

Financial and AliPay, announced the world’s largest initial public offering in October 

2020, valuing the company at over $300 billion.59  While these data aggregators became 

dominant prior to broad adoption of deep learning, their advantages will continue to 

compound as deep learning models demand more and more data. 

Multiple sectors deploying deep learning have already seen coalescence around large, 

critical datasets. ImageNet is a dominant dataset for academic research in the field of 

vision recognition research.  Google Maps, Google Earth and their affiliate Waze 

dominate the route optimization business and related traffic datasets.60  In the field of 

autonomous vehicles there are the Waymo and Level 5 datasets, among others.61  Breast 

cancer researchers often use the Breast Cancer Wisconsin (Diagnostic) Data Set.62  NLP 

models for text processing and generation commonly use Common Crawl, a dataset with 

snapshots of all websites from the last 20 years - effectively representing all of the text on 

the internet.63  

Firms recognize that controlling a proprietary dataset can provide competitive 

advantages.  In the credit card industry, for instance, detailed consumer data is closely 

guarded.  Even if in the future there still exist many firm based proprietary datasets, there 

are likely to be both shared underlying datasets as well as actors who have been able build 

concentrated dominant datasets. 
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Some jurisdictions are moving towards nationally coordinated, highly concentrated 

datasets and data driven decision making.  WeChat and AliPay in China, for example, 

have each built dominant concentrated datasets.64  China has also created a social credit 

scoring system that aggregates granular data on a wide array of activity from payment 

transaction details to geographical movement data and dating profile information.  While 

this may lead to better price discovery and efficient exchange, it may also lead to “the 

view” of “the economy in a box.” 

The European Commission has proposed common “data spaces” to aggregate data from 

industry and other sources - hand delivering data concentration.65  For many developing 

nations, concentration is likely to emerge because there are a limited number of 

companies with the economic and data resources capable of building robust deep learning 

models.  First movers may grow disproportionately large in the data space. 

The likely concentration of data - either by data providers or within dominant financial 

sector participants - adds both uniformity and network interconnectedness risks.  Models 

built on the same datasets are likely to generate highly correlated predictions that proceed 

in lockstep, causing crowding and herding.  The risk of uniformity - and thus systemic 

risk - increases as the data provider moves further up the value chain, from simply 

providing raw data; to standardized, normalized, and regularized data; to summarized 

data; to analytics and insights generated from the data.  Highly concentrated data 

providers, similar to cloud storage companies, are a source of network interconnectedness 

risk - new single points of failure to the network. 

Exploring the data pathway also highlights systemic risk arising from the growing use of 

alternative data with short sample sizes - thus engendering uniform risk of many firms 

being exposed to out of sample risk.  Alternative data sources used to feed deep learning 

predictive models, including our social media engagement, Internet use, wearable data, 

telematics data, and GPS and smartphone data simply do not have long enough time 

horizons to cover even a single, complete financial cycle.  With these datasets, it is not as 

if firms can go back and digitize old data - most of these new data simply went unrecorded.  

Models built using these datasets may be fragile due to their reliance on limited time 

series datasets.66 

Further, deep learning models have a propensity to rely on latent - as opposed to 

observable - features.  This makes it difficult to identify the features and variables driving 

predictive decisions.  Not knowing which features are driving predictive outcomes makes 

it challenging to ensure that the dataset is sufficiently representative of those particular 
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features.  This limited explainability is further aggravated by the out of sample risks 

discussed above.  

Model Design Pathway 

A review of historical examples from financial crises demonstrates that models can lead 

to systemic risks through the uniformity channel, the network interconnectedness 

channel, as well as due to regulatory gaps.  As hypothesized by Khandani and Lo, the 2007 

quant crisis was a consequence of model herding.67  Quantitative investing funds 

unknowingly developed highly similar optimization functions, leading to crowding in the 

sector and an eventual collapse.  The 2008 crisis exposed the over-reliance of the financial 

sector on the three main credit agencies Standards & Poor’s (S&P), Moody’s, and Fitch to 

underwrite collateral debt obligations (CDOs).68  These agencies used models with similar 

methodologies and evaluations of mortgage debt, all of which proved to be faulty.  It is 

hypothesized that herding and crowding in high frequency algorithmic trading is partially 

responsible for causing flash crashes, highly volatile days with rapid breaks in security 

pricing. 69 

Initially, in deep learning’s complex and non-deterministic model environment, 

differences in initializing models and hyperparameters may lead to a greater diversity of 

outcomes.  Further, finance being less transparent may make it less likely that model 

design converges rapidly.  As the financial sector gains more experience, though, and deep 

learning becomes more fully adopted, there may emerge academic and industry 

consensus on hyperparameter selection, such as for the type of learning model, the size 

and shape of the network, and the loss function.  Online deep learning competitions 

hosted by Kaggle have already demonstrated a preference for Stochastic Gradient Boosted 

Trees (SGBT), CNN, RNN, and, increasingly, Transformers.70  There may also be a human 

factor contributing to model design uniformity. There simply are not that many people 

trained to build and manage these models, and they tend to have fairly similar 

backgrounds. In addition, there are strong affinities among people who trained together: 

the so-called apprentice effect. For all of these reasons, the inductive bias of models may 

become more uniform over time.   

There may also emerge model uniformity due to standardization of regulatory 

requirements addressing the challenges of explainability, fairness, and robustness.  This  

could be particular fairness formulas to obey or hyperparameter settings that enable 

greater explainability.  Additionally, as evidenced by the quant crisis of 2007, a more 

 
67 Khandani and Lo, “What Happened to the Quants in August 2007?” 
68 Hill, “Why Did Rating Agencies Do Such a Bad Job Rating Subprime Securities?” 
69 Lo, “Moore’s Law vs. Murphy’s Law in the Financial System.”; Kirilenko and Lo, “Moore’s Law versus 
Murphy’s Law.” 
70 “Kaggle.” 

Electronic copy available at: https://ssrn.com/abstract=3723132



23 

intractable source of uniformity can arise when institutions operating in the same sector 

optimize for similar profit functions.71  This may result in herding of behavior without any 

of the model design overlap described above.  Any of these sources of consensus would 

result in a loss of model diversity. 

A combination of uniformity and network interconnectedness is likely to arise from a 

dependency on external service providers for models or model design.  Whether at the 

lowest or highest ends of technological sophistication, from basic programming language 

access to full back office support software, there is a growing reliance on external software 

providers.  There are software packages to make building custom deep learning models 

easier including Kubeflow, TensorFlow, and Keras.  In addition, the AI-as-a-Service 

sector has expanded, providing both fully trained and deployable deep learning models 

as well as deep learning generated insights.  These providers include traditional 

technology hub services firms such as BlackRock’s Aladdin,72 newer risk analytics firms 

such as Two Sigma’s Venn,73 or AI research startups such as OpenAI.  There are significant 

economies of scale to deep learning due to the significant computational power needed to 

train large, dense networks. Large institutions - whether Big Finance or Big Tech - may 

be able to afford the resources necessary to build their own custom models from the 

ground up.  Smaller financial institutions, however, are likely to find that their own 

economics lead them to use an AI-as-a-Service provider, as they cannot afford to build 

and train all of their own models.  This is likely to result in concentrated AI-as-a-Service 

providers, heightening the chance of uniform approaches to model development and 

potential uniformity in predictive decisions.   

Model uniformity is not new.  For instance, it is well known that most financial market 

participants have come to rely on Black-Scholes-Merton option pricing model.  Using 

deep learning models may lead users to implicitly believe that they have a differentiated 

edge, though it may not be true in particular sectors due to uniform reliance on third-

party model frameworks.  This may create yet another form of potential fragility to the 

financial system. 

Model uniformity may be an even more acute problem in developing economies.  The pool 

of computer scientists for building in-house models may be limited, leading to an 

increased reliance on third-party service providers and FinTech services.  Widespread 

third-party model dependence also may not be appropriate for the countries they are 

being deployed in, as the data they were trained on may be of limited relevance. 
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Additional systemic risk emerges from the inherent characteristics of deep learning.  The 

non-linearity and hyper-dimensionality of deep learning models make them likely to be 

more sensitive within a certain input range, but less likely to perform well outside of that 

range.  These models will also often be trained on short data sets related to alternative 

data.  Thus, deep learning models may more frequently end up in local minima and have 

larger out of range tails, leading to so-called “fat tails” and a higher prominence of “black 

swan” events.74  Furthermore, deep learning models’ inherent challenges of robustness 

may accentuate existing systemic risks related to adversarial or cyber attacks.  

Lastly, it is likely that regulatory gaps have emerged and may grow significantly with the 

greater adoption of deep learning in finance.  Deep learning has developed rapidly, and 

regulators have yet to update regulatory regimes for the use and management of this new 

technology.  This is evidenced in the U.S. by the fact that the most relevant comprehensive 

model risk management guidance was published in 2011.  Even when regulators update 

model risk management guidance, it is entirely possible that the inherent characteristics 

of deep learning, including challenges of explainability, complexity, and robustness would 

leave significant gaps for regulators using insufficient tools - akin to using foggy wave 

glasses - to supervise these models’ behavior. 

The use of deep learning models for capital, liquidity, and firm-wide risk management 

may be particularly challenging.  Adequate and appropriate capital, liquidity and risk 

management underpins the safety and soundness of the entire financial system.  To the 

extent that firms are permitted to use deep learning for these critical risk measures, an 

inherently hard to explain technology may underpin how much capital and liquidity is 

maintained by systemically important institutions.  This would reduce regulators' 

understanding of the risks in the financial system they are responsible for overseeing. 

Regulatory Pathway 

We now turn to consider how deep learning may heighten financial fragility through 

regulatory frameworks or possible gaps.  These gaps could emerge from how regulatory 

requirements are internalized in deep learning models, regulatory arbitrage by which 

activities migrate to less regulated actors, and as a result of how regulators use deep 

learning models in their supervision process. 

It is possible that the manner in which deep learning models internalize regulatory 

requirements leads to greater standardization and uniformity.  As with any new 

technology, the public sector is grappling with how to ensure for deep learning’s 

responsible use in critical applications.  Given the significance of the deep learning 

challenges - explainability, fairness, and robustness - and its growing adoption in critical 
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areas of finance, financial regulators will be called upon to help set standards for its use.  

Such standards may risk being uniformly internalized by model developers.  

Network interconnectedness may arise from a concentration of vendors providing 

applications to satisfy legal and regulatory compliance for explainability, fairness, and 

robustness challenges.  This could lead to monomodels and a central dependency on a 

service provider.  In a similar manner to how many asset management companies have 

become reliant on BlackRock’s Aladdin, it is possible that firms, particularly FinTech 

startups, come to rely on a small selection of outside vendors to comply with regulatory 

standards. 

The adoption of deep learning in finance is also likely to be uneven, with some FinTech 

startups or AI-as-a-Service firms - both generally less regulated - moving quite quickly. 

Large regulated financial institutions moving with pace, yet possibly more focused on the 

challenges of explainability, fairness and robustness.  Smaller, community institutions - 

not having the resources to independently adopt deep learning - may move more slowly.  

Over time, such tiered adoption between regulated and less regulated firms and between 

large and small firms may lead to regulatory arbitrage by which certain activities within 

the financial sector migrate to less regulated actors.  Furthermore, financial stability may 

be affected by this bifurcation, with large parts of the financial sector outside of a core 

system that is more deep learning enabled.  

Regulators also are actively investigating how to adopt deep learning for their own 

purposes in supervising institutions.  Uses may eventually include fraud detection, anti-

money lending detection, stress testing, and macroprudential monitoring.   Regulatory 

deep learning models may unknowingly promote uniformity in the agents they regulate.75  

The regulatory models may struggle to account for nuance, penalizing unusual 

approaches by agents with higher capital requirements or more stringent oversight.  

Regulatory deep learning models will be exposed to similar challenges of explainability, 

bias, and robustness as models for producing credit and insurance provision predictions.  

Robustness concerns are likely to be particularly significant. If a regulatory oversight 

model is perturbed or fooled, it could cause an outsize risk to the system.  It also may be 

possible for adversaries to intentionally distort these regulatory models.   

Algorithmic Coordination Pathway 

Deep learning systems adapt to new data patterns.  Given the wealth of market signals 

within finance - prices, rates, volumes, bids, offers - by design one firm’s models are going 

to be adapting to the signals from other firm’s models.  This is, by nature, coordinating 
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with other market participants behaviors.  Models may add fragility through an invisible, 

machine-based, form of coordination and possible collusion. 

The OECD describes how the risk of collusion in a market is affected by the number of 

firms in the market, the barrier to entry for a firm, the transparency of the market, and 

the frequency of interactions in the market.76  Deep learning models are less explainable, 

more complex, and more dynamic than other models.  Accordingly, market transparency 

is likely to decrease, due to both explainability and complexity challenges.  The frequency 

of interactions is likely to rise, as deep learning models are more dynamic than previous 

data analytics, constantly learning from recent events. 

There is the possibility that algorithmic coordination would lead to both increased 

network interconnectedness due to models at different financial firms communicating 

with each other, as well as leading to a uniformity in behavior - herding or crowding. 

These models can process more data than previous analytics due to their hyper-

dimensionality and insatiable demand for data.  Therefore, they can incorporate data 

streams concerning their competitors actions and model their behavior. Certain deep 

learning model types such as reinforcement models and generative adversarial networks 

(GANs) may be particularly well suited to this task.  A variety of research already exists to 

suggest these risks presently exist. Some research has found that Q-learning models, a 

type of reinforcement learning, are capable of developing a strategy for ensuring supra-

competitive pricing in a controlled experimental setting.77  Other work demonstrates that 

in a market driven by algorithmic traders, “even a high degree of attention to overfitting 

on the part of traders is unlikely to entirely eliminate destabilizing speculation.”78  

Evidence exists that high frequency trading algorithms manipulate the order book with 

unexecuted orders (possibly related to “ghost liquidity” and “spoofing”) as a form of 

messaging between agents.79  The financial system is in essence one of the largest “games” 

in the world, with a constant flow of information and a built-in reward system.  It is likely 

given the attributes of the financial system and deep learning, that these models, whether 

intentionally or unintentionally, will coordinate and communicate with each other to 

better optimize their results in this “game.” 

Deep learning also may expose a regulatory gap in that supervision tools used to monitor 

for algorithmic coordination amongst previous data analytics may not be able to discern 

deep learning coordination until after the fact.  Without the ability to understand and 

 
76 OECD, “Algorithms and Collusion: Competition Policy in the Digital Age.”  
77 Klein, “Autonomous Algorithmic Collusion.”; Calvano et al., “Artificial Intelligence, Algorithmic Pricing 
and Collusion.” 
78 Georges and Pereira, “Market Stability with Machine Learning Agents.” 
79 Kirilenko and Lo, “Moore’s Law versus Murphy’s Law.” 
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explain the inputs and outputs of the deep learning models, regulators will be at a 

disadvantage to discover and counteract algorithmic coordination.   

User Interface Pathway 

Deep learning NLP-based UI has led to many platforms providing automated advice and 

recommendations for investing, lending, and insurance offerings.  This can concentrate 

views, judgments, decisions, and actions which could create systemic risk. 

Deep learning is used widely in the UI and customer interaction space.  This spans from 

uses as benign as check and document processing all the way to highly consequential 

processes, with chatbots providing investment advice.  Bank of America,80 Capital One,81 

and JP Morgan Chase82 have each rolled out proprietary virtual assistants while Fidelity 

and Vanguard83 have started to adopt robo-advisory services.  Many FinTech startups, 

such as Betterment, Ellevest, Sofi, and Wealthfront rely heavily on such chatbots and 

virtual assistants.84  Future research is needed to explore the potential effects of 

uniformity in virtual assistant software and other user interface applications further up 

the decision-making value chain.  There also is risk that advice provided by each virtual 

assistant becomes standardized and commoditized, causing herding of client decision 

making, at least within a firm, but potentially across an entire asset class or sector. 

As virtual assistant software and advanced NLP software continues to improve, they may 

increase network interconnectedness and concentration.  Already Google, Baidu, 

Amazon, Ant, and OpenAI have some of the most advanced chatbots, virtual assistants, 

and textual analysis tools on the market.  Widespread adoption of these services may 

create a new system dependency and source of systemic risk. 

Coda 

Policy Considerations 

We’ve explored in this paper how broad adoption of deep learning within the financial 

system is likely to lead to greater fragility by increasing uniformity, network 

interconnectedness, and regulatory gaps.  We mapped nine key characteristics of deep 

learning - hyper-dimensionality, nonlinearity, non-determinism, dynamism, complexity, 

limited explainability, bias, lack of robustness, and demand for data - against these 

 
80 “Bank of America Offers Clients a More Complete, Personalized View of Their Financial Relationship 
Through Enhanced Mobile App Experience.” 
81 Streeter, “Capital One Doubles Down on Chatbot with New Features and Marketing.” 
82 Jones, “Are Consumers Ready for Conversational Digital Banking Experiences?” 
83 Snel, “Fidelity, Vanguard at Top of Robo Heap.” 
84 Meola, “Top Robo Advisors in 2020.” 
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channels through five pathways.  Now we turn to considering how one might mitigate the 

systemic risks that our hypothesis suggests will emerge from greater adoption of deep 

learning models.  

While current model risk management guidance - generally written prior to this new wave 

of data analytics - will need to be updated, it will not be sufficient to address risks of 

herding, network interconnectedness, or potential future regulatory gaps.  These model 

risk management tools, along with many other regulations, primarily address firm level 

or so-called micro-prudential risks.  Many of the challenges to financial stability that deep 

learning may pose will require new thinking on system wide or macro-prudential policy 

interventions.  Policy interventions may need to be tailored to context, as the financial 

activity to which deep learning is applied will have an important bearing on the systemic 

risks possibly emanating from such use as well as the tools appropriate in the policy tool 

kit.  Moreover, there may be a need to plan in advance for potential ex post, crisis 

management interventions. 

Micro-Prudential Risk Mitigation 

Internal Mapping 

For financial institutions and regulators, a mapping of institution-wide dependencies on 

internal data and software may be a productive first step.  While each model is currently 

subject to model risk guidance, financial institutions are often running hundreds if not 

thousands of models.  These models often connect directly to other models and use the 

same internal datasets and the same latent features.  This mapping process may help 

reveal concentrated dependencies within each financial institution. 

Model Hygiene 

Next, as some other researchers have recommended, regulators should update the 

existing framework for model risk management within the financial sector to better 

capture deep learning models.85  The U.S.’s model risk management guidance, SR 11-7, 

from 2011,86 ECB’s TRIM from 2017,87 and Canada’s E-2388 from 2017, among others, 

were drafted with previous linear modeling techniques less dependent upon hyper-

dimensionality, dynamism and complexity.  The Monetary Authority of Singapore 

released principals for the use of “AI and Data Analytics.”89   

 
85 McPhail and McPhail, “Machine Learning Implications for Banking Regulation.”; Richman, von 
Rummell, and Wuthrich, “Believing the Bot - Model Risk in the Era of Deep Learning.” 
86 Parkinson, “SR 11-7: Guidance on Model Risk Management.” 
87 European Central Bank, “Guide for the Targeted Review of Internal Models (TRIM).” 
88 CRISIL, “Canada Aligns.” 
89 Bertholon-Lampiris and Nadège Grennepois, “Building a Robust Model Risk Management Framework 
in Financial Institutions.” 
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Existing model risk management guidance generally speaks to model design, governance, 

and external verifiability.  Deep learning models, however, are less explainable, dynamic 

after deployment, and overwhelmingly complex.  Existing model hygiene regulation is 

quite focused on documentation of the development process, in contrast to model 

outcomes.  Regulators may wish to look into more technical ways of managing risk, such 

as adversarial model stress testing or outcome-based metrics focusing less on how the 

model arrives at its prediction and more on model behavior once deployed. 

Additionally, the heightened challenges of robustness with deep learning models in 

comparison to linear modeling may suggest regulators pay particular attention to these 

new risks. 

Firm Buffers 

Another conceptual framework for managing risk in the financial system which prescribes 

buffers for such use.  There is usually a quantity of loss absorbing capital - equity - 

determined by regulators and set aside depending on the particular risks assumed.  Banks 

have minimum capital ratios expressed in percent of (risk-weighted and unweighted) 

assets, while insurers and pension funds have required solvency ratios. Regulations such 

as loan-to-value (LTV) limits for mortgages, margin for derivatives, and minimum 

“haircuts” on collateral for repos provide loss-absorbing buffers. 

Policymakers might wish to consider these frameworks in light of the use of deep learning 

models in different financial activities.  Deep learning models used for administrative or 

document processing tasks are not as risky as deep learning models used to commit 

capital, underwrite credit or insurance or use balance sheet assets.  Regulators might 

consider if changes to loss absorbing buffers might be appropriate for banks and 

insurance companies using deep learning for particular activities within credit or 

insurance underwriting, and capital market trading.  Further, authorities might consider 

add-on or minimum buffers - building in some margin of error - if banks were to 

determine risk weights or capital based upon deep learning algorithms.  The U.K., 

Belgian, Finnish and other authorities have recently done so for traditional model-based 

risk weights for mortgages.90 

Currently, many financial firms run their deep learning models in parallel with linear 

models as a proxy for explainability, a form of a buffer.  Regulators might consider 

requiring that financial institutions continue running such back-up models and processes 

that do not rely on deep learning in case the models fail or act in unexpected ways.  There 

also may need to be consideration how best to prepare the system for the eventuality of a 

deep learning model failing due to a lack of explainability. 

 
90 Regulatory News, “PRA Proposes to Amend SS11/13 on Internal Ratings-Based Approaches.” 
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Regulatory Diversity 

We also have discussed how regulations can lead to certain types of uniformity in model 

design.  Regulations meant to address explainability, fairness, and robustness concerns - 

even if written to be technologically neutral - may lead to uniformity.  The rise of neural 

networks, and the various ways they may add fragility to the system, highlights the trade-

offs of uniformity vs. possibly actively promoting diversity.  Regulators might address this 

tradeoff when crafting regulation by proposing multiple ways to internalize regulations 

while remaining compliant with guidance. 

Macro-Prudential Risk Mitigation 

Having considered possible mitigations at the micro-prudential level, we now consider 

possible interventions to address market or system-wide uniformity, network 

interconnectedness or regulatory gaps. 

External Mapping 

To help mitigate systemic risks a mapping of each firm’s external dependencies on data 

and software providers could be quite an important initiative.  This would involve each 

institution investigating their own material dependencies, including but not limited to 

data, software, AI-as-a-Service and cloud providers.  The results of such mapping could 

be shared with firm-wide senior risk managers, firm boards, and regulators.  Once 

aggregated and viewed from the network level, such external mappings could provide a 

better - though likely still incomplete - picture of systemic dependencies and complex 

interconnections of the system.  Further, regulators could coordinate stress tests in which 

different institutions simulate actual transactions to understand how deep learning 

algorithms might interact under plausible adverse market scenarios.  

Material External Dependencies 

Material or system wide dependencies on third party AI-as-a-Service providers, such as 

Google, OpenAI, and others, may call for requirements that such external models comply 

with updated financial system model risk management regulation.  Similarly, material or 

system wide dependencies on data aggregators may suggest bringing such data 

aggregators within transparency, cybersecurity, and credit reporting agency 

requirements.  The risk management and transparency of external providers can be 

affected either: 1) indirectly through regulating the material contractual arrangements 

between financial institutions and such third party providers; or 2) directly by bringing 

the third party providers into some regulatory fold. 

Financial regulators have grappled with similar challenges related to dependencies on 

cloud computing.  These new dependencies, though, could be even more significant.  
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Cloud computing, at its base, provides storage and possible additional software 

capabilities.  AI-as-a-Service can provide full end-to-end automated decision making.     

In addition, to the extent that concentration develops, competition (antitrust) officials 

may wish to consider appropriate policy interventions, including close reviews of 

significant mergers and anti-competitive behavior. 

Horizontal Reviews 

A framework of horizontal reviews could be helpful to assess the extent to which there 

may develop uniform decision making across the network.  In the U.S. there are currently 

at least two horizontal risk monitoring programs.  The Shared National Credit (SNC) 

program, established in 1977, was designed to capture the largest loans (over $100 

million) held across multiple financial institutions.91  Bi-annual reports are publicly 

released regarding trends within these loans and regulators have on occasion used the 

data to modify supervisory guidance.  Additionally, regulators in the U.S.92 and a number 

of other countries use horizontal reviews of risk management practices and capital 

planning as part of supervisory activities and periodic stress tests.   

Additional horizontal reviews related to deep learning models use, predictive decision 

making, and outcomes by financial institutions, could reveal herding amongst market 

participants or network interconnectedness to material external dependencies.  

Network Buffers 

When material uniform risk exposures or external dependencies on data aggregators or 

AI-as-a Service providers emerge across a financial system regulators could consider 

using available policy levers to address such systemic risks.  Regulators could consider 

policy levers, from writing public economic reports concerning findings, changing 

supervisory guidance, reforming regulations, or reassessing capital buffers regarding 

such shared holdings or dependencies. 

There could be a requirement that financial institutions continue running back-up 

traditional data analytics models in case the models fail or act in unexpected ways.  Where 

deep learning is used widely in trading and asset management, regulators could 

coordinate stress tests and war games in which different institutions simulate actual 

trading through their test systems under various plausible adverse scenarios.  This could 

help understand how deep learning algorithms might interact to an actual market shock. 

Developing World 

 
91 Office of the Comptroller of the Currency, “Shared National Credit Report.” 
92 Board of Governors of the Federal Reserve System, “Supervision and Regulation Report.” 
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The systemic risk and financial fragility challenges of deep learning adoption in finance 

are likely to be more acute in developing countries as it is more likely that there will be 

dependencies on concentrated service providers.  Thus, this may be an area to which the 

international community wants to pay closer attention, working to assist countries in 

preventing potential problems early.  Possible macro-prudential policy interventions also 

may be guided within the purview of the International Monetary Fund and the World 

Bank. 

Ex-post Interventions  

Furthermore, policymakers may wish to consider how best to plan in advance for 

potential ex-post, crisis management interventions.  Such considerations might include 

some form of circuit-breakers, so-called “kill switches,” and the ability to recover.  Central 

banks may wish to consider in which circumstances deep learning model shocks might 

lead them to use their lender or market maker of last resort.  Lastly, it may be appropriate 

to call for certain material AI-as-a-Service providers to the financial sector to maintain 

recovery and resolution plans for their models. 

Call to Action 

The micro and macro prudential approaches considered above, even if implemented in 

total, may be insufficient to the task of addressing uniformity, network 

interconnectedness, and potential regulatory gaps.  The dedication and ingenuity of 

academia, public officials, and the private sector will be needed to best understand the 

magnitude and scope of potential challenges that broad adoption of deep learning may 

pose to systemic risk as well as to frame appropriate tools for mitigating said challenges. 

Conclusion 

This paper explored the use of deep learning in the financial sector and its possible effects 

on financial stability at future stages of adoption.  It reviewed key characteristics of deep 

learning - features of hyper-dimensionality, non-linearity, non-determinism, dynamism, 

and complexity; challenges of explainability, bias, and robustness; and an insatiable 

hunger for data.  The advent of deep learning – which combines these nine characteristics 

together – marks a fundamental discontinuity enabling significant opportunities for 

enhanced efficiency, financial inclusion, and risk mitigation.  Over time, however, broad 

adoption of deep learning may also increase uniformity, interconnectedness, and 

regulatory gaps, leaving the financial system more fragile.  Existing financial sector 

regulatory regimes - built in an earlier era of data analytics technology - are likely to fall 

short in addressing the risks posed by deep learning.  Adequately mitigating such risks 

will require additional research and discussion.  We hope that the framework we have 

developed might help contribute to such dialogue. 
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