Management Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Identifying Formal and Informal Influence in Technology Adoption with Network Externalities

Catherine Tucker,

To cite this article:

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service.

Copyright © 2008, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org
Identifying Formal and Informal Influence in Technology Adoption with Network Externalities

Catherine Tucker
MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, cetucker@mit.edu

Firms introducing network technologies (whose benefits depend on who installs the technology) need to understand which user characteristics confer the greatest network benefits on other potential adopters. To examine which adopter characteristics matter, I use the introduction of a video-messaging technology in an investment bank. I use data on its 2,118 employees, their adoption decisions, and their 2.4 million subsequent calls. The video-messaging technology can also be used to watch TV. Exogenous shocks to the benefits of watching TV are used to identify the causal (network) externality of one individual user’s adoption on others’ adoption decisions. I allow this network externality to vary in size with a variety of measures of informal and formal influence. I find that adoption by either managers or workers in “boundary spanner” positions has a large impact on the adoption decisions of employees who wish to communicate with them. Adoption by ordinary workers has a negligible impact. This suggests that firms should target those who derive their informal influence from occupying key boundary-spanning positions in communication networks, in addition to those with sources of formal influence, when launching a new network technology.

Key words: networks; network externalities; technology management; video conferencing; social networks

History: Accepted by Pankaj Ghemawat, business strategy; received May 3, 2006. This paper was with the author 1 year and 3 weeks for 2 revisions. Published online in Articles in Advance August 20, 2008.

1. Introduction

Firms and consumers benefit from the diffusion rather than the creation of new technologies (Rogers 2003). Managing a technology’s diffusion is particularly challenging for technologies that become more useful as more people adopt: Nobody wants to buy a telephone or video-conferencing unit if there is no one else in the network to communicate with. If welfare-enhancing technologies cannot overcome this hurdle of attracting initial adopters, this inhibits the potential economic growth the new technology can bring.

This potential for suboptimal diffusion, first documented by Rohlf’s (1974), has been formalized into a theory of network externalities by economists such as Katz and Shapiro (1985) and Farrell and Saloner (1985). To validate this theoretical work, empirical researchers have sought to document “network externalities.” Network externalities measure how much adoption decisions reflect who else is in the network. If people adopt at the same time, however, it is difficult to know whether this adoption was a product of network externalities or of something else.

One way of addressing this empirical challenge is to compare how adopters react to similar regional networks that have different levels of adoption. However, this allows only the measurement of an average network externality in response to an average level of adoption. It does not measure individual responses to individual adoption decisions. Therefore, the network externalities literature has not been able to fully incorporate a wide body of managerial research that highlights how some key adopters can have a large influence on an individual’s adoption process through a variety of social mechanisms.

To explore how network externalities vary at the individual level, I use video-messaging data that track the adoption of 2,118 employees in a large bank and their 2.4 million subsequent calls. The technology diffusion process somewhat resembled a large-scale experiment, because adoption decisions were decentralized to employees. The advantage of studying this particular video-messaging technology is that it has a stand-alone use of TV watching that can be used to identify network externalities. This ability to watch TV varies in usefulness by location and time. Some employees were prompted to adopt the technology by TV programming such as the 2002 Soccer World Cup.

I measure the effect that this TV-inspired adoption has on other people’s adoption decisions. I interpret this effect as showing the benefits that they receive from having that person in the network to communicate with. Because employees’ communication networks differ, I can measure this network externality at an individual level. For example, I can compare the adoption decisions of two employees in the United States, one who has many contacts based in...
countries where the Soccer World Cup was popular and another who does not. These individual-level data allow me to explore how network externalities vary with any one adopter’s potential influence. For example, I can explore whether a manager or a worker’s TV-inspired adoption has a bigger effect on others’ decisions to adopt. Using this to identify a network externality requires there to be no systematic reason why an employee who has a high proportion of contacts in a region that is having a TV-watching spurt should be more likely to adopt than an employee who has contacts in a region where there is no TV-watching spurt.

The ability to measure how network externalities relate to network users’ characteristics allows me to explore whether network externalities reflect the potential for subsequent video messages to differ in importance. Rogers (2003) describes two kinds of important conversations: Interactions with those who are higher up in a formal social structure and interactions with those who occupy key positions in the informal communications structure. I explore what happens to the size of network externalities when we adjust for whether an adopter is important by either of these measures. I test a variety of measures of a user’s importance within a communications network. I find that adopters who are high up in the formal hierarchy, or who occupy a boundary-spanning position between groups of uncommunicative employees in the informal communications network, have bigger network externalities on the adoption decisions of others. I also find evidence that those who occupy central positions in the communications network have a bigger network externality than those who occupy peripheral positions.

These findings emphasize that the successful introduction of a technology characterized by network externalities depends on both people with formal influence and people with informal influence adopting the technology. Therefore, it is crucial when introducing new technologies to ensure that boundary spanners and those who are central to the firm’s communication network are targeted to adopt quickly, in addition to those with formal sources of influence.

2. Network Externalities: Sociological and Economic Perspectives

This paper draws from both the economics literature on network externalities and the managerial literature on network effects. These two literatures have developed largely in isolation from each other. Though it is hard to make clear-cut disciplinary distinctions, generally managerial and sociological researchers use the term “network effects” to refer to many processes through which someone’s adoption or behavior can be influenced by another. However, it is only very recent work such as Garip and DiMaggio (2008) that has evaluated as a distinct phenomenon interactive technologies that have a direct performance benefit. More often, network externalities are discussed as a special case of contagion by cohesion (Van Den Bulte and Lilien 2007) or under the umbrella of strategic complementarities (Centola and Macy 2007).

Since work by Katz and Lazarsfeld (1955), Granovetter (1978), Burt (1980), and Friedkin (1991), this managerial literature on diffusion has documented in many different settings where adoption of a practice or technology by key actors is associated with a larger number of subsequent adoptions. Typical of this work is the Podolny and Stuart (1995) study of how niche technologies develop based on the patent holders’ status. There has also been a stream of research that documents how social influence can lead to bandwagons (Bothner 2007, Strang and Macy 2001). Early research in marketing by Czepiel (1974) documented similar effects for word-of-mouth in the steel industry and studied how high centrality affected how quickly potential adopters found out information. This emphasis on heterogeneity of social processes is also echoed in a broader communications literature, described by Monge and Contractor (2003). I use this insight, that highly central actors can affect social learning, cascades, and informational spillovers, and test whether the same applies to the case of network externalities. Generally, performance-based network externalities have received less specific attention in this sociological literature because network externalities are a mechanical property of the technology (it mechanically becomes more useful as more people have it) rather than necessarily reflecting an underlying social process.

While sociologists use the term “network effects” to encompass a wide number of social processes, economists use “network effects” as a conservative way of describing the performance benefits that sociological researchers such as Garip and DiMaggio (2008) call “network externalities.” This reflects caution by economists about assuming a coordination failure, or “externality,” before there is evidence that one exists. For example, in this paper, although it seems plausible that TV-inspired adopters do not internalize the benefits that their adoption brings to others, I present no direct proof that this is so. Furthermore, using the term “network externality” implies that the network owner does not internalize the benefits of widespread adoption in their pricing or incentive strategy, which is rare (Liebowitz and Margolis 1994). In this paper, I use the less conservative term “network externalities” in order to be accessible to noneconomists. The focus of empirical work in the economics literature has been
to measure these “network effects” (externalities) and to distinguish the benefit that people receive from widespread adoption from the broader set of influences that might cause similar people to adopt. This focus on establishing a convincing identification strategy for network externalities stems from research by skeptics such as Liebowitz and Margolis (1994) who doubt the prevalence of network externalities. In the face of this skepticism that a coordination failure can persist in a systematic manner, empirical researchers have focused on finding convincing ways of identifying causal network externalities that cannot plausibly be ascribed to measurement error.

Early economics work on measuring network externalities used standard panel data techniques. These control for static differences in agents and also for a universal time trend. For example, Saloner and Shepard (1994) used region and time dummies when studying correlations in adoption of ATM networks by banks. Such empirical work, however, makes the strong assumption that there are no network-specific time shocks, such as a regional sales effort by ATM vendors, that could provide an alternative explanation of correlation in adoption decisions. Similarly, when studying the spreadsheet market for computers, Gandal (1994) and Brynjolfsson and Kemerer (1996) use time dummies to control for broad time trends but cannot distinguish network externalities from product-specific shocks, such as an unmeasured increase in promotion activity. This criticism also applies to researchers using panel data outside of economics. For example, Kraut et al. (1998) studied network externalities for a video-phone system similar to the one studied in this paper. They controlled for time-specific shocks but did not control for uncontrollable differences across work groups over time that could be mistakenly interpreted as network externalities, such as a slowdown in demand where all employees in the work group had spare time to adopt.

The problems of using standard panel data methods to identify network externalities have led researchers such as Rysman (2004), Gowrisankaran and Stavins (2004), and Tucker (2004) to use instrumental variables to identify network externalities. They use a regional network-specific shock, such as adoption by a multiregion bank, as a source of exogenous variation for existing levels of adoption. Then, they measure how potential adopters respond to these exogenous changes in regional adoption. This approach has two limitations. First, it is difficult at the aggregate regional level to identify shocks that are unrelated to the characteristics of firms that are located there. For example, Gowrisankaran and Stavins (2004) assume that entry by a multiregion bank is unrelated to unobserved changes in technology tastes. Second, studying network externalities at this aggregated regional level does not allow study of how highly central actors affect diffusion. Instead, Gowrisankaran and Stavins (2004) take adoption by central actors such as multiregion banks as an exogenous shock that can be used to identify the reactions of smaller actors.

This difficulty in establishing causation at the individual level is widespread in many marketing and managerial problems, not just for network externalities. For example, in the case of switching costs, it is difficult to disentangle an individual’s level of lock-in from their idiosyncratic preferences for a good (see the Goldfarb 2006 study on consumer choices for Internet portals). Therefore, one aim of this paper is to describe how individual data can be used to establish causation in a way that could be used to explore individual heterogeneity for these other managerial questions.

The contribution of my research is that I identify for the first time network externalities at the individual level without strong assumptions about strategic behavior or an aggregate functional form of the network externality. The fact that the technology I study has a separate stand-alone use of TV watching, which is subject to a series of exogenous shocks, makes it unusually possible to identify network externalities despite the similarity of users’ network use. What is unique about the identification strategy in this paper is that the exogenous variation comes at the level of the individual’s network rather than the aggregate network. I use these individual data in two ways. First, I use exogenous variation in individual adoption incentives to identify the impact of adoption by one agent on related agents. Second, data at the individual level allow me to identify the differential impact of adoption by different types of adopters. In particular, I explore whether the many managerial insights into how highly central actors affect diffusion also apply to network externalities. It also reflects a nascent literature in economics, such as Sundararajan’s theoretical model of heterogeneity in network consumption (Sundararajan 2004).

The structure of this paper is as follows: Section 3 describes the video-messaging technology and the data, and §4 sets up the empirical approach. Section 5 discusses the TV-watching identification strategy. Section 6 discuss the results and managerial implications. Section 7 discusses an important extension to the main results, where I use a predicted version of the underlying video-messaging networks to study the behavior of employees who do not adopt.

3. Technology and Data

3.1. Technology

Installing video messaging can improve the effectiveness of internal firm communication by adding visual cues to the audio cues provided by telephones.
Marlow (1992) describes the benefits of video messaging as greater intimacy, geographic reach, flexibility, and effectiveness in communications.

Many older video-messaging systems were not popular because they were placed in isolated video-conferencing rooms. This research studies a more convenient form of video messaging placed on desktop computers. The technology has three elements: Video-messaging software; a media compressor attached to the employee’s computer; and a camera fixed on top of the computer’s monitor. Using the language of Farrell and Saloner (1985), the video-messaging technology has a “network use” and a “stand-alone use.” The network use is television-quality video-messaging calls. The stand-alone use is watching TV on a desktop computer.

After this bank chose this particular technologically standard to conduct internal video messaging, it invested in an extensive network architecture. The firm made employees eligible to adopt the technology if they held a position of associate or higher (85% of full-time employees). The firm publicized the technology to employees using mass e-mail messages. Then, for institutional and business reasons, they decided to decentralize individual adoption decisions to employees. Each employee decided whether and when to order a video-messaging unit from an external sales representative. The supplier of the equipment had excess capacity, so capacity constraints did not affect the timing of individual employee adoption. This decentralization means that the unit of analysis is the private benefits of adoption for employees, as opposed to the firm-level benefits of widespread adoption.

The bank incurred all monetary costs of using the technology. Though the employees did not pay for the technology, they did suffer a temporary loss of productivity from not being able to use their computers while the technology was being installed, and they also had to spend time learning how to use it. Talking to employees at the bank, the risk of prolonged “downtime” was viewed as the most substantial cost. In particular, fears were expressed about not having access to or being able to act on constantly changing financial market data. Therefore, each employee had to set his perceived network and stand-alone use against his nonmonetary costs of adopting.

The video-messaging technology is used only for internal communication within the firm. Having data on the universe of network interactions makes such closed-loop technologies attractive for empirical research.

3.2. Data

3.2.1. Personnel Database. I have complete personnel records for each employee in the investment bank in March 2004. Employees were associated with two main products: equities and derivatives. There were four broad different functions: administration, research, trading, and sales. There is also information on the precise city location of each employee. I classify these locations into four broad regions: Britain, North America, Europe, and Asia/Sub-Equatorial. There were four formal rungs in the hierarchy for employees at the firm. I combine the bottom two rungs, “associate” and “vice president,” into the category “workers” and the top two rungs, “director” and “managing director,” into the category “managers.” 25.8% of employees were managers.

A call database recorded the 2.4 million video-messaging calls made within the bank from January 2001 to August 2004. For two-way video-messaging calls, the database records the caller and callee, when the call was made, and how long it lasted. For one-way TV calls, the database records who made the call, to which TV channel, when, and for how long.

Employees made 1,768,348 two-way user-to-user video-messaging calls. The data set includes only the 1,052,110 video-messaging calls where the callee accepted the call. Each accepted call lasted on average 5 minutes and 46 seconds. Calls could be made to more than one employee at a time. Multi-party calls (less than 5% of calls) were simplified into their pairwise equivalents: A three-way call is treated as three calls between each two of the participants. I use the first 2.5 years of the call data (January 2001–July 2003) to examine calling decisions and the last year of the call data (August 2003–August 2004) to reconstruct the communications network within the firm.

Employees made 752,055 one-way caller-to-media-device calls. A total of 741,926 of these calls were successful and are included in the data. Because I want to control for regional-specific time trends, I focus on the use of the video-messaging technology for watching regional television broadcasts. Employees could also watch CNN and CNBC, but there is little cross-national variation in the proportion of employees watching these channels. Local channels for Europe were ZDF (German), ARD (German), Kanal (Swedish), ORF (Austrian), and Eurosport. Local channels for Britain were ITV, SkySports, Channel 4, and BBC. Local channels for the United States were C-SPAN, FOX, NBC, and CBS. Local channels for Asia were NTV (Nippon TV), CATS (Japanese), TV-Asia, and BBC 24 World Service.

4. Empirical Approach

I want to examine how adoption by different types of employees affects when and whether another employee adopts video messaging. To do this I employ a latent variable approach, where I model each
employee’s adoption as a reflection of the trade-off they face between the network and stand-alone benefits and costs of adopting the technology. The dependent variable is an indicator for when an employee first makes a video-messaging call. Because there is no divestiture, I treat this adoption decision as irreversible and exclude subsequent observations in estimation.

4.1. Network Externalities: Network Benefits of Adoption

Employees receive network benefits from using this technology because they can communicate with colleagues using video rather than telephones. In addition to the benefits of being able to see each other when talking, the video-messaging technology offers auto-dial and “frequent contacts” lists. These features offer convenience relative to the existing telephone network. These network benefits explicitly depend on having other people also in the network. This paper makes the simplifying assumption that all employees take other employees’ adoption decisions as given and do not look forward to the impact that their adoption can have on others in the future. In Ryan and Tucker (2007), I explore the implications for the dynamics of the network when this assumption is relaxed.

I assume that network externalities depend only on the subset of adopting employees that employee $i$ interacts with. This is supported by results in Table EC.10 (provided in the e-companion) and Tucker (2008), which show that network externalities are limited to direct contacts. I define employees as “contacts” if they video-message when both employees have adopted. I use data on whether employees shared a video-messaging call from August 2003 to August 2004 to establish who each adopter’s contacts are. These last 12 months form a reliably stable communications network: only 90 new adoptions occurred during this year, relative to the 1,294 in the previous 2.5 years. Given this stability, the precise choice of the months August 2003–August 2004 as a representative network does not affect contact predictions. Using a shorter snapshot such as March 2003–June 2003 and March 2003–December 2004 changes the composition of contacts for adopters by less than 5%.

It is important to be clear that my use of video-messaging data to establish contacts means that any network I recover is explicitly a network for video-messaging that can be used to measure the size of network benefits/externalities for video-messaging conversations. It need not be representative of the social network in the firm as a whole. These call data identify contacts for the 1,294 adopters, not for the 824 nonadopters. Initially I present empirical results for the influence of network externalities on the adoption timing of adopters. In §7, I incorporate decisions by nonadopters by using the call data to predict their contacts. These later estimates capture the influence of network externalities on whether employees ever adopt, as well as how quickly they adopt.

The baseline measure of the “installed base” for an employee is the number of their contacts who have adopted the technology up to and including that month.$^2$

However, given my focus on how heterogeneity of network user characteristics affects adoption, I weight this basic measure to vary in magnitude depending on the characteristics of each contact.

4.2. Introducing Heterogeneity into the Contact Network

In my empirical analysis, I use six different measures of contact heterogeneity and weight the relative importance of each contact’s adoption. These measures are intended to cover a wide spectrum of the social mechanisms affecting diffusion that are documented in the sociological literature (Burt 2000). I first consider manager status as a way that formal social structure may change the size of network externalities. Theories of hierarchy suggest that conversations with managers may be more crucial, so there may be larger network externalities for others when a manager adopts.

In addition to formal hierarchical status, it seems likely that conversations may vary in importance and consequently network externalities may vary in size if a contact has a higher amount of informal influence in the underlying communications network. To reflect informal influence, I use measures developed for social network analysis. These measures of “network centrality,” or the importance of a contact in the underlying communications network topology, are described in detail in Table 1. I study three older measures of centrality—closeness, degrees, and betweenness (Freeman 1977, Granovetter 1973)—and also the more recent “Bonacich power.” Like Google’s PageRank system for hyperlinks, Bonacich power weights a contact’s importance by how important their contacts are (Bonacich 1987).$^3$ A technical description of

---

$^1$ An electronic companion to this paper is available as part of the online version that can be found at http://mansci.journal.informs.org/.

$^2$ As I study direct network externalities, the installed base in my study is the subset of adoption decisions that matter to a potential adopter. This is different from the widespread use of the term “installed base” to refer to the universe of downstream adopters from the perspective of an upstream vendor when there are indirect network externalities. See Goldfarb (2006).

$^3$ Calculated using an attenuation factor of $\beta = 1$ implying an increase in importance with contact’s importance.
Table 1  Different Types of Heterogeneity

<table>
<thead>
<tr>
<th>Influence measure</th>
<th>Description</th>
<th>Possible effect on how important it is to video-message with contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure of formal influence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managerial status</td>
<td>Whether a contact is a manager (director or higher)</td>
<td>Conversations with managers are more important</td>
</tr>
<tr>
<td>Measure of informal influence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betweenness</td>
<td>How many times a contact lies on the shortest network path between two other employees</td>
<td>Conversations with boundary spanners are more valuable as they have unique access to information</td>
</tr>
<tr>
<td>Closeness</td>
<td>The average length of the shortest path between the contact and all other employees</td>
<td>Conversations with central employees have more value than conversations with employees on periphery of firm</td>
</tr>
<tr>
<td>Degrees</td>
<td>How many contacts a contact has</td>
<td>Conversations with employees who have more conversations are more valuable because they contain more information</td>
</tr>
<tr>
<td>Bonacich power</td>
<td>How powerful the contact’s network is</td>
<td>Conversations with employees who have more conversations with other different employees who have more conversations are valuable because they contain more information</td>
</tr>
<tr>
<td>Distance</td>
<td>Distance in kilometers between the employee’s city and the contact’s city</td>
<td>Conversations with video messaging are valuable for contacts who are located far away, because it prevents tedious air travel</td>
</tr>
</tbody>
</table>

Table 1 describes how different types of influence may affect the size of network externalities. Though these types of influence have been found to be important for other social influence mechanisms, it is not clear that they will hold for network externalities. For example, it is not clear that adoption by an employee with many other contacts will be more valuable than adoption by an employee with few contacts. Having many contacts could indicate that the employee communicates multiple streams of trivial information, meaning that the value of video-messaging conversations with that employee would be lower.

I calculate these measures of centrality for each employee who adopted using software developed by Borgatti et al. (2002). All the measures of informal status use different units. Therefore, in my empirical specifications, I use a mean centered and standardized index of each of these measures to ease comparison between their relative effect on the size of network externalities. The distribution of these standardized measures is displayed in Figure 1.

4.3. Controls

It is likely that the net costs of adopting the technology vary considerably across employees. For exam-
ple, it may be easier for employees in more flexible areas, such as research, to schedule time for their computers to be down than for employees who work in fast-paced areas such as derivatives trading. Therefore, I include a series of controls for each of the different functions and product groups. Similarly, there may be cross-national differences in technological competence and expected learning costs. To capture this I also include controls for each region. It is also likely that the net costs of adopting vary across time. Therefore, I include a series of dummies for each month that employees could potentially adopt the technology. Because these time dummies will also pick up selection and the changing baseline hazard rate, they cannot be interpreted.

This technology also had specific benefits that were independent of any network usage. In particular, employees enjoyed being able to watch television on their desktop computers. There were two types of television employees could watch: News TV programming on CNN and CNBC, which covers financial news; and local TV programming (often non-news) broadcast by country-specific channels. Whereas there was little variation across regions in the percentage of adopters watching news programming, there was large variation in employee interest in local TV programming across regions. For example, employees in the United Kingdom watched the 2002 Soccer World Cup, whereas employees in the United States did not. Empirically, these local broadcast events were correlated with adoption in the month prior to the month they occurred. This suggests that employees adopted the technology in advance to ensure that they could watch predictable “must-see” television. I capture these regional shocks to the technology's stand-alone benefit by the variable $TV_{i,t}$, which contains the percentage of previous adopters watching “local TV” in region $r$ in the month following time $t$.

The video-messaging unit’s TV use led to a less systematic pattern of adoption than is common for communication technologies. Table EC.3 in the e-companion shows that there is no monotonic relationship between adoption timing and the post-adoption intensity of usage of the technology. It is striking that those who adopted in May 2002 just prior to the World Cup make an average of only eight calls per month, compared with the all-employee average of 17 calls a month. I use this regional variation in the stand-alone benefit to help identify a causal network externality.

5. Identification of Network Externalities

A network externality occurs when one employee adopts because he wishes to video-message with another employee who has already adopted. The challenge is to quantify this. A correlation in the timing of two contacts’ adoption does not conclusively demonstrate a network externality. This coincident timing could happen for many other reasons. For example, their boss could instruct two contacts to adopt a technology at the same time, or they could receive two contemporaneous calls from a sales representative. This endogeneity of adoption decisions resembles Manski’s distinction between contextual/correlated effects and endogenous effects in the social interactions literature (Manski 1993).

One way of estimating a true network externality, therefore, would be if there had been a field experiment where a few employees were randomly selected to adopt. This randomness would mean that I could subsequently study the subsequent adoption decisions of two other employees who were otherwise identical, except that one of them had a contact who had been randomly commanded to adopt. Such intentional randomization is not present. However, in the data there is a lot of quasi-random adoption that is prompted by variation in the value of watching TV across months and across regions. Therefore, I use this variation as a natural experiment to approximate a true randomized trial. In particular, I exploit the fact that the installed base of two employees in the same work group and location will receive different shocks because they have contacts who value watching TV differently because they live in different regions. On average, fewer than 20% of employees in a work group had an identical regional composition of contacts.

I use instrumental variables to reflect this quasi-random adoption. I instrument for each month the heterogeneity-weighted measure of employee $i$’s installed base using the heterogeneity-weighted average TV benefit for each of their contacts $j$. A contact’s TV-watching benefit for that month is the proportion of previous adopters watching local TV in that contact’s region in the next month. For each month and for each employee, I calculate the average TV benefit of each employee $i$’s worker and manager contacts $j 1/n \sum j TV_{j,t}$. When I incorporate heterogeneity in informal influence into measures of the installed base, I weight the instrument accordingly.

The Soccer World Cup in June 2002 illustrates the identification strategy. Figure 2 shows how the percentage of this bank’s employees who watch local TV programming varied across the United States and the United Kingdom in 2002. Whereas the Soccer World Cup in June 2002 elicited great interest from employees in the United Kingdom, it did not interest many employees in the United States. The World Cup is associated with a spike in adoptions in the United Kingdom in May 2002. There is no May spike in the
United States—but there is a smaller spike in June. Figure 3 shows that the spike in adoptions in the United States in June 2002 is dominated by employees in the United States reacting to the TV-inspired adoption of the technology by their contacts in the United Kingdom. This anecdote illustrates the identification strategy. I do not count all earlier adoption by i’s contacts as necessarily causing i’s adoption. Instead, I use variation in employee i’s contacts’ adoption that can be predicted by variation in the stand-alone (TV) benefit. For this to identify a causal network externality requires that there be no systematic reason why an employee who has a high proportion of contacts in a region that is having a TV-watching spurt should be more likely to adopt than an employee who does not have contacts in that region.

6. Estimation and Results
As discussed by Allison (1982), discrete-time hazard models can be estimated using standard binary discrete choice models such as a binary probit if all of the data are organized into a panel and all post-adoption observations are deleted. Because empirical methods for dealing with endogeneity are more advanced for discrete choice models than hazard models, I follow a discrete choice specification. I estimated each employee’s response to the installed base using Newey’s two-step minimum chi-squared estimator for probit with endogenous regressors (Newey 1987, Equation (5.6)). My specification includes instrumented measures of the installed base for each adopter, control variables for the TV benefit in the potential adopter’s region, and dummy variables for product, region, function, title, and every month. Table 2 displays summary statistics for each of the main regression variables.

To illustrate my identification strategy, I first present results from a simple regression where I measure separately how a potential adopter responds to adoption by manager and worker contacts. This allows a simple measure of whether formal position in the hierarchy matters for the size of network externalities. I stratify my estimation by whether the potential adopter is a manager or worker. The estimates are reported in Table 3. A rough calculation of marginal effects at the mean value suggest that adoption by a manager contact increases the probability of a manager adopting by 0.02, up from a baseline probability of adoption of 0.10 in each month. Adoption by a worker contact has a negligible effect on a manager’s adoption decision. Adoption by a manager contact increases the probability of a worker adopting by 0.007, up from a baseline of 0.05 in each month. Adoption by a worker contact has a far smaller marginal effect on other workers’ adoption decisions, of 0.002. Therefore, an increase in the installed base of managers for employee i has a larger effect on i’s adoption decision than an increase in the installed base of workers.

The influence of television, as measured by the percentage of previous adopters watching television in that region, is positive and significant. The estimates for the “pull” of television were greater for workers rather than for managers. This implies more generally that, when firms introduce network technologies, they should focus on a compelling stand-alone use to ease initial adoption.

The instruments for the counts of the installed base are significant at the 1% level. The importance of the instrumental variables strategy is shown by comparing regular probit estimates (in the first column of Table 3) with the two-step results. The probit estimates are larger. This suggests that, without the instrumentation strategy, correlated effects would wrongly be identified as network externalities. In some cases, this could inflate estimates of network externalities by 50%. Furthermore, the probit estimates are not identically larger across the different installed base measures, suggesting that unobserved heterogeneity differs systematically across different
contacts. This makes a crude comparison of the relative magnitude problematic.

I augment these results using measures of formal hierarchical influence and the informal social system implied by the communications data. This use of call data extends previous work such as Kraut et al. (1998) on video-messaging diffusion, which lacked such data to incorporate into their analysis. The results are displayed separately for workers and managers in Table 4. Each column reports results for a different specification, where I allow the installed base (and consequently the instrument) to be weighted by a different measure of a contact’s informal influence. A rough calculation of the relative magnitudes of

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstAdoption</td>
<td>Indicator variable for first month a worker makes outward video-messaging call</td>
<td>0.05</td>
<td>0.244</td>
</tr>
<tr>
<td>FirstAdoption</td>
<td>Indicator variable for first month a manager makes outward video-messaging call</td>
<td>0.10</td>
<td>0.284</td>
</tr>
</tbody>
</table>

RHS variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstalledManager, it</td>
<td>Sum of cumulative adoption by employee i’s contacts who have a title of director or higher by month t</td>
<td>1.309</td>
<td>1.641</td>
</tr>
<tr>
<td>InstalledManager, it (betweenness)</td>
<td>InstalledManager, it weighted to reflect each manager contact’s standardized betweenness score</td>
<td>1.486</td>
<td>2.782</td>
</tr>
<tr>
<td>InstalledManager, it (closeness)</td>
<td>InstalledManager, it weighted to reflect each manager contact’s standardized closeness score</td>
<td>0.263</td>
<td>0.485</td>
</tr>
<tr>
<td>InstalledManager, it (degrees)</td>
<td>InstalledManager, it weighted to reflect each manager contact’s standardized number of degrees (contacts)</td>
<td>1.585</td>
<td>2.798</td>
</tr>
<tr>
<td>InstalledManager, it (power)</td>
<td>InstalledManager, it weighted to reflect each manager contact’s standardized power score</td>
<td>0.035</td>
<td>1.019</td>
</tr>
<tr>
<td>InstalledWorker, it</td>
<td>Sum of cumulative adoption by employee i’s contacts who have title lower than director by month t</td>
<td>7.684</td>
<td>8.705</td>
</tr>
<tr>
<td>InstalledWorker, it (betweenness)</td>
<td>InstalledWorker, it weighted to reflect each worker contact’s standardized betweenness score</td>
<td>9.313</td>
<td>11.818</td>
</tr>
<tr>
<td>InstalledWorker, it (closeness)</td>
<td>InstalledWorker, it weighted to reflect each worker contact’s standardized closeness score</td>
<td>1.569</td>
<td>1.993</td>
</tr>
<tr>
<td>InstalledWorker, it (degrees)</td>
<td>InstalledWorker, it weighted to reflect each worker contact’s standardized number of degrees</td>
<td>10.442</td>
<td>13.755</td>
</tr>
<tr>
<td>InstalledWorker, it (power)</td>
<td>InstalledWorker, it weighted to reflect each worker contact’s standardized power score</td>
<td>−0.094</td>
<td>1.644</td>
</tr>
<tr>
<td>InstalledWorker, it (distance)</td>
<td>InstalledWorker, it weighted to reflect the standardized distance index between i and each worker contact</td>
<td>−0.311</td>
<td>1.271</td>
</tr>
<tr>
<td>TV, r</td>
<td>Proportion of adopters in the employee’s region r who have adopted prior to month t who watch local television channels in month t + 1</td>
<td>0.336</td>
<td>0.359</td>
</tr>
</tbody>
</table>

Total observations: 12,723

Table 3 Instrumentation Strategy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Managers</th>
<th>Probit</th>
<th>Probit IV</th>
<th>Workers</th>
<th>Probit</th>
<th>Probit IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual installed manager</td>
<td>0.1423*** (0.0162)</td>
<td>0.0994*** (0.0261)</td>
<td>0.0674*** (0.0187)</td>
<td>0.0645** (0.0251)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual installed worker</td>
<td>−0.0021 (0.0042)</td>
<td>0.0030 (0.0054)</td>
<td>0.0213*** (0.0032)</td>
<td>0.0177*** (0.0038)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV in employee’s region</td>
<td>0.1808** (0.0927)</td>
<td>0.2009** (0.0948)</td>
<td>0.3438** (0.0745)</td>
<td>0.3790** (0.0755)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,635</td>
<td>4,635</td>
<td>8,088</td>
<td>8,088</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. Dependent variable: indicator for when an employee first makes an outward video-messaging call; sample: adopters who have not yet made a video-messaging call. Dummies for month, region, title, and product are included in all regressions. Instruments for the installed base are the average TV valuation of each employee’s manager and worker contacts. TV valuation is measured by the percentage of prior adopters who watch local TV in that contact’s region in the next month.

*p < 0.10; **p < 0.05; ***p < 0.01.
the marginal effects is provided in Table 5. These marginal effects should be interpreted as the effect on potential adopter \(i\) of adoption by employee \(j\), when employee \(j\) is one standard deviation above the mean by that measure of informal influence. I discuss the relative impact of these measures of informal influence in turn.

“Betweenness” is, loosely, the number of times that the employee lies along the shortest path between two employees in the video-messaging network. Network externalities may increase in size with betweenness if conversations with contacts who occupy boundary-spanning positions in the video-messaging network prove more valuable. Adoption by a manager who has a betweenness level that is one standard deviation above the mean increases the likelihood of a manager adopting by 0.008 and of a worker adopting by 0.002. This is larger than the unadjusted measure, in particular for potential adopters who are managers.

The fact that incorporating betweenness into measures of influence can turn measures of network externalities upside down is plausible. Previous work by managerial researchers emphasizes that betweenness can confer power outside of the hierarchy. Burt’s work on “structural holes” (Burt 1992) highlights how those who broker gaps in communication networks wield social capital. Outside the sociological literature, Hansen (1999) and Tushman (1977) discuss the importance of boundary spanners for knowledge and innovation sharing.

“Closeness” is a measure of how few stages it takes a contact to reach everyone else on the network. Visually, contacts who are in the center of a network are more likely to be “close” than contacts on the periphery. Network externalities may increase with closeness if employees find it more valuable to talk with employees who are central rather than peripheral to the firm. However, it could also be that adoption by nonclose employees will have larger network externalities on adoption by others, because video messaging allows potential adopters to track down people who are hard to reach by other means. Adoption by a worker who has a closeness level that is one standard deviation above the mean increases the likelihood of a manager adopting by 0.007 and of a worker adopting by 0.008. Adoption by a manager who has a closeness level that is one standard deviation above the mean increases the likelihood of a worker adopting by 0.004 and of a manager adopting by 0.001. As Figure 1 shows, the distribution of this measure is highly skewed in a bimodal manner, making any interpretation questionable. However, these results do provide

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Centrality Measures: Effect on Timing of Adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular</td>
</tr>
<tr>
<td>Managers</td>
<td></td>
</tr>
<tr>
<td>Installed worker</td>
<td>0.0030 (0.0054)</td>
</tr>
<tr>
<td>Installed manager</td>
<td>0.0994*** (0.0261)</td>
</tr>
<tr>
<td>TV in employee’s region</td>
<td>0.2008* (0.0948)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,635</td>
</tr>
<tr>
<td>Workers</td>
<td></td>
</tr>
<tr>
<td>Installed worker</td>
<td>0.0177*** (0.0038)</td>
</tr>
<tr>
<td>Installed manager</td>
<td>0.0645*** (0.0251)</td>
</tr>
<tr>
<td>TV in employee’s region</td>
<td>0.3790*** (0.0755)</td>
</tr>
<tr>
<td>Observations</td>
<td>8,088</td>
</tr>
</tbody>
</table>

Notes. Dependent variable: indicator for when an employee first makes an outward video-messaging call; sample: adopters who have not yet made a video-messaging call. Dummies for month, region, title, and product are included in all regressions. Instruments for the heterogeneity-weighted installed base are the heterogeneity-weighted TV valuation of each employee’s manager and worker contacts. TV valuation is measured by the percentage of prior adopters who watch local TV in that contact’s region in the next month.

\( ^* p < 0.10; ^{**} p < 0.05; ^{***} p < 0.01. \)
some evidence that those who have above-average closeness also confer larger network externalities than the norm. This implies that network externalities are larger in general for employees who occupy central rather than peripheral positions in the firm.

“Degree” is a measure of how many contacts an employee’s contact has. Network externalities may be larger for contacts who have many contacts because they have more access to information. Adoption by a worker who has a number of contacts that is one standard deviation above the mean increases the likelihood of both a worker and a manager adopting by 0.001. A comparison to the unweighted results suggests that having a large number of contacts leads workers to have a larger network externality on others than workers who have few contacts. However, adoption by a manager who has a number of contacts that is one standard deviation above the mean increases the likelihood of a worker adopting by 0.005 and has an insignificant impact on other managers. This suggests that, like with betweenness, the impact of a manager’s adoption does not vary systematically with their number of contacts. In general, the results that incorporate degrees into the measure of network externalities resemble (at a smaller magnitude) those for betweenness. This is unsurprising, given that there is a 0.82 correlation between the two measures—having more contacts mechanically increases the likelihood of spanning boundaries between them. The fact that the estimates for the effect of betweenness are larger, however, makes it plausible that betweenness is the more crucial measure.

“Bonacich power” is a measure of how important an employee’s contacts’ contacts are. Network externalities may increase with Bonacich power if employees weight conversations with well connected contacts more. Weighting the installed base by this measure led to a series of insignificant and negative point estimates, suggesting that in this case the mere fact of being connected to important people was not enough to lead a contact to have a large network externality on the adoption decision of others.

The distance weighting I use is simply a measure of whether network externalities increase with linear distance between two employees. It might be reasonable to assume that I value a conversation by video messaging more if my contact is far away because I benefit from not having to make an arduous business trip. I find, however, that this logic applies only to the adoption responses of managers to the adoption of far-flung manager contacts. By contrast, workers seem to receive larger network externalities from other workers who are closer to them. One interpretation of this result is that it is only conversations with managers that warrant actual travel and that managers, being older, prefer to avoid long-distance travel more than workers. Another possible interpretation is that employees in general do not value conversations with workers who are located a long way away from them, perhaps because they tend to be located in more peripheral offices such as in Southeast Asia and Australia. Alternatively, video conferencing may serve as a complement to face-to-face communication rather than a substitute for these workers (this is discussed in the theoretical literature such as Gaspar and Glaeser 1998 and Daft and Lengel 1986).

6.1. Robustness
Generally, with panel data, we are concerned about controlling for the unobserved component in the error term. For example, researchers may wish to control for unobserved individual-level heterogeneity, such as systematic differences in technological aptitude. By contrast, in an experimental setting, the randomized nature of the treatment controls for such correlation across and within subjects. Similarly, if the exogenous shocks that underlie instrumental variables are randomly distributed, then they should also control for such serial correlation across and within subjects. This suggests that, if instruments are valid, the instrumented endogenous variable is unrelated to unobserved components of the error term. However, it is common for researchers who combine panel data with instrumental variables also to provide robustness checks. This both checks for robustness and controls for any unobserved systematic relationship between shifts in instruments and individuals in the data. In this section, I discuss the various specifications that I have used to ensure the robustness of my results.

The Newey two-step estimator does not offer the same flexibility for specifying the error term as maximum likelihood. It is impossible, however, for two endogenous installed base measures to converge in a discrete framework under maximum likelihood. It is possible to use maximum likelihood for a linear probability model and to estimate for this linear model robust/standard errors clustered by region. The results given in Tables EC.6 and EC.7 in the e-companion retain statistical significance. Allowing for correlation within specialization, regions and functions produced qualitatively similar results. The irreversibility of the adoption decision prevents the estimation of individual fixed effects over time or other methods that econometricians commonly use to deal with serial correlation, because each observation is a series of zeros followed by a one (Chamberlain 1985).

Following Allison (1982), I use a threshold model of technology diffusion rather than a hazard model.

\[1\]

I obtain similar results when using nonparametric specifications that reflect whether workers and managers are on different continents.
The month dummies substitute for the hazard model’s flexible specification of baseline hazard heterogeneity. The results in Tables 3 and 4 are representative of a variety of possible month dummy and product/function/region interactions that I tried. This suggests that the current specification is able to control for selection and systematic differences in baseline adoption probabilities for those who adopt in 2003 compared with those who adopt in 2001. In particular, the similarity of the results, even allowing for differences in baseline hazards across different types, alleviates the concern that there may be systematic differences in the evolution of the baseline hazard rate for different types of employees that could contribute to measurement error.

I assume that an employee values adoption of video messaging only by their contacts, rather than valuing an increase in the network size in general. This is discussed in detail in Tucker (2008), where I present results showing that it is only the adoption decisions of others in the network to whom potential adopters are directly connected that are statistically significant for adoption decisions. Adoption by contacts to whom the employee is not directly linked does not have an effect on their adoption decisions that is significantly different from zero.

The instrumental variables procedure allows the interpretation that Tables 3 and 4 capture the reaction of a potential adopter to another’s adoption decision. Causation is established by isolating the reaction of adopters to TV-inspired adoption decisions. It would be conventional in the case of a communications technology to interpret these as a straightforward physical network externality. An alternative interpretation is a “word-of-mouth” effect. This word-of-mouth effect could occur when employees adopt video messaging in response to the adoption of their contacts because these contacts inform them of the merits of the technology. The empirical importance of word-of-mouth in the diffusion of new products has received increasing attention in the marketing literature (Godes and Mayzlin 2004). Two factors, however, argue against a word-of-mouth interpretation in this case. First, there was no correlation in adoption in workplaces where one could occur when employees adopt video messaging only by their contacts, rather than valuing an increase in the network size in general. This is discussed in detail in Tucker (2008), where I present results showing that it is only the adoption decisions of others in the network to whom potential adopters are directly connected that are statistically significant for adoption decisions. Adoption by contacts to whom the employee is not directly linked does not have an effect on their adoption decisions that is significantly different from zero.

The instrumental variables procedure allows the interpretation that Tables 3 and 4 capture the reaction of a potential adopter to another’s adoption decision. Causation is established by isolating the reaction of adopters to TV-inspired adoption decisions. It would be conventional in the case of a communications technology to interpret these as a straightforward physical network externality. An alternative interpretation is a “word-of-mouth” effect. This word-of-mouth effect could occur when employees adopt video messaging in response to the adoption of their contacts because these contacts inform them of the merits of the technology. The empirical importance of word-of-mouth in the diffusion of new products has received increasing attention in the marketing literature (Godes and Mayzlin 2004). Two factors, however, argue against a word-of-mouth interpretation in this case. First, there was no correlation in adoption in workplaces where one could occur when employees adopt video messaging only by their contacts, rather than valuing an increase in the network size in general. This is discussed in detail in Tucker (2008), where I present results showing that it is only the adoption decisions of others in the network to whom potential adopters are directly connected that are statistically significant for adoption decisions. Adoption by contacts to whom the employee is not directly linked does not have an effect on their adoption decisions that is significantly different from zero.

7. Recreating the Communications Network

So far, all estimates have focused on how network externalities influence the adoption timing of the 1,294 employees who adopted the technology. However, this does not explore the equally interesting question of why 824 employees did not adopt. The challenge of including these decisions in the regressions is that we do not know whom the non-adopters would have video-messaged with if they had adopted. The identification strategy rests crucially on differences in the location of each employee’s contacts. One alternative for establishing whom non-adopters may have video-messaged with is to use data from existing communication networks, such as e-mail records or telephone records, and assume that video-messaging would follow a similar pattern. For reasons of legal confidentiality, however, I have not been given access to such data. Therefore, I use the video-messaging behavior of adopters to predict whom nonadopters would have video-messaged with if they had adopted.

Because using adopter behavior to predict non-adopter behavior requires some strong assumptions, in this section I lay down the empirical steps that lead to this strong model of nonadopter behavior. In essence, I assume that the mathematical structure of the relationship between adopter characteristics and their contacts applies out of sample to nonadopters. In other words, there are a set of $Z$ features of users that generate a set of contacts, $W$. However, I observe this relationship $W(Z)$ only when an employee adopts. I do not observe $W(Z)$ when the threshold condition is not met and there is no adoption. Table 6 presents estimates for employee adoption as a function of $Z$. The probability of adoption is increasing in certain characteristics, in particular whether the adopter is European, in an administrative position, or a manager.

The number of contacts an employee has varies significantly with the employee’s role in the firm. Table 6 also illustrates that the size of the contact list for

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage Adopting</th>
<th>Number of Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td>Europe</td>
<td>86</td>
<td>26</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>83</td>
<td>21</td>
</tr>
<tr>
<td>United States</td>
<td>55</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Percentage Adopting</th>
<th>Number of Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>91</td>
<td>35</td>
</tr>
<tr>
<td>Research</td>
<td>62</td>
<td>17</td>
</tr>
<tr>
<td>Sales</td>
<td>73</td>
<td>18</td>
</tr>
<tr>
<td>Trading</td>
<td>59</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Percentage Adopting</th>
<th>Number of Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate</td>
<td>44</td>
<td>16</td>
</tr>
<tr>
<td>Vice president</td>
<td>64</td>
<td>18</td>
</tr>
<tr>
<td>Director</td>
<td>82</td>
<td>19</td>
</tr>
<tr>
<td>Managing director</td>
<td>92</td>
<td>28</td>
</tr>
</tbody>
</table>
adaptors is increasing in the same characteristics as their propensity to adopt. For example, not only are European-based employees, managing directors, and administrators more likely to adopt, but they are also more likely to have more contacts. I cannot, on the basis of this evidence, conclude what the contact list would have looked like for nonadopters. However, if I assume that both follow the same function, then any simulation of the postadoption contact list for the nonadopters should show that the nonadopters have a lower number of simulated contacts. It is therefore reassuring that I predict a mean of 15 contacts for nonadopters and 22 contacts for adopters in my simulation of the network, with a standard error of 4 for both managers and workers. The results that adjust for nonadopters never to adopt. For adopters, I use a similar methodology to predict the unobserved part of their contact network.

The actual procedure I use for simulating the network is more nuanced than suggested by Table 6. This is a sparse network. Of 1.5 million potential links, there were only 23,805 actual links. To predict whom nonadopters would have called, I take the last 12 months’ calling data as representative of communications in the firm and use them to estimate communication choices. I regress an indicator variable for whether or not i video-messaged j or j video-messaged i on a vector of interaction dummies for each pair of caller i and callee j’s characteristics. These interaction dummies include an indicator variable for every possible combination of caller city and callee city. The interaction variable for a caller in New York and a callee in London captures the incremental effect on the probability of a link if the caller is based in New York and the callee is based in London. There are also interaction dummies for every possible combination of caller and callee title, product, product market, specialization, and title in the firm (see Table EC.8 in the e-companion for a full description).

For each nonadopter i, I use the sum of these probabilities to predict the total number of contacts they would have called if everyone in the firm had adopted. I determine the predicted composition of their contacts by ranking the predicted likelihoods of employee i calling employee j. For adopters, I use a similar methodology to predict the unobserved part of their contact network.

To evaluate how well this procedure predicts contacts, I redid the above using data for adopters from August 2001 to August 2002 to predict contacts for those who adopted in August 2002–August 2003. The results suggested that contacts are predicted correctly approximately 60% of the time.

Table 7 gives the results for this full data set, which includes the decisions of nonadopters never to adopt. The results suggest that adoption decisions by managers have larger network externalities on the adoption of both workers and managers than adoption by workers. In this specification, adoption decisions by workers have a statistically insignificant effect for both managers and workers. The results that adjust network externality size by measures of centrality are slightly different from before. Although the betweenness of a worker undoubtedly has a larger impact than closeness or degrees on the adoption decisions of workers, it no longer has a statistically significant impact on the adoption decisions of managers. It is also noticeable that weighting network externalities by centrality leads to a general lack of significance when measuring the impact of managers on both worker and manager adoption. Again, there are no statistically significant results from allowing network

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Predicted Network: Comparison of Different Centrality Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular</td>
</tr>
<tr>
<td>Managers</td>
<td></td>
</tr>
<tr>
<td>Installed worker</td>
<td>0.0102 (0.0157)</td>
</tr>
<tr>
<td>Installed manager</td>
<td>0.0190*** (0.0041)</td>
</tr>
<tr>
<td>TV in employee’s region</td>
<td>0.3295*** (0.0825)</td>
</tr>
<tr>
<td>Observations</td>
<td>23,603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workers</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed worker</td>
<td>0.0089 (0.0220)</td>
<td>0.0586*** (0.0178)</td>
<td>0.0124*** (0.0027)</td>
<td>0.0102*** (0.0020)</td>
<td>0.0290 (0.0197)</td>
<td>−0.0241*** (0.0050)</td>
</tr>
<tr>
<td>Installed manager</td>
<td>0.0272*** (0.0034)</td>
<td>−0.0731 (0.0965)</td>
<td>0.0034 (0.0168)</td>
<td>−0.0024 (0.0125)</td>
<td>−0.0026 (0.0418)</td>
<td>0.0735*** (0.0269)</td>
</tr>
<tr>
<td>TV in employee’s region</td>
<td>0.4979*** (0.0614)</td>
<td>0.6690*** (0.0555)</td>
<td>0.5057*** (0.0617)</td>
<td>0.5324*** (0.0607)</td>
<td>0.6017*** (0.0586)</td>
<td>0.5503*** (0.0588)</td>
</tr>
<tr>
<td>Observations</td>
<td>23,603</td>
<td>23,603</td>
<td>23,603</td>
<td>23,603</td>
<td>23,603</td>
<td>23,603</td>
</tr>
</tbody>
</table>

Notes. Dependent variable: indicator for when an employee first makes an outward video-messaging call; sample: all employees who have not yet made a video-messaging call. Dummies for month, region, title, and product are included in all regressions. Instruments for the heterogeneity-weighted installed base are the heterogeneity-weighted TV valuation of each employee’s manager and worker contacts. TV valuation is the percentage of prior adopters who watch local TV in that contacts region in the next month.

*p < 0.1; **p < 0.05; ***p < 0.01.
network to communicate with. This use of variation at the individual level sets this research apart from previous research on network externalities. Previous research has had to make strong assumptions about the randomness of timing of aggregate shocks to a network. In addition to a more robust identification strategy, this exogenous variation allows analysis of whether network externalities have a pattern of heterogeneity similar to those of other social processes affecting diffusion.

Generally, technology management policy toward encouraging diffusion of network technologies has followed the predictions of the theoretical literature on network externalities and has focused on maximizing network size. My results suggest that this policy approach will not be optimal in all circumstances. A more appropriate policy, for similar technologies, would be to focus incentives at marginal influentials who are potential leaders of others’ adoption, as opposed to the marginal user in general. My results also emphasize that it is not enough to target only those who occupy positions of formal authority. It is also important to target those who have influence because they occupy key positions spanning disparate communication networks or, potentially, those who are central to the communications network.

9. Electronic Companion
An electronic companion to this paper is available as part of the online version that can be found at http://mansci.journal.informs.org/.

Acknowledgments
The author is grateful to dissertation advisors Susan Athey, Timothy Bresnahan, and Liran Einav for their numerous insights and suggestions. The author thanks Shane Greenstein, Rebecca Henderson, Jonathan Levin, Garth Saloner, Kathryn Shaw, Duncan Simester, Scott Stern, Birger Wernerfelt, seminar participants at numerous universities and conferences, and the Management Science review team for their helpful comments. The author also thanks the firm that provided the data, the video-messaging users who agreed to be interviewed, and Alex Mathews for editorial support. Financial support from the John D. Olin Foundation and the Koret Foundation is gratefully acknowledged. All errors are the author’s responsibility.

References

7.1. Limitations
There are limitations in how widely these results can be applied. I am able to estimate precisely how adoption by other employees affects the timing of adoption for employees who ultimately adopt a particular technology in a single firm at a certain point of time. Because this is a communications technology, it is natural to interpret these adoption responses as a network externality, and I provide some limited evidence that suggests that they were not word-of-mouth effects. I extend these results to nonadopters to allow analysis of the adoption decision itself, though the trade-off in using predicted networks is less precise in estimation. It is also important to be clear that the network for which I estimate these network externalities is the one for video messaging. This may not resemble the communications networks for other technologies.

8. Conclusion and Implications
This paper identifies network externalities at the individual level and then uses that identification strategy to evaluate how network externalities vary in size with well recognized measures of formal and informal influence within the firm. My estimates show a great deal of heterogeneity in the size of network externalities that one individual confers on another’s adoption decision. I am able to identify this individual heterogeneity by using a unique identification strategy. I use variation in how someone’s contacts value the technology’s stand-alone use of watching television as a quasi-experiment that leads to exogenous changes in a potential adopter’s installed base. This allows me to identify an individual-level causal network externality, that is, how one person’s adoption of a network good depends on who else is in the network to communicate with. This use of variation at the individual level sets this research apart from previous research on network externalities. Previous research has had to make strong assumptions about the randomness of timing of aggregate shocks to a network. In addition to a more robust identification strategy, this exogenous variation allows analysis of whether network externalities have a pattern of heterogeneity similar to those of other social processes affecting diffusion.

Generally, technology management policy toward encouraging diffusion of network technologies has followed the predictions of the theoretical literature on network externalities and has focused on maximizing network size. My results suggest that this policy approach will not be optimal in all circumstances. A more appropriate policy, for similar technologies, would be to focus incentives at marginal influentials who are potential leaders of others’ adoption, as opposed to the marginal user in general. My results also emphasize that it is not enough to target only those who occupy positions of formal authority. It is also important to target those who have influence because they occupy key positions spanning disparate communication networks or, potentially, those who are central to the communications network.

9. Electronic Companion
An electronic companion to this paper is available as part of the online version that can be found at http://mansci.journal.informs.org/.

Acknowledgments
The author is grateful to dissertation advisors Susan Athey, Timothy Bresnahan, and Liran Einav for their numerous insights and suggestions. The author thanks Shane Greenstein, Rebecca Henderson, Jonathan Levin, Garth Saloner, Kathryn Shaw, Duncan Simester, Scott Stern, Birger Wernerfelt, seminar participants at numerous universities and conferences, and the Management Science review team for their helpful comments. The author also thanks the firm that provided the data, the video-messaging users who agreed to be interviewed, and Alex Mathews for editorial support. Financial support from the John D. Olin Foundation and the Koret Foundation is gratefully acknowledged. All errors are the author’s responsibility.

References


