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A Shortcut to Efficiency: Implications of the Small but Stratified World 

Abstract 

Small World research (Watts and Strogatz 1998) has shown that “rewiring” just a few ties 
to be shortcuts across an otherwise clustered network structure results in a dramatic 
decline in the average distance between nodes but has only a modest effect on the degree 
of clustering.  Accordingly, Small World structures seem to strike an attractive balance 
between two social goals: efficiency and community.  But we show that the purported 
efficiency gains of the Small World may not be realized, even when the “contagions” 
being transmitted are quite “simple” (cf., Centola and Macy 2007).  The problem is that 
Small Worlds rely on a small number of middlemen and are thus highly stratified.  We 
show that structural inequality in Small World graphs can lead to dramatic outcome 
inequality, as reflected in the returns that actors receive from exchanging information 
with each other.  And we show that this outcome inequality characteristic of the Small 
World also makes such structures inefficient when: (a) actors will not transmit valuable 
resources without getting equal value in return; and/or (b) actors are limited in their 
capacities for transmission.  Under these very general conditions and especially in the 
connected structures studied in Small World research, the efficiency gains from the Small 
World are “hogged” by a small number of middlemen positioned on the shortcuts, who 
act as bottlenecks and thereby cause most others to do worse than in a more clustered 
structure.  Our analysis thus demonstrates that the trade-off between efficiency and 
community is difficult to avoid, and the culprit is inequality. 
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Introduction 

As research on social networks has progressed, attention has shifted from understanding 

the relative advantages of positions within a given network structure to clarifying the 

relative advantages of entire network structures.  This shift can be attributed in part to the 

increased computational power that affords the analysis of large-scale structures and in 

part to the theoretical difficulties that result from focusing exclusively on within-structure 

variation without clarifying the implications of a structural configuration for a population 

as a whole.  For instance, while it is generally advantageous for individual actors to 

become brokers, by minimizing the degree to which their contacts are connected (Burt 

1992), the system as a whole would likely suffer if everyone follows this advice (Buskens 

and van den Rijt 2008; see also Gabbay and Zuckerman 1998: 196-198).  Similarly, while 

weak ties can be helpful in overcoming the insularity of a closed community (Granovetter 

1973), one would hardly recommend that all community members concentrate on 

developing weak ties.  These observations point generally to the importance of 

understanding how different structural configurations shape outcomes for a system, and 

they specifically hint at the benefits of role differentiation, whereby some actors 

specialize as “locals” and others as “cosmopolitans” (e.g., Merton 1968; Gouldner 1957; 

Lazarsfeld, Berelson, and Gaudet, 1944). 

 With this agenda in mind, the recent resurgence of research on the “small world 

phenomenon” (Watts 1999a,b; Watts and Strogatz 1998) is noteworthy, as it suggests that 

network structures can be quite efficient when just a few cosmopolitans are added to a 

mix that otherwise consists of individuals with a highly local orientation.  Let us define a 

structure as more efficient insofar as resources flow quickly from actors in one part of a 

structure to actors in more distant parts of a structure who desire or need them.  Given 

this definition, it would seem that the most efficient social structure is maximally dense, 

with all actors linked to everyone else.  But this is unachievable when the structure 

includes many actors, each of whom has limits on the amount of time and energy that 

they can devote to relationships.  When such constraints operate, the most efficient social 

structure would seem to be a network where everyone can reach everyone else in the 

smallest number of intermediaries or “steps.”  Such a structure is one where social 

relationships develop with little regard for interpersonal distinctions, as if network 
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connections develop “at random.”  However, if such undifferentiated structures are 

indeed the most efficient structures we could reasonably achieve, this conclusion is 

distressing because the social structures we observe are far from random, with various 

homophilic tendencies (whereby actors with similar tastes or who share demographic 

categories are more likely to form and retain links with one another; see McPherson, 

Smith-Lovin, and Cook 2001; Reagans 2005) producing significant clustering of relations 

into “local neighborhoods.”  Such tendencies towards highly clustered networks seem to 

imply that significant intervention is required to make the social structures that dominate 

our world more efficient. 

 The signal contribution of Watts and his colleagues (Watts 1999a, b; Watts and 

Strogatz 1998; see also Newman 2000; Newman and Watts 1999) has been to show that 

in fact, only minimal intervention is required to transform a structure from one that is 

highly inefficient, due to local clustering, to one that approximates the efficiency of a 

random network.  To illustrate, consider the three 40-node graphs depicted in figure 1.  

As discussed below, and following past practice in this literature, these networks were 

constructed to eliminate differences in the “degree” or size of actors’ ego-networks (all 

actors have four “neighbors” or contacts) and the degree of connectivity in the graph (all 

graphs are built around a lattice such that everyone can “reach” everyone else through 

n≥1 intermediaries).  The “Clustered World” network of figure 1a and the “Random 

World” network of figure 1c represent polar extremes in terms of degree of local 

clustering, as indicated by the reduction in the “Clustering Coefficient” (CC)-- i.e., the 

mean “neighborhood density” or proportion of a node’s neighbors that are linked-- from 

50% to 2.5%.  And this elimination of clustering brings about a reduction in the 

“Characteristic Path-Length” (L)-- the average or minimal path-length (or “geodesic”) 

between any given pair of nodes in the graph-- from 5.25 steps in Clustered to 2.57 steps 

in Random.  Insofar as efficiency increases as L is reduced, and insofar as the high degree 

of clustering in real-world networks implies that they more closely resemble Clustered 

than they do Random, it would appear that very drastic interventions are required to make 

networks more efficient. 

FIGURE 1 ABOUT HERE 
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 In fact, Watts and his colleagues have shown that such drastic restructuring may 

not be necessary to achieve high levels of efficiency.  The “Small World” network of 

figure 1b, which involves the minimal number (2) of “rewires” possible while keeping 

the number of links constant, produces a drop in L to from 5.25 to 4.31, which represents 

35% of the reduction from Clustered to Random, at the expense of a reduction in CC to 

just 0.45 or 10% of the reduction from Clustered to Random.  And as shown in figure 2, 

just a few more such rewires (in this case, on networks of 100 nodes) produces 

approximately the same L as the most random structures even while retaining a high 

degree of clustering.1 

FIGURE 2 ABOUT HERE 

 To be sure, and as Watts and others emphasize, the fact that just a few shortcuts 

are needed to produce efficient networks is hardly a blessing when interpersonal contact 

allows deleterious contagions to spread.  And Lazer and Friedman (2007) show that 

short-term efficiency can be problematic in the long term because it limits the systemic 

diversity necessary for long term improvements in routines and practices (cf., Uzzi and 

Spiro 2005).  But insofar as members of a system gain from the sharing of certain pieces 

of information or other desirable resources, the results presented in these graphs convey 

the apparent good news that networks that are highly clustered -- and which are widely 

thought provide the benefits often associated with a sense of local community (see 

Vaisey 2007 for review; cf., Coleman 1988; Portes and Sensenbrenner 1993)-- can be 

highly efficient.  Moreover, a spate of recent studies has recently shown that Small World 

(i.e., high CC/low L) networks are quite common (see e.g., Baum, Shipilov, and Rowley 

2003; Davis, Yoo, and Baker 2003; Fleming, King, and Juda 2007; Kogut and Walker 

2001; Uzzi and Spiro 2005; Watts 1999a, b) and thus seemingly quite efficient while also 

preserving community. 

 But note that the prediction that Small World networks approximate the efficiency 

of Random networks relies on the assumption that the efficiency of a network is predicted 

by the average minimum path-length or L.  Centola and Macy (2007) provide the first 

reason for doubt on that score.  hey note that using L as a predictor of efficiency 

                                                 
1 Note that, for illustration purposes, the location of the shortcut in figure 1b was chosen to maximize the 
reduction in L produced.  The results in figure 2 were derived using an algorithm that allows the location of 
shortcuts to be chosen randomly. 
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necessarily involves the assumption that a single link between two actors is sufficient for 

a resource to flow from one to the other-- in particular., that resources flow as readily 

through the “narrow bridges” created by shortcuts (where a bridge is considered narrow 

when the two nodes share no common contacts) as they do through wider bridges.  This 

assumption seems problematic in the case of “complex contagions,” which Centola and 

Macy define as pieces of information that are not credible or persuasive unless they are 

confirmed by multiple sources.  Centola and Macy show that if one assumes that 

confirmation is required for flow to occur, Small World networks are no longer efficient.  

In short, their analysis shows that the expectation that the Small World is efficient 

requires an assumption that often does not hold—i.e., that the mere existence of a path 

from i to j implies that information held by one will eventually reach the other. 

 There is also a second reason for doubting the efficiency of Small World 

networks, which is the subject of the current paper.  In particular, observe that just as 

rewiring a Clustered World network to transform it into a Small World introduces narrow 

paths into a network that had consisted entirely of wide paths, it also introduces variation 

in the distribution of path-distances from a given node to all other nodes.  Observe in 

figure 1 that while there is no variation in g (the geodesic or minimal path-length between 

two nodes) in the Clustered World (SD_g=0) and minimal variation in g in the Random 

World (SD_g=0.05), the Small World exhibits substantial variation (SD_g=0.65)-- from 

highly central actors like Jill and Don (who average 3.3 steps to others) to peripheral 

actors like Sue and Tina (who average 5.3 steps to others, just as they do in the Clustered 

World).  The graphs in figure 3 illustrate how Small World graphs represent an extreme 

in such stratification or “structural inequality.”  Thus, while introducing shortcuts into a 

clustered structure can produce a substantial reduction in path-distances while retaining a 

high degree of clustering, this same intervention produces substantial structural 

inequality. 

FIGURE 3 ABOUT HERE 

 The recognition that Small Worlds are highly stratified raises a key question: How 

does such structural inequality affect the prediction that the Small World is an efficient 

structure for the transmission of “simple contagions” (i.e., those that do not require 

confirmation and thus can presumably travel over narrow bridges; Centola and Macy 
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2007)?  To explore this question, we begin by specifying a simple computational model 

that validates the prediction that the efficiency of transmission is a function of L, thereby 

illustrating the appeal of the Small World in striking a balance between community and 

efficiency (where simple contagions are concerned).  But this model also shows the Small 

World is marked by a spike in outcome inequality, which reflects the fact that the gains in 

efficiency rely disproportionately on a few middlemen who are positioned on or near the 

shortcuts and who are able to earn rents while sharing information with others.  We then 

show that this outcome inequality implies a reduction in efficiency under two conditions 

that are quite widespread in the real world: (a) when actors will not be motivated to pass 

on valuable information without receiving information in return; and (b) when actors 

cannot transmit all that they know in a single interaction.  We show that when either or 

both these conditions apply, the reliance of Small World structures on a few middlemen 

can actually reduce efficiency because such middlemen act as bottlenecks that choke off 

efficiency gains and render peripheral actors worse off.  We conclude by discussing the 

key implication of our analysis-- that rather than presenting a way of escaping the trade-

off between efficiency and community, the stratification of Small Worlds helps us better 

appreciate why such a trade-off cannot be escaped completely. 

 

Baseline model: Efficiency and Outcome Inequality in the Small World 

As discussed above, Small World networks have been proposed as attractive structural 

configurations due to their ability to achieve high efficiency in the transmission of 

desirable, simple contagions while retaining significant clustering.  The basis for the 

expectation that Small Worlds will transmit simple contagions efficiently lies in the sharp 

reduction in the average geodesic or minimum path-length (L) that is produced when just 

a few relationships in a clustered network are rewired, as illustrated in figure 2.  While 

this prediction seems intuitive, it is important to specify the assumptions necessary for 

justifying it.  And once these assumptions are clarified, we can then investigate whether 

the prediction is robust to alternative assumptions.  Thus, we begin by using these 

assumptions to simulate information diffusion across structures that vary from Clustered 

to Random.  We use this simulation to check the internal validity of the basic prediction 

that: (a) a Small World is substantially more efficient, in facilitating the flow of simple 
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contagions, than is a Clustered World; and (b) that additional rewires produce more 

limited gains in efficiency.  In short, we investigate whether these assumptions indeed 

carry the implication that the trend line reflected in the graph of L in figure 2 corresponds 

to the level of efficiency achieved.   

 This model and all that follow in the paper share the following core assumptions 

(cf., Reagans and Zuckerman 2008a): 

 

1. Links as fixed pipes: The network links represent two-way channels through 

which resources can flow between linked actors. 

2. Resources as codified information: The resources are “bits” of “information” that 

are:  

a. “Nonrival,” in that that they are always retained even after they have been 

transmitted, thus allowing each actor to transmit a bit to multiple contacts 

(e.g., Buskens and Yamaguchi 1999; Romer 1990) and  

b. “Simple contagions” in that they are always transmitted without distortion 

or ambiguity and their value does not require social confirmation or proof 

(Centola and Macy 2007). 

3. Uniform valuation: All actors place the same valuation on all bits.  

   

 To test the prediction that efficiency tracks L, we measure inefficiency as the 

average number of interactions in a system that is required for a bit to flow from one 

node to all other nodes in the graph-- i.e., for the piece information to diffuse completely.  

To model this, we: (a) randomly select one node to be the source node s in a given 

simulation by endowing that actor with the bit b to be transferred; (b) we randomly cycle 

through the nodes i without replacement; (c) for each i, we randomly select one of i’s 

neighbors j; (d) if i possess b but j does not, we transfer b from i to j, and vice versa if j 

has b but i does not. 

 The main results from these simulations are presented in figure 4.  As with the 

results in figure 3 and in later analyses, these results are averaged across sets of twenty 

100-node network graphs, and each node has a degree (number of contacts or neighbors) 

of 4.  And the sets of graphs vary according to r, the proportion of rewired links, as 
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delineated across the horizontal axis of figure 4.  The Clustered World is the base case of 

r=0.0%, while the Small World corresponds to the minimal proportion rewired, which in 

the case of a 100-node/degree=4 graph is r=0.5% (2 out of 400 links are rewired).  Note 

that while all r=0 graphs are the same, the set of graphs within a higher r–level 

(including the Small World graphs) differ because the links chosen for rewiring are 

selected randomly.  Thus, while the Small World depicted in figure 1b is deliberately 

chosen to maximize the reduction in L, the effect on L will be less when the rewiring 

involves pairs of nodes that were already proximate to one another.  

 We see from figure 4 that the association between r and efficiency is log-linear in 

a manner that is consistent with the basic prediction, as stated above.  In particular, we 

see that the transformation of the Clustered World into a Small World produces a 

dramatic reduction in inefficiency (or improvement in efficiency), in line with the 

reduction in L shown in figure 2.  Complete information diffusion requires an average of 

1277 interactions when r=0 but requires only 1104 interactions when r=0.5%, an 

improvement in efficiency of 13.6%.  And just as suggested by the trend in L displayed in 

figure 2, there are diminishing returns to additional rewires.  If 1% of the original ties is 

rewired, complete information diffusion takes 990 interactions, which represents a 10.4% 

gain over the first improvement.  Further, 75.3% of the possible gain in efficiency 

associated with a shift from a clustered to a random network is achieved when only 5% of 

the ties in the clustered network has been rewired.  And this dramatic efficiency gain 

comes at the expense of just a 26% decline in clustering (from CC=.50 when r=0 to CC= 

.37 when r=5%).  Thus, the results illustrate that if there are benefits that accrue to 

system members from high degrees of clustering—and which might be summarized 

under the term “community,” Small World networks seem to strike an attractive balance 

between community and efficiency. 

FIGURE 4 ABOUT HERE 

 Yet figure 4 also tells a different story, which corresponds to the pattern in figure 

3-- i.e., Small Worlds can be remarkably efficient (under assumptions 1-3), but they are 

also the most unequal of all worlds.  In short, the measures of outcome inequality in 

figure 4 (standard deviation and coefficient of variation of total surplus) closely track the 

measures of structural inequality shown in figure 3.  We see that the initial rewiring 
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simultaneously produces: (a) a dramatic reduction in path-length, while retaining a high 

degree of clustering, thus leading to the dramatic improvement in efficiency, as shown in 

figure 4; and (b) a dramatic spike in stratification, whereby some nodes become more 

central than others, which leads to a dramatic spike in variation in surplus. 

 To generate the latter result, we followed Reagans and Zuckerman (2008a) and 

built into the simulation the rule, that each time a bit is transmitted from i to j, some 

amount of a general medium of exchange called “dollars” flows in the opposite direction.  

We call this “bit-for-dollar” exchange.  The dollar amount d lies between the “buyer’s” 

(j) willingness-to-pay and the “seller’s” (i) willingness-to-sell.  For simplicity, we assume 

that the bits are costless to produce and distribute, so the seller’s willingness-to-sell is set 

equal to zero (i.e., the seller will sell for any price above zero but prefers as high a price 

as possible).  And following assumption 3, we assume that the willingness-to-pay for all 

actors j for all bits is $1.  The price that j pays i for b is then modeled as decreasing (at a 

decreasing rate) in the number of alternative sources from which actor j can obtain b at 

the time of the focal transaction: 

d jib = wtpjb * 0.5Sjb

0.5
= $1* 0.5Sjb

0.5
.  

where Sjb is the number of j‘s alternative sources for bit b at the time of the interaction 

with i.  So if the buyer j has no alternative sources, j will pay the monopoly price of $1, 

which gives the seller i all available surplus.  The revenue of $1 minus the willingness-to-

sell of $0 equals a seller surplus of $1.  The willingness-to-buy of $1 by the buyer minus 

the price paid of $1 equals a buyer surplus of $0.  But if j has one alternative source, both 

buyer and seller will enjoy a surplus of $0.50; and the buyer’s share will climb at the 

expense of the seller (at a decreasing rate) as the number of alternative sources available 

to the buyer increases.2 

 There will be no variation in surplus (i.e., no outcome inequality, if outcomes are 

measured in terms of surplus) if all nodes in a network are equally likely to: (a) generate 

buyer surplus, due to having multiple sources for a bit being acquired; and (b) generate 
                                                 
2 Clearly, the functional form for the price discount is merely a heuristic device.  We adopt it because has 
the desired properties for such a price function (see e.g., Marsden 1983: 704) and because it serves as a 
convenient way of representing how the terms of exchange should vary with variation in the number of 
alternative sellers available to a buyer.  Note that this approach ignores the possibility that price may be 
increasing in the number of alternative targets or buyers available to a seller.  Reagans and Zuckerman 
(2008a) show that incorporating this modification reinforces the power of a middleman. 

(1) 
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seller surplus, by having numerous opportunities to offer a bit to others, especially when 

those contacts have no alternative sources for the bit.  Such is clearly the case in the 

Clustered World, as illustrated in figure 1a, and demonstrated in the low levels of 

outcome inequality at r=0 in figure 4.  Each actor can garner some seller surplus if she 

acquires a bit before her neighbors because she can then “sell” the bit to at least one of 

her neighbors at monopoly prices.  However, the high degree of redundancy in the 

Clustered World allows the bit to diffuse quickly within the local neighborhood and so 

her monopoly erodes quickly.  Moreover, since all nodes are equally central (and more 

generally, they are all role-equivalent; see Wasserman and Faust 1994) in such structures, 

there is no reason to expect any particular node to consistently earn greater seller surplus 

across simulations.  That is, in a Clustered World, no one actor is better off than her 

peers.  And the Random World also displays little outcome inequality of this sort.  In this 

case, as illustrated by figure 1c, some nodes may be slightly more central than others and 

thus derive a slight advantage in garnering seller-surplus.  But insofar as there tend to be 

numerous alternative routes by which a bit can flow, such advantages are slight.   

 By contrast, the shortcuts that produce Small World graphs (i.e., reduce L while 

retaining high CC) and make them efficient in these simulations by reducing the average 

“travel time” across the structure, simultaneously increase outcome inequality.  This 

follows because, if a bit is to travel the quickest route, it will flow through the middlemen 

who lie on such shortcuts, and this means that such actors will often be in the position to 

sell a bit to neighbors who have no alternative sources for it.  Accordingly, we see in 

table 1 that central actors such as Jill and Don earn more (seller and thus, total) surplus 

than do peripheral actors like Sue and Tina, with such actors as Ned and Ron, who are 

less distant from the shortcut, earning intermediate surplus.3 

                                                 
3 Note that middlemen such as Jill and Don actually earn lower buyer surplus than do actors such as Sue 
and Tina whose contacts are highly redundant with one another (i.e., directly and indirectly linked).  As 
explained by Reagans and Zuckerman (2008a), this represents the weakness inherent in having 
nonredundant contacts—i.e., such contacts will be less likely to possess the same resources at a given 
moment, thus limiting ego’s ability to drive price down as an acquirer or buyer of resources.  In the 
simulations presented here, a middleman’s weakness as buyer is dwarfed by her power as seller because 
middlemen not only can charge higher prices but can also make many more sales.  However, Reagans and 
Zuckerman (2008a) show that if we modify assumption 3 and instead assume that actors’ preferences are 
“homophilic” (i.e., they favor bits that originate in their “local” neighborhood), the seller surplus of 
middlemen can diminish to the point that their total surplus is in fact lower than such actors as Sue and 
Tina. 
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TABLE 1 ABOUT HERE 

Barter is Harder: SW Inefficiency with Information as the Medium of Exchange 

We have shown that under assumptions 1-3, the introduction of shortcuts into a clustered 

structure simultaneously increases its: (a) efficiency due to the decline in L; and (b) 

outcome inequality, due to the rise in variation in g.  Yet as discussed above, the increase 

in outcome inequality raises the question as to whether the predicted efficiency gains will 

in fact be realized.  In short, the dramatic increase in outcome inequality in the Small 

World demonstrates that the efficiency of the Small World depends on a small number of 

middlemen who emerge as a consequence of the shortcuts created by the initial rewires; 

and this raises the question as to why we should expect such middlemen to be motivated 

to increase efficiency. 

 In the “bit-for-dollar” model, motivation was not an issue because we assumed 

that there is a general medium of exchange that actors can use to buy information.  And 

we further assumed that: (a) exchange is frictionless-- i.e., exchange of information for 

the medium does not lower the likelihood that bits will be transmitted faithfully and 

accurately; (b) all actors have enough of that medium to buy the bits they want (i.e., no 

budget constraints); and (c) all actors always want more of that medium (i.e., no satiation 

or wealth effects).  Alternatively, we could have eliminated motivation as an issue by 

assuming that actors transmit their information without asking anything in return.  Such a 

“free transmission” assumption-- i.e., that information is passed from one actor to another 

without regard for what the first actor receives in exchange for that information-- has 

been widely adopted by researchers in the recent small world tradition as well as the 

“strength of weak ties” tradition upon which more-recent small world research builds 

(Granovetter 1973, 1974; Buskens and Yamaguchi 1999; Centola and Macy 2007; but 

see Burt 1992; Reagans and Zuckerman 2008a).  And this assumption enjoys face 

validity, as actors often pass information without an explicit quid pro quo. 

 Yet there is good reason to explore the implications of assuming that actors will 

not be so altruistic, and that there is no general medium of exchange that satisfies the 

three conditions listed above.  The reason for not assuming “free transmission” is 

straightforward.  Insofar as a transmitter understands that the information has significant 

value for the recipient and/or transmission carries some cost to the transmitter, it is 
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awkward to expect the transmitter to give away that information without receiving 

something in return, at least in the future.  Accordingly, Smith (2005) shows that 

information about job opportunities (the focus of Granovetter 1973, 1974) often does not 

flow from one actor to another if the first actor is concerned about the reputation cost 

incurred when the second actor applies for the job and does not perform well.  Such cases 

of “exchange failure” seem quite common and suggest both that: (a) actors often refuse to 

pass on knowledge without receiving something valuable in return; and (b) that 

sometimes the “price” required for transmission is too high for the “buyer” to pay-- 

perhaps because the buyer is resource-poor or perhaps because there is no mutually 

agreeable medium of exchange, either monetary or in-kind, according to which the value 

of the knowledge can be made commensurate (Espeland and Stevens 1998).  In other 

cases, however, actors do agree upon a medium of exchange-- e.g., deference toward the 

seller (e.g., Blau 1964; Emerson 1962: 39) or money (e.g., referral fees [e.g., Fernandez, 

Castilla, and Moore 2000]), as captured in the previous simulations.   

 Perhaps most commonly, however, actors exchange information for other 

information.  Accordingly, we now modify the earlier simulation to analyze the 

efficiency of information-diffusion when “bits” are exchanged for other “bits” rather than 

for “dollars.”  In order to model such “bit for bit” barter, we need to make an important 

modification to the previous model.  As is typical in past research (e.g., Buskens and 

Yamaguchi 1999; Centola and Macy 2007), bits could not be exchanged for other bits in 

our previous model because only one bit was traveling through a network in a given 

simulation.  That is, the “bit for dollar” model presented above involved “single bit 

diffusion.”  But it seems more realistic to assume instead that multiple pieces of 

information are traveling through the network at a given moment—what we call, 

“simultaneous bit diffusion.”  In particular, rather than randomly selecting a node to be 

the source for the single bit that will be transmitted through the network, we now model 

information-flow as simultaneous bit diffusion.  This involves endowing all actors in the 

network with a single unique bit, and then running the simulation either until all actors 

become fully informed or the system reaches an equilibrium in which bits are no longer 

being transmitted.  In the next section, we will show how the assumption of 

simultaneous-bit diffusion affects the results from bit-for-dollar exchange (cf., Reagans 
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and Zuckerman 2008a).  But now we focus on the main benefit of incorporating this 

assumption, which is that it allows us to explore the implications of information 

exchange.  In particular, rather than making the flow of bits in one direction contingent 

on the flow of dollars in the other direction, we model “bit-for-bit” barter by assuming 

instead that in order to motivate i to transmit a bit b1 that j does not yet have to j, j must 

possess another bit b2 that i does not yet possess, and transmit b2 to i in exchange for 

receiving b1.  If either i or j possess more than one bit that the other does not possess, we 

randomly select one such bit for exchange, so that all exchanges are one-for-one.   

We expect that this change in the medium of exchange will have a critical effect 

on the prediction that the efficiency by which simple contagions diffuse tracks the 

reduction in L.  In short, when information is exchanged for other information, an 

increase in stratification threatens to lower efficiency because middlemen become 

bottlenecks who stop trading once they are fully informed.  And this cessation of 

information-flow will then cascade from the center to the periphery of the network, 

leaving peripheral actors especially frustrated in their attempts to obtain desired 

resources.  To see this, observe first that full diffusion is rare under “bit-for-bit” exchange 

in any network structure because the first actor to obtain all available bits loses the 

motivation to pass on what he knows.  Thus, when modeling “bit-for-bit” exchange, we 

measure efficiency not in terms of the speed by which full-diffusion happens but in terms 

of the extent of diffusion.  In particular, we define efficiency in such systems as the 

median proportion of bits in the system that actors accumulate by the end of a simulation.  

The question then is which types of structures facilitate more extensive diffusion, where 

actors must have a bit to obtain a bit. 

As with “bit-for-dollar” (or free transmission), Random Worlds are much more 

efficient by this criterion than are Clustered Worlds, as demonstrated in figure 5 (based 

on the network graphs from figure 1).  The median member of these systems receives a 

total (over 1,000 simulations) of 38.4 of the 40 bits in the system, with the most informed 

member obtaining 39.6 bits and the least-informed receiving 34.7.  These less-informed 

actors stop accumulating information when all their neighbors no longer need the bits 

they possess.  But while such bottlenecks occur in a Random World, they are relatively 

rare because all actors can reach one other in a small number of short indirect steps.  As a 
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result, the system is not dependent upon participation by any one node (or small number 

of nodes) and so, information can diffuse broadly even as some nodes cease to be 

interested in exchanging.  By contrast, bottlenecks are much more common in a Clustered 

World, leading to a lower level of efficiency (median number of bits obtained=28.5).  

Complete diffusion is contingent upon how effectively information flows between 

proximate neighborhoods.  Although all of the actors are role equivalent, it will often be 

the case that one actor will accumulate what his or her contacts know and stop sharing 

information.  Such a node becomes a bottleneck in the flow of information between 

proximate neighborhoods, resulting in incomplete information diffusion.  Note, however, 

that the gap between the most-informed (29.4) and the least-informed (27.9) is quite 

small, which reflects the fact that while bottlenecks form in each simulation, they tend to 

be equally likely to appear at any location in Clustered World.  As with the Random 

World, no node or set of nodes enjoys an advantage in a Clustered World. 

FIGURE 5 ABOUT HERE 

By contrast, the challenge to efficiency in the Small World lies in the fact that 

bottlenecks are unevenly distributed.  As shown by the previous model, the introduction 

of shortcuts allows middlemen to accumulate bits quickly.  And when, as assumed by that 

model, middlemen can be motivated to share those bits with their neighbors, the 

predicted efficiency gains are realized.  But we have seen that when information is 

exchanged for information, exchange failures can occur.  In the Random and Clustered 

Worlds, such failures are evenly distributed throughout the system.  But in the Small 

World, they occur systematically at the middlemen nodes that are produced by shortcuts.  

Once their neighbors no longer have any new bits of information to offer, middlemen 

stop sharing what they know.  And since middlemen are more central to the flow of 

information, once they stop exchanging, they serve as bottlenecks that inhibit information 

diffusion.  Accordingly, there is no longer a basis for expecting Small Worlds to be 

efficient (i.e., to attain a high proportion of bits diffused) under these conditions.  Rather, 

the results in figure 5 show that the Small World network is not only much more unequal 

than either the Random or Clustered Worlds (minimum of 21.6 vs. maximum of 39.7 bits, 

which is even higher than in the Random World), but it can be less efficient than them as 

well, if we measure overall efficiency by the system median (24.6).  The results in table 2 
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illustrate the reasons for this drop in efficiency.  The shortcuts in the Small World 

network allow middlemen like Don and Jill to accumulate information from both sides of 

the network.  And nodes like Ned and Ron benefit from being connected to Don and Jill.  

However, peripheral nodes like Tina and Sue are made worse off because Don and Jill 

accumulate (virtually) all of the information and then stop exchanging, with the cessation 

in exchange cascading through the system to the point that they end up with fewer bits 

than they do in a Clustered World.  In short, the outcome inequality of the small world 

impedes its efficiency once we assume: (a) that actors must be motivated to transfer 

valuable resources; and (b) there is no general medium of exchange that satisfies the 

highly restrictive conditions modeled in the bit-for-dollar model. 

Results that reinforce this conclusion can also be observed in the 100-node 

networks, as shown in figure 6.  As before, the vertical axis in figure 6 is the proportion 

of the total number of bits accumulated and the horizontal axis is the proportion of the 

original network that has been rewired, though the distribution is curtailed at r=20% 

rewired for presentation purposes.4  And we see that as in the case of bit-for-dollar 

exchange (figure 4) on the same distribution of graphs, there is a general tendency 

towards greater efficiency as the graphs are rewired to become more random.  Yet the 

initial rewires produce substantial increases in outcome inequality with essentially no 

change in efficiency.  After the first rewire, the median proportion of bits increases very 

slightly (40.8 versus 41.33), while the distribution around the median increases 

substantially.  And additional rewires actually reduce efficiency slightly (median of 40.4 

at r=1.5%), and only start to increase thereafter.  In short, the Small World graphs are 

marked by negligible changes in efficiency with dramatic increases in outcome inequality 

(as measured by variation across actors in the amount of information obtained).  

FIGURE 6 ABOUT HERE 

The results in figures 7 and 8 provide additional insight into this effect.  To recall, 

each r-level beyond r=0 is actually a set of graphs (with the previous results averaged 

over that set), which differ according to where the rewires occur.  This produces variation 

within any r-level, in the degree to which the additional rewire lowers L-- and 

                                                 
4 If one extends the analysis to include r>20%, the variance quickly disappears, with all actors obtaining 
virtually all the available bits. 
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correspondingly increases SD_g or COV_g.  For example, while figure 1b depicts a 

shortcut that produces the largest decrease in L and the largest increase in SD_g (or 

COV_g), rewiring more proximate sets of nodes will produce smaller increases in 

structural inequality.  This provides an opportunity to explore how various Small World 

(i.e., r=0.5%) graphs vary in their effect on efficiency and outcome inequality.  

Effectively, we have argued that the reduction in L from the Clustered World to the Small 

World is problematic because it is accompanied by an increase structural inequality, 

which thereby: (a) raises outcome inequality, either as surplus or as information that 

disproportionately flows to middlemen along the shortcuts; and (b) such outcome 

inequality limits predicted efficiency gains because the middlemen act as bottlenecks. 

The results in figure 7, which sort the twenty Small World graphs according to the 

reduction in L (and correspondingly, rise in structural inequality), substantiate this 

interpretation.  In particular, we see that shortcuts that traverse a longer distance in the 

Clustered World (i.e., producing a lower L) increase the mean proportion of bits obtained, 

but reduce the median proportion of bits obtained.  When L is low (the rewired link 

traveled a long distance), the mean is larger than the median, which implies that a small 

number of actors accumulate a relatively large proportion of the bits--i.e., there is more 

information inequality.  When L is high (the rewire traveled a short distance), the median 

is larger than the mean, which implies less information inequality.  The reference line in 

figure 7 is the median proportion of bits obtained when the network is clustered.  The 

results carry the ironic implication that, when efficiency is measured from the standpoint 

of the typical member of the system, Small World structures are less efficient when the 

initial shortcut is “optimally” placed (as in figure 1b), in that they link otherwise distant 

actors.  This result directly contradicts the basic prediction from small world literature to 

this point, which expects increases in efficiency from shortcuts that reduce L.  The 

problem is that such shortcuts also make some actors much more powerful than others, 

and such actors may be not be altruists. 

FIGURE 7 ABOUT HERE 

The results in figure 8 provide additional insight into this implication.  To produce 

figure 8, nodes within Clustered (r=0) and Small (r=0.5%) World 100-node graphs were 

ranked in terms of the proportion of bits obtained within a given system, with a rank of 1 



 16

indicating that the node had accumulated the most bits and 100 indicating the least 

informed node.  The solid line in figure 8 shows the distribution of the proportion of bits 

obtained across ranks in the Clustered World, while the dashed line shows the 

distribution in the Small World (averaged across the twenty graphs).  We see that the 

medians of the two distributions are nearly identical (because the Small World graphs 

include some graphs with ‘suboptimally placed shortcuts).  And we see that while the 

bottom quartile is worse off due to the introduction of a shortcut, the top twenty-five 

actors are better off.  The gains and losses are not symmetric.  The gains experienced by 

actors at the very top of the distribution are much larger than the losses experienced by 

actors at the bottom of the distribution.  This is consistent with the result in figure 7, 

whereby the increase in mean efficiency associated with decreases in L is coupled with 

declines in median efficiency.  In sum, we have seen that the stratification produced by 

introducing shortcuts into a clustered world not only engenders outcome inequality but 

that such outcome inequality can lower efficiency as well, especially if: (a) we consider 

the effect on the typical member of a system; and (b) especially if the shortcut is 

optimally-placed. 

In sum, a contrast of results from the two models we have presented-- “bit-for-

dollar, single-bit diffusion” and “bit-for-bit simultaneous diffusion” indicate the 

conditions under which a Small World will indeed represent an attractive balance of 

clustering and efficiency (in the diffusion of simple contagions).  Results from the first 

model indicated that the expected gains in efficiency from a Small World can be realized 

despite the outcome inequality that inheres in such structures insofar as the actors 

involved are altruists or there is a general medium exchange that satisfies the restrictive 

conditions discussed above.  But results from the second model suggest that when those 

assumptions are not satisfied--as seems generally to be the case, efficiency will be 

compromised because the middlemen who are needed to ensure efficiency in the Small 

World become satiated; and once satiated are no longer interested in sharing information.     
 

SW Inefficiency Due to Limited Bandwidth 

Bit-for-Dollar, Simultaneous Diffusion. Before discussing the broader implications of the 

foregoing analysis, we now show that the structural inequality inherent in the Small 
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World can reduce efficiency even when motivation is removed as an issue.  To see this, 

contrast the results in figure 9 with those in figure 4.  To recall, the results in figure 4 

derive from a “bit-for-dollar, single-bit diffusion” model, whereby one node is selected as 

a source node and then the bit is exchanged for dollars according to the price function in 

equation 1.  The results in figure 9 derive from the same bit-for-dollar model, but under 

“simultaneous diffusion,” as in the previous bit-for-bit model.  A comparison of results in 

figures 4 and 9 shows that this change in the mode of diffusion has a substantial and 

meaningful impact on the level of efficiency of the Small World relative to the Clustered 

World.  Note first that the effect on outcome inequality, as measured by surplus, is 

effectively the same as under single-bit diffusion.  The stratification of the Small World 

means that the middlemen along the shortcuts extract significantly more surplus from 

transmitting more bits at higher prices than do more peripheral actors.  It is important to 

recall as well that, in evaluating the efficiency of these systems, that motivation is not an 

issue, just as it was not an issue in the first bit-for-dollar model.  While actors may have 

to pay for the bits they obtain, they always have enough dollars to motivate the 

transmitters and so bits will diffuse completely.  Accordingly, the measure of inefficiency 

in both cases is the mean number of interactions required for full diffusion.  And yet, 

while motivation is not an issue in either set of simulations, the effect on inefficiency is 

quite different.  While the results in figure 4 are consistent with the basic prediction that 

inefficiency should track the reduction in L, this is not the case for the results in figure 9.  

To be sure, it remains the case that overall, the more a structure is rewired to be more like 

a Random than a Clustered World, inefficiency is reduced.  But the initial rewires that 

create Small World networks (i.e., high CC/L structures) actually bring about a spike in 

inefficiency under simultaneous diffusion whereas they reduce inefficiency under single-

bit diffusion. 

FIGURE 9 ABOUT HERE 

Why does the structural inequality of the Small World reduce inefficiency even 

when motivation is removed as an issue?  The answer is that the middlemen will still act 

as bottlenecks as long as one assumes that actors have limited bandwidth or capacity for 

transmitting information within a given time-interval.  The type of bottleneck created by 

limited bandwidth stems not from middlemen’s unwillingness to pass on information 
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once they have their alters’ information, but from the fact that that their selection of some 

bits for transmission crowd out other bits that could otherwise have been transmitted.  To 

see this, consider how bits might flow through the Clustered and Small Worlds of figure 

1.  In the Clustered World structure, the set of bits flowing through one part of the graph 

(e.g., the “bottom”) at a particular point in time will not overlap with those flowing 

through another part of the graph (e.g., the “top”).  But in the Small World, there may be 

considerable redundancy in such flows.  Such overlap is created when the middlemen at 

either end of a shortcut (e.g., Don and Jill) transmit the same bits in the same direction 

(e.g., rightward, towards Sue).  As a result, a peripheral actor such as Tina or Sue now 

can receive the same bits from multiple directions.  Crowding in the channels of 

communication slows that rate at which information reaches more peripheral actors.  This 

explains why there is an increase in inefficiency under simultaneous diffusion. In 

particular, from any actor’s perspective, his alters will help him get information faster 

when they effectively divide their labor, with each one specializing in acquiring and 

transmitting different sets of bits.5  But while this specialization pertains in the Clustered 

World, the introduction of shortcuts hampers such specialization in the Small World.  

Thus, as shown in figure 10, the transformation of a Clustered World into a Small World 

both increases outcome inequality and reduces efficiency.  While the middlemen along 

the shortcuts obtain all the bits much faster in the Small World (and they can earn 

significant rents in the process), the typical member of the system (measured either by the 

mean or the median) accumulates bits less quickly. 

FIGURE 10 ABOUT HERE 

This second bottleneck effect can be eliminated by widening the necks—i.e., by 

relaxing the assumption that actors transmit and receive a maximum of one bit during an 

interaction.6  Thus, we show in figure 11 results from an identical simulation, but with 

actors now assumed to have unlimited bandwidth.  That is, they transmit everything they 

know during a single interaction.  Under these conditions, the results closely track what 

                                                 
5 At the same time, the fact that such peripheral actors now have more options for obtaining the same bit 
explains why the spike in outcome inequality (which is driven in part by buyer surplus) is not as great in 
figure 9 as in figure 4.   
6 This problem could also be alleviated if middlemen coordinated their transmissions such that they made 
sure not to transmit redundant flows of bits down parallel paths of the structure.  Besides raising the issue 
of motivation anew, this solution requires unrealistic capacities for coordination. 
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we found under one-bit-at-a-time diffusion.  While outcome inequality increases 

significantly, there are now substantial gains in efficiency from the first rewire, which are 

widely shared.  This follows from the fact that if bandwidth is unlimited, it is no longer a 

problem if middlemen transmit the same bits along parallel paths because many bits can 

flow along those paths at the same time.  Indeed, all structures are much more efficient 

under these rules.  The question, however, is how realistic it is to assume that actors have 

unlimited bandwidth.  Insofar as actors are in fact limited in how much they can transmit 

in a given encounter, we have seen that the stratification of Small Worlds is problematic 

because the middlemen that are counted on to provide efficiency gains can add 

inefficiency even when they are fully motivated to pass on what they know.  The problem 

is that if they are likely to pass on limited amounts of the same information when it 

would be better (for more peripheral actors) to specialize. 

FIGURE 11 ABOUT HERE 

Overloaded and Unmotivated. Our final simulations follow on the last simulation in that 

bandwidth is removed as a constraint, while we reintroduce the issue of motivation.  

These analyses are motivated in part by a potential objection one could raise to our 

conclusion that when actors are not altruists (and there is no medium of exchange that 

satisfies the restrictive assumptions discussed above), the stratification of Small World 

will eliminate and can even be said to reverse the expected efficiency gains.  In 

particular, insofar as bandwidth is limited in the bit-for-bit barter models presented 

above, it could be that the decline in efficiency resulted not from the middlemen’s lack of 

motivation to pass on what they knew, but from a version of the crowding-out effect 

demonstrated in the last section.  Thus, we now lift the bandwidth restriction to better 

isolate how an actor’s demand for compensation (in the form of new information) to 

motivate him to transmit information affects overall system efficiency in the Small World 

versus other worlds. 

 We model unlimited-bandwidth bit-for-bit barter in two ways, with results shown 

in figures 12 and 13.  In each case, the results may be directly compared with those in 

figure 6, which are also derived from bit-for-bit barter, but with the actors limited to one-

for-one transactions.  We now loosen this restriction.  First, to produce the results in 

figure 12, we require only that the number of bits that are transmitted in each direction be 
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equal.  For instance, if i and j each have three bits that the other does not yet possess, they 

each transmit three bits to one another.  But whereas the removal of the bandwidth 

restriction restores the promised efficiency of the Small World when motivation is not an 

issue (figure 11), it actually exacerbates the inefficiency of the Small World when actors 

must be motivated to transmit information.  Thus, we see that whereas the median 

proportion of bits obtained is essentially flat after the first few rewires when bandwidth is 

restricted (figure 6), there is a clear decline when bandwidth is unrestricted (figure 12).  

This reflects the fact that while actors can now become informed faster, middlemen 

become fully informed even faster.  The problem of motivating middlemen has not gone 

away and the bottleneck that they represent now operates to significantly limit the spread 

of information.  That is, the cascades of exchange-cessation happen sooner. 

FIGURE 12 ABOUT HERE 

 The results in figure 13 model the effect of motivation in a slightly different way, 

but with substantially the same effects.  Whereas the previous bit-for-bit models assume 

that actors are willing to trade whenever they acquire a number of bits equal to the 

number they are being asked to transmit, our final simulation follows the bit-for-dollar 

simulations in supposing that i will not consider it an equal trade if j offers him bits that 

he can obtain from other contacts k in return for bits that j cannot obtain from anyone but 

i.  That is, we assume that prices can be expressed in barter exchanges as well, and that 

the price i must pay j declines in the number of options i has for acquiring any bits that j 

offer.  To introduce prices into the bit-for-bit framework, we: (a) consider all bits that 

each member of a dyad i and j could share during an interaction; (b) count the number of 

alternative sources or options i has for each bit that j possesses but i lacks, and vice versa; 

and (c) mark either i or j as the more powerful actor depending on which one has the 

most sources taken over all bits that could be exchanged.  If neither party has additional 

sources (e.g., at the start of the interaction) or if the maximum number of sources held by 

i (taken over the bits that j possesses and i lacks) equals the maximum number of sources 

held by j (taken over the bits that i possesses and j lacks) then the simulation proceeds as 

in the prior simulation—i.e., i and j exchange as many bits as they can as long as it is an 

equal trade.  But if one party is more powerful than the other, we assume that the more 

powerful party will demand extra bits, with the additional number equal to the number of 
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additional sources it has.  For example, if i and j each have two bits that the other seeks, 

but if i has an alternative source for one of those bits but j has no alternatives for either, 

then i will receive j’s two bits and j will receive only 1 (randomly selected).  We further 

assume that the exchange will not be completed if the “weaker” actor involved in the 

interaction does not have enough information to meet these terms of trade.  Since 

middlemen are more likely to have multiple sources, we are essentially allowing 

middlemen to exercise their power by devaluing their contacts’ bits relative to their own, 

an assumption which has face validity.  Structurally advantaged actors often believe that 

their time and resources are worth more, even when talent and ability have very has little 

to do with their structural position (Gould 2002). 

FIGURE 13 ABOUT HERE 

As shown in figure 13, these simulation rules produce similar effects.  In 

particular, the initial rewires of the Clustered World reduce efficiency, when such 

efficiency is measured as the median proportion of bits that are obtained by the end of the 

simulation.  Of course, while most actors do worse, some do much better.  In particular, 

the rewires allow the middlemen along the shortcuts of the Small World (r=0.5%) to 

obtain an average of 92.3 of the 100 bits.  This compares with only 81.2 bits in the prior 

simulation, which did not incorporate relative power.  Thus, we have shown that the 

stratification of the Small World can be expected to reduce efficiency when either, and 

especially if both of the following very general conditions apply: (a) actors are limited in 

their bandwidth, or capacity for transmitting information; and (b) actors need to be 

motivated to transmit the information in their possession. 

 

Conclusion 

Until recently, the global network properties that define the “Small World” --i.e., short 

path-lengths and high clustering--were thought to be in opposition (Watts and Strogatz, 

1998: 440).  The signal contribution of Watts and his colleagues (Watts and Strogatz 

1998; see also Newman 2000; Newman and Watts 1999; Watts 1999a, b) was to 

demonstrate that as one moves from a clustered to a random network, both global 

network properties decline but the average path-length declines at a much faster rate.  

Consequently, it is possible to have a network with a relatively high degree of clustering 
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and relatively short path-lengths.  This insight is sociologically interesting, at least in 

part, because it suggests that Small World networks can satisfy two social goals that are 

often used to evaluate social systems: “community” and “efficiency.”  We defined a 

structure as more efficient insofar as resources flow quickly from actors in one part of a 

structure to more distant actors who desire or need them.  Defining what is meant by 

community is notoriously difficult (see Vaisey 2007 for review), and is outside the scope 

of the present paper.  For this discussion, however, it is sufficient to note that: (a) there 

are various collective resources that are frequently labeled with the term community (e.g., 

Coleman 1988; Portes and Sensenbrenner 1993); and (b) if the production of such 

resources cannot be reduced to network clusters, such clustering at least facilitates their 

production (Etzioni 2001).  Thus, if adding shortcuts to a clustered network preserves 

community benefits while increasing efficiency, Small World networks appear to strike 

an attractive balance between community and efficiency. 

 In the foregoing analysis, we join an emerging line of research that tempers the 

enthusiasm for Small World structures with the recognition that shortcuts are often 

unreliable carriers of resources, at least when they are “manned” by human agents.  

Centola and Macy (2007) provided the first reason for doubting the efficiency-enhancing 

possibilities of shortcuts.  They argue that the shortcuts characteristic of the Small World 

are too narrow to support the spread of an idea or innovation that requires confirmation 

from multiple sources.  Like Centola and Macy, we: (a) point to an unrecognized 

structural implication of relying on shortcuts to achieve efficiency--the structural 

inequality they inherently produce; and (b) argue that sensitivity to either or both of two 

aspects of human nature-- self-interestedness and limited processing capacity-- implies 

that this structural inequality will make Small World structures inefficient, at least from 

the standpoint of the typical member.  In short, the very same shortcuts that make 

efficiency and community more achievable in the Small World also introduce structural 

inequality and thus set the stage for outcome inequality.  If the predicted efficiency gains 

are to be realized, valuable resources must travel across the bridges middlemen provide.  

But we have shown that the typical actor in a Small World structure actually obtains less 

information than in a highly clustered structure once we assume that middleman (and 

actors more generally): (i) require (the promise of) information to motivate them to 
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transmit information; and/or (ii) are limited in their capacity for transmitting information, 

even if fully motivated to do so.  Thus, rather than striking an attractive balance between 

efficiency and community, our analysis suggests rather that it is very hard for social 

systems to achieve both high degrees of efficiency and community.  The reason for such 

difficulties is that the attempt to achieve efficiency while retaining community involves a 

necessary increase in structural inequality.  Such structural inequality in turn produces 

outcome inequality; and such outcome inequality will hamper efficiency if we assume 

actors are self-interested and/or limited in their capacities.  

 Of course, one could reasonably challenge the realism of the assumptions we have 

adopted and incorporated into the simulations we presented.  We concede that these 

models are highly stylized and can provide insight only insofar as the assumptions 

capture an important aspect of real-world behavior.  Insofar as real-world behavior 

departs from our assumptions, we will have done analytic violence to that reality.  At the 

same time, if we are to realize the substantial promise of social network analysis (and 

sociological theory more generally) for understanding the properties of different social 

positions and systems, some set of simplifying assumptions must be adopted.  Moreover, 

we believe that the assumptions we have adopted here are more realistic than the 

alternatives that had (implicitly) been adopted in the prior literature, and that they 

represent a good starting point for future research.  To see this, it is useful to consider the 

implications of our analysis for how a “social engineer” might try to avoid the barriers to 

achieving high degrees of community and efficiency we have identified. 

 One set of measures would be behavioral.  In particular, the social engineer might 

try to select agents or modify (i.e., teach) existing agents to overcome the limitations that 

we have assumed.  That is, one might try to populate the world (and the middleman 

position in particular) with altruists who do not have limitations on their capacities for 

processing information.  Clearly, much education is invested in the development of 

information-processing capacities, and various modern technologies and institutions are 

often touted as enlarging such capacities beyond those of any individual.  Moreover, 

actors who occupy middleman positions can often be expected to develop additional 

capacities for absorbing and transferring knowledge (see Reagans and Zuckerman 2008b; 

cf., Burt 2008; Reagans and McEvily, 2003; Cohen and Levinthal 1990).  And yet, even 
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with the enlargement of such capacities, it still seems reasonable to assume that 

individual capacities will always strain against the enormous (and increasing) volume of 

information in modern society.   

 Note further that even if we believe that our social engineer could avoid the 

problem that the actors have limited capacities, it is not clear how he could populate his 

world with altruists.  Certainly, Hillel’s famous dictum, “If I am only for myself, what am 

I?”7 reflects an ethic that is widely shared and sometimes followed.  But of course, such 

appeals to altruism would not be made if altruism came easily to humans, especially in 

resource-constrained environments.  Moreover, self-interestedness in moderation is no 

vice, as reflected in Hillel’s preceding remark-- “If I am not for myself, who will be for 

me?”-- and as famously noted by Adam Smith.  Thus, even were it possible for our social 

engineer to banish self-interestedness, it might not even be advisable for him to do so. 

 Perhaps, however, the social engineer could avoid the inefficiency produced by 

shortcuts, not by selecting or modifying the human beings who populate the middleman 

position, but by modifying the rules of exchange.  In particular, the “bit-for-dollar” 

models we presented, in which bandwidth limitations did not restrict information-flow 

(either because a single bit was flowing at a time, or because each actor had unlimited 

bandwidth), did not suffer from lower efficiency in the Small World because middlemen 

were fully motivated by their earnings in “dollars.”  But while it is in fact quite common 

for information to be exchanged for a general medium of exchange (hence the term, 

“knowledge economy”), such currencies seem typically-- and perhaps, inherently-- to fail 

to satisfy the three conditions necessary discussed above: (a) no frictions or costs 

incurred in exchange; (b) no budget constraints; and (c) no satiation effects.  The 

challenge of eliminating budget constraints seems the most obvious, especially if we 

focus on money as the relevant medium of exchange.  And while the issue of satiation 

may not appear to pertain in the case of money, both budget constraints and satiation are 

quite salient if we focus on what is perhaps the most common currency for obtaining 

information: deference (see e.g., Blau 1964; Emerson 1962: 39).  In particular, insofar as 

deference has zero-sum properties (i.e., deference to one party has value only insofar as it 

implies lack of deference to others), budget constraints inhere in such an exchange 

                                                 
7 Mishna tractate Avot, 1:14. 
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system.  Moreover, insofar as the value of deference is increasing in the status of the 

deferrer, the high-status actor will necessarily be satiated--i.e., unmotivated-- by 

deference from low-status actors.  In sum, while it may be reasonable to assume or even 

engineer a system based on the exchange of information for a general medium of 

exchange, it seems unreasonable to expect that such a medium will satisfy the conditions 

necessary to motivate the middlemen along shortcuts to help Small Worlds reach their 

potential efficiency. 

 A final approach is structural.  In particular, if the problem is that middlemen 

reduce efficiency by serving as bottlenecks, our engineer could try and reduce the 

network’s dependence on these middlemen.  As the structure is rewired to include more 

shortcuts, efficiency gains are more certain because system level outcomes are less 

sensitive (i.e., more robust) to the behavior of a small number of central individuals.  But 

insofar as there is a host of “community” benefits that emerge in highly clustered 

structures, such a strategy means foregoing such benefits because introducing more 

shortcuts produces a decline in clustering.  Thus, while previous research had suggested 

that Small World networks strike an attractive balance between community and 

efficiency (for simple contagions), our analysis of the “Small World Phenomenon” 

suggests that the trade-off between the two objectives is very difficult to avoid because 

attempts to achieve both efficiency and community are likely to falter without addressing 

the issue of inequality. 

 

Discussion 

Both Efficiency and Inefficiency from Connecting the Disconnected?  

We conclude by discussing two issues that relate to the value shortcuts provide to a 

system.  The first involves a seemingly technical issue that, at least in a restricted sense, 

points to an important set of conditions under which adding a shortcut does in fact 

increase efficiency, even under the assumptions adopted above.  In the models presented 

above, we followed conventional practice in our models by focusing on sets of graphs 

that were all fully connected (i.e., each node can reach every other node via n≥1 

intermediaries).  The advantage of such structures for documenting the effect of shortcuts 

is that aggregate functions of path-distance (L) are comparable across all such graphs.  By 
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contrast, one cannot quantify the effect of, say, rewiring the “disconnected cavemen” 

graph in figure 14a to create the “connected caveman” graph in 14b because path-length 

is undefined for dyads that cannot reach one another.  And yet, one lesson of our analysis 

and that of recent research (Centola and Macy, 2007; Lazer and Friedman, 2007) is that 

we can learn more about the performance of a system by shifting from structural 

measures that are predicted to govern such system outcomes as efficiency (e.g., L) to 

more direct measures of efficiency.  In particular, it is possible to run our models on the 

graphs in figure 14 and measure the change in the extent of diffusion.  The results from 

such analyses show that, unsurprisingly, the connected caveman graph is more efficient.  

In particular, actors in the disconnected caveman graph can accumulate at most 5 bits of 

information under any rule of exchange, while all actors in the connected cavemen graph 

average at least 11 bits, with the middlemen averaging 21 bits, under any of the unpriced 

bit-for-bit models.  Ironically then, it would seem that the research strategy adopted by 

Small World researchers actually underestimates the value of shortcuts for enhancing 

efficiency.  Moreover, there is good reason to focus on the type of transformation 

depicted in figure 14 since it is widely recognized that the most valuable bridges are 

those that connect otherwise disconnected groups (e.g., Granovetter 1973). 

TABLE 14 ABOUT HERE 

And yet, there at least three reasons why one should be cautious in inferring from 

these results that there is in fact no trade-off between efficiency and community.  First, 

these gains in efficiency apply only to “simple contagions” that do not require validation 

from a second source (Centola and Macy 2007).  Second, the introduction of such 

shortcuts still introduces significant outcome inequality into erstwhile equal systems.  

Consequently, even if actors like Bob are better off in absolute terms, they may now 

suffer from relative deprivation if they use one another as a frame of reference.  And 

finally, there are good reasons to wonder whether the structural supports for community 

will remain in place despite this transformation.  That is, while it may be reasonable to 

suppose that the rewiring of clusters that were already open to the outside (as in the 

Clustered Worlds examined above) does not dramatically reduce the community 

supported by such clusters, the opening up of a previously isolated cluster is likely to 



 27

have a much larger impact.  In particular, the relative deprivation that results from the 

increase in inequality seems to threaten a community’s sense of cohesion. 

 

Valuing and Achieving Community, Efficiency, and Inequality  

We close by considering the implications of modifying one assumption we have adopted 

throughout our analysis-- the “uniform valuation” assumption that all resources are 

valued equally by all actors in the system.  This assumption supposes that all resources 

are valued equally by all actors in the system.  Such an assumption is inherent in the 

supposition that a system can be judged by its efficiency for transmitting resources.  After 

all, if actors in different clusters were not interested in resources located in distant 

clusters, the efficient flow of such resources would have no value for them.  Yet in fact, 

this uniform valuation assumption frequently does not hold.  As Reagans and Zuckerman 

(2008a,b) argue, tastes are often “homophilic” in the sense that actors value resources 

that originate in their local neighborhood more than they value more exotic resources.  

And especially insofar as the clustering that is characteristic of social structures is a 

product of homophily (see McPherson et al., 2001; Reagans 2005), it would seem that 

homophilic valuation is the more general condition.  Indeed, one could argue that if the 

uniform valuation assumption in fact governed behavior in Small World structures, there 

would be no reason for the clusters to persist.  That is, the stability of a Small World 

structure would seem to depend on there being sufficient demand for the resources that 

flow across the shortcuts as well as the community-based resources that are available 

locally. 

 Note finally the implications of shifting the assumption that there is demand for 

both community and efficiency within a system.  If one assumes that there is demand 

only for local, community-based resources, the problems associated with inequality 

disappear.  This stems from the fact that, as discussed by Reagans and Zuckerman 

(2008a,b), middlemen cannot earn seller surpluses if members of different clusters are not 

interested in the resources that travel across shortcuts.  Thus, it is the desire for greater 

efficiency that introduces the potential for inequality, much as high degrees of inequality 

can impede such efficiency.  And now assume instead that demand is purely uniform-- 

with no interest in local, community-based resources.  Under such conditions, clustering 
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should disappear completely, with both the inequality and the inefficiency of Small 

World structures being ameliorated.  In fact, it seems more reasonable to assume that we 

are generally somewhere in the middle, with both community and efficiency being 

prized.  And if that is so, the attempt to achieve efficiency together with community must 

face the challenge of inequality. 
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* Results are from 1,000 sets of simulations of “bit-for-dollar” information exchange in the “Small”, 
“Clustered,” and “Random” networks portrayed in figure 1.  The names correspond to the nodes depicted in 
the Clustered World.  Each set of simulations pertains to the diffusion of a “bit’’ that originates in one of 
the 40 nodes.  Results for each node exclude the simulations for which it was the source bit.  This makes 
the average number of bits distributed=39/40=0.98, and since the total surplus available in each transaction 
is $1.00, this makes the average total surplus=39/40=$0.98 as well. 
 

Table 1 
Illustrative Nodal Results for Bit-for-Dollar Exchange in the Clustered, Small, and 
Random 40-Node Graphs of Figure 1: Averages across 1,000 Simulations of Diffusion 
of Each Bit* 

Clustered World 
 N of 

interactions 
until  fully 
informed 

Total 
Surplus 

Buyer 
Surplus 

Seller 
Surplus 

N of Bits 
Sold  

Don 209.01 $.97 $.42 $.55 .97 
Tina 210.68 $.98 $.42 $.56 .98 
Ned 208.71 $.98 $.42 $.56 .99 
Jill 207.93 $.98 $.42 $.56 .98 
Ron 207.39 $.97 $.42 $.55 .97 
Sue 206.16 $.98 $.41 $.56 .98 
Mean (SD) 208.15 (2.32) $98 (.01) $.42 (.01) $.56 (.02) .98 (.03) 

Small World 
Don 142.30 $1.27 $.29 $.97 1.38 
Tina 203.85 $.86 $.46 $.41 .80 
Ned 148.53 $1.06 $.36 $.70 1.13 
Jill 140.11 $1.28 $.30 $.98 1.38 
Ron 154.17 $.97 $.40 $.57 1.00 
Sue 202.58 $.88 $.45 $.43 .83 
Mean (SD) 177.33 (20.41) $.98 (0.15) $.41 (.04) $.56 (.15) .98 (.15) 

Random World 
Don 107.31 $1.05 $.37 $.68 1.07 
Tina 110.25 $1.04 $.38 $.66 1.04 
Ned 108.04 $1.00 $.39 $.61 1.01 
Jill 109.03 $.96 $.40 $.57 .97 
Ron 109.81 $1.01 $.38 $.63 1.02 
Sue 110.83 $1.01 $.39 $.62 1.02 
Mean (SD) 110.30 $0.98 (.06) $.40 (.03) $.58 (.09) .98 (.09) 



 
 
 
 
 
 

                                                 
* Results are from 1,000 sets of simulations of “bit-for-bit” information exchange in the “Small”, 
“Clustered,” and “Random” networks portrayed in figure 1.  The cell values represent the mean total 
amount of bits received by the end of the simulation.  The names correspond to the nodes depicted in the 
Clustered World.  Each set of simulations pertains to the diffusion of a “bit’’ that originates in one of the 40 
nodes.  Results for each node exclude the simulations for which it was the source bit.   

Table 2  
Illustrative Nodal Results for Bartered Exchange in the 
Clustered and Small World of Figure 1* 
  
 Mean Number of Bits Obtained by end of 

Simulation 
 Clustered  Small Random 
Don 28.62 39.53 36.98 
Tina 28.61 21.99 39.12 
Ned 28.71 34.51 38.49 
Jill 28.61 39.62 38.90 
Ron 28.60 29.45 39.14 
Sue 28.77 23.03 38.70 
Mean (SD) 28.54 (0.29) 27.09 (5.71) 38.11 (1.23) 
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Figure 1a 
The Clustered World: Percentage of Links Rewired=0% 

Graph Properties 
Two node-level properties are calculated, the first is represented by the labels in the graph: 

1) g = the mean, taken across all other nodes in the network, of the minimum number of steps 
from that node to the other nodes. 

2) nd= the density of the node’s neighborhood—i.e., the ratio of actual links among a node’s 
contacts relative to possible. 

 
Four global properties characterize this Clustered World network: 
L (Mean g)= 5.250 
SD_g (Standard deviation of g)=0 
CC (mean nd) = .500 
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Figure 1b 
The Small World: Percentage of Links Rewired=2.5% 

Graph Properties 
Two node-level properties are calculated, the first is represented by the labels in the Small World 
graph: 

3) g = the mean, taken across all other nodes in the network, of the minimum number of steps 
from that node to the other nodes. 

4) nd= the density of the node’s neighborhood—i.e., the ratio of actual links among a node’s 
contacts relative to possible. 

 
Four global properties characterize this Small World network: 
L (Mean g)= 4.307 
SD_g (Standard deviation of g)=0.653 
CC (mean nd) = .0.45 
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Figure 1c 
The Random World: Percentage of Links Rewired=100% 

Graph Properties 
Two node-level properties are calculated, the first is represented by the labels in the graph: 

1) g = the mean, taken across all other nodes in the network, of the minimum number of steps 
 from that node to the other nodes. 
2) nd= the density of the node’s neighborhood—i.e., the ratio of actual links among a node’s 

contacts relative to possible. 
 
Four global properties characterize this Random World network: 
L (Mean g)=  2.57 
SD_g (Standard deviation of g)= 0.05 
CC (mean nd) = 0.025 



























 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14a:  “Disconnected Caveman” World 

Figure 14b: “Connected Caveman” World 
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