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A. Appendix: Data

In order to implement our empirical strategy we need to measure three types of
information: the location of firms’ innovative activity, firms’ productivity perfor-
mance, and the domestic and foreign spillover pools available to companies. We
use data from the US Patent Office (USPTO), firm accounting information, and
OECD data on industry level R&D expenditure, to measure each of these respec-
tively.

A.1. Innovative activity

The NBER patent citations data file contains computerised records of over two
million patents granted by the USPTO between 1901 and 1999 (available on the
NBER web site). We use data on patents applied for after 1975, as information
on citations are only available for patents applied for after this date. We combine
these data with firm accounting data from the Datastream on-line service, which
contains information on sales, employment, investment, capital, R&D and the
components of value added.1

A.1.1. Inventor location

Patents identify the address (including country) of the inventor(s) listed on the
patent application. Table 1 (in the main text) shows the lead inventor’s location
for the 38,160 patents matched to our sample of 188 UK firms listed on the Lon-
don Stock Exchange in 1985. We use the share of the firm’s patents where the
lead investor is located in the US (WUS

i ) and the number of patents with the lead
inventor in the US (PUS

i ). The average varies across industries, with the highest
average shares in Office, Accounting and Computing Machinery (47.5%), Radio,
Television and Communication Equipment (47.2%) and Food, Beverages and To-
bacco (46.4%). The lowest shares are in Textiles, Leather and Footwear (12.7%),
Other Transport Equipment (24.5%) and Basic Metals (28.7%).

A.1.2. Patent Citations

We use data on patent citations to refine our measures of the location of firms’
innovative activity. The 38,160 patents matched to our sample of UK firms make

1More details of the matching between the datasets can be found in Nick Bloom and John
Van Reenen (2002).



275,013 citations to other patents, an average of 7.2 citations made by each patent.
Of these 275,013 citations, 236,367 have information on the location of the lead
inventor of the cited patent. Because we are interested in whether firms are bene-
fitting from external knowledge that has not been generated within the same firm
we exclude self-citations (where a patent cites another patent that is owned by the
same firm). 8.5% of all citations in our sample are made to patents owned by the
same patenting subsidiary (or “assignee”), while a further 1.4% of all citations are
made to a different assignee that is nevertheless part of the same parent firm.
Table A1 shows a cross-tabulation of the location of the citing and cited inventor

for the 209,090 non-self citations in our sample. It is important to remember that
all of these citations were made by patents that are owned by UK firms, even if the
inventor was located in the US. Only 6.9% of citations made by UK inventors are
made to another UK inventor, while 59.9% are made to a US inventor. In contrast,
71.5% of citations made by US inventors are made to other US inventors, while only
3.2% are made to UK inventors. This probably illustrates both the fact that the
data is from the US patent office, but also the dominant global position of the US
in innovation. This provides preliminary evidence that most patents owned by UK
firms, but invented by an inventor located in the US, are building on knowledge
created by other inventors located in the US. When we look at self-citations to
a patent that is owned by the same parent firm (not shown) the percentages in
the diagonals (for example a UK inventor citing another UK inventor) are much
higher. We also see that, even within firms, the transfer of knowledge from the
UK to the US appears to be small compared to the transfer of knowledge within
the US.

A.1.3. Patent Application dates

We also use information on the application dates of each citing and cited patent
in order to refine our measures of the location of firms’ innovative activity. In
particular we look at citations made to patents that were applied for within the
last three years. Table A2 shows the same cross-tab of the country of the citing and
cited inventor for all non self-citations of this type. The proportions are similar to
those in Table A1, although UK inventors are slightly more likely to cite other UK
inventors than before, and US inventors are less likely than before to cite other US
inventors.

A.2. Firm Accounts data

We use data on firms that are publicly listed firms on the London Stock Exchange
and whose primary sales are in manufacturing and who report some R&D between
1990 and 2000. All data relates to the firms’ consolidated worldwide accounts.
Observations with missing data, firms with less than five consecutive observations
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over 1990 - 2000, and firms for which there were jumps greater than 150% in any of
the key variables (capital, labor, sales) were dropped. Data on value added, labor
(DS Item 219) and R&D expenditure (DS Item 119) comes from the Datastream
On-Line service (DS). Capital is estimated as a replacement value using the method
described in Bond and Meghir (1994). Although these are “UK firms” in the sense
that they are listed on the London Stock Exchange, a key feature of the data
is that it relates to the firm’s global activities. Value added is the sum of total
employment costs (DS117), operating profits (DS137), depreciation (DS136) and
interest payments (DS153).2

The initial sample is all firms listed on the LSE in 1985 with names starting
with the letters A-L, plus any of the top 100 UK R&D performers not already
included. The sample includes 415 firms, 266 of whom had taken out at least one
patent between 1975 and 1998. All these firms’ subsidiaries were identified using
Who Owns Whom by Dun and Bradstreet in 1985.3 Firms who entered the sample
after 1985 were matched based on their date of entry. All the subsidiaries were
then matched by name to the USPTO.
In the UK most firms did not report R&D expenditure before 1989, and so

the analysis is restricted to the years 1990-2000.4 An R&D capital stock was
constructed using a perpetual inventory method and an assumed 15% rate of ob-
solescence (Griliches, 1979, and Hall et al, 2004).
Industry codes for UK firms are at the 3-digit level. We matched 3-digit SIC80

codes to 2-digit ISIC Revision 3 codes for the purposes of assigning firms to a
2-digit industry.
After cleaning our data we have a sample with 1794 observations on 188 firms,

141 of which are matched to at least one patent. Table 2 in the main text reports
summary statistics. On average, firms in our sample have applied for 240 patents.
To construct the proportion of sales that are made abroad (Si) we use item

190F from Datastream. We do not have this data for every year, on average we
have it for 4 years per firm, mostly during the mid-1990s. Sales are given by region,
but the definition of region is left up to the firm to report. We do two things, (i)
we take all firms that report sales in “United States”, “North America” or “The
Americas” (or derivatives of these names) and calculate the share of sales in the
US, (ii) use all sales that are in the “UK” to calculate the share of foreign sales.

2The first two items dominate this measure.
3As with other matches this has the disadvantage that we do not track changes in ownership

over time. This is inevitable given the labor intensity of the data matching exercise. Another
issue is that we do not track the sales of patents from one firm to another (this may cause us
to overestimate the proportion of UK inventors in the US if UK firms buy many US patents).
Fortunately such non-M&A related patent sales appear to be a relatively rare event.

4Even after 1989 when a firm reports zero R&D it is not clear that this corresponds to a true
zero, although it is unlikely to perform a large amount of R&D. In the results presented in this
paper, a dummy variable was used to denote reported zero R&D expenditure, but the results are
not sensitive to the exact treatment of reported zeros.
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A.3. Industry level data - R&D Spillover pool

The domestic and foreign spillover pools were constructed using the OECD’s An-
alytical Business Expenditure on R&D dataset (ANBERD, 2002). This contains
information on R&D spending at the 2-digit manufacturing industry (ISIC Revi-
sion 3) for all OECD countries. A stock measure was constructed using a perpetual
inventory method and an assumed 15% rate of obsolescence,5 with a starting year
of 1987. Although there are various problems with using industry-level measures
this data has the crucial advantage for our purposes that it contains R&D expen-
ditures by geographical location of the R&D activity. This would be extremely
hard to re-create using data on firms’ reported R&D as very few firms decompose
R&D into a foreign and domestic element. Our measure also has the advantage of
including all R&D carried out in each industry in each country, and not just the
R&D of the other sampled firms. We also use data on 2-digit industry level value
added taken from the OECD’s Structural Analysis database (STAN, 2003). Value
added price deflators at the two digit level are also from this source. In addition,
we use three digit value added from the NBER productivity database and from the
UK PACSTAT data (similar findings were uncovered from 3 and 2 digit analysis).

A.4. Technological Proximity Measure

We constructed a measure of technological proximity between our UK firms and
US industries following the Jaffe(1986) method. We allocated all R&D performing
Compustat firms to a two digit industry and calculated the average technological
profile using the average share of patents in each of the 623 technology classes
in the USPTO. We then calculated the uncentered correlation coefficient between
each of our UK firms and the US industry. The technological proximity formula
following Jaffe (1986) between firm i and industry, where firm i is in industry j, is

PROXij =
TiT

0
j

(TiT
0
i )

1
2 (TjT

0
j)

1
2

,

where Ti = (Ti1, Ti2, ...., Ti623) is a vector whose elements are the proportion of
patents over the 1975 to 1989 period in each of 623 (labelled N-class) technology
classes in the USPTO. PROXij is the uncentered correlation. Compared to the
original Jaffe (1986) paper and its descendents we are treating US industry j as
a "pseudo" firm. We also tried an alternative measure using all patents among
Compustat firms not distinguishing by industry.

5We experimented with other depreciation rates but the results were not significantly changed.
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B. Appendix: Econometric modelling strategy

In the main text we compare results from two alternative approaches to the prob-
lems associated with estimating a production function, a GMM method (Richard
Blundell and Stephen Bond, 2000) and the popular "OP" method (Stephen Olley
and Ariel Pakes, 1996). These approaches are based on different assumptions and
have different strengths and weaknesses6. The OP approach has a more flexible
form for the "not so fixed" effect of the unobserved heterogeneity (allowing it to
evolve over time as a Markov process). The GMM approach allows for a perma-
nent component to unobserved heterogeneity and for the transitory component
to be contemporaneously correlated with labor, physical capital and R&D. This
Appendix gives some more detail on each method.

B.1. SYS-GMM

Consider a simplified form of the production function

yit = αxit + εit (B.1)

where xit is an endogenous input and the residual productivity term takes the form

εit = tt + ηi + uit. (B.2)

Year dummies (tt) control for common macro effects, the unobservable firm compo-
nent (ηi) is allowed to be correlated with the factor inputs (lit, kit, rit), but assumed
uncorrelated with the location of innovative activity (WUS

i ,WUK
i ) and all industry

level variables, and the residual productivity shock (uit) may be correlated with the
factor inputs. Assuming no serial correlation in the uit process yields the following
moment conditions

E[xi,t−s∆uit] = 0 (B.3)

for s ≥ 2.7 This allows the use of suitably lagged levels of the variables to be used
as instruments after the equation has been first differenced. We test for first and
second order serial correlation using an LM test, shown at the base of the GMM
columns. If there is higher order (but finite) serial correlation in the uit process
longer lags can still be used as instruments.
The first differenced GMM estimator has been found to have poor finite sample

properties when the endogenous variables are highly persistent, because the lagged

6See Zvi Griliches and Jacques Mairesse, 1998, for a discussion and more recently Steven Bond
and Måns Söderbom (2005) and Daniel Ackerberg et al (2004,2005)

7If there is serial correlation in the error term this can be dealt with by using longer lags as
instruments. For example, if uit ∼MA(1) lags dated t−3 and earlier will be valid instruments.
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instruments are often weakly correlated with the first differences of the endoge-
nous variables. If we are prepared to make assumptions on the initial condition
that E[∆yi2ηi] = 0 and E[∆xitηi] = 0 then additional moment conditions become
available.8 The additional moment conditions take the form:

E[∆xi,t−s(ηi + uit)] = 0 (B.4)

for s = 1 when uit ∼MA(0). This means that lagged differences of x can be used as
instruments in the levels equations. We test the validity of the additional moment
conditions using a Sargan difference test. The levels equations and differenced
equations are stacked in a system, each with its appropriate instruments.
We assume that all time varying firm-level variables are endogenous (labor,

capital and R&D), whereas all industry-level variables are treated as exogenous.
We also examined specifications where the industry-level R&D stocks are treated
as endogenous and the results are not significantly affected. The results are robust
to lagging the industry-level variables by one period, in which case they can be
treated as pre-determined. We instrument firm-level variables in the differenced
equation with their levels dated (t−2) to (t−5) inclusive, and in the levels equation
by their first-differences dated (t−1), as well as by all time and industry dummies
and all exogenous variables. The standard errors we present allows for arbitrary
heteroskedasticity and arbitrary serial correlation. We include full sets of time
dummies and industry dummies in all regressions.

B.2. Olley Pakes with R&D

Assume that the production function can be written

yit = α0 + αllit + αkkit + αrrit + ωit + υit (B.5)

where ωit is the unobserved productivity state which is assumed to evolve as a first
order exogenous Markov process and υit is a serially uncorrelated additional pro-
ductivity shock. This is equation (??) with γi1 = γi2 = 0 and ait = ωit + υit. The
R&D stock (rit) and physical capital stock (kit) are quasi-fixed and labor is com-
pletely variable. At the beginning of the period t, firm i observes its productivity
state ωit and capital stocks. The key difference between ωit and υit is that ωit is a
state variable and affects investment decisions whereas υit does not.
The firm sets labor and chooses the level of investment in physical capital

(I) and R&D. This investment takes one period before it is effective in raising
the (deterministic) capital stock and therefore output. Capital stock at time t
is therefore determined by decisions made at t − 1. The additional shock υit is

8Stationarity of yit and xit is sufficient (but not necessary) for these conditions to hold. What
is essential is that the first moments of the endogenous variables are time invariant conditional
on the time dummies. The higher order moments are unrestricted.
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then realized after these choices are made. We ignore selectivity for expositional
purposes but introduce this at the end of the section.
The key insight of the OP algorithm is to use the monotonicity of the investment

policy function in unobserved productivity. This can be used to obtain consistent
estimates of the parameter on labor (αl) at stage 1 and we then use these at stage
2 to obtain the capital coefficients (αk, αr).

B.2.1. Stage One: Estimation of the coefficient of the variable input.

The estimation strategy is to control for the unobserved productivity shock non-
parametrically by exploiting the strict monotonicity of the investment policy func-
tion. Inverting the investment policy function enables us to write unobserved
productivity as:

ωit = eωt(iit,kit, rit)

Substituting this expression into the production function (B.5) gives

yit = αllit + φt(iit,kit, rit) + υit (B.6)

where
φt ≡ φt(iit,kit, rit) = α0 + αkkit + αrrit + eω(iit,kit, rit)

We do not know the functional form of φt so we use a series estimator to ap-
proximate it.9 Estimation of equation (B.6) gives a consistent estimate of αl and
estimates of the unknown function φt.

B.2.2. Stage Two: Estimation of the coefficients on the quasi-fixed in-
puts.

First, note that we can decompose the productivity term into a part that was
expected given the information at t− 1 (Jt−1) and an unexpected component, ξit :

ωit = E[ωit|Jit] + ξit (B.7)

= E[ωit|ωit−1] + ξit
= g(ωit−1) + ξit

The second line of equation (B.7) follows from the assumption that productivity
follows a first order Markov process. By construction ξit is uncorrelated with Jt−1
and it can be thought of as the innovation in the ω process between t − 1 and

9Steve Olley and Ariel Pakes (1996) and Jim Levinsohn and Amil Petrin (2003) find that the
fully non-parametric estimator of φt gives similar results to the series estimator. We found that
higher order series expansions (instead of our preferred fourth order) made little difference to the
results.
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t. In the final line of (B.7) we replace the expectation of productivity with a
non-parametric function g(.).
Rearranging equation (B.6) after we have an estimate of the coefficient on the

variable input (αl) gives

y∗it ≡ yit − αllit = α0 + αkkit + αrrit + ωit + υit

Using equation (B.7) this can be re-written as

y∗it = α0 + αkkit + αrrit + g(ωit−1) + ξit + υit (B.8)

= α0 + αkkit + αrrit + g(φt−1 − α0 − αkkit−1 − αrrit) + ξit + υit

Since ξit+υit is uncorrelated with kit and rit and we have estimates of φt−1 from
the first stage, equation (B.8) can be estimated by Non-Linear Least Squares10.
There are alternative ways to build R&D into the OP model. For example,

Buettner (2003) allows past R&D to stochastically effect the future productivity
state in addition to ωit−1. We found similar results using Buettner’s approach to the
method detailed here (see also Daniel Ackerberg et al, 2005, for other suggestions
on extending the OP approach).
Since we only observe firms that have chosen to continue operating there may

be survivor biases. We follow the same approach suggested by Olley and Pakes
(1996) in using a non-parametric expansion of the survival probability to control
for selection bias at stage 2 (the firm will continue operations if expected profits
exceed a critical cut-off). Because the spillover terms are assumed exogenous they
are included as additional exogenous variables in the production function. We
include industry and time effects in all regressions. We calculate the standard errors
though a bootstrapping procedure with 100 replications allowing for clustering by
firm.
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Appendix Tables 
 
 
Table A1: Location of citing and cited inventors: non self-citations 

Cited country: UK USA Other Total 

Citing country:     
     
       UK 3,978 34,762 19,332 58.072 
 (6.9%) (59.9%) (33.3%) (100%) 
     
       USA 3,375 75,249 26,570 105,194 
 (3.2%) (71.5%) (25.3%) (100%) 
     
       Other 1,463 24,431 19,930 45,824 
 (3.2%) (53.3%) (43.5%) (100%) 
     

       Total 8,816 134,442 65,832 209,090 
 (4.2%) (64.3%) (31.5%) (100%) 

     
Notes: all citations made by patents matched to the 188 UK firms in our sample, excluding self-citations 
(where the citing and cited patent are matched to the same parent firm). The time period is 1975-1998. 
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Table A2: Location of citing and cited inventors: non self-citations to patents that have been applied 
for within the previous three years 

Cited country: UK USA Other Total 

Citing country:     
     
       UK 817 5,886 4,549 11,252 
 (7.3%) (52.3%) (40.4%) (100%) 
     
       USA 459 10,905 4,561 15,925 
 (2.9%) (68.5%) (28.6%) (100%) 
     
       Other 256 4,242 4,828 9,326 
 (2.7%) (45.5%) (51.8%) (100%) 
     

       Total 1,532 21,033 13,938 36,503 
 (4.2%) (57.6%) (38.2%) (100%) 

     
Notes: all citations made by patents matched to the 188 UK firms in our sample to other patents that have 
been applied for within the previous three years, excluding self-citations (where the citing and cited patent 
are matched to the same parent firm). The time period is 1975-1998. 
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Table A3: Summary statistics for UK patenting firms 

 
  Mean   Median 

 
Standard 
Deviation 

   Min   Max 

      

Total patent applications  
240 40.5 657 1 5820 

UK Location Weight 0.354 0.274 0.363 0 1 

UK Location + Citation Weight 0.082 0.017 0.145 0 1 

UK Location + Citation Within 3 Years 0.019 0.000 0.054 0 0.5 

USA Location Weight 0.462 0.425 0.379 0 1 

USA Location + Citation Weight 0.417 0.368 0.349 0 1 

USA Location + Citation Within 3 Years 0.162 0.134 0.184 0 1 

      
Notes: 141out of our 188 UK firms matched to at least one patent; location weights are constructed as 
described in the text. 
 
 
 
 
 
 

Table A4 Descriptive Statistics for US firms 
 

 Mean Median Standard 
Deviation 

    

Employees 13,760 3,528 38,640 

Real Sales ($1000) 3,196 586.4 10,742 

Capital per employee ($) 59,407 34,607 81,630 

Real sales per employee 
($1000s) 

193.736 162.843 128.641 

R&D expenditure/value 
added 

0.059 0.029 .198 

R&D stock/value added 0.237 0.113 0.567 

Notes: All in 1995 prices, 570 firms, 5446 observations, 1990-2000 



 13

Table A5: Data underlying Figure 1 

Industry 

Average 
annual % 
Growth 
in US 
R&D 
stock  

R&D 
expenditure 

/Value added 
in US in 2000 

% 

Mean annual 
labour 

productivity 
growth for 
high WUS 

firms (%) 

Mean annual 
labour 

productivity 
growth for low 
WUS firms (%) 

Difference in 
mean annual 

labour 
productivity 
growth rate 

Observations in 
UK sample 

Observations in 
US sample 

        

High US-UK TFP 
gap industries        

31 Electrical 
Machinery NEC 6.65 10.1 5.76 4.67 1.08 143 354 

24 Chemicals 
(including 
pharmaceuticals) 

5.23 13.2 5.81 5.73 0.07 191 820 

32 Communication 
equipment 4.13 19.4 5.27 6.16 -0.88 138 725 

29 Machinery and 
equip NEC 3.96 5.8 -0.94 -1.70 0.76 277 659 

34 Motor vehicles 3.48 16.1 2.31 4.05 -1.73 63 264 

30 Computing 
machinery 2.39 32.1 2.47 5.18 -2.71 20 323 

28 Metal products 1.85 1.9 -2.89 1.03 -3.92 104 268 

        
Low US-UK TFP 
gap industries  

 
   

  

33 Precision 
instruments 7.88 31.6 5.11 5.91 -0.80 58 696 

20-22 Paper, 
printing and 
publishing 

6.12 1.6 1.05 0.54 0.50 170 607 

27 Basic metals 0.71 1.3 4.28 5.01 -0.72 80 168 

25 Rubber and 
plastics 4.64 3 1.53 -0.95 2.48 72 347 

17-19 Textiles and 
footwear 2.19 0.5 -2.67 2.08 -4.76 174 261 

15-16 Food, 
beverages and 
tobacco 

1.07 1.1 0.87 3.09 -2.21 131 283 

35 Other transport 
equipment -5.08 18.3 7.10 4.69 2.40 73 109 

26 Non-metallic 
minerals -4.66 2.3 0.97 0.36 0.61 98 132 

        

Notes: TFP is calculated based on a superlative index. Labour productivity is real value added per worker. 
US R&D stock is calculated using a perpetual inventory method and a 15% rate of obsolescence. 
 
 
 


