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Today, having a strong social media presence is an important issue for large and small companies. A key social media

challenge faced by these companies’ marketing teams is how to maximize the impressions or views of the content they

post in a social network. Optimizing the posting time of content to increase impressions is an approach not considered

before because it was not clear how to systematically select the optimal posting time and what would be the potential

gain in impressions. In this work we show how to select posting times to maximize impressions and the potential gains

of this strategic timing. We use data from several Twitter users to build a model for how users view content in a social

network. With this model we are able to provide a simple equation that gives the impression probability for a piece of

content as a function of its posting time. We show that for several real social media users strategic timing can significantly

increase impressions. Furthermore, this increase in impressions comes at no cost because choosing the time to post is

free. In addition, all calculations use publicly available data, so this approach can be implemented very easily. Finally,

we consider the situation where strategic timing becomes widely adopted and posting times are scheduled by an online

application. This situation leads to potentially intractable optimization problems and a natural trade-off between aggregate

performance and fairness objectives. However, we show that surprisingly, increasing fairness actually seems to improve

aggregate performance in this setting. In addition, we show that solutions that are nearly optimal for both objectives can

be easily constructed.
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1. Introduction
Having a strong social media presence is becoming more and more important for a wide range of companies

(Pozin 2010). Modern social networks provide the opportunity for companies to easily reach a massive audi-

ence. The social media strategy of a company involves designing and posting content to grow their customer

base and engage with existing customers. The marketing team of a company will typically be responsible

for posting important information on social networks, such as new product releases or promotional material,

with the hope of reaching as large an audience as possible. Social networks have an incredibly large poten-

tial audience for these posts: the social network Twitter has over 302 million users (Twitter 2015) and the
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image based social network Instagram has 300 million users (Instagram 2015). While this potentially large

audience is attractive, the challenge is that today the number of competing posts from other social network

users is huge, with over 500 million tweets posted per day on Twitter (Twitter 2015) and 70 million photos

and videos posted per day on Instagram (Instagram 2015). This large volume of posts means that it can be

difficult for a given post to reach the intended audience.

Social network users who post content wish to have their audience engage with their content. This is

because engagement is an active interaction with the post and represents a better reflection of users who

liked the post versus users who saw the post and did not care for it. Engagement comes in different varieties

depending on the specific social network. On Twitter engagement includes favoriting a tweet or retweeting

a tweet (forwarding a tweet to others). On Instagram engagement is done by liking a post. All these differ-

ent forms of engagement involve clicking on the post and creating an easily measured signal. Therefore,

engagement allows one to estimate how many people actually viewed the post and also deemed it interesting

enough to interact with it in some manner.

Engagement can only occur if a user actually sees the content, which is referred to as an impression.

Therefore, increasing the number of impressions can potentially increase the overall engagement. Many

factors determine the number of impressions content receives in social networks. One factor impacting the

number of impressions is how engaged users are on the social network. If no one ever checks for content

on the social network, then there will be no impressions. If the overall quality of content improves on

the social network, this can make users check it more frequently. However, this factor cannot be affected

by an individual user trying to maximize his own impressions. Another factor impacting the number of

impressions is follower count. Having a larger number of followers means there is a larger potential audience

for the posts. Therefore, increasing follower count is one way to gain more impressions.

There is another important, but very often overlooked factor impacting the impression count that has

not received much attention: the timing of the post. A very natural way to generate impressions is to post

content when there are many users checking the social network. If there is a large audience at a certain time,

then that is a “good” time to post. However, in a social network, one’s post must compete with other users’

posts for the attention of followers. Therefore, it is logical to also avoid times when there are many others

posting. Combining these two effects, there is a clear trade-off between the number of users checking the

social network and the number of users competing to attract their attention. Therefore one can see that the

best time to post is when a large number of followers are checking the social network and when not many

others are posting. In other words, if you want someone to hear what you have to say, say it when they are

around to listen and also when no one else is talking to them.

1.1. Our Contribution
The above discussion suggests that strategic timing can be used to increase the number of impressions

received by a piece of content in a social network. In this work we show that this is indeed the case and
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that the gains from strategic timing can be quite large. We consider the situation where a user is trying

to maximize the probability that a target follower sees his post. We begin by proposing a model for how

the follower creates an impression for the user’s post in a social network. This model is fairly general and

applies to several major social networks such as Twitter and Instagram. The main components of the model

are 1) the arrival process of the follower to the social network, 2) the posting process from all users the

follower follows, which we call the timeline process, and 3) how many posts the follower views each time

he arrives to the social network, which we call the cutoff window. With this model we are able to calculate

the optimal times for the user to post content in order to maximize the probability that it is seen by the target

follower. We also provide simple, tractable approximations that allow for easy calculation of the impression

probability.

In order to calculate the impression probability using our model, we need to know the rates for the arrival

and timeline processes. To do this, we develop a parametric Bayesian model for the rate functions. The

rate functions capture the key temporal patterns seen in typical user behavior on social networks, such as

daily and weekly oscillations in the arrival and timeline rates. Using data from actual users on Twitter, we

estimate these model parameters and obtain values for the rate functions. We then use the estimated rate

functions to calculate impression probabilities.

We find that strategic timing of content can significantly increase the number of impressions received.

This is a huge gain given that strategic timing has no additional cost and requires virtually no extra effort on

the part of the user. In addition, we show both theoretically and empirically that our impression probability

calculations are robust to uncertainty in model parameters. This is an important result since some model

parameters, such as the arrival rate and cutoff window, are difficult to measure. Therefore, we show that

strategic timing can be achieved using publicly available data which is easily accessible by anyone.

We then study the impact of wide adoption of strategic timing of content. In particular, we consider a

hypothetical application that optimizes the posting times of several users at the same time. This application

would naturally have to balance the usual trade-off between the aggregate performance and fairness objec-

tiveness. Furthermore, both objectives can lead to a potentially intractable global optimization problem.

However, we will show the somewhat surprising result that improving fairness tends to improve average

performance and that solutions that are nearly optimal for both objectives can easily be constructed.

This work has immediate applications to firms or individual users who utilize social media for promo-

tional purposes or to gain influence. Strategic timing is an easily implementable and cost effective tactic for

increasing the impressions for content in social networks and can seamlessly be integrated with a broader

social media campaign or strategy. It requires no modification to the type or volume of content created.

The method presented here can be directly applied by any social network user because the required data is

publicly available and selecting the time of a post does not incur any direct costs.
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The rest of the paper is structured as follows. We begin with a review of previous relevant work in Section

1.2. In Section 2 we present our model for creating impressions in social networks and our calculation

of the impression probability. In Section 3 we present our Bayesian models for the arrival and timeline

processes and their estimation using data from sevaral Twitter users. We calculate impression probabilities

for these users and show the robustness of the calculations to uncertainty in model parameters in Section

4. We show how real Twitter users can modify their posting times to increase their impressions and the

corresponding impression gains in Section 5. The optimization of posting times is presented in Section 6.

We then summarize the main insights regarding strategic timing in Section 7. All proofs are located in the

Appendix.

1.2. Previous Work
Our work belongs to the body of research concerning the spread of information in social networks. In this

area the questions of interest are how to model and predict the diffusion of the information and determine

what features are conducive to rapid spreading of the information. We now review the major work in these

areas.

Several researchers have looked at how features of individuals or the content affect the spread of infor-

mation. Aral and Walker (2012) conduct a randomized experiment with 1.3 million Facebook users and find

that features such as gender, age, and marital status are predictive of influence and susceptibilty. Katona

et al. (2011) study adoption data for an online social network and find that features of the local network

structure of an individual such as their degree and edge density impact their adoption probability. A sim-

ilar study done in Ugander et al. (2012) on Facebook adoption data shows that the number of connected

components of a user’s local network impacts the adoption probability. In Twitter, studies of the informa-

tion spreading problem have focused on retweets. Several works have studied what features of the users

and content of the tweet cause users to retweet (Peng et al. 2011), (Suh et al. 2010) (Naveed et al. 2011)

(Petrovic et al. 2011). Through various prediction techniques they show that user features such as degree,

and tweet features such as the presence of hashtags or URLs impact the likelihood of a retweet.

Other work on the retweet problem aim not to predict the likelihood of an individual retweet, but the

total number of retweets received by a tweet. Hong et al. (2011) and Bandari et al. (2012) use a variety of

algorithms to predict not the exact number of retweets, but rather a coarse interval for the number of retweets

of a tweet. In particular, Hong et al. (2011) investigates the factors influencing information propagation in

Twitter including message content, temporal information, and users’ social graph. Bandari et al. (2012) use

regression and classification algorithms to show that it is possible to predict ranges of popularity of tweets

with reasonable accuracy. Zaman et al. (2014) predict the final retweet count of a tweet using the time-series

path of its retweets. They use a Bayesian approach to develop a probabilistic model for the evolution of the

retweets using the retweet times and the social network structure. Their approach predicts the exact number

of retweets of a tweet within minutes of its posting time with a very low error.
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The problem of maximizing the spread of information in a social network was framed as an optimization

problem in Kempe et al. (2003). Here the goal is to select the best set of seed users to initialize with the

information in order to reach the maximum number of users through natural diffusion on the social network.

A greedy algorithm was proposed to solve this combinatorial optimization problem. Variants of this problem

and algorithmic solutions were subsequently studied in Kempe et al. (2005), Chen et al. (2009), Chen et al.

(2010).

Our work is also related to the research on competition for attention in social networks. Several authors

have looked at the problem of competing for attention in a crowded social network. Van Zandt (2004) first

proposed the idea that receiver attention will become a bottleneck as it becomes easier to send messages

or share information. Anderson and De Palma (2012) and Anderson and De Palma (2013) study a similar

model and show that higher costs for posting content or messages can increase the average utility of a

message and increase the overall viewing of messages. Iyer and Katona (2015) propose a model for the

incentives for entering a social network and posting content. They investigate the choice of users to post

or just view content and also how the network structure affects entry to the network and competition for

attention. They show that this model predicts the so called participation inequality phenomenon where as

the communication span of the social network increases, a smaller fraction of the users actually post content,

but do so at higher frequency.

Our work differs from the approach of this extant work because we do not explicitly consider costs or

incentives in theoretical models of social networks. Rather, we use data from real social networks to model

the dynamics of user behavior and show how this model can be used to select the timing of a post in order

to maximize the chance of it gaining someone’s attention. Since our work is based upon real user data, it

can be directly applied to many popular social networks such as Twitter or Instagram.

2. Impression Probability Model
We now present a model of how a user views content, or generates an impression, in a social network.

Our model assumes that content is displayed to the user in chronological order, with the most recently

posted content being seen first. This method of displaying content is used by social networks such as Twitter

and Instagram. We assume that users access the social network through an application on their mobile

phones, which is the predominant way to access many social networks. For instance, over 80% of Twitter

users access the social network through a mobile application (Twitter 2015). The main implication of this

assumption is that because of the size of a mobile phone screen, additional user action is required in order

to see older content which is not immediately displayed on the screen. As we will show, the assumptions on

the chronological ordering of content and the user action required to view older content, plus the temporal

dynamics in the behavior of users of the social network (both content creators and consumers) lead to

significant differences in the impression probability of content as a function of the time it is posted. We
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next discuss the elements of our model in detail and show how they can be used to calculate the impression

probability.

2.1. Model Components
Our model is for a specific user seeing a piece of content (creating an impression). We refer to this user

viewing the content as the follower. We want to calculate the probability that a piece of content posted at

time t by another user is seen by the follower. To do this, we must model three components of the follower:

his arrival process to the social network, his timeline process, and the user interface for the social network

application. The arrival process models the times when the follower checks the social network application

for new content. Throughout the paper we refer to the content as a post, and use both terms interchangeably.

In a social network a follower can choose to follow other people. We will use the Twitter terminology and

refer to these users as the follower’s friends. When the follower checks the social network application, he

will look at his timeline, which contains posts from all of his friends. The timeline process models the

arrivals of posts to the follower’s timeline. The user interface characterizes how the follower views the

content. The timeline posts are arranged in chronological order, with the most recent post located at the

top of the timeline. As time passes, older posts are pushed down on the timeline. Typically, a follower only

looks at a certain number of new posts when he checks his timeline. We refer to this number of posts as the

follower’s cutoff window.

Our main assumption regarding the arrival and timeline processes is that they can be modeled as non-

homogeneous Poisson processes with time varying rates. For any times t and t+ s (t, s > 0) and a follower

u, we denote the number of arrivals in the arrival and timeline processes in the time interval [t, t+ s) as

Mu
(t, t+ s) and Nu

(t, t+ s), respectively. In other words, Mu
(t, t+ s) represents the number of times the

follower checks the social network for new content in the time interval [t, t+ s) and Nu
(t, t+ s) represents

the number of new posts on the follower’s timeline in the time interval [t, t+ s). The rate of the arrival

process is  u
(t) and the rate of the timeline process is �u

(t). Another useful definition is the mean number

of arrivals in a time window [t, t+ s) for s� 0, which is given by

E [Mu
(t, t+ s)] = u

(t, t+ s) =

Z t+s

t

 u
(⌧)d⌧ (1)

for the arrival process and

E [Nu
(t, t+ s)] =⇤u

(t, t+ s) =

Z t+s

t

�u
(⌧)d⌧ (2)

for the timeline process. We will specify the parametric form of these rates and their temporal dependence

in Section 3 when we look at user data from Twitter. The cutoff window of a follower is denoted by Cu. For

convenience, we list the model parameters in Table 2.1. Under these modeling assumptions, we will next

show how to calculate the probability of an impression being created by the follower for a piece of content

as a function of the time it was posted.



Author: Strategic Timing of Content in Online Social Networks
7

Parameter Definition
u Follower index
Cu Cutoff window
Mu

(t, t+ s) Arrival process count
Nu

(t, t+ s) Timeline process count
 u

(t) Arrival process rate
�u

(t) Timeline process rate
 

u
(t) Average arrival process count

⇤

u
(t) Average timeline process count

Table 1 Description of parameters for components of the impression probability model.

2.2. Impression Probability

In order for a follower to see a piece of content, or create an impression, the following events must occur.

First, the content is posted at a time that is chosen by the content producer. The follower must check his

timeline at a time after the content is posted. Second, the time when the follower checks his timeline is

determined by the arrival process. In the time interval between the posting of the content and the follower

arrival, there will be a number of new posts on the follower’s timeline, which is determined by the timeline

process. If this number of posts is less than the follower’s cutoff window, the follower will see the content

and an impression is created, otherwise the content is not seen.

We define the probability that a follower sees a piece of content posted to his timeline at time t as q(t).

This will be referred to as the impression probability. We have the following result for the value of the

impression probability in this model.

THEOREM 2.1. For a piece of content posted at time t > 0, let q(t) be the impression probability of a

follower with arrival rate  (t), timeline rate �(t), and cutoff window C. For s > 0, let the mean number of

arrivals in the arrival and timeline processes be given by equations (1) and (2), respectively. Then,

q(t) =
CX

k=0

1

k!

Z 1

0

 (t+ s)(⇤(t, t+ s))ke�( (t,t+s)+⇤(t,t+s))ds. (3)

For any follower we are able to obtain a closed form expression for their impression probability as a function

of posting time given their arrival rate, timeline rate, and cutoff window. Equation (3) appears complicated

upon first glance, but we will see that in practice, it can be greatly simplified without sacrificing very much

in terms of operational performance.

2.3. Proportional Timeline and Arrival Rates

To gain insight into the impression probability function, we consider the situation where the timeline and

arrival rates of a follower are proportional to each other. Assuming non-homogeneous Poisson processes

for both the timeline and arrival process, we obtain a simple expression for the impression probability given

by the following lemma.
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LEMMA 1. For a piece of content posted at time t > 0, let q(t) be the impression probability of a follower

with timeline rate �(t), arrival rate  (t) = a�(t) for some a> 0, and cutoff window C. Then,

q(t) = 1� (a+1)

�(C+1). (4)

According to this expression, when the arrival and timeline rates are proportional, then the impression

probability is constant in time and there is no value for strategic timing for a content producer. Also, this

expression clearly shows the impact of the cutoff window on the impression probability. Not surprisingly,

we see that q(t) approaches one as C increases. This means that if a follower has a large cutoff window

and checks a large number of posts, then it is more likely he will see any post. In addition, for proportional

arrival and timeline rates, the convergence to one is exponentially fast in C.

We next look to examine the meaning and impact of the constant a in the above expression. To do this, we

assume that all friends of the follower have the same arrival rate  and that each time they arrive, they post

a new piece of content. For a follower with F friends, this means that the timeline rate will be �= F (t),

or equivalently,  (t) = a� and a= F�1. If we substitute this expression for a in equation 4, we find that

q(t) = 1�
✓

F

F +1

◆C+1

.

This shows that the impression probability is a decreasing function of the number of friends F . This is

expected because having a larger number of friends will result in a larger timeline rate, which means a post

is visible for a shorter amount of time. Therefore, it will be harder for a post to be seen and we expect q(t)

to be smaller.

Though this analysis made strong assumptions about follower behavior, it does align with our intuition

about what increases the impression probability. Our result shows that followers with a higher impression

probability do not have a large amount of competing posts on their timelines (small friend count) and check

many older posts on their timelines (large cutoff window).

2.4. Approximating the Impression Probability

While simple expressions can be obtained for the impression probability when we assume proportional

timeline and arrival rates, they are difficult to obtain in a more general setting. However, in certain parameter

regimes which occur in practice, simple approximations which provide useful insight can be obtained. We

now provide and analyze such approximations.

In equation (3) we have assumed that the timeline process is a non-homogeneous Poisson process. To

simplify the expression for q(t), we now assume the timeline process is deterministic with rate �(t), so

that the number of arrivals in an interval [t, t+ s) is given by N(t, t+ s) =⇤(t, t+ s). Define the residual

time for an arrival given that there has not been an arrival at time t as St. For a non-homogeneous Pois-

son process with rate  (·), it can be shown that the random variable St has a density given by fS
t

(s) =
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 (t+ s)e� (t,t+s), where we have defined  (t, t+ s) =
R s

0
 (t+ ⌧)d⌧ (Cox and Isham 1980). With this

assumption, an impression is created if ⇤(t, t+St)C. The probability of this is given by

q1(t) =E [ (⇤(t, t+ s)C)]

=

Z 1

0

(⇤(t, t+ s)C)fS
t

(s)ds

=

Z �

0

 (t+ s)e� (t,t+s)ds

= 1� e� (t,t+�), (5)

where we define

�= sup{s :⇤(t, t+ s)C} . (6)

The time � is the amount of time the content posted at time t has before it is pushed out of the cutoff

window and as a result is not seen by the user. We will refer to this as the lifetime of the content. We obtain

the following bound on the error of approximation q1(t).

THEOREM 2.2. Let the arrival rate  (t) and the timeline rate �(t) of a follower be such that F1 

�(t)/ (t) for some constants 1 < F1. Let q(t) be the exact impression probability given by equation (3)

and let q1(t) be the approximation of the impression probability given by equation (5). Then the error of the

approximation is bounded by

|q(t)� q1(t)|
p
2⇡C

F1
.

The approximation q1(t) will be accurate for followers with small cutoff windows and a large timeline

rate relative to their arrival rate. This approximation is simpler than the exact expression, but still rather

complex because it contains the content lifetime � and the mean arrival process  . To provide a more

intuitive expression, we make the following additional approximations. First we expand the exponential

in equation (5) to first order in  (t, t +�) to obtain 1 � e� (t,t+�) ⇡  (t, t +�). Next, we use a first

order Taylor approximation about t for the arrival process mean to obtain  (t, t+�)⇡ (t)�. Finally, we

approximate the timeline process mean using a first order Taylor expansion about t to obtain ⇤(t, t+ s)⇡

�(t)s for s�. Using this approximation for ⇤(t, t+ s) along with equation (6) we obtain ⇤(t, t+�)⇡

C ⇡ �(t)�, or more simply � ⇡ C/�(t). These Taylor approximations will be accurate as long as � is

small compared to the time scale over which the timeline and arrival rates vary. This will typically be true

because � is on the order of minutes, whereas the arrival and timeline rate variations are on the order of

hours or days (more on this in Section 3). Combining these approximations we obtain the following simple

equation for the impression probability
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q2(t) =C
 (t)

�(t)
. (7)

The above approximation is a simple, intuitive expression for the impression probability which captures

the main aspects of our model. We can easily see the following important facts regarding the impression

probability from equation (7). First, if a follower checks many posts upon each visit to the social network

(large cutoff window C), then the impression probability is higher. Second, the times when the follower is

likely to be on the social network correspond to times when the arrival rate  (t) is large, and this is also

when the impression probability is high. Finally, the times when there are a large number of posts on the

follower’s timeline correspond to times when the timeline rate �(t) is large, and it is at these times when

the impression probability will be lower. Furthermore, for followers whose arrival rate is much smaller than

their timeline rate, equation (7) is a very accurate approximation for the impression probability. This is

made precise in the following theorem.

THEOREM 2.3. Let the arrival rate  (t) and the timeline rate �(t) of a follower be such that F1 

�(t)/ (t)  F for some constants 1 < F1  F . Let q(t) be the exact impression probability given by

equation (3) and let q2(t) be the approximation of the impression probability given by equation (7). Then

the error of the approximation is bounded by

|q(t)� q2(t)|
p
2⇡C

F1
+

C2
+C(F �F1)

F 2
1

2

.

The approximation error for q2(t) is slightly larger than for q1(t) due to the extra approximations made.

However, the regimes where both approximations are good are similar: large timeline rate and small cut-

off window. We will see in Section 4 that many real Twitter users fall in this regime and therefore both

approximations are highly accurate.

2.5. Impact of Arrival Rate versus Posting Rate

To calculate the impression probability in our model the follower’s arrival rate is required. In practice this

may be difficult to measure. However, measuring the posts of a follower can be done rather easily. For

instance, this data can be obtained for a Twitter user from the Twitter API. The posting rate will be less

than the arrival rate because in order to post, a follower must first arrive to the social network. We model

the posting process as a random sample of the of the arrival process, with sampling probability � 2 (0,1].

This means that each time the follower arrives, he posts with probability �. The posting process is then a

non-homogeneous Poisson process with rate � (t). We show here that having uncertain knowledge of the

value of � does not impact key predictions of our model, namely the optimal time to post.
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We establish the following result for the impact of using the posting rate instead of the arrival rate to

find the optimal time to post. From equation (7) we define the following approximation for the impression

probability when one uses the posting rate � (t) instead of the arrival rate  (t) as

bq2(t) =C
� (t)

�(t)
, (8)

and we define the time which maximizes this expression as

bt2 = argmax

t
bq2(t). (9)

We also define the time that maximizes the true impression probability as

t⇤ = argmax

t
q(t) (10)

We are concerned with the difference between the impression probability if one posts at bt2 versus t⇤. We

have the following result, which can be seen as a simple application of Theorem 1.

COROLLARY 1. Let the arrival rate  (t) and the timeline rate �(t) of a follower be such that F1 
�(t)/ (t)  F for some constants 1  F1  F . Let q(t) be the exact impression probability given by

equation (3). Let t⇤ be given by equation (10) and for � 2 (0,1], let bt2 be given by equation (9). Then we

have that

��q(t⇤)� q(bt2)
�� 2

p
2⇡C

F1
+2

C2
+C(F �F1)

F 2
1

2

.

This result shows that even if an approximation for the impression probability is used with the posting

rate and not the arrival rate, the actual impression probability will not be changed by a very large amount

for users with a small cutoff window relative to the ratio of their timeline rate to their arrival rate. Therefore,

the posting rate can be used in place of the arrival rate and the approximation q2(t) can be used instead of

q(t) to determine the optimal time to post content. This is important because it is difficult to measure the

arrival rate for a user, while the posting rate is readily available.

2.6. Impact of Cutoff Window
The cutoff window is another model parameter that may be difficult to measure. For companies running

social networking applications this parameter can be measured by recording what content is displayed on a

follower’s screen. However, this information is not readily available to those not within the company. Due

to this restriction, we would like to understand how sensitive the impression probability is to this parameter.

We define q2(t,C
0
) as the value of the approximation to the impression probability given equation (7) for a

cutoff window C 0. For an arbitrary value of the cutoff window C 0 > 0 we define the time which maximizes

q2(t,C
0
) as

btC0
= argmax

t
q2(t,C

0
). (11)
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The time that maximizes the true impression probability using the correct cutoff window C, arrival rate

 (t) and timeline rate �(t) is t⇤ as defined in equation (10). We have the following result, which again is

simply an application of Theorem 1.

COROLLARY 2. Let the arrival rate  (t) and the timeline rate �(t) of a follower be such that F1 
�(t)/ (t)  F for some constants 1  F1  F . Let q(t) be the exact impression probability given by

equation (3) using the true cutoff window C. Let t⇤ be given by equation (10) and for C 0 > 0, let btC0 be

given by equation (11). Then we have that

��q(t⇤)� q(btC0
)

�� 2

p
2⇡C

F1
+2

C2
+C(F �F1)

F 2
1

2

.

Here we see that as long as the arrival rate is much smaller than the timeline rate, then the impression

probability is robust to errors in the cutoff window. This is an important result because of the difficulty in

measuring this parameter.

3. Bayesian Model For Timeline and Posting Processes
We have seen how to calculate the impression probability once the follower arrival rate and timeline rate

are both known. We also saw that we can get a good approximation to the impression probability if we

use the posting rate instead of the arrival rate. In this section we present Bayesian models for the timeline

and posting processes for users in Twitter. We focus on the posting process instead of the arrival process

because we can obtain data on the posting process through the Twitter API. We take a Bayesian approach

because it provides a very natural way to obtain credibility intervals for all model parameters and the model

estimation procedure is fairly direct. This then allows for simple calculation of credibility intervals for the

impression probabilities, which we present in Section 4.

3.1. Exploratory Data Analysis
To begin our model development, we perform an exploratory analysis of the posting and timeline processes

for 1498 Twitter users. These users are random samples of the followers of prominent Twitter users such as

Barack Obama (@BarackObama), Taylor Swift (@taylorswift12), and several others. To obtain the timeline

of each user in our dataset we collected the posts of a maximum 100 of their friends. This allowed us to

reconstruct a sampled version of the timeline process for each user. We only collected the posts of 100

friends per user because of rate limitations by the Twitter API. All post times are in GMT, which is the

default for the Twitter API.

We begin by studying the temporal variation in the timeline processes. We define the smoothed timeline

rate as the posts per unit time in a sliding six hour window. We chose this window size to produce a smooth

curve which would show the main qualitative features of the timeline rate. We plot the smoothed timeline

rate for different Twitter users in Figure 1. As can be seen, there are clear oscillations over a one day period.

Also, the peak time of these oscillations are different for each user.



Author: Strategic Timing of Content in Online Social Networks
13

Time
Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

Ti
m

el
in

e 
R

at
e 

[p
os

ts
/d

ay
]

500

1000

1500

2000

2500

3000

3500

4000

Time
Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

Ti
m

el
in

e 
R

at
e 

[p
os

ts
/d

ay
]

200

400

600

800

1000

1200

1400

1600

Time
Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu

Ti
m

el
in

e 
R

at
e 

[p
os

ts
/d

ay
]

1000

2000

3000

4000

5000

6000

Time
Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

Ti
m

el
in

e 
R

at
e 

[p
os

ts
/d

ay
]

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 1 The smoothed timeline rate for Twitter users with screen names (top left) @444sai, (top right)

@AbdeRules, (bottom left) @AsifSKhan, (bottom right) @Birdseye1. Each timeline was constructed

from 100 friends of the user. The timeline rate was smoothed using a sliding six hour window.

We next look more closely at the daily variations in both the timeline and posting proceses. We plot a

histogram of the hour of posts in the timeline and posting process for each of the users from Figure 1 in

Figure 2. As can be seen, for these users there is considerable variation in the number of posts versus hour

for both their timeline and posting processes. Also, the hourly distribution for the two processes can be

very different. The one day period of oscillation for the timeline rate is clearly visible in the data. We next

examined variations over a one week period. We show a histogram of the day of the posts in the timeline and

posting processes for the same users in Figure 3. As with the hour data, we see variation across these users

in the day distribution for both processes. Also, the timeline and posting processes can be very different in

their day distributions for a given user.

To further show the difference in the peak times for the posting and timeline processes, we plot in Figure

4 the peak hour and peak day for the timeline and posting process for each user in our dataset. The points

in the plot are jittered with Gaussian noise with standard deviation 0.25 in order to make them more clear.

As can be seen, there is very little correlation between the timeline and posting processes in terms of peak

day and peak hour. For the two processes, the correlation of the peak hour is 0.31 (p-value < 10

�6) and the

correlation of the peak day is 0.06 (p-value = 0.0042). There is more correlation in the hour than in the day,

but both values are much smaller than one.
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Figure 2 Histograms of the hours of posts from the posting and timeline process for Twitter users with

screen names (top left) @444sai, (top right) @AbdeRules, (bottom left) @AsifSKhan, (bottom right)

@Birdseye1.

This exploratory analysis provides two important conclusions. The first is that the posting and timeline

processes of users show variations with a one day and one week period. This is not a surprising result given

the manner in which users typically use social networks. Second, the peak hour and day of the posting

and timeline processes are not aligned for many users. We saw in Section 2.3 that when the timeline and

arrival rates were equal, then the impression probability was constant in time and there was no gain from

strategic timing. However, when the rates are not proportional, strategic timing can produce substantial

gains. Because of the observed misalignment of the peak hour and day for the two processes for several

users, we expect strategic timing of content to be beneficial in practice.

3.2. Parametric Form of Rate Functions

We now propose a parametric form for the timeline rate and posting rate functions. Because we assume

that the posting process is a random sample of the arrival process, this parametric model for the rate of the

arrival process will be a scaled version of the rate of the posting process. Timeline posts are an aggregation

of user posts, so it is reasonable to assume that the posting and timeline processes have a similar parametric

form (but with different parameter values). Based upon the analysis in Section 3.1 we assume that all rates

have oscillations with a one day and one week period.
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Figure 3 Histograms of the days of posts from the posting and timeline process for Twitter users with

screen names (top left) @444sai, (top right) @AbdeRules, (bottom left) @AsifSKhan, (bottom right)

@Birdseye1.
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Figure 4 (left) Plot of the peak hour of the timeline process versus the posting process for several Twitter

users. (right) Plot of the peak day of the timeline process versus the posting process for several

Twitter users. All data points are jittered with Gaussian noise with a standard deviation of 0.25.
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In our model the timeline process of a user u consists of the following parameters: {�u
0 , b

u
h, b

u
d , t

u
h, t

u
d}.

The timeline rate is then given by

�u
(t) = �u

0 (1+ buh cos (!h (t� tuh))) (1+ bud cos (!d (t� tud))) . (12)

The parameters tuh and tud indicate the peak hour and day of the timeline rate. The strength of the hourly

and daily variations are modeled by the terms buh and bud . The average timeline rate is captured by �u
0 . If we

measure the time t in days, then the frequencies above become !h = 2⇡ (one day period) and !d = 2⇡/7

(seven day period).

We model the posting process rate using a similar parametric form as in (12) keeping !h and !d the same,

but using different parameters { u
0 ,�

u
h ,�

u
d , ⌧

u
h , ⌧

u
d }.

 u
(t) = u

0 (1+�u
h cos (!h(t� ⌧uh ))) (1+�u

d cos (!d(t� ⌧ud ))) . (13)

The parametric form of the rates allow us to express the mean value of the processes in closed form. The

mean timeline process is given by

⇤

u
(t, t+ s) =�u

0s+�u
0

buh
!h

sin (!h(r� tuh))

����
t+s

r=t

+�u
0

bud
!d

sin (!d(r� tud))

����
t+s

r=t

+

�u
0

buhb
u
d

2(!d +!h)
sin ((!d +!h)(r� (tud + tuh)))

����
t+s

r=t

+

�u
0

buhb
u
d

2(!d �!h)
sin ((!d �!h)(r� (tud � tuh)))

����
t+s

r=t

(14)

and the mean posting process is given by

 

u
(t, t+ s) = u

0 s+ u
0

�u
h

!h
sin (!h(r� ⌧uh ))

����
t+s

r=t

+ u
0

bud
!d

sin (!d(r� ⌧ud ))

����
t+s

r=t

+

 u
0

�u
h�

u
d

2(!d +!h)
sin ((!d +!h)(r� (⌧ud + ⌧uh )))

����
t+s

r=t

+

 u
0

�u
h�

u
d

2(!d �!h)
sin ((!d �!h)(r� (⌧ud � ⌧uh )))

����
t+s

r=t

. (15)

3.3. Bayesian Model Specification

To learn the model parameters we will use a Bayesian approach. This will provide us with posterior esti-

mates and credibility intervals for all model parameters in a very natural way. The Bayesian framework

also allows for ease of model fitting when there is not sufficient data, as is the case for many users’ posting

processes. Because of the difference in amount of data for the timeline and posting processes, we use dif-

ferent model structures for each process. For the timeline process we have sufficient data for each user and

therefore learn each timeline rate independently. For the posting process, because of sparse data for many
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users, we use a hierarchical model which allows for information sharing between users. We now specify

these models in detail.

The timeline process of a user u provides us with observations of the nu times of the timeline posts

tu = {tu1 , tu2 , ...tunu

}. The timeline model parameters for user u are ⇥u
= {�u

0 , b
u
h, b

u
d , t

u
h, t

u
d}. Because we

model the timeline process as an non-homogeneous Poisson process with rate �u
(t), the likelihood of the

observations is given by

P (tu|⇥u
) =

nuY

i=2

�u
(tui )e

�⇤u(tu
i�1,t

u

i

)

= e�⇤
u(tu1 ,t

u

n

u

)
nuY

i=2

�u
(tui ) , (16)

with �u
(t) and ⇤u

(s, t) given by equations (12) and (14). We use uninformative hyperpriors for the timeline

model parameters. For �u
0 we use a gamma distribution with shape and scale one and 10,000. For the

remaining parameters we use normal priors with zero mean and standard deviation 100.

For the posting process, many times we will have users who do not provide a large amount of data. This

is in contrast to the timeline process which typically has a large amount of data for each user. Therefore, it

may not be possible to accurately learn the posting rate parameters of each user individually. However, if

we assume that similar behavior is shared between different users, then we may be able to better learn the

parameter values. For this reason, we use a hierarchical Bayesian model for the posting process. We first

define for a user u a set of posting rate parameters �u
= { u

0 ,�
u
h ,�

u
d , ⌧

u
h , ⌧

u
d }. For each user u we observe

the corresponding mu posting times su = {su1 , su2 , ...sumu

}. The likelihood of the observations conditioned

on the user parameters is similar to that for the timeline observations and is given by

P (su|�u
) =e� 

u(su1 ,s
u

n

u

)
nuY

i=2

 u
(sui ) , (17)

with  u
(t) and  u

(s, t) given by equations (13) and (15). To couple the user parameters, we make them

each independent conditional on a set of global paramters. We define this set of global parameters as �=

�
 0,�h,�d, ⌧h, ⌧d,��

h

,��
d

,�⌧
h

,�⌧
d

 
. The parameters characterize the typical value of the user parameters

across all users. The parameter  0 characterizes the typical posting rate. The � terms characterize the typical

strength of the hourly and daily variations and the �2
� terms model how variable individual users are. The

same goes for the ⌧ and �2
⌧ terms and the corresponding peak hours and days. The distributions of the user

parameters conditioned on the global parameters are

 u
0 | 0 ⇠Exp

�
 �1

0

�
(18)

�u
h |�h,��

h

⇠N
�
�h,�

2
�
h

�
(19)

�u
d |�d,��

d

⇠N
�
�d,�

2
�
d

�
(20)
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Figure 5 Graphical model of the hierarchcial Bayesian model for the posting process. The plates denote

replication over posting times Su

i

and users u. Hyperpriors are omitted for simplicity.

⌧uh |⌧h,�⌧
h

⇠N
�
⌧h,�

2
⌧
h

�
(21)

⌧ud |⌧d,�⌧
d

⇠N
�
⌧d,�

2
⌧
d

�
, (22)

where Exp (x) denotes an exponential distribution with mean x and N (µ,�2
) denotes a normal distribution

with mean µ and standard deviation �. Hyperpriors are chosen to be uninformative and conjugate when

possible. The hyperprior on  0 is inverse gamma with parameters one and one. For all means of the normal

conditional distributions we use normal priors with zero mean and standard deviation 100. All the variances

of the normal conditional distributions have inverse gamma hyperpriors with parameters one and one. For

convenience we include a visual depiction of the structure of the hierarchical model for the posting process

in Figure 5.

For N users, let the observed posting times be S= {s1, s2, ..., sN} and let the observed timeline times be

T= {t1, t2, ..., tN}. We define the set of all user posting rate parameters as �user
= {�1,�2, ...�N} and

the set of all user timeline rate parameters as ⇥user
= {⇥1,⇥2, ...⇥N}. The posterior distribution of the

timeline process model parameters given T is given by

P (⇥user|T)/
NY

u=1

P (tu|⇥u
)P (⇥

u
) .

The posterior distribution of the posting process model parameters given S is given by

P (�,�user|S)/P (�)

NY

u=1

P (su|�u
)P (�

u|�) .

We sample from these posterior distributions using a Markov Chain Monte Carlo (MCMC) sampler. For

the timeline rates the model decouples and we can sample the parameters for each user timeline individually.

For the posting process because all users are coupled through the global parameters, we must jointly sample

all user parameters. Details of our MCMC sampler are provided in the Appendix.
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Figure 6 Posterior histograms of the timeline rate parameters of user @444sai for the timeline process

model.

3.4. Model Estimation Results

We estimate our model on a subset of 94 users from our dataset. These users are selected at random from our

dataset with the requirement that they have at least 10 posts in their timeline and posting processes. Each

timeline model was learned separately for each user. For the posting processes, we estimated the parameters

for all users jointly using the hierarchical model. For each model estimation (timelines and posting process),

we generated posterior samples using three independent MCMC chains with dispersed starting points run

for 6,000 iterations and discarding a burn-in period of 1,000 iterations. Convergence of the MCMC sampler

was assessed using the Gelman-Rubin statistic (Gelman and Rubin 1992).

We plot the posterior histograms of timeline parameters for one user’s timeline in Figure 6. To visually

demonstrate the quality of the in-sample fit, in Figure 8 we show the posterior in-sample mean timeline

process versus the true timeline process for this user, where we define this as b (0, t) =E⇥ [ (0, t|⇥)]. We

also plot the empirical and posterior in-sample mean timeline rates in Figure 8. The empirical timeline rate

is calculated using a six hour sliding window. As can be seen, the in-sample fit is quite good for the timeline

and captures much of the daily and weekly variation, which is most clearly visible in the timeline rate plots.

We plot posterior histograms for the posting process for the same user in Figure 7. In Figure 8 we show
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Figure 7 Posterior histograms of the posting rate parameters of user @444sai for the timeline process

model.

this user’s posterior in-sample mean value posting process b (0, t) =E⇥ [ (0, t|⇥)] versus the true posting

process. As can be seen, the in-sample fits are quite good for the posting process as well and captures much

of the daily and weekly variation. We do not plot the posting rates because the sparse number of posts

(relative to the timeline process) produces a very noisy empirical rate curve.

The posterior histograms of the global parameters is shown in Figure 9. Here we see that the median

posting rate for these users is 107 posts per day. The median peak hour is 13 (in GMT) and the median

peak day is between Wednesday and Thursday. The median standard deviation of the user peak hour �⌧
h

is 14 hours. This indicates that there is a wide spread in the peak hour of posting across users. However,

the median standard deviation for the peak day is 1.3 days, indicating less variation in the day of most user

activity.

3.5. Model Comparisons

To assess the quality of fit of our model, which we refer to as Model 3, we compare it to two other benchmark

models. The first model, which we refer to as Model 1, assumes no temporal dependence in the timeline

and posting rates. The second model, Model 2, only assumes a one day periodicity in the rates, but ignores
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Figure 8 Posterior fits of the timeline process (top left), timeline rate (top right) and posting process (bottom

left) for user @444sai. The blue curves are the 90% posterior credibility intervals for the model fit

curves.

the weekly periodicity. Both models assume a hierarchy on the posting rate parameters, similar to Model 3

proposed in Section 3.3. We now provide detailed Bayesian specifications of these two models.

The timeline and arrival rates of Model 1 are assumed to be constant. The full model is given by

�u
(t) = �u

0

 u
(t) = u

0

 u
0 | 0 ⇠ �(1, 0)

The hyperprior for �u
0 is a gamma distributions with shape and scale parameters one and 10,000 respectively.

For  0, the hyperprior is inverse gamma with shape and scale parameters both equal to one.

The timeline and arrival rates of Model 2 are given by

�u
(t) = �u

0 (1+ au
(1+ buh cos (!h (t� th))))



Author: Strategic Timing of Content in Online Social Networks
22

50 100 150 200
0

0.02

0.04

Fr
eq

ue
nc

y

ψ0 [posts/day]
0 0.5 1

0

0.02

0.04

Fr
eq

ue
nc

y

βh

0.4 0.6 0.8
0

0.02

0.04

0.06

Fr
eq

ue
nc

y

σ
β

h

0 10 20
0

0.02

0.04

Fr
eq

ue
nc

y

τh [hour]
12 14 16 18

0

0.02

0.04

0.06

Fr
eq

ue
nc

y
σ
τ

h

 [hour]
0 0.5 1

0

0.02

0.04

Fr
eq

ue
nc

y

βd

0.5 0.6 0.7
0

0.01

0.02

0.03

Fr
eq

ue
nc

y

σ
β

d

Sun Mon Tue Wed Thu Fri Sat
0

0.02

0.04

Fr
eq

ue
nc

y

τd

1 1.5 2
0

0.02

0.04

0.06

Fr
eq

ue
nc

y
σ
τ

d

 [days]

Figure 9 Posterior histograms of the global parameters for the posting process model.

 u
(t) = u

0 (1+↵u
(1+�u

h cos (!h (t� ⌧h)))) .

This is the same form as Equations (12) and (13) but without the temporal dependence on the day of the

week. The hyperpriors for all model parameters here are identical to those in Section 3.3.

We use data for the same 94 Twitter users as used to fit Model 3 in Section 3.4 and a similar MCMC

procedure to sample from posterior distributions of each model. The quality of the model fit is assessed

using the deviance information criteria (DIC) (Spiegelhalter et al. 2002). The DIC is a standard Bayesian

model fitting score that rewards models which fit the data better (through a higher likelihood) but penalizes

models with a larger number of parameters. Models which fit better have a smaller DIC. The DIC of the

three models for the timeline and posting processes are shown in Table 2 and Table 3, respectively. We

find that Model 3 has better fit in terms of DIC than Models 1 and 2. Therefore, the inclusion of daily and

weekly temporal variations in the arrival and timeline models do lead to a better fit to actual user behavior

in Twitter.

4. Impression Probability Calculations
The calculations from Section 3.4 provide us with posterior samples of the timeline and posting rate param-

eters. We can use these to calculate the impression probability (with credibility intervals) for the users in



Author: Strategic Timing of Content in Online Social Networks
23

Timeline Process Model Description DIC
Model 1 No temporal variation �5.167⇥ 10

6

Model 2 Daily variation �5.217⇥ 10

6

Model 3 Daily and weekly variation �5.225⇥ 10

6

Table 2 Deviance information criteria (DIC) for different timeline process models.

Posting Process Model Description DIC
Model 1 No temporal variation �0.912⇥ 10

4

Model 2 Daily variation �0.980⇥ 10

4

Model 3 Daily and weekly variation �1.010⇥ 10

4

Table 3 Deviance information criteria (DIC) for different posting process models.

our dataset. We do so as follows. Denote the ith sample of the timeline and posting rate parameters for a

user u as⇥u
i and�u

i . Using these we can calculate the timeline and posting rate for this user using equations

(12) and (13). Here we are using the posting rate in place of the arrival rate. For the cutoff window we use a

value of 30. This value is a reasonable value given the way in which people use social network applications.

From the analysis in Sections 2.5 and 2.6 we expect our calculations not to be affected by using the posting

rate or error in the cutoff window. We will also show numerical evidence supporting this claim in Sections

4.2 and 4.1.

With the timeline rate, posting rate, and cutoff window we are able to calculate the impression probability

using equation (3) for a time t. Doing this for each posterior sample we obtain a distribution for the impres-

sion probability at each time t. We can then obtain an estimate for the impression probability by taking the

median of these samples and quantify uncertainty in the value using the 90% credibility interval centered at

the median. We show the impression probability plots for several users in Figure 10. The top left plot in the

figure is for user @444sai whose posterior timeline and posting rate parameters were shown in Section 3.

We see that there is substantial gain from strategic timing of content. For instance, in the top left plot in

Figure 10, random timing would produce an impression probability of approximately 0.50 and if one was

unlucky the impression probability could be as low as 0.14. However, with strategic timing the impression

probability can go up to 0.90. We will see in Section 5 how much gain in impressions real users can achieve

with strategic timing versus their current posting behavior.

4.1. Robustness to Cutoff Error

We next look at the robustness of the impression probability calculations to uncertainty in the cutoff window

value. We plot in Figure 11 the impression probability of a user for different values of the cutoff window.

We see that with the cutoff window ranging from 20 to 100 there is an appreciable change in the value of the

impression probability. However, there is not an appreciable change in the optimal posting time. Therefore,

without knowing the actual cutoff window, we can still determine the best time to post with low error.
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Figure 10 Impression probability plots for Twitter users with screen names (top left) @444sai, (top right)

@AbdeRules, (bottom left) @AsifSKhan, and (bottom right) @Birdseye1
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Figure 11 Impression probability plots for different values of the cutoff window for user @444sai.
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Figure 12 Impression probability plots for different values of � for user @444sai.

4.2. Robustness to Using the Posting Process Instead of the Arrival Process

Of concern in our analysis is the fact that we do not have the actual arrival times, but instead only the posting

times. We saw in Section 2.5 that this would not produce an appreciable change in the achieved impression

probability. We now show that this is the case with real data. We scale up the posting rate by a factor � � 1

and calculate the resulting impression probability. The results for a Twitter user, shown in Figure 12, show

that by changing � we are not affecting the location of the times for maximum and minimum impression

probability. Therefore, we can still achieve timing gains using the posting rate as a surrogate for the arrival

rate.

4.3. Accuracy of Approximations

We next look at how good the two approximations for the impression probability that were presented in

Section 2 are on real data. We plot in Figure 13 the impression probability calculated using the exact

equation (q(t) from equation (3)), and the approximations q1(t) from equation (5), q2(t) from equation

(7),and q3(t) defined as

q3(t) =min{q2(t),1} . (23)

q3(t) is simply truncating q2(t) to obtain a proper probability. We assume a cutoff value of 30. As can be

seen from the figure, approximation q1(t) is a very good approximation to the true impression probability.

In contrast, q2(t) and q3(t) do not perform as well for large values of the impression probability, but are

good for smaller values. In fact, q2(t) many times exceeds one, but does follow the same shape as qt(t).

We look at the quality of the approximations over a set of 94 Twitter users. We calculate the impression

probability at n values of t over a time interval of one week. In our calculations n= 172 which corresponds
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Approximation MAPE
q1(t) 13%
q2(t) 3242%
q3(t) 25%

Table 4 Mean absolute percent error (MAPE) of impression probability approximations averaged over 94

Twitter users.

to calculating the impression probability at one hour intervals. We define the mean absolute percent error

(MAPE) for approximation k of each user u as

MAPEu
k =

1

n

nX

i=1

|qu(ti)� quk (ti)|
qu(ti)

, k= 1,2,3

and the mean absolute percent error of approximation k as MAPEu
k averaged over all users. We show the

values for these errors for the approximations in Table 4.3. As can be seen, the MAPE is below 25% for

q1(t) and q3(t), and for approximation q1(t) it is only 13%. The MAPE is very high for q2(t) because many

times the value of the approximation is greater than one, but q2(t) follows the general shape of the exact

impression probability, as can be seen in Figure 13. In practice a user may only want to know the best

time to post. Therefore, the actual value of the impression probability is not needed, but just the location of

its maximum. Therfore, despite its huge MAPE, q2(t) is still a useful expression if one does not need the

exact value of the impressio probability. This is what is shown in Theorem 1. When more accurate values

of the impression probability are required, approximations q1(t) or q3(t) can be used in place of the exact

expression for the impression probability.

5. Optimal versus Real Posting Times
With our model we are able to now evaluate the impression probability for arbitrary social media users. We

saw there can be substantial gain in impressions for strategic timing versus randomly posting. A natural

next question to ask is what is the potential gain in impressions from strategic timing compared to what is

currently done by real social media users. To investigate this we now consider several high-profile Twitter

users that are celebrities, politicians, or media programs and have millions of followers. Due to data limi-

tations we are only able to collect the posting and timeline times for approximately 100 followers per user.

We wish to investigate how the real posting times of these users compare with the optimal posting times for

our sample of their followers in terms of average impressions. This will provide a sense of how much these

users could increase their impressions if strategic timing was used.

5.1. Data analysis

We first analyze the actual posting times of the high-profile users in order to better understand how they are

currently posting. In particular, we wish to understand the distribution of the days of the week and hours

of the day of their posts. We plot if Figure 14 histograms of the hour and day of the posting times for four
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Figure 13 Plots of the impression probability (q(t)) and approximations (q1(t), q2(t), and q3(t)) for Twitter

users with screen names (top left) @444sai, (top right) @AbdeRules, (bottom left) @AZ5566, and

(bottom right) @Birdseye1.

different users. These histograms represent the main patterns seen in the dataset and most likely correspond

to different time zones. The Pacific, Eastern, and Central time zones in the United States are represented

in our sample. We also have a user (@Cristiano) located in Madrid. We indicate the time zones listed by

Twitter of these users in the figure. As can be seen, the posting patterns do not seem totally random when

it comes to the hour of the post. Rather, it seems that the posting times correspond to the daytime hours in

the different time zones. However, there is a more uniform distribution of the posts over days of the week,

with an exception being @Oprah who posts heavily on Sunday. To quantify this we calculate the entropy of

the empirical distribution of the hours and days of the posts for each user. For a discrete probability mass

function p(k), k 2 {1,2, ..., n} ,
Pn

k=1, p(k) = 1, the entropy is defined as H(p) =�
Pn

k=1 p(k) log(p(k)).

The entropy is zero when there is no randomness, which occurs if all the probability mass concentrates on a

single element. The entropy achieves its maximum value of log(n) if there is maximum randomness, which

occurs if the probability mass is uniformly distributed across all elements. We plot in Figure 15 the entropy
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Figure 14 Histogram of hour and day of posting times for four different Twitter users. The screen names and

time zones of the users are (top left) @Cristiano, Madrid, (top right) @shakira, Eastern Time (US

and Canada), (bottom left) @Oprah Central Time (US and Canada), and (bottom right) @TheEllen-

Show, Pacific Time (US and Canada).

corresponding to the hour and day distributions for the users. The maximum entropy is also indicated in

the figure. As can be seen, the day distributions are very close to maximum randomness, while the hour

distributions appear to be much less random. The conclusion from this is that users are not strongly biased

towards any day of the week when they post, but do have significant biases as to the hour when they post,

most likely because they are awake at certain hours.

5.2. Impression Gain
We next wish to see how many impressions these users would gain with respect to our set of their sampled

followers if they had posted optimally. We conduct the following simulation. We assume that each post of

the user must be constrained to the day it was posted, but there is total flexibility as to what time in that day

to post. This is generally true for most posts not involving time sensitive information. The only exception

would be posts about a breaking news story. Other than those posts, most posts generally have information

pertinent to the current day, but the exact timing within the day is not critical.

For each user in our dataset we estimate the timeline and arrival process parameters for all of their sam-

pled followers using our Bayesian model which incorporates hourly and daily periodicity. We then use these
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Figure 15 Plots of the day and hour entropy of several Twitter users. The maximum day and hour entropies

are indicated in the figure.

estimated parameters to evaluate the impression probability for each follower. We assume a cutoff window

of 30 posts in this analysis. We then take each post by the user and evaluate its impression probability for

each of the user’s sampled followers. We use this to find the optimal posting time for each post within its

posting day for each follower. This allows us to see how much gain in impressions could have been achieved

within the day for each post.

We plot in Figure 16 the impression probability at the actual and optimal posting times for different

followers of user @Cristiano. The times have all been mapped into a one week window because our model

has a one week periodicity in the timeline and arrival rates. Each day has its own optimal posting time and

from the figure it can be seen how close each actual post is to the optimal posting time for each day. We

also show the aggregate average impressions and optimal times for all sampled followers of the user. The

aggregate average impressions are obtained by adding up each follower’s impression probability curve. As

can be seen, the gain obtained in aggregate is typically lower than the individual gain for a follower. This is

mainly due to the heterogeneity in the follower’s impression probabilities reducing the temporal variations

when the impression probabilities are aggregated. However, these users have millions of followers, so even

if the gain is only a few percent, this can still result in a significant number of extra impressions. In addition,

aggregate average impressions may not always be the metric of interest. For instance, there may be specific

high impact followers with large influence that a user is targeting with their posts. For these followers, the

gain of strategic timing can be very large.

To quantify the gain at the individual follower level, we define the post gain as the percent increase in the

average impressions of the follower for the optimal posting time in the day versus the actual posting time

for a post. We define the impression gain per follower as the average of the post gains over all posts of the

user for a specific follower. We also define the aggregate impression gain as the average of the post gain

for the aggregate average impressions curve. We plot the two types of gains for each user in Figure 17. As
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Figure 16 (top left, top right, bottom left) The impression probability for three different followers of @Cris-

tiano and (bottom right) the aggregate average impressions of 94 followers of @Cristiano. Each

figure shows the impression probability/aggregate impressions curve given by the model, along

with the values at the times of the actual posts of @Cristiano and at the optimal posting time for

each day of the week.

can be seen, the aggregate impression gain is typically lower than the impression gain per follower, but still

not insignificant. The median impression gain per follower for a user ranges from 32 to 223%, while the

aggregate impression gain ranges from 2 to 43%. This suggests that these users could significantly increase

their impressions for select target followers or in aggregate by using strategic timing of their posts.

6. Optimizing the Timing of Content for Multiple Users
We have seen that it is possible for an individual user to optimize their posting time to target any individual

or set of followers. This raises the question: what will happen if many users begin optimizing their posting

times. Given the prevalence of scheduling applications for Twitter (Social Times 2010) it is easy to imagine

an application that also calculates the optimal posting times for all of its users. For such an application to

be successful it must try to provide favorable posting times for all its users. However, if there are common

followers of these users there will likely be a trade-off between the aggregate performance of the system

and its fairness, that is between the average (or sum) and the minimum of the impression probabilities over

all users. Maximizing either of these metrics already leads to a potentially intractable global optimization
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Figure 17 (left) Boxplot of the impression gain per follower and (right) plot of the aggregate impression gain

for different users.

problem. However, in this section we show how to construct a solution that is nearly optimal for the aggre-

gate performance and is naturally fair. In fact, we will provide some evidence that suggest that improving

fairness actually improves aggregate performance.

Assume there is a set U of users who want to optimize their posting times and let |U| = U . Each user

u2 U has a set of followers Fu and let the set of all followers of users in U be F =

S
u2U Fu, with |F|= F .

Each follower f 2 F has a set of users it follows (its friends) denoted by Uf . We assume that all friends

of the followers are using the application to schedule their posts. That is, U =

S
f2F Uf . This way, the

application completely determines the timelines of the followers.

Assume at first that the main goal of the application is to maximize the average total impressions of all

followers. To simplify the analysis and more closely model how the application would operate in practice,

we assume that each user will post once during a fixed period. For simplicity we will assume that the period

T is one day. We define the posting time of a user u as tu 2 [0, T ] and assume that this will be the time that

the user will post his content, i.e., the posting times of user u are given by tu + kT for k = 1,2, ... Given a

set of posting times t= {t1, t2, ..., tU}, we define the impression probability of content posted at time t for

follower f as qf (t|t). With this notation, the optimization problem can be written as

maximize
t2[0,T ]U

X

u2U

X

f2F
u

qf (tu|t)

subject to 0 tu  T, u= 1, . . . ,U.

(24)
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The objective function of this problem may be non-concave so it is unclear if an optimal solution can easily

be found. To gain insight into the solution, we consider a simpler version where there is one follower who

follows all users in U . We will find that by studying this problem we will gain insights into the solution of

the full optimization problem. We assume that the cutoff window of the follower is C and that C < U . If

the cutoff window is larger than U , then all posts will be seen by the follower and the problem is trivial.

We still assume that the follower’s timeline consists of only tweets from the set of U users. The follower’s

arrival rate  (t) is known and is periodic with period T . We define the amount of time until there are C

posts on the follower’s timeline after time t as �(t|C, t). To simplify our analysis, we assume the posting

times of the users are ordered such that tu  tu+1,1 uU � 1. Because we know the times of each post

exactly, each post lifetime can easily be calculated. For time tu, this time is given by

�(tu|C, t) = tu+C � tu (25)

Above we have used the periodicity of the posting times so that tu+U = T + tu. The follower arrival process

is modeled as a non-homogeneous Poisson process with rate  (t). The post of user u is seen if the follower

arrives (checks his timeline) at least once during the interval [tu, tu+C). It can be shown that the exact

impression probability of user u’s post is then given by

q(tu|t) = 1� e� (t
u

,t
u

+�(t
u

|C,t))

= 1� e� (tu,tu+C

), (26)

where we define the mean of the arrival process as  (t, t+ s) =
R t+s

t
 (x)dx.

For this simplified setting of one follower, we consider two different scenarios. In one scenario, the

application will use historic data to calculate the posting time of each user independently. In the other

scenario, the application will try to jointly optimize the posting times by solving the optimization problem

in equation (24). We will next examine what happens in these two scenarios and how to schedule the posts

for the joint optimization.

6.1. Multiple Users Optimizing Individually

Consider a scenario where during each period the application selects the posting time by individually opti-

mizing each user’s impression probability. There is a single follower so all users will see the same impres-

sion probability function. Therefore, if they each choose their posting times to maximize this function and

its global maximum is unique, they will end up posting at the same time t. Then the set of posting times

is tind = {t, t, ..., t}. When all users post at the same time we can calculate the average total impressions

achieved. There are two types of users in this scenario. Since all users post at the same time, only the final

C posts are seen and the first U � C posts will not be seen. We assume that the ordering of the U posts
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that occur at the same time is given by a permutation chosen uniformly at random. Then the impression

probability for any user posting at t is

q(t|tind) = C

U
(1� e� (t,t+T )

)

=

C

U
(1� e� (0,T )

). (27)

Above we used the fact that  (t) is periodic over an interval T . We define the total average impressions of a

set of posting times t= {t1, t2, ..., tU} as I(t) =
PU

i=1 q(ti|t). The average total impressions for individual

optimization is given by

I(tind) = Fq(t|tind)

=C
�
1� e� (0,T )

�
. (28)

We see here that each user has the same impression probability if the ordering is chosen randomly. However,

for a given slot, the impression probabilities are not equal. The final C posts will have q(t|tind) = 1 �
e� (t,t+T ), while for the first F � C posts q(t|tind) = 0. Therefore, each day some users are guaranteed

to not have their post seen, resulting in an unfair allocation of the possible impressions. If the impression

probability has multiple global maxima (or multiple local maxima that are nearly global maximum) that are

sufficiently spread out the unfairness may reduced by spreading the posts among these maxima. However,

this approach will fail for large F or small C. Fortunately, as we show next, the unfairness can always be

eliminated if we spread the posts in a way that adapts to the shape of the follower’s arrival rate. In addition,

this approach actually leads to a near optimal solution with respect to total average impressions.

6.2. Multiple Users Optimizing Jointly

We now consider the situation where all posting times are jointly optimized. It is difficult to solve the

optimization problem exactly. Instead, here we will propose a solution and show its good properties in terms

of the total impressions it achieves and fairness across users. We have the following result.

THEOREM 6.1. Consider the optimization problem (24) with F = 1 and C <U . Let the optimal solution

be t⇤. Define the distribution function corresponding to follower arrival rate  (t) as

G(t) =
 (0, t)

 (0, T )
, (29)

and define the set of posting times t =
�
G�1

�
u
U

� U
u=1

. Then the impression probability of user u is

q(t u ) = 1� e�
C

U

 (0,T ), u= 1,2, ...,U (30)

the average total impressions is

I(t ) =U
⇣
1� e�

C

U

 (0,T )
⌘
, (31)
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and we have that

|I(t⇤)� I(t )|
(

C2 2(0,T )
U

�
1
2
� 1

e

�
,  (0, T ) 1

C2 (0,T )
U

⇣
 (0,T )

2
� 1

e

⌘
,  (0, T )> 1

. (32)

This result shows that if we choose the posting times as the quantiles of the distribution derived from

the arrival rate  (t), then we will come very close to maximizing the average total impressions and also,

we will give each slot an equal impression probability. Therefore, we achieve fairness in this allocation of

posting times, unlike when users optimize independently. This fairness is not surprising given the result

from Section 2.3 which showed that when the timeline and arrival rates are proportional, the impression

probability is time independent. In this case the solution creates a timeline rate that tries to match the arrival

rate.

If we compare the average total impressions from the approximate solution to the joint optimization

(I(t ) from equation (31)) to that from independently optimizing (I(tind) from equation (28)), we find

that their difference can be significant depending on the values of U , C, and  (0, T ). We plot the ratio of

the average total impressions from joint optimization to independent optimization versus different values

of the parameters in Figure 18. We find that when  (0, T ) is large and U is large, there is a large gain in

average total views from joint optimization. This gain is much less for small  (0, T ) and U . If we look at

the asymptotic gain in average total views as a function of the number of users posting we find

lim

U!1

I(t )

I(tind)
= lim

U!1

U(1� e�C/U (0,T )
)

C(1� e� (0,T )
)

lim

U!1

(1� e�C/U (0,T )
)

C
U
(1� e� (0,T )

)

lim

U!1

�C (0,T )
U2 e�C/U (0,T )

� C
U2 (1� e� (0,T )

)

=

 (0, T )

1� e� (0,T )
. (33)

Thus, for a large number of users U , the gain from joint optimization is monotonically increasing in the

average user arrivals in a period  (0, T ) and approaches  (0, T ) for larger values of  (0, T ). On the other

hand, for slowly arriving users (small  (0, T )), there is very little gain from joint optimization.

6.3. Optimization Example: Sinusoidal Arrival Rate

We will now show a numerical example of our optimization problem. Based upon our modeling in Section 3

we will assume the user arrival rate is  (t) = 0 (1+�h cos (!h (t� ⌧h))), where we have defined !h = 2⇡

when t is measured in days. We use the parameter values shown in Table 5 for the follower arrival rate

which come from the posterior median values for a Twitter user. This optimization problem is already very

hard to solve, but after one hour of computing time the global optimization solver Couenne (Belotti et al.

2009) was able to produce a solution that is guaranteed to be within 14% of the global optimum. We define
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Figure 18 Plot of the gain in average total impressions from joint optimization versus individual optimization

of posting times I(t )/I(tind).

Parameter Value
 0 1 day�1

T 1 Day
U 300
C 30
�h 0.9 days
⌧h 0.5 days

Table 5 Parameter values for optimization problem.

the posting times for this solution as tc = {tc1, tc2, ..., tcU}. To visualize the solution, we first look at the

impression probability for each user i as a function of his posting time in Figure 19. It can be seen that

the impression probability of each user is almost constant. This aligns with the idea that maximizing the

average total impressions tends to induce fairness in the impression probabilities, as suggested by Theorem

6.1.

Also from that theorem, we expect the posting times to be distributed according to the distribution func-

tion defined by  (t) which is given by G(t) = (0, t)/ (0, T ). We define the empirical distribution of the

optimized posting times as bG(t) =
PU

i=1 1{tci  t}. We show a plot of the two functions in Figure 19 and

see that they are nearly equal, as expected. Hence, selecting the posting times to match the user arrival rate

 (t) does seem like a good approach to produce high quality solutions and to induce fairness.
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Figure 19 (left) Plot of the impression probability of each user for the posting times found using Couenne.

(right) Plot of the empirical CDF of the posting times obtained by Couenne bG(t) and the CDF

G(t) = (0, t)/ (0, T ) corresponding to the follower arrival rate  (t).

7. Discussion
We have shown here that strategic timing of content is an effective and simple method which can sub-

stantially increase the reach of posts in social networks. Our work presented a model for the use of social

networks which allowed us to calculate impression probabilities for posts. This model is very general and

applies to any social network where posts are shown to users in chronological order, such as Twitter and

Instagram. We also presented a model for the dynamics of user behavior on social networks, which was used

as an input to our social network use model. We were able to obtain impression probabilities as functions

of the posting times for several real users in Twitter and found that strategic timing can greatly increase the

impressions received by posts. In addition, we found the the optimal posting times were robust to uncer-

tainty in several model parameters which are difficult to measure in practice, such as the arrival rate and

cutoff window. We then extended our model to multiple users to show what happens when everyone in a

social network posts content strategically. We showed that jointly optimizing posting times to maximize the

average total impressions tends to induce a fair allocation of the impression probability for these users.

The most important aspect of this work is that it can be easily applied by companies trying to reach a

specific audience in social networks such as Twitter which provide publicly accessible data. For Twitter

users, determining the optimal time to post in order to reach a group of target followers can be done as

follows.

1. Collect the posting times and timeline posting times for the target followers using the Twitter API.

2. Estimate the posting and timeline rate parameters for each follower using the Bayesian model in

Section 3.
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3. Use the estimated rate parameters and a reasonable value for the cutoff window to calculate the impres-

sion probability of each follower using equation (3), or one of the approximations given by equations (5)

and (7).

4. Post at the time which maximizes the impression probabilities of the target followers.

All of these calculations are straightforward and can be done with publicly available data in Twitter and the

results are robust to errors in several model parameters. Also, given that selecting the posting time incurs

no extra cost, strategic timing can very easily be implemented using our approach.

One key assumption in our model is that posts are shown in the timeline in chronological order, with the

most recent shown first. Our model does not apply to social networks where the order of posts is determined

by an arbitrary ranking algorithm, such as in Facebook. In this case our model of the timeline process is

no longer accurate. However, an interesting direction for future work is to incorporate different ranking

algorithms into our timeline model. This way strategic timing could be extended to other social networks

such as Facebook which do not rank posts chronologically.

Appendix A: Proof of Theorem 2.1

Define S
t

as the random variable corresponding to the residual time until the next follower arrival in the arrival process

conditioned on no arrival since time t. Because we model the arrival process as an non-homogeneous Poisson process,

standard results (Cox and Isham 1980) show that we can write the cumulative distribution function (CDF) of S
t

as

F
St(s) =P (S

t

 s)

=P (M(t, t+ s)> 0)

= 1� e� (t,t+s), (34)

and the corresponding density as

f
St(s) =  (t+ s)e� (t,t+s). (35)

Because the timeline process is a non-homogeneous Poisson process, we have that N(t, t+ s) is a Poisson random

variable with mean value ⇤(t, t + s). For any fixed t and s, the post is seen if N(t, t + s)  C. Let us define the

probability of this event as q(t, t + s), which is given by the CDF of a Poisson random variable with mean value

⇤(t, t+ s):

q(t, t+ s) =P(N(t, t+ s)C)

= e�⇤(t,t+s)
CX

k=0

⇤

k

(t, t+ s)

k!
.

The value s is determined by the time until the next arrival of the follower after time t, which is the random variable

S
t

. Therefore, to obtain the impression probability q(t) we simply need to average q(t, t+S
t

) over S
t

. This results in

the following expression for the impression probability:

q(t) =E [q(t, t+S
t

)]

=

Z 1

0

q(t, t+ s)f
St(s)ds

=

CX

k=0

1

k!

Z 1

0

 (t+ s)⇤k

(t, t+ s)e�( (t,t+s)+⇤(t,t+s))ds. (36)
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Appendix B: Proof of Lemma 1

The result is established by a direct application of equation (3).

q(t) =

CX

k=0

1

k!

Z 1

0

 (t+ s)⇤k

(t, t+ s)e�( (t,t+s)+⇤(t,t+s))ds

= a

CX

k=0

1

k!

Z 1

0

�(t+ s)e�(a+1)⇤(t,t+s)
⇤

k

(t, t+ s)ds

= a

CX

k=0

1

k!(a+1)

k+1

Z 1

0

e�(a+1)⇤(t,t+s)
(a+1)

k

⇤

k

(t, t+ s)(a+1)�(t+ s)ds

=

a

a+1

CX

k=0

1

(a+1)

k

=

a

a+1

1� (a+1)

�(C+1)

1� (a+1)

�1

= 1� (a+1)

�(C+1).

Appendix C: Proof of Theorem 2.2

The number of arrivals in the timeline in the interval (t, t+s] is a Poisson random variable N(t, t+s) with mean value

⇤(t, t+ s). Define the cumulative distribution function (CDF) of N(t, t+ s) as F
N(t,t+s)(·). Recall the definition of

� as �= sup{s :⇤(t, t+ s)C}. With this notation, the error of q1(t) is given by

|q(t)� q1(t)|=
����
Z 1

0

dse� (t,t+s) (t+ s)F
N(t,t+s)(C)�

Z �

0

dse� (t,t+s) (t+ s)

����

=

����
Z �

0

dse� (t,t+s) (t+ s)
�
F

N(t,t+s)(C)� 1

�
+

Z 1

�

dse� (t,t+s) (t+ s)F
N(t,t+s)(C)

����


Z �

0

dse� (t,t+s) (t+ s)
�
1�F

N(t,t+s)(C)

�
+

Z 1

�

dse� (t,t+s) (t+ s)F
N(t,t+s)(C)

We will now upper bound 1�F
N(t,t+s)(C) for s� and F

N(t,t+s)(C) for s >�. The CDF of N(t, t+ s) is given

by

F
N(t,t+s

(C) = e�⇤(t,t+s)
CX

k=0

⇤

k

(t, t+ s)

k!
. (37)

For s <� we can upper bound 1�F
N(t,t+s)(C) with a straightforward application of the Chernoff bound. For any

✓> 0, we have

1�F
N(t,t+s)(C) =P (N(t, t+ s)�C)

E
⇥
e✓N(t,t+s)

⇤
e�✓C

 e⇤(t,t+s)
(

e

✓�1
)

�✓C

The upper bound above is minimized for ✓= log(C/⇤(t, t+ s)) and the corresponding optimized upper bound is

1�F
N(t,t+s)(C) eC�⇤(t,t+s)

✓
⇤(t, t+ s)

C

◆
C

. (38)
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For s >� we can also upper bound F
N(t,t+s)(C) with a straightforward application of the Chernoff bound. Using

Markov’s inequality we have that for any ✓> 0

F
N(t,t+s)(C) =P (N(t, t+ s)C)

E
⇥
e�✓N(t,t+s)

⇤
e✓C

 e⇤(t,t+s)
(

e

�✓�1
)

+✓C

The upper bound above is minimized for ✓= log(⇤(t, t+ s)/C) and the corresponding optimized upper bound is

F
N(t,t+s)(C) eC�⇤

✓
⇤

C

◆
C

. (39)

To simplify the next step in the analysis, we will use Stirling’s approximation for the factorial (n!�
p
2⇡n1/2+ne�n)

to obtain

eC�⇤
✓
⇤

C

◆
C

 e�⇤⇤C

p
2⇡C

C!

. (40)

Next, we note that the conditions of the theorem give us that F1 < �(t)/ (t) for some 1<F1. Using this fact, along

with the bounds on the tail probabilities of N(t, t+ s), we bound the error of q1(t).

|q(t)� q1(t)|
Z �

0

dse� (t,t+s) (t+ s)
�
1�F

N(t,t+s)(C)

�
+

Z 1

�

dse� (t,t+s) (t+ s)F
N(t,t+s)(C)


p
2⇡C

C!

Z �

0

dse� (t,t+s)�⇤(t,t+s) (t+ s)⇤C

(t, t+ s)+

p
2⇡C

C!

Z 1

�

dse� (t,t+s)�⇤(t,t+s) (t+ s)⇤C

(t, t+ s)


p
2⇡C

C!

Z 1

0

dse� (t,t+s)�⇤(t,t+s) (t+ s)⇤C

(t, t+ s)


p
2⇡C

C!

Z 1

0

dse�⇤(t,t+s)�(t+ s)

F1
⇤

C

(t, t+ s)


p
2⇡C

F1
. (41)

Appendix D: Proof of Theorem 2.3

We begin with the following simple lemma regarding the exponential function.

LEMMA 2. Let f(x) = 1� e�x. We can upper bound f(x) by

1� e�x 
(
x (1� e�1x) , x 1

x (1� e�1
) x> 1

(42)

and lower bound f(x) by

1� e�x � x� 1

2

x2, x� 0. (43)

Recall that by the conditions of the Theorem, �(t)/F   (t) �(t)/F1. Using this and the definition of � given

by equation (6) we have that C/F   (t, t+�)  C/F1. Using this, we can upper bound the difference between

q1(t) and q2(t) as

|q1(t)� q2(t)|
����1� e� (t,t+�) � (t, t+�)+ (t, t+�)�C

 (t)

�(t)

����
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
��
1� e� (t,t+�) � (t, t+�)

��
+

���� (t, t+�)�C
 (t)

�(t)

����

  
2
(t, t+�)

2

+

C

F1
� C

F

 1

2

✓
C

F1

◆2

+C
F �F1

FF1

 C2
+C(F �F1)

F 2
1

Above we have used Lemma 2 to bound
��
1� e (t,t+�) � (t, t+�)

��. Combining this bound with equation (41) we

obtain our final result,

|q(t)� q2(t)| |q(t)� q1(t)|+ |q1(t)� q2(t)|


p
2⇡C

F1
+

C2
+C(F �F1)

F 2
1

.

Appendix E: Proof of Corollary 1

First, we note that by definition q(t⇤) � q(bt2) because t⇤ maximizes the true impression probability. Define t⇤2 =

argmax

t

q2(t). Because bq2(t) = �q2(t), we have that bt2 = t⇤2. This means that q2(bt2) � q2(t
⇤
). Consider the values

q(t⇤), q(bt2), q2(t⇤), and q2(bt2). Given the previous inequalities, there are six possible ways these values can be ranked

in decreasing order. Each possible permutation will give us a bound on |q(t⇤)� q(bt2)| which we will write using terms

of the form |q(t)� q2(t)| in order to apply Theorem 2.3. We will obtain our final result by taking the maximum value

of these bounds. We now enumerate each permutation and the bound it provides.

1. If q(t⇤)� q(bt2)� q2(bt2)� q2(t
⇤
), then |q(t⇤)� q(bt2)| |q(t⇤)� q2(t

⇤
)|.

2. If q2(bt2)� q(t⇤)� q(bt2)� q2(t
⇤
), then |q(t⇤)� q(bt2)| |q(t⇤)� q2(t

⇤
)|+ |q(bt2)� q2(bt2)|.

3. If q2(bt2)� q2(t
⇤
)� q(t⇤)� q(bt2), then |q(t⇤)� q(bt2)| |q(bt2)� q2(bt2)|.

4. If q(t⇤)� q2(bt2)� q(bt2)� q2(t
⇤
), then |q(t⇤)� q(bt2)| |q(t⇤)� q2(t

⇤
)|.

5. If q2(bt2)� q(t⇤)� q2(t
⇤
)� q(bt2), then |q(t⇤)� q(bt2)| |q(bt2)� q2(bt2)|.

6. If q(t⇤)� q2(bt2)� q2(t
⇤
)� q(bt2), then |q(t⇤)� q(bt2)| |q(t⇤)� q2(t

⇤
)|+ |q(bt2)� q2(bt2)|.

Applying Theorem 2.3 we have that

|q(t⇤)� q(bt2)| |q(t⇤)� q2(t
⇤
)|+ |q(bt2)� q2(bt2)|

 2

p
2⇡C

F1
+2

C2
+C(F �F1)

F 2
1

2

.

E.1. Proof of Corollary 2

The proof of this corollary is accomplished by applying the proof of Theorem 1 with C 0 replacing �. All other steps of

the proof remain the same once this substitution is made because the approximation q2(t) is proportional to both the

cutoff window and the follower arrival rate.

Appendix F: Proof of Theorem 6.1

We start with the following Lemma.

LEMMA 1. Consider the optimization problem (24) with C < U and define  (0, T ) =
R

T

0
 (t)dt as the average

number of follower arrivals in [0, T ]. Then we have the following upper and lower bounds for the average total impres-

sions in [0, T ].
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I(t)
(
C (0, T )� (eU)

�1
(C (0, T ))2,  (0, T ) 1

C (0, T )� (eU)

�1C2
 (0, T )  (0, T )> 1

. (44)

I(t)�C (0, T )� C 2
(0, T )

2

(45)

Define the distribution function derived from  (t) as

G(t) =
 (0, t)

 (0, T )
, t2 [0, T ] (46)

Then for i= 1,2, ...,U set t
i

=G�1
(i/U) and t = {t

i

}U
i=1 . We then find that

 (t
i

, t
i+C

) = (0, t
i+C

)� (0, t
i

)

= (0, T ) (G(t
i+C

)�G(t
i

))

= (0, T )

✓
i+C

U
� i

U

◆

= (0, T )
C

U
.

The impression probability of user i is given by

q(t
i

|t ) = 1� e� (ti,ti+C)

= 1� e�
C
U (0,T ) (47)

and the average total impressions will be

I(t ) = F
⇣
1� e�

C
U (0,T )

⌘
. (48)

Using Lemma 2 we can lower bound this by

I(t )�C (0, T )� (C (0, T ))2

2U
(49)

From Lemma 1 we know that the optimal average total views is upper bounded by

I(t)
(
C (0, T )� (eU)

�1
(C (0, T ))2,  (0, T ) 1

C (0, T )� (eU)

�1C2
 (0, T )  (0, T )> 1

. (50)

We also know that because t⇤ is optimal, I(t ) I(t⇤). Therefore, we can bound the difference in these values by

|I(t⇤)� I(t )|
(

(C (0,T ))2

U

�
1
2 �

1
e

�
,  (0, T ) 1

C

2 (0,T )
U

⇣
 (0,T )

2 � 1
e

⌘
,  (0, T )> 1.

(51)



Author: Strategic Timing of Content in Online Social Networks
42

Appendix G: Proof of Lemma 1

We start by using Lemma 2 from Section D to upper bound the impression probability by

q(t
i

|t) (t
i

, t
i+C

)� a 2
(t

i

, t
i+C

) (52)

where we have define a as

a=

(
e�1,  (0, T ) 1

e�1
 

�1
(0, T )  (0, T )> 1

. (53)

Above we have used the fact that  (t
i

, t
i+C

) (0, T ) because C <U and  (t) has period T .

Again using Lemma 2, the impression probability can be lower bounded by

q(t
i

|t)� (t
i

, t
i+C

)� 1

2

 

2
(t

i

, t
i+C

) (54)

The objective function is then bounded by
UX

i=1

 (t
i

, t
i+C

)� 1

2

UX

i=1

 

2
(t

i

, t
i+C

) I(t)
UX

i=1

 (t
i

, t
i+C

)� a

UX

i=1

 

2
(t

i

, t
i+C

). (55)

The periodicity of the arrival rate and the posting times t
i

means that (t
i

, t
i+F

) = (0, T ). Using this we can simplify

the first summation that appears in equation (55) as
UX

i=1

 (t
i

, t
i+C

) =

UX

i=1

CX

j=1

 (t
i+j�1, ti+j

)

=

CX

j=1

UX

i=1

 (t
i+j�1, ti+j

)

=

CX

j=1

 (t
j

, t
j+U

)

=C (0, T ). (56)

We next lower bound the second sum that appears in equation (55) as
UX

i=1

 

2
(t

i

, t
i+C

)� C2

U2

UX

i=1

 

2
(0, T )

� C2

U
 

2
(0, T ). (57)

Above we have used the fact that we want to minimize the square of the l2-norm of the vector

[ (t1, t1+C

) , (t2, t2+C

) , ..., (t
U

, t
U+C

)] when we have fixed its l1-norm in equation (56). In this situation it is

well known that the minimum is achieved by the vector with all elements equal. In our case, this would mean that

 (t
i

, t
i+C

) =C (0, T )/U for i= 1,2, ...,U .

We next need to upper bound this sum. It is known that the upper bound of the square of the l2-norm of a vector

when we have fixed its l1-norm is achieved by the vector with all the mass in one entry. However, such a vector is

not achievable in our situation because  (t
i

, t
i+C

) =

P
C

j=1 (t
i+j�1, ti+j

) and
P

U

i=1 (t
i

, t
i+1) =  (0, T ) > 0.

Therefore, there must be at least C adjacent elements of the vector [ (t1, t1+C

) , (t2, t2+C

) , ..., (t
U

, t
U+C

)] which

are non-zero. With this constraint, the vector with  (t
i

, t
i+1) = 0 for 1  i  U � 1 and  (t

U�1, tU) =  (0, T )



Author: Strategic Timing of Content in Online Social Networks
43

achieves the upper bound. For this vector, we will have that  (t
i

, t
i+C

) = 0 for 1  i  U � C and  (t
i

, t
i+C

) =

 (0, T ) for U �C  iU . With this vector, the upper bound is

UX

i=1

 

2
(t

i

, t
i+C

)
CX

i=1

 

2
(0, T )

C 2
(0, T ) .

Combining the expressions for the two summations we obtain

C (0, T )� C

2

 

2
(0, T ) I(t)C (0, T )� a

C2

U
 

2
(0, T ), (58)

with a given by equation (53). This holds for any feasible t and therefore holds for the optimal value t⇤.

Appendix H: Proof of Lemma 2

The function f(x) = 1� e�x is monotonically increasing in x. For x> 1 we have

x> 1

>
1� e�x

1� e�1

Rearranging this expression provides the upper bound for x> 1. For x 1 we have that

1� e�x  x

2

 x�x2e�1. (59)

Inequality (59) is established by noting that for 0 x 1, x/2�x2e�1 is 0 for x= 0, positive for x= 1, and achieves

its unique maximum value of e/16 at x = e/4 < 1. The lower bound is obtained using Taylor’s theorem applied to

1� e�x, which states that for x� 0, there exists a ⇠ 2 [0, x] such that

1� e�x

= x� x2

2

+

e�⇠

3!

x3

� x� x2

2

Appendix I: Details of MCMC Sampler

We use a Metropolis-within-Gibbs scheme to sample from the posterior distribution of the model parameters. We

assume we have timeline and posting data for N users. We begin by establishing our notation. We define the set of

timeline model parameters for a user u as ⇥u

= {�u

0 , b
u

h

, bu
d

, tu
h

, tu
d

}. The set of posting model parameters for user

u is given by �u

= { u

0 ,�
u

h

,�u

d

, ⌧u

h

, ⌧u

d

}. We define the set of posting model parameters for all users as �user

=

{�1,�2, ...,�N}. The set of global parameters is given by �= { 0,�h

,�
d

, ⌧
h

, ⌧
d

,�
�h
,�

�d
,�

⌧h
,�

⌧d
}. For each user

u we observe the corresponding mu posting times su = {su1 , su2 , ...sumu} and nu timeline times tu = {tu1 , tu2 , ...tunu}.

We define the set of posting times of all users as S= {s1, s2, ..., sN}. Given a set of parameters A, for any parameter

� 2A we define A�� =A/� (the set A excluding �).
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I.1. MCMC Sampler for Timeline Model

For our MCMC sampler for the timeline model, we can sample the parameters of each user independently. To imple-

ment our Metropolis-within-Gibbs scheme we must sample from the conditional distribution P(�|tu,⇥u

��) for every

timeline model parameter for every user. We will now derive these conditional distributions and show how to sample

from them.

Parameter �u

0 . The prior distribution for �u

0 is a gamma distribution with shape and scale one and 10,000. The

conditional distribution of �u

0 is given by

P(�u

0 |tu,⇥u

��u
0
)/P(tu|⇥u

)P(�u

0)

/ exp

�
��u

0(10
�4

+ ⇠)
�
(�u

0)
n

u

,

where we define ⇠ as

⇠ =
⇤

u

(tu1 , t
u

n

u)

�u

0

=tu
n

u � tu1 +
bu
h

!
h

sin (!
h

(r� tu
h

))

����
t

u
nu

r=t

u
1

+

bu
d

!
d

sin (!
d

(r� tu
d

))

����
t

u
nu

r=t

u
1

+

bu
h

bu
d

2(!
d

+!
h

)

sin ((!
d

+!
h

)(r� (tu
h

+ tu
d

)))

����
t

u
nu

r=t

u
1

+

bu
h

bu
d

2(!
d

�!
h

)

sin (!
d

�!
h

(r� (tu
h

� tu
d

)))

����
t

u
nu

r=t

u
1

.

We see from this that the conditional distribution of �u

0 is again a gamma distribution with shape and scale parameters

1+nu and 1/(10�4
+ ⇠). Therefore we can directly sample �u

0 .

Parameters bu
h

, bu
d

,tu
h

, and tu
d

. The prior distribution for the parameters bu
h

, bu
d

,tu
h

, and tu
d

are normal with zero mean

and standard deviation of 100. For bu
d

the conditional distribution is given by

P(bu
h

|tu,⇥u

�b

u
h
)/P(tu|⇥u

)P(bu
h

)

/ (⇤

u

(tu1 , t
u

n

u))
n

u

exp

✓
�⇤u

(tu1 , t
u

n

u)�
(bu

h

)

2

2(100

2
)

◆
.

For bu
d

the conditional distribution is given by

P(bu
d

|tu,⇥u

�b

u
d
)/P(tu|⇥u

)P(bu
d

)

/ (⇤

u

(tu1 , t
u

n

u))
n

u

exp

✓
�⇤u

(tu1 , t
u

n

u)�
(bu

d

)

2

2(100

2
)

◆
.

For tu
d

the conditional distribution is given by

P(tu
h

|tu,⇥u

�t

u
h
)/P(tu|⇥u

)P(tu
h

)

/ (⇤

u

(tu1 , t
u

n

u))
n

u

exp

✓
�⇤u

(tu1 , t
u

n

u)�
(tu

h

)

2

2(100

2
)

◆
.

For tu
d

the conditional distribution is given by

P(tu
d

|tu,⇥u

�t

u
d
)/P(tu|⇥u

)P(tu
d

)

/ (⇤

u

(tu1 , t
u

n

u))
n

u

exp

✓
�⇤u

(tu1 , t
u

n

u)�
(tu

d

)

2

2(100

2
)

◆
.
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To sample from the conditional distributions, we use a random walk Metropolis-Hastings step, which we now

describe. We consider the parameter bu
h

. For bu
h

we define the ith sample as bu
hi

, and the proposal for the (i+1) sample

is drawn from a normal distribution with mean bu
hi

and standard deviation 0.1, where this value is chosen to balance

the acceptance rate with step size. We use this exact same procedure to sample from the conditional distributions of bu
d

,

tu
h

,and tu
d

, except that we use different values for the standard deviation. For bu
d

and tu
h

we choose a standard deviation

of 0.1 and for tu
d

we choose a standard deviation of one.

I.2. MCMC Sampler for Posting Model

For our MCMC sampler for the posting model, we must sample the parameters of each user jointly because of

the hierarchical structure of our model. For each user specific parameter �u we must sample from the conditional

distribution P(�u|S,�,�user

��u ) and for each global parameter � we must sample from the conditional distribution

P(�|S,��� ,�user

). We will now derive these conditional distributions and show how to sample from them. We note

that there are two types of parameters in this model: user specific parameters and global parameters.

Parameter  u

0 . The conditional distribution of  u

0 is given by

P( u

0 |S,�,�user

� u
0
)/P(su|�u

)P( u

0 |�)

/ exp

✓
� u

0

✓
1

 0
+ ⇣

◆◆
(�u

0)
m

u

,

where we define ⇣ as

⇣ =
 

u

(su1 , s
u

n

u)

 u

0

=su
n

u � su1 +
�u

h

!
h

sin (!
h

(r� ⌧u

h

))

����
s

u
mu

r=s

u
1

+

�u

d

!
d

sin (!
d

(r� ⌧u

d

))

����
s

u
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r=s

u
1

+

�u

h

�u

d

2(!
d

+!
h

)

sin ((!
d

+!
h

)(r� (⌧u

h

+ ⌧u

d

)))

����
s

u
mu

r=s

u
1

+

�u

h

�u

d

2(!
d

�!
h

)

sin (!
d

�!
h

(r� (⌧u

h

� ⌧u

d

)))

����
s

u
mu

r=s

u
1

.

We see from this that the conditional distribution of  u

0 is a gamma distribution with shape and scale parameters

1+mu and 1/( �1
0 + ⇣), so we can sample it directly.

Parameters �u

h

, �u

d

,⌧u

h

, and ⌧u

d

. For �u

h

the conditional distribution is given by

P(�u

h

|S,�,�user

��u
h
)/P(su|�u

)P(�u

h

|�)
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u

m
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u
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�h
)

◆
.

For �u

d

the conditional distribution is given by

P(�u

d
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��u
d
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For ⌧u

h

the conditional distribution is given by

P(⌧u

h

|S,�,�user

�⌧u
h
)/P(su|�u

)P(⌧u
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|�)

/ ( 
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u))
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u

exp
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� u
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Parameter Posterior Mean Posterior Standard Deviation
�h (N +�2

�
h

/1002)�1
PN

u=1 �
u
h ��

h

(N +�2
�
h

/1002)�1/2

�d (N +�2
�
d

/1002)�1
PN

u=1 �
u
d ��

d

(N +�2
�
d

/1002)�1/2

⌧h (N +�2
⌧
h

/1002)�1
PN

u=1 ⌧
u
h �⌧

h

(N +�2
⌧
h

/1002)�1/2

⌧d (N +�2
⌧
d

/1002)�1
PN

u=1 ⌧
u
d �⌧

d

(N +�2
⌧
d

/1002)�1/2

Table 6 Posterior mean and standard deviation of �
h

, �
d

, ⌧
h

, and ⌧
d

for the posting model.

For ⌧u

d

the conditional distribution is given by

P(⌧u

d

|S,�,�user

�⌧u
d
)/P(su|�u

)P(⌧u

d

|�)

/ ( 

u

(su1 , s
u

m

u))
m

u

exp

✓
� u

(su1 , s
u

m

u)�
(⌧u

d

)

2

2(�2
⌧d
)

◆
.

To sample from the conditional distributions, we use a random walk Metropolis-Hastings step as was done for

the timeline model. We consider the parameter �u

h

. For �u

h

we define the ith sample as �u

hi

, and the proposal for the

(i + 1) sample is drawn from a normal distribution with mean �u

hi

and standard deviation 0.1, where this value is

chosen to balance the acceptance rate with step size. We use this exact same procedure to sample from the conditional

distributions of �u

d

, ⌧u

h

,and ⌧u

d

, except that we use different values for the standard deviation. For �u

d

and ⌧u

h

we choose

a standard deviation of 0.1 and for ⌧u

d

we choose a standard deviation of one.

Parameter  0. The prior distribution for the global parameter  0 is inverse gamma with parameters one and one.

The posterior distribution is given by

P( 0|S,�� 0
,�u

)/
Y

N

u=1
P( u

0 |�)P( 0)

/ �(N+1)�1
0 exp

 
�
1+

P
N

u=1 
u

0

 0

!

We see that the posterior distribution is again inverse gamma with shape parameter N + 1 and scale parameter 1 +
P

N

u=1 
u

0 and we can sample  0 directly.

Parameters �
h

, �
d

, ⌧
h

, and ⌧
d

. The prior distribution for the global parameters �
h

, �
d

,⌧
h

, and ⌧
d

are normal with

zero mean and standard deviation of 100. Their posteriors also have a similar structure. We consider �
d

. The posterior

distribution is given by

P(�
d

|S,���d ,�
user

)/
Y

N

u=1
P( u

0 |�)P( 0)

/ exp

 
� 1

2�2
�h

NX

u=1

(�u

h

��
h

)

2 � 1

2(100)

2

NX

u=1

�2
h

!
.

We see that the posterior is normal with mean (N + �2
�h
/1002)�1

P
N

i=1 �
u

h

and standard deviation �
�h
(N +

�2
�h
/1002)�1/2, so we can sample this directly. A similar calculation shows that �

d

,⌧
h

, and ⌧
d

also have normal poste-

riors. We show the posterior means and standard deviations for these parameters in Table 6.

Parameters �2
�h

, �2
�d

, �2
⌧h

, and �2
⌧d

. The prior distribution for the global parameters �2
�h

, �2
�d

, �2
⌧h

, and �2
⌧d

are

inverse gamma with shape and scale parameters one and one. Their posteriors also have a similar structure. Consider

�2
�h

. Its posterior distribution is given by

P(�2
�h
|S,���2

�h
,�user

)/
Y

N

u=1
P( u

0 |�)P(�2
�h
)

/ exp

 
� 1

2�2
�h

NX

u=1

(�u

h

��
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)
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�2
�h

!
�
�2
�h

��2�N/2
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Parameter Posterior Shape Parameter Posterior Scale Parameter
�2
�
h

1+N/2 1+1/2
PN

u=1(�
u
h ��h)

2

�2
�
d

1+N/2 1+1/2
PN

u=1(�
u
d ��d)

2

�2
⌧
h

1+N/2 1+1/2
PN

u=1(⌧
u
h � ⌧h)

2

�2
⌧
d

1+N/2 1+1/2
PN

u=1(⌧
u
d � ⌧d)

2

Table 7 Posterior shape and scale parameters of �2
�h

, �2
�d

, �2
⌧h

, and �2
⌧d

for the posting model.

We see that the posterior distribution is again inverse gamma with shape parameter 1 + N/2 and scale parameter

1 + 1/2
P

N

u=1(�
u

h

� �
h

)

2 and we can sample �2
�h

directly. A similar calculation shows that �2
�d

, �2
⌧h

, and �2
⌧d

also

have inverse gamma posteriors. We show their posterior shape and scale parameters in Table 7.
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