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Multivariate Statistical Process Control and Signature
Analysis Using Eigenfactor Detection Methods

Kuang-Han Chen, Duane S. Boning and Roy E. Wélsch

With the rapid growth of data-acquisition technology and computing resources, a plethora
of process and product data can now be collected at high frequency. Because a large number of
characteristics or variables are collected, interdependency among variables is expected and hence
the variables are correlated. As a result, multivariate statistical process control is receiving
increased attention. This paper proposes novel eigenfactor multivariate quality control techniques
that are capable of detecting covariance structure change as well as providing information about the
real nature of the change occurring in the process. Eigenspace analysis is especially advantageous
in data-rich manufacturing processes because it can reduce the data dimension, much like principal
components analysis, yet retains the ability to detect and distinguish between subtle covariance
structure changes.

1. Introduction and Motivation

In large and complex manufacturing systems, statistical methods are used to monitor
whether the processes remain in control. This paper reviews and discusses both conventional
methods and new approaches that can be used to monitor manufacturing processes for the purpose
of fault detection and diagnosis. On-line statistical process control (SPC) is the primary tool tradi-
tionally used to improve process performance and reduce variation of key parameters. Many busi-
nesses now use univariate statistical process control (USPC) (Montgomery (1996)) in both their
manufacturing and service operations. Automated data collection, low-cost computation, products
and processes designed to facilitate measurement, and demands for higher quality, lower cost, and
increased reliability have accelerated the use of USPC.

However, in many situations the widespread use of USPC has caused a backlash as pro-
cesses are frequently adjusted or shut down when nothing is really wrong because the probability
of false positives (Type | error) is calculated based on USPC and takes little or no account of the
multiple tests that are being performed or the correlation structure that may exist in the data. It is
very likely that these variables will be correlated due to the large number of variables collected at
a given time. Consequently, multivariate statistical methods which provide simultaneous scrutiny
of several variables are needed for monitoring and diagnosis purposes in modern manufacturing
systems. Thus, multivariate statistical techniques have received increased attention in recent
research. The approaches to deal with these issues focus on Bonferroni adjustments, Hotelling’s
T-squared statistics, and the generalized variance. Furthermore, data reduction strategies such as
projection methods (principal component analysis or PCA) (Johnson and Wichern (1998)) are
needed to address the high dimensionality problem in data rich environments. Often these meth-
ods indicate that some sort of change has taken place, but provide little information about the real
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nature of that change.

Some techniques described above require more than one new observation before making a
decision about a process change. For example, one new observation allows a comparison with a
previous mean (and associated control interval), but does not allow for the computation of a new
variance to compare with an existing measure of variance. Many new observations will improve
signal-to-noise ratios allowing increased detection sensitivity at the expense of delaying correc-
tive measures. Trade-offs between updating and grouping of measurements become even more
important in the multivariate setting.

1.1 Motivation

In this paper, we provide a multivariate detection method that is capable of detecting new
events and subtle changes in the covariance structure of the process. Some of the changes dis-
cussed are natural behavior in the process and do not necessarily represent out-of-control behav-
ior. As a result, most of the conventional multivariate methods are inadequate for such detection.
Moreover, information regarding covariance structure in the process can be crucial for feedback,
tuning, and control purposes.

This new multivariate detection approach allows us to solve some endpoint detection
problems in the semiconductor industry. More specifically, the new detection method is used to
solve the detection problem in the low open area situation where conventional multivariate tech-
niques have not performed satisfactorily. Optical emission spectra have traditionally been used to
detect endpoint in plasma etch (Wolf and Tauber (1986), Chang and Sze (1996)). Spectra are col-
lected during the etch process and there are about one thousand spectral channels, which are sam-
pled at high frequency.

The goal of this paper is to develop a multivariate statistical process control methodology
that is capable of localized modeling. The eigenspace detection strategy computes the localized
model from the test data and compares that with the model characterized using the training data.
In essence, this approach allows us to compare the subspace spanned by the test data with an
existing subspace. Moreover, the eigenspace analysis enables us to detect covariance and other
subtle changes that are occurring in the process. Finally, this detection strategy inherits nice prop-
erties such as data compression and information extraction from projection methods and factor
analysis, and it is efficient when used in data rich environments; i.e. using a few eigenfactors is
often sufficient to detect abnormality in the process.

1.2 Organization
We begin in Section 2 with a review of traditional multivariate detection strategies, includ-

ing those based og?, Hotelling T? statistics, principal components analysis, and generalized
variance. A new eigenfactor detection approach and a corresponding eigenspacE rainpxo-

posed in Section 3, with an analysis of the properties and distribution of this matrix. In Section 4,
simulations to verify the sampling distribution Bfare presented. An application to a multivariate
dataset, drawn from semiconductor manufacturing is presented in Section 5. Finally, conclusions
are presented in Section 6.



2. Traditional Multivariate Detection Strategies

2.1 Multivariate Quality Control: x? and Hotelling’s T2 statistic

Because of rapid sensor advancement and modern manufacturing system complexity,
more and more process measurements can now be collected at a high frequency. As a result, mul-
tivariate statistical methods are very much desired. One of the key messages of multivariate anal-
ysis is that several correlated variables must be analyzed jointly. One such example can be found
in the automotive industry where correlation exists among different measurements taken from the
rigid body of an automobile: distortion of the body results in correlated deviations in these mea-
surements.

By dealing with all of the variables simultaneously, multivariate quality control methods
not only can extract information on individual characteristics, but also can identify and monitor
the correlation structure among variables. Univariate control chart monitoring does not take into
account that variables are not independent of each other and their correlation information can be
very important for understanding process behavior. In contrast, multivariate analysis takes advan-
tage of the correlation information and analyzes the data jointly.

The difficulty with using independent univariate control charts can be illustrated in Figure
2-1. Here we have two quality variableg @ndx,). Suppose that, when the process is in a state of

statistical control where only natural variation is preseqtandx, follow a multivariate normal
distribution and are somehow correlated as illustrated in the joint pbot wérsusx, in Figure 2-

1. The ellipse represents a contour for the in-control process with 95% confidence limits; both ()
and Q) represent observations from the process. The same observations are also plotted in Figure
2-1 as individual Shewhart charts &pandx, with their corresponding upper (UCL) and lower
(LCL) control limits (roughly 97% confidence limits). Note that by inspection of each of the indi-
vidual Shewhart charts the process appears to be in a state of statistical control, and none of the
individual observations gives any indication of a problem. However, a customer could complain
about the performance of the product corresponding todhedints, as the product is, in factif-
ferentthan expected. If only univariate charts were used, one would not detect the problem. The
true situation is only revealed in the multivariateandx, plot where it is seen that the)(obser-

vations are outside the joint confidence region (with the corresponding covariance structure) and
are thus different from the normal in-control population of products.
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Figure 2-1: Multivariate statistical analysis vs. univariate statistical analysis.
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A natural multivariate extension to the univariate Shewhart chart is the Hotelling multi-
variate control chart. This procedure assumes phguality characteristics are jointly distributed
asp-variate normal and that random samples of sizge collected across time from the process.
The Hotelling multivariate control chart signals that a statistically significant shift in the mean has

2
occurred as soon as

is larger than a threshold Iimip(énd

is defined to be

x> = (x—-p)'=H(x-p).

If ¥ and p are unknown, then a’Tetatistic is the appropriate statistic for the Hotelling
multivariate control chart. In this case, the sample covariance m&rand sample mean vector,



X, are used to estimake apd , respectively.

2.2 Principal Components Analysis

Principal components analysis (PCA) is used to explain the variance-covariance structure
through a few linear combinations of the original variables. Principal components analysis is also
known as a projection method and its key objectives are data reduction and interpretation, see
Johnson and Wichern (1998) and Sharma (1996). In many instances, it is found that the data can
be adequately explained using just a few factors, often far fewer than the number of original vari-
ables. Moreover, there is almost as much information in the few principal components as there is
in all of the original variables (although the definition of information can be subjective). Thus, the
data overload often experienced in data rich environments can be solved by observing the first few
principal components with no significant loss of information. It is often found that PCA provides
combinations of variables that are useful indicators of particular events or stages in the process.
Because the presence of noise almost always exists in a process, some signal processing or aver-
aging is very desirable. Hence, these combinations of variables from PCA are often a more robust
description of process conditions or events than individual variables.

In massive datasets, analysis of principal components often uncovers relationships that
could not be previously foreseen and thereby allows interpretations that would not ordinarily be
found. For example, imagine that PCA is performed on some stock market data, one might iden-
tify the first principal component as the general market index (average of all companies) and the
second principal component might be the market segment component that shows the contrast
among different industries. Algebraically, PCA relies on eigenvector decomposition of the covari-
ance or correlation matrix from the variables of interest. An alternate approach to obtain principal
components is to use a singular value decomposition on the given data matrix. The mathematical
details of PCA can be found in Sharma (1996).

2.3 PCA and ™ methods
PCA provides great advantages for data compression: instead of dealing with hundreds of

variables, we are now dealing with a few principal components. However, thetafistic
(MacGregor and Kourti (1995)) only tracks the data in the projection hyperplane; one must also
track the Q statistic (Wiset al., (1990)) in order to detect if the PCA model no longer describes

the process. Note that’Ts a statistical distance measure, so it cannot resolve the differences in

directionality. Moreover, the Fstatistic cannot be computed when process variables are highly
correlated, because the sample covariance nfatsbalmost non-invertible.

As a result, a T statistic based on PCA can be used to eliminate the invertability issue of
the sample covariance mati$« However, such a strategy is not capable of detecting certain cova-
riance structure changes. An example of this scenario is shown in Figure 2-2. Here we have two
populations; one of the populations has more variation in all directions and hence a larger confi-
dence ellipse volume. The other population has smaller variation, therefore a smaller ellipse. Fur-
thermore, the smaller ellipse lies completely within the larger ellipse. Both populations are mean-
centered in the same place. In this scenario, let us suppose that at the beginning all the sample
points were coming from population 1, but due to maintenance or personnel shifts sample points
are now coming from the smaller region denoted as population 2. It is desirable to detect such a
change since this information could lead us to improve the process capability.



Although the T statistic cannot detect the change depicted in Figure 2-2, the generalized
covariance could be used to detect this type of change. Thus, it is possible that some combination
of statistical detection methods can give acceptable detection of some types of shift or covariance
structure changes. Our purpose in this paper is to provide single-statistic detection methods that
enable both covariance structure change detection and classification.

Figure 2-2: Drawback of T2 and T2 with PCA: Reduction in variance not detected
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2.4 Generalized Covariance

Generalized covariance methods collapse all the information in a data matrix into a single
generalized measure of the covariance of that data (e.g., by taking the determinant of the covari-
ance matrix); it is then easy to monitor this single number. However, generalized covariance is
invariant under rotation, i.e., multiplication of the covariance matrix by a rotational midtrix
whose determinant & . We then have

det(Z) = de{UZ) = det(U)de(Z) = det(). (Eq. 2-1)

Figure 2-3 shows problems of this nature in two dimensions. Variables in the first popula-
tions are positively correlated with sample covariance m&yjxvhile the other populations show

negative correlationS,) or no correlation $3). All populations have the same volume. In this
case, the determinants 8f, S,, andS; are all identical. Note that although the generalized cova-

riance cannot detect a rotational change in the covariance, 4meethod would detect such a



rotational change as an out of control event.

Figure 2-3: Two different covariance matrices in 2-D
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3. Eigenfactor Detection

3.1 Eigenspace Detection Method

In this section we present a new detection method which we term “eigenspace detection”
that takes into account the directional change in the population. We provide fundamental proper-
ties on the eigenspace distribution and discuss the consistency issues of the method.

As the name suggests, the eigenspace detection method requires the eigen-decomposition
of the covariance matrix. Because every sample covariance nsasireal and symmetric, there

is a real orthogonal matriX and a real diagonal matri, such thatS = VAV . Furthermor§&,
has a spectral decomposition, and one can B

p p
S= YA = ¥ AV (A (Eq. 3-1)

i=1 i=1

wherepis the number of variables; is an eigenvalue and a diagonal elememt,aindy; is an
eigenvector irV. The above equation resembles very much how the sample covariance matrix is



T
computed. Let each column vectsy = |:Xi1 Xip or Xi p] represgmvariate random vector
with density function &;)=f(x1,X5,... X5); note the subscriptis omitted in the distribution

because alK; have identical distributions. If all column vectoXs, X, Xs, ..., X, form nindepen-

-
dent identically distributed observations, and we wXte= [xl Xy oo Xj o er , then its

T
mean corrected matrix i¥X, = [xl_)_( Xo=X o X, _)_q . We then can express the sample
variance-covariance matrix as the following

T
XoXm _ 1

S = n-1 n-1
|

S (%-%X)" (X -X). (Eq. 3-2)
=1

The matrix summation from the above equation is very similar to that in Eq. 3-1.

In short, the eigenspace matrix will be a decomposition of the sample covariance matrix
obtained from multiple samples. Detection strategies using the eigenspace matrix compute second
order statistics and use this information to detect subtle changes in the process. Probability distri-
butions of the matrix are discussed in Section 3.2. The eigenfactor, a column vector of the eigens-
pace matrix, can then be treated as a random vector and confidence intervals can be established
from the given distribution. Moreover, in data rich environments, when high correlation exists
among measurements, dominant eigenfactors start emerging from the data. Therefore, a process
monitoring strategy using only the dominant eigenfactors is desirable and practical. Application
of eigenfactor analysis in semiconductor manufacturing is demonstrated in Section 5.

A corresponding second order detection method is also proposed that not only provides
information on volume change but also identifies when there is an orientation shift in the covari-
ance structure. Let; be arranged in descending order, just like the ordering of singular values,

and letv; bealmostthe eigenvector associated with  exceptthat is selected uniquely. We will
come back to the selection af in a moment. We assume the eigenvalues are not repeated, i.e. all

eigenvalues have multiplicity of one. We introduce a new term: the product of the square root of
the singular value and the eigenvector

Avi, i =1,2..,p (Eq. 3-3)

is called theeigenfactorand the matrix containing all the eigenfactors is¢igenspace matxik.
Detection using the eigenspace matrix is termed the eigenspace detection method. Because this is
a second order detection method, a window of samples must be collected before diagnosis can be
performed. We can rewrite the spectral decomposition as

p p
S= YA = T (AWCAW = VAYAWVAYY = EET.  (Eq. 3-9)

i=1 i=1

So instead of tracking all eigenfactogd;v;, i = 1,2, ..., p  individually, we can monitor the full
eigenspace matrik.



We now provide a selection procedure for eigenvectors suchBHacomes a unique
decomposition matrix from the sample covariance maixFrom its previous definition

E = V/\l/z, there are still two possibilities that we can pick when selecting an eigenvector, i.e.,

if vis an eigenvector db then v is also an eigenvector & Note that for any square matrix any
scalar multiple of an eigenvector is also an eigenvector. Because of this ambiguity associated with
the eigenvectors, we desire a procedure to find a unique eigenvector for each positive eigenvalue.

One way to do soisto find a hyperplaneﬂr‘f ; then given any eigenvector, we can pick the eigen-
vector that lies on one side of the hyperplane. The following is a formal definition of how to pick
the unique eigenvector.

Definition: Unique eigenvector: Given an eigenvector, we pick a hyperplane, s X

The orthonormal vector associated with this hyperplane is

Then all the eigenvectors picked must lie on one side of the hyperplane (&iteed or
X, < 0). For example, we could choose the eigenvector whose angle with the normal vector is less
than 90° (this corresponds to the casg=0 ). Figure 3-1 presents graphically the selection of
two unique eigenvectors in the two dimensional case; bptindv, are on the right side of the
hyperplanex;=0).

Figure 3-1: Selection procedure of a unique eigenvector: choose eigenvectors such that all lie
on the same side of a given hyperplane.




Such a selection of eigenvector enables us to obtain a unique eigenvector. This eigenvector
is called the unique eigenvector aBdvhose columns consist of unique eigenvectors is called the
unique eigenspace matrix. For the following discussion, the term eigenspace matrix is used inter-
changeably with the term unique eigenspace matrix.

3.2 Distribution of Eigenspace MatrixE

We now provide some fundamental properties of the distribution of the sample eigenspace
matrix E. In order to establish the distribution for matix we must first study properties of the
distribution of the sample covariance mat8xThe distribution ofSis called the Wishart distribu-
tion after its discoverer (Gupta and Nagar (2000), Arnold (1981)); it is defined as the sum of inde-
pendent products of multivariate normal random vectors, as in Eq. 3-2. We shall think of the

Wishart distribution as a generalized extension offhéistribution into a multivariate scenario.
Definition: LetZ=[Z; Z, ... Z;]]" such that th&Z; are independently distributed as the p-

variate normal distribution I0,%). Let W=2Z"Z. ThenW is said to have a Wishart distribution
with n degrees of freedom (d.o.f.). Note Wais a p by p matrix and positive definite.

From the above definition, we then summarize the sampling distribution results below. Let
X1, Xy, ..., X, be a random sample of sinéfrom ap-variate normal distribution with megnand

covariance matrix. Then the following statement is true:

* (n-1)SwhereSis defined in Eq. 3-2, is distributed as a Wishart random matrixwiith
d.o.f,ie.(n-1)S ~ Wp(n -1,3).

More properties associated with the Wishart distribution are now stated. The proof of
these properties is either provided or a reference is given. These properties together with a number
of matrix algebra properties will later be used to prove an important theorem, which is then used
to derive the distribution for the eigenspace makixin the following theorems and corollaries,
the (-1) term from (-1)S has been suppressed for simplicity.

172 172

T
Theorem 3.1LetS~Wp(n,Z) and I_%S = (VA7) VNT ) = EET . Then the distribu-
tion of E has a functional formoE = A "TU , wher& is a square root matrix of the inverse of
. . 1 T . . . . . .
the population covariance matriXx = = A" A U is a given unitary matrix and is associated
with Bartlett's decomposition of a Wishart distribution ma{®upta and Nagar (2000))

Proof: In order to show that the distribution of matfixdepends on the distribution @f
we need to use a transformation theorem found in Gupta and Nagar (2000) which allows us to
transform any Wishart distribution with parametans{ to a special form of Wishart distribution
with the parameteran(l). Together with Bartlett's decomposition result, we have the following
equality

Shew = 777 = AsA’ = AEETAT = (AE)(AE)T, (Eq. 3-5)
whereS,e,~Wy(nl). As a result, we have
AE = TUO E = A_lTU, (Eq. 3-6)

10



whereU is a unitary matrix and is a lower triangular matrix witl;>0. Thent;;, 1< j<i<p are

independently distributed, witl?zi D)(ﬁ_i+ 1, 1si<pandt; ~N(0,1)1<j<i<p

Eqg. 3-6 shows that the distribution Bfis a function of the distribution of. Therefore, the
asymptotic properties regarding the distributiorEofiepends strongly on the asymptotic proper-
ties of T. We then study the asymptotic distribution Bf The following theorem shows that the
variance of each elementTngoes to zero when the number of samples approaches infinity.

Theorem 3.2Let (n-15~Wp(n-1ip) and (n-15=/n—1T)(J/n - 1T)T, whereT=(t;)) is a

lower triangzular matrix with all its elements being independently distributeg:Ot

(n—l)tﬁ OX,_i+p1<i<pand A/n—ltij ON(O, 1), 1< j <i <p.Then, varff) goes to zero as

n goes to infinity for all i and j

Proof: For the off diagonal elementg of T wheni # j , we know/n— 1tij has the stan-
dard normal distribution with variance 1. Therefore, the variangeasin be computed:

var(A/n—ltij) = (n—l)var(tij) =10 var(tij) = nTll
The limit of the variance tends to zero as—» © , ilen var(tij) = lim ﬁ =0 .Asforthe
n — oo n - ooll—

diagonal elements of T, we do not have the distribution §f however, we do know that
(n— 1)tﬁ has a chi-square distribution with degrees of freedomi + 1 . Consequently, we can
derive the distribution df; fror‘qzi . We first show that the variandé of goes to zeWets

large. Again, using the fact that the variancg\zpf 2us , we then have

var((n—l)tﬁ) = (n_l)ZVar(tﬁ) = 2(n—i+1)0 var(tﬁ) _ 2(n—|+21)_
(n-1)
This limit goes to zero as gets large, lim var(tﬁ) = lim 2(”—|+21) -0,1<i<p .
n - oo n- o (n—l)

We are now ready to show that the variancg, of  goes to zergeis large.

Theorem 3.3 Assume lim var(xz) =0 . Then fory = «/;2 = x>0 , we have
lim var(y) = 0. n-

n - oo

Proof: Because the variance &f goes to zero, its distribution tends to a delta function at
a given pointa, in other words with probability ong’=a. We prove this statement by contradic-

tion. Assume that as gets large has some non-zero probability in more than one place, then its
variance cannot be zero from the definition, i.e.

var(€) = [(6C-E(E) F(¢)dx = O —ECR) f (= X2 + (C—E(D) F(:¢= x&) £0.
0

11



Therefore, the distribution of tends to a delta function asgets large. Now we use the

fact that the positive square rogt = J;z is a continuous, monotone function with one-to-one

mapping; thus the distribution ofy must also be a delta function ay;/é, le.
lim Prob(y= .J/a) = 1. Hence lim var(y) = 0.

n - oo n - oo

As a result, knowing thatlim var(tﬁ) = 0, we havelim var(t;) = 0 .

n - oo n - oo
Theorem 3.3 concludes that the each element of the eigenspacebranxerges to something
since its variance goes to zeronagets large. However, we want to find out exactly vihabn-
verges to; in particular, we wish to determine if the sample eigenspace madtrikereE is based
on the sample covariance mat8xconverges té (the population eigenspace matrix based on

2 ). We conclude this chapter by proving that the sample eigenspace atiaxconsistent esti-
mator of the population eigenspace maliix

Theorem 3.4 SupposeE is the sample eigenspace matrix of a sample covariance matrix
S, which converges to a population covariance maftixLet F be the eigenspace matrix af
ThenE converges té-.

Proof: As n gets large, we know th& converges to a maktix  (from Theorem 3.3). Let
us assume thdf ZF  and prove the theorem by contradictiomgass large, we know

s=EE' .5 =FF.

But the eigenspace matrix is unique, as a résuit F

4. Simulation Results

In this section, we study the sampling distribution of the sampling eigenfactors as a func-
tion of the sample siza from a finite population of siz&l. The sampling distribution is obtained
by sampling with replacemefitimes. The simulation results show that the sampling eigenfactors
indeed converge to the true eigenfactors. In both examples the population covariance matrix used
to generat®\ random samples is

s = |21.81 -12.05 _ | 3.75 2.73(3.75-4.82 _ T
~12.05 27.89] |-4.822.17|2.78 2.17

-
and the first population eigenfactey is [3.75—4.8} . In example 1N=20,000,n=50 and
k=100 times. In example Rl=20,000,n=500 andck=500 times.

12



Figure 4-1: The sampling distribution of the first eigenfactor. Dots indicate sample eigenfac-
tors, whereF is the known “true” first population eigenfactor.
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Figure 4-1 illustrates that the sampling distribution of the first eigenfactor becomes more

3'754 as the number of samples increases. As pre-

—4.8
dicted, the variance of the sampling eigenfactor gets smaller as the number of samples increases.
More simulation results can be found in Chen (2001).

We now have the apparatus needed to monitor the covariance structure of a manufacturing
process. We select one or more eigenfactors to monitor. After gathering each new set of samples
(within some given window size), we compute the sample eigenfactor, and compare to the known
distribution we expect of such vectors based on prior process characterization. If either the direc-
tionality or magnitude of this vector deviates significantly from the distribution we signal an out
of control condition. Furthermore, we can decide if the new eigenfactor belongs to one of several
alternative distributions indicative of specific error conditions.

tightly centered around the true valég = [

5. Application to Optical Emission Spectra (OES)

5.1 Eigenspace Analysis on Optical Emission Spectra (OES)

We are now ready to demonstrate this technique on an application that requires multivari-
ate analysis. Optical emission spectra (OES) have traditionally been used to detect endpoints in
semiconductor plasma etch processes (Wolf and Tauber (1986), Chang and Sze (1996)). We first
describe the experimental setup and data collection.
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5.1.1 Optical Emission Spectra Experiment Setup

In recent years, multivariate analysis techniques such as PCA, PLS ZahdvE been
applied in the semiconductor industry (see Leeal., (1995), Litvak (1996), Lee and Spanos
(1995), and Spanost. al., (1992)). Real-time equipment data together with multivariate analysis
is used to detect possible faults or process transitions.

The Ocean Optics SQ2000 optical emission spectrometer uses optical fibers placed on the
side-port of a plasma etch reactor with a clear view of the chamber to look across or down onto
the wafer. The optical sensor is capable of multiple fibers, shown in Figure 5-1, so spatial resolu-
tion can be achieved. However, in the experiment described here, only the horizontal fiber is used
for simplicity. Conventionally, narrow bandpass filters have been used to detect the endpoint, with
only one or two spectral wavelengths used for endpoint detection.

Figure 5-1: Optical emission spectroscopy experiment setup
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Spectra from a side view optical port were collected during an etch process consisting of
approximately one thousand spectral channels each sampled every 600 milliseconds (Le (1997)).
An example of the time evolution of the spectral lines is shown in Figure 5-2. The spectra mea-
sure the emission intensity of excited atoms and molecules which, in turn, provide information on
relative concentrations of chemical species. The relative concentrations of chemical species is a
useful measure of the plasma state since as different layers of materials are etched the chemistry
of the plasma changes. For example, as the oxide layer is etched away, less and less oxide remains
until the oxide layer is totally etched away and the silicon layer starts to etch; the chemistry of the
plasma thus changes when oxide is replaced by silicon as a surface reactant. Two spectral lines
exhibiting the above behavior are presented in Figure 5-3. The data can be divided into two
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regions: main etch and clear or end point region (see dotted lines in Figure 5-3); also there are two
sharp drop-offs known as the plasma turn-on and turn-off states. This OES data is shown to have
no time serial correlation during the main etch stage (Le (1997)).

Figure 5-2: Time evolution of spectral lines in an oxide plasma etch process.
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Figure 5-3: Two spectral lines showing different behavior as endpoint is reached.
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5.1.2 Endpoint Detection

In semiconductor fabrication, plasma etching is used to produce patterns on the silicon
wafer by the selective removal of particular regions of thin film layers on the wafer surface. A
photoresist mask is typically used to protect desired surface regions from the etchant and this
mask is then stripped after the etching has been completed (Sze (1988)). The goal of the analysis
is to find out when to stop etching so that the erosion or over etch of the underlying layer is mini-
mized. Such detection is critical to proper functionality of a device since both underetch and
overetch could render the device inoperative (see Figure 5-4).

Multivariate techniques such as thé dtatistic and PCA with Thave been demonstrated
to work well with OES data in certain cases (Whigg,al., (2000) and Le (1997)). Both of these
methods use all spectral channels to improve the signal to noise ratio in the system, where PCA
provides data reduction through correlation among spectral channels. However, the signal to noise
ratio decreases significantly when the area of the etched layer is relatively small compared to the
protected area. Such a situation is referred as the low open area problem and endpoint detection

becomes very challenging under these circumstances. Bothftifistic and PCA with T are
shown to detect endpoint for large open area wafers with success, but these techniques have not
performed satisfactorily in the low open area situation.

Figure 5-4: Endpoint is reached when the intended etch layer (oxide) is completely removed

oxide Plasma etch | gxjde oxide
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Silicon Silicon

5.1.3 Motivation for Application of Eigenspace Analysis to Low Open Area OES

Test spectra were collected using the experimental setup described in the previous section
on an oxide etch process at Digital Semiconductor. The wafers processed were patterned for con-
tact etch with about 1% open area. Part of the motivation has been stated: none of the previous
multivariate analysis techniques have been shown to work well with low open area. Moreover, in
this application we are trying to detect a particular event, rather thamaingf controlor fault
data points. An event such as endpoint can exhibit a subtle correlation change rather than a large

mean shift; thus Ftechniques might not be appropriate for such an application.

We now provide a quantitative view of why single sample detection methods do not work
with low open area data. In order for a single sample detection approach to work effectively, we
need the two populations to be far away enough from each other such that the separation is within
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the power of resolution of the single sample detection method. In other words, a single sample
detection method is not capable of separating tlesepopulations. A sample mean of sample
sizen is sometimes used to resolve two close populations, because the variances of the sample

mean decrease e:%: . This behavior makes a shift in mean between two close populations dis-
n

cernible if enough samples are used.

The sample mean and covariance matrix during the main etch region (see Figure 5-3) are
calculated from the data. The sample mean of the endpoint is then computed from the data. With
the assumption that the sample mean and covariance matrix are fairly good estimates of the popu-
lation mean and covariance, we then ask the question “How far is the mean of endpoint from the
population of main etch?” We can compute such a statistical squared distance using

T2 = (x=%)"S H(x=%) < x3().

We find the squared distance to be 673.70 for our test data. This squared distance is less than the

95% confidence interval with degree of freedom equal to 1087,)’(%)87(0.05) = 1198 . There-

fore, the two populations cannot be resolved using a single sample detection approach because
their means are too close in a statistical sense relative to the underlying variation in the data. The
information above together with the need for event detection makes a single sample detection
approach inadequate for the low open area etch application. If a multiple sample detection method
is used, we can explore covariance structure change as well as mean shift.

5.2 Low Open Area OES Endpoint Detection Results

For the low open area OES data, spectra were collected at 5 Hertz with an integration time
of 15 milliseconds (Le (1997)). Since the purpose is to identify endpoint, we want to characterize
the endpoint population. This characterization enables us to verify whether the etching process
has reached the endpoint. Characterizations of the main etch alone can only provide information
about whether the process is still in the main etch state. In addition, if the process is determined
not to be in main etch, no additional information can be drawn about whether or not the process is
in endpoint or some other fault condition. In other words, we seek to characterize an eigenfactor
Eepz that identifies the “endpoint” condition.

The endpoint is characterized using 100 samples prior to the plasma’s turn-off. Further-
more, we use principal components analysis for data reduction, and the first principal component
alone captures about 80% of the total variation out of 1087 spectra. We then only monitor the first
eigenfactor through a non-overlapping successive window of size 50 samples. Note that this is a
strongly dominant eigenfactor because the second eigenfactor only captures about 0.66% of the
total variation.

Before discussing control limits on the eigenfactor control chart, we want to provide some
gualitative analysis through analytic geometry. From each sample window, we get the first eigen-
factor of that window. The Euclidean distance between this eigenfactor 1 and the endpoint eigen-
factor 1 is defined to be
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1087 )
|E1—Eepl = J > (Eyi—Eep)”, (Eq. 5-1)
i=1

whereEg is eigenfactor 1 of the endpoint. This distance is computed to provide a measure of

closeness. Note that the Euclidean distance does not include any variance or standard deviation
term; the variance is later discussed and included in the control limits. Figure 5-5 and Figure 5-6
represent two typical wafer runs found in the OES data, showing the distance statistic for succes-
sive non-overlapping windows.

Figure 5-5: Euclidean distance off1-Egpy) in run 4
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Because the sensors/fibers start collecting data prior to plasma turn-on (see Figure 5-3),
the data points show a sharp drop near the start of the process when the plasma is just turned on.
As a result, those points are not included in the analysis. Both Figure 5-5 and Figure 5-6 are
scaled in such a way that the data points prior to the plasma turn-on state are eliminated. Both
Figure 5-5 and Figure 5-6 show that the Euclidean distance is large at the beginning of the etch,
and when the window approaches the end point the Euclidean norm becomes small indicating a
“match” with the endpoint condition near these samples. The Euclidean norm diverges when the
sampling window leaves the endpoint population indicating decreasing similarity between the
plasma state and the endpoint condition.
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Figure 5-6: Euclidean distance of,-E¢p9) in run 5
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In Chen (2001), additional examples and discussion of eigenspace detection applied to
OES are presented. In particular, robustness issues are considered when the eigenfactor of the
sampling window of any run is compared with the eigenfactor characterized in a previous run.

6. Conclusions

In this paper, we introduce a new eigenspace detection strategy to detect subtle covariance
structure change. The uniqueness in the eigenspace enables us to address the consistency issues
associated with the estimator. Key theorems related to eigenspace detection strategy and probabil-
ity density distribution of the eigenspace matrix are derived. With the known probability density
function, control limits of certain confidence interval can then be established for the eigenspace
matrix or dominant eigenfactors. Simulation results on sampling distribution as a function of the
sample size demonstrate this consistency.

The eigenspace analysis has a wide range of applications. First, it can be used for conven-
tional detection of out of control conditions. Second, it can be extended to subtle event detection.
Finally, it supports identification of the root cause of an out of control point or other event. Appli-
cation of eigenspace analysis to semiconductor manufacturing has proven useful for low open
area endpoint detection.
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