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1 Introduction.

Barriers to entry are a fundamental determinant of market structure, and play a central role

in merger analysis and other antitrust settings. When evaluating a proposed merger, for

example, officials at the Department of Justice or Federal Trade Commission estimate the

merger’s likely impact on prices, and the extent to which that impact would be limited by

the potential entry of new firms.

Barriers to entry can arise from a variety of sources, but if entry requires large sunk

costs, the risks associated with post-entry profits can be particularly important. This is

especially true for rapidly evolving industries and markets for new products. But there is

little consensus as to the kinds of risk that should matter and the mechanisms through which

they affect entry and industry equilibrium. Indeed, the term “risk” is often used loosely in

antitrust settings.1

I use the term “entry barrier” to refer to any additional cost an entrant must pay that

has already been paid by an incumbent, sufficient to allow the incumbent to raise price

without inducing entry.2 An entry barrier can be equivalently defined in terms of its effects

— it limits the number of firms in the industry and increases price-cost margins. Thus large

sunk costs are clearly an entry barrier; by creating scale economies, they lead to an industry

equilibrium with relatively few firms. This is the case whether or not incumbent firms or

potential entrants face any risk with respect to future cash flows. The question I address is

how and to what extent different types of risk magnify these effects of sunk costs.

I treat risk as a basic structural feature of a market, and examine how risk and sunk

costs interact to create entry barriers and affect industry concentration and market price. I

1For example, in its merger policy guidelines, the European Commission (2004) discusses potential entry
as a constraint on the behavior of post-merger incumbents, and stresses the importance of risk: “Furthermore,
high risks and costs of failed entry may make entry less likely.” (Para. 69.) “Potential entrants may encounter
barriers to entry which determine entry risks and costs and thus have an impact on the profitability of entry.”
(Para. 70.) Likewise, the DOJ and FTC’s Horizontal Merger Guidelines (1997) acknowledges only in the
most general way that the risk of failure and loss of sunk cost investments can affect required rates of return
and thus the likelihood of entry.

2An “antitrust barrier to entry” can have different meanings, as discussed in Carlton (2004), McAfee et
al (2004), and Schmalensee (2004), and more generally in Viscusi et al (1995), pp. 158–164. I am following
Schmalensee and using what is essentially Bain’s (1956) original definition of an antitrust barrier to entry.
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distinguish among different types of risk — systematic vs. non-systematic, and aggregate

(i.e., industry-wide) vs. idiosyncratic (firm-specific) — and show how they affect industry

evolution differently, and thus have different antitrust implications.3

Risk can magnify sunk costs because of the opportunity cost of irreversibly investing

rather than waiting for new information. When firms exercise their options to invest they

give up the associated option value, which is also a sunk cost.4 But not all risks create option

value. What matters is whether a particular type of risk leads to a symmetric or asymmetric

distribution of returns; option value only arises in the latter case. As we will see, aggregate

risk, whether systematic or non-systematic, leads to an asymmetric distribution of returns,

while certain (but not all) idiosyncratic risks do not. For example, idiosyncratic fluctuations

in firms’ fixed costs lead to a symmetric distribution of returns and should not affect entry.

An idiosyncratic risk of bankruptcy, however, can lead to an asymmetric distribution of

returns because if a firm exits at a time when aggregate market conditions are poor, it will

not quickly be replaced by a new entrant.

Caballero and Pindyck (1996) demonstrated these different effects of aggregate versus

idiosyncratic risk in the context of a model of atomistic competition in which each entrant

adds an incremental unit of capacity that is always utilized. Using the model, they also

estimated aggregate risk and its impact on investment for two- and four-digit manufactur-

ing industries. Novy-Marx (2007a) also derives price and output dynamics in a model of

competitive entry by firms facing aggregate demand uncertainty that choose their capacities

optimally, and differ in their costs of investing. He shows how this cost heterogeneity affects

firms’ investment decisions and the equilibrium price behavior. However, as in Caballero

and Pindyck, in his model all capacity is always fully utilized.

3Posner (1979) ignores scale effects but argues that uncertainty over future cash flows can be an entry
barrier by forcing entrants to bear a risk premium that makes their cost of capital higher than that of
incumbents. However, he never explains what kind of uncertainty matters and why it should affect the cost
of capital for entrants but not incumbents. Also, financial market structure, e.g., the extent of competition
in the banking industry, can affect the cost of capital for potential entrants without affecting risk. See, e.g.,
Cetorelli and Strahan (2006), and Almedia and Philippon (2007). For a general treatment of the effects of
sunk costs on market structure, see Sutton (1991).

4For a heuristic discussion of this point and its implications for antitrust analysis, see Pindyck (2008).
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Grenadier (2002) and Novy-Marx (2007b) derive the Nash equilibrium investment strate-

gies for a fixed set of n firms that can invest incrementally and face aggregate demand un-

certainty. Grenadier assumes the firms are identical so that the equilibrium is symmetric,

and shows how in this context industry capacity varies over time and how investment timing

depends on the number of firms. Novy-Marx develops a more general model in which firms

compete by adding capacity. Both authors study how firms can grow over time, but there is

no entry and firms always produce at capacity.5

I develop a dynamic model in which firms can freely enter the industry by paying a sunk

cost, which is the same for every firm. Once a firm has entered, it can produce all it wants

of a homogeneous product at a constant marginal cost. I assume competition among firms

currently in the industry is Nash-Cournot. Each firm knows the market demand curve when

it enters the industry, but that demand curve shifts unpredictably, so there is aggregate

(market-wide) risk in that future market demand is unknown. Also, that aggregate risk may

be partly systematic. There are also two kinds of idiosyncratic risk. First, each firm must

pay an ongoing fixed cost, which can differ across firms and will fluctuate unpredictably.

Random fluctuations in fixed costs are uncorrelated across firms and are thus idiosyncratic.

Second, each firm faces a risk of failure (i.e., liquidation), which can occur at any time, but

is independent of what happens to other firms.

I show that sunk cost barriers to entry depend to a considerable extent on the nature

and extent of the risks facing potential entrants. Each source of risk will raise barriers to

entry if it affects firms’ future profits asymmetrically; aggregate (market-wide) risk and the

risk of failure do, but fluctuations in fixed costs do not. Most importantly, the extent and

sources of risk are a basic structural feature of a market that play an important role in

determining the number of firms that can be expected to enter, the timing of entry, and the

evolution of market price and profit margins. The antitrust implications of these results are

immediate: Evaluating market power in the context of mergers or possible anticompetitive

5Aguerrevere (2003) also derives the Nash equilibrium investment strategies for a fixed set of firms that
invest incrementally and face aggregate demand uncertainty. He introduces time to build, and allows firms
to produce at below capacity. Murti (2004) examines exit strategies for a duopoly facing a stochastically
declining market demand. The model I develop here is simpler because I allow for free entry.
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behavior such as collusion or predation must account for potential entry, which in turn is

strongly dependent on the interaction of risk and sunk costs.6

Before turning to the fully dynamic model, in the next section I use a two-period example

to illustrate in a simple way how risk can magnify sunk costs. Section 3 lays out and solves

the full model, and shows how risk and sunk costs affect the industry growth rate and the

evolution of price and margins. Section 4 develops and expression for the “full,” i.e., risk-

adjusted, sunk cost of entry. Section 5 discusses the dependence of the results on the model’s

parameters, and shows that for reasonable parameter values, the full sunk cost is far larger

than the direct measure of sunk cost typically used in antitrust settings. Section 6 concludes.

2 A Simple Two-Period Example.

The relationship between risk and sunk cost can be illustrated with a two-period example.7

Consider a market with demand curve Pt = θt−Qt, where θ1 = 10, θ2 will equal either 10+ ε

or 10 − ε, each with probability 1
2
, and θt = θ2 for t > 2. Thus the variance of θ2 is ε2. The

market is currently served by a monopolist, but any number of additional firms can enter,

at t = 1 or t = 2, by paying a sunk cost S. Let n be the number of firms that enter (so

that post-entry, there are n + 1 firms). Because of uncertainty over θ2, the full sunk cost of

entry will exceed the direct cost S. We want to see how n and the resulting market price P

depend on S and ε.

Assume that entry takes no time, that any entrant can remain in the market forever with

no further expenditure (i.e., there is no depreciation), that all firms have the same discount

rate r, and that marginal cost is zero. Finally, I will assume that post-entry competition

among firms is Cournot. Thus if n firms have entered the market, so that including the

original monopolist, there are a total of n + 1 firms competing, each firm produces a quantity

6Farrell and Shapiro (1990) also examined the impact of mergers under the assumption of Cournot
competition, but their’s was a static analysis that took the set of firms in the industry as fixed. Although
my model is fully dynamic, I do not consider strategic aspects of sunk costs of entry that might reduce entry
barriers; as Cabral and Ross (2008) have shown, sunk costs can serve as a commitment device on the part of
entrants, thereby reducing the incentives for incumbent firms to try to drive entrants out by undercutting.

7This example is an elaboration of a model in Pindyck (2008).
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Qi = θt/(n + 2) in each period, so that the total quantity produced and market price are

Q = θt(n+1)/(n+2) and P = θt/(n+2). Also, each firm earns a profit of πi = θ2
t /(n+2)2.

To see how risk, measured by Var(θ2) = ε2, contributes to the “full” sunk cost of entry,

first assume that entry can only occur only at t = 1, and determine the number of firms that

will enter, n1. Taking n1 as fixed, we will see that given a choice, these firms would prefer to

wait until t = 2, and would then enter only if θ2 = 10 + ε. The option value associated with

entry is what each firm gives up (in terms of a reduction in the NPV of entry) by entering

at t = 1 instead of waiting. To determine the contribution to sunk cost, we find the sunk

cost S2 that makes the NPV when the firms wait equal to the NPV when the firms (facing

the original sunk cost S) enter at t = 1.

Entry in Period 1. If entry can occur only at t = 1, how many firms will enter? The

NPV for each entrant is:

NPV1
i = πi1 + E

∞
∑

t=2

πit

(1 + r)t−i
− S

=
100(1 + r) + ε2

r(n + 2)2
− S (1)

Any firm can enter, so entry occurs to the point that this NPV = 0. Solving for n:

n1(S, ε) =

√

100(1 + r) + ε2

rS
− 2 (2)

As expected, n1 is decreasing in S, but because πi2 is a convex function of θ2, it is increasing

in ε.

The Value of Waiting. Now take n1(S, ε) as fixed. Because NPV1
i = 0, the firms would

clearly prefer to wait until period 2 before deciding whether to enter, and would enter only

if θ2 = 10 + ε. The probability that θ2 = 10 + ε is .5, so if they waited, the NPV of entry for

each firm (discounting back to t = 1) would be:

NPV2
i =

(10 + ε)2

2r(n1 + 2)2
− 1

2
S (3)

Now substitute eqn. (2) for n1:

NPV2
i = 1

2
S

[

(10 + ε)2

100(1 + r) + ε2
− 1

]

(4)
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This NPV is greater than zero as long as ε > 5r (otherwise the loss from discounting at

rate r over one period exceeds the expected gain from waiting to learn about θ2). Thus,

assuming that ε > 5r, these firms would prefer to wait until period 2 before making their

entry decisions.

The Full Sunk Cost of Entry. To determine the option value associated with the

sunk cost of entry, we ask what the firms give up by entering at t = 1 rather than waiting

until t = 2. Equivalently, we find the sunk cost that makes the NPV of waiting until t = 2

equal to the zero NPV when n1 firms, each facing a sunk cost S, enter at t = 1. That is, we

find the cost S2 that makes NPV2
i (n1, S2) = NPV1

i (n1, S) = 0. Using eqn. (3), substituting

eqn. (2) for n1, and rearranging gives the ratio S2/S:

S2/S =
(10 + ε)2

100(1 + r) + ε2
(5)

Note that S2/S > 1 as long as ε > 5r.

Eqn. (5) translates the option value that is lost upon entry into an equivalent “markup”

over the direct sunk cost of entry. S2 is the full sunk cost of entry, i.e., the direct sunk

cost S plus the option value that is lost by irreversibly investing. As Figure 1 illustrates

(for a discount rate r = .10), the greater the variance of θ2, the greater is this lost option

value, so S2/S is increasing in ε. Thus the full sunk cost that is relevant to an entry decision

(and therefore relevant to an analysis of entry barriers) is greater than the direct sunk cost

that is typically measured, and depends on the the extent of uncertainty over future market

conditions.

This example does not distinguish among different types of risk, and assumes that there

is only a single change in market demand so that any entry occurs at one point in time. To

explain the relationship between risk and sunk costs in more detail, we need a fully dynamic

model of entry and exit.

3 A Dynamic Model of Entry and Industry Evolution.

In this section I lay out a model in which firms can enter a market by paying a sunk cost

(which is the same for every firm), but entrants face both aggregate and idiosyncratic risk
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on an ongoing basis. I assume that once in the market, each firm can produce any quantity

it wants of a homogenous good at a constant marginal cost c, and that competition at each

point in time is Cournot.8 The number of firms in the industry and the equilibrium market

price will be determined in part by the size of the sunk cost, but also by various forms of

risk.

The market demand curve is given by:

Pt = θt − bQt , (6)

where Qt is aggregate output, and θt follows a geometric Brownian motion:

dθ = α1θdt + σ1θdz1 . (7)

Thus θt captures market or aggregate risk, which may be partly systematic, and shifts in

the demand curve are parallel. (This linear demand can be viewed as an approximation to

a more general demand curve.) An advantage of this demand specification is that it leads

to an equilibrium threshold price that triggers new entry. Although the price fluctuates

over time, in the long run it will approach an equilibrium maximum price as the number of

firms grows. This makes it possible to examine how changes in various kinds of risk affect

price over the long run. The same price behavior would result from a more general demand

curve of the form Pt = θt − g(Qt), but the resulting complexity yields no additional insights.

Likewise, an alternative process could be specified for θt, e.g., a mean-reverting or a jump

process, but the qualitative results would still hold.

To enter the industry, a firm must pay a one-time sunk cost S, and once it has entered,

it can produce as much as it wants forever. (Introducing depreciation does not change the

overall results.) Thus one can think of the sunk cost as providing access to a technology,

or alternatively, the cost of a production facility with capacity larger than the firm’s profit-

8Because each firm’s capacity is unlimited, Bertrand competition would not yield the Cournot outcome
as in Kreps and Scheinkman (1983). One could introduce differentiated products and Bertrand competition,
but this would add to the complexity of the model without yielding additional insights. I also ignore the
possibility of sustained collusion or cartelization, which would be unlikely given the possibility of entry. See
Levenstein and Suslow (2006) for a discussion of this point.
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maximizing output. All firms have the same constant marginal cost c, and an ongoing firm-

specific and time-varying fixed cost φi,t. Firms’ fixed costs evolve as independent geometric

Brownian motions; for Firm i:

dφi = α2φidt + σ2φidz2i , (8)

with E(dz1dz2i) = 0 for all i and E(dz2idz2j) = 0 for i 6= j. Note that firms’ fixed costs

all have the same drift and volatility, but can start from different positions, and evolve as

independent stochastic processes. Thus the fixed costs capture idiosyncratic risk.9

There is an additional source of idiosyncratic risk: Each firm faces a risk of failure (e.g.,

bankruptcy leading to liquidation). I model this as a Poisson event with mean arrival rate

λ; if the event occurs, the firm’s value Vi drops to zero, where it remains permanently.

3.1 Price, Markup, and Profit.

Suppose n firms are currently in the industry. Then in the Cournot equilibrium, each firm

produces a quantity Qi = (θ − c)/b(n + 1), so total output and market price are:

Q =
(

n

n + 1

)

θ − c

b
and P =

θ + nc

n + 1
. (9)

Note that the market price P is independent of the slope of the demand curve, b, and unless

n changes, it moves linearly with θt. Also, the profit flow for each firm is:

πit =
(θt − c)2

b(n + 1)2
− φit . (10)

From eqn. (9) for P , (θ − c) = (n + 1)(P − c) = (n + 1)ω, where ω ≡ P − c is the operating

margin. Substituting this into eqn. (10), we can rewrite the firm’s profit as a function of the

industry-wide margin ωt:

πit =
ω2

t

b
− φit . (11)

With n firms, ωt = (θt − c)/(n+1), so if another firm enters, the operating margin will drop

to (θt − c)/(n + 2), i.e., ωt will drop by an amount ∆ωn = (θt − c)/(n + 1)(n + 2). Any

potential entrant must take this into account.

9Idiosyncratic risk could just as easily have been introduced as shocks to productivity, as in Caballero
and Pindyck (1996). What matters is that otherwise identical firms have unpredictable differences in profits.
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It will be convenient to approximate the expression for the market price as follows:

P =
θ

n + 1
+

nc

n + 1
≈

θ

n + 1
+ c , (12)

so that θ ≈ (n + 1)(P − c) = (n + 1)ω. This appoximation is close if n is large and/or c is

small. It simplifies matters because then as long as n does not change, the operating margin

ω will follow the same stochastic process as θ, i.e.,

dω

ω
=

dθ

θ
= α1dt + σ1dz1 . (13)

When θ becomes sufficiently large, n will increase and both P and ω will drop; ω will again

follow eqn. (13), but now from a (lower) starting point.

One would expect that any systematic risk is market-wide, i.e., pertains to θt, and that

all idiosyncratic risks (i.e., random changes in φit or the risk of collapse) are diversifiable.

Let r denote the risk-free interest rate, and µ ≥ r denote the risk-adjusted expected return

on θt (or on a portfolio of assets perfectly correlated with θt). An asset’s return shortfall

(which may or may not equal the asset’s payout rate) is the asset’s expected return less its

expected rate of capital gain. Thus the return shortfall for θt is is δ1 = µ−α1, and for φit is

δ2 = r − α2. Given eqn. (10) for each firm’s profit and the processes (13) and (8) for ωt and

φit, we can determine the dynamics of entry, the operating margin ωt, and the price Pt.

3.2 Entry and the Value of a Firm.

If there were n firms in the market and no further entry could occur, the value of each firm

could easily be found by evaluating E0

∫

∞

0 πit(θt, φit)dt, using eqn. (10) for πit. With free entry,

n will change, so this integral is not easily evaluated. Also, unlike in models of atomistic

competition (e.g., Caballero and Pindyck (1996) or Chapter 8 of Dixit and Pindyck (1994)),

the entry of a firm affects the market price, which makes the entry condition dependent on

the number of firms already in the market. To determine the market dynamics, I surmise

that with n firms already in the market, there is some threshold for the operating margin,

ω̄n, (and a price P̄n = ω̄n + c) such that the n+1st firm will enter whenever ωt ≥ ω̄n.

To find ω̄n, I first assume that n is sufficently large that the entry of one more firm has

a negligible impact on the market price. In that case, the threshold for ω, which I denote
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by ω̄, will not depend on n. For some arbitrary ω̄, I find the value of the firm when ωt < ω̄,

and then find ω̄ and show that it is indeed an equilibrium for large n. Using the solution for

ω̄, I return to the case of small n and determine ω̄n.

3.2.1 Large n.

Suppose n is sufficiently large that entry has no significant impact on price. Consider an

incumbent firm selling at the market price Pt, earning a margin ωt = Pt − c, and paying a

fixed cost φi. To find the threshold ω̄ that triggers entry, we conjecture that ω̄ exists and

then show that for large n, entry when ωt reaches ω̄ is indeed an equilibrium.

First, suppose that some value ω̄ is indeed the entry threshold. If ωt < ω̄, then ωt will

surely remain below ω̄ during the next short interval of time. It is easily shown that the

value of the firm, V (ω, φi), must then satisfy:

1
2
σ2

1ω
2Vωω + (r − δ1)ωVω + (r − δ2)φiVφ − (r + λ)V +

ω2

b
− φi = 0 , (14)

where Vω denotes ∂V/∂ω, etc. This equation has the solution:

V (ω, φi) = Bωβ +
ω2

b(2δ1 + λ − r − σ2
1)

−
φi

(δ2 + λ)
, (15)

where B is yet to be determined, and β is given by:

β = 1
2
− (r − δ1)/σ

2
1 +

√

[

(r − δ1)/σ
2
1 −

1
2

]2
+ 2(r + λ)/σ2

1 . (16)

If no further entry were possible, the value of an operating firm would be given by the last

two terms in eqn. (15). The first term on the right-hand side, Bωβ , is the adjustment in

value that is due to the potential entry of other firms.

We need to find B and the threshold ω̄. To find B, we use the fact that if ω̄ is a reflecting

barrier, then Vω(ω̄) = 0.10 From eqn. (15),

Vω(ω̄) = βBω̄β−1 +
2ω̄

b(2δ1 + λ − r − σ2
1)

= 0 , (17)

10When ωt reaches ω̄, it will surely fall, so if Vω(ω̄) 6= 0, an arbitrage opportunity would arise. This is a
different form of the “smooth pasting” condition, in that it does not arise from optimality. For a discussion
and derivation, see Dixit (1993), Section 3.5.

10



so that

B = −
2ω̄2−β

βb(2δ1 + λ − r − σ2
1)

, (18)

and the value of an operating firm is given by:

V (ω, φi) =
−2ω̄2−βωβ + βω2

βb(2δ1 + λ − r − σ2
1)

−
φi

(δ2 + λ)
. (19)

This value function depends on ω̄. To find ω̄ and see that it is an equilibrium threshold for

large n, note that

V (ω̄, φi) =
(β − 2)ω̄2

βb(2δ1 + λ − r − σ2
1)

−
φi

(δ2 + λ)
. (20)

If ωt = ω̄, a firm with some fixed cost φi will enter if its value, V (ω̄, φi), is greater than or

equal to the entry cost S. But which firm will enter and with what fixed cost? Because there

are an unlimited number of potential entrants, there will surely be some entrant with a fixed

cost φi arbitrarily close — but not equal — to zero.11 (Of course after the firm enters, its

fixed cost will fluctuate.) Thus free entry ensures that:

V (ω̄, 0) =
(β − 2)ω̄2

βb(2δ1 + λ − r − σ2
1)

= S , (21)

so the threshold ω̄ is given by:

ω̄ =

[

β

β − 2
b(2δ1 + λ − r − σ2

1)S

]

1
2

. (22)

To get some intuition for eqn. (22), suppose there is no uncertainty or expected growth

in θt, so that σ1 = λ = α1 = 0. In that case δ1 = µ = r, β → ∞, and ω̄ = (rbS)1/2. A firm

that has just entered the industry has φi close to 0, so from eqn. (11), the capitalized value

of its profit stream is ω2/rb, which equals the cost of entry, S. Ignoring the fact that there

must be an integer number of firms, we then have ω̄ = (rbS)1/2.

The usual risk multiplier is β/(β − 1); in this case it is β/(β − 2) because πit ∼ θ2
t . But

note that there is no requirement that β exceed 2. If σ1 is sufficiently large and/or δ1 is

sufficiently small, β will be less than 2 (but always greater than 1). However, 1 < β < 2

11We could instead assume that all firms have the same initial fixed cost, φ0, at the time of entry, but this
is just equivalent to increasing S by φ0/(δ2 + λ).
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if and only if (2δ1 + λ − r − σ2
1) < 0, so the bracketed terms in eqn. (22) are positive.

Furthermore, ω̄ changes smoothly as β → 2 from either direction, i.e., if δ1, λ, r, or σ1

change so that (2δ1 + λ − r − σ2
1) → 0.12 Likewise, V (ω) changes smoothly with β, and if

φi = 0, it is easily seen from eqn. (19) that V is always positive.

3.2.2 Small n.

If n is small, the entry of another firm will reduce the operating margin ωt, and any potential

entrant will take this into account. I posit and confirm that there is a threshold ω̄n = g(n)ω̄,

with g′(n) < 0, g′′(n) > 0, and g(∞) = 1. Recall that with n firms in the market, the

Cournot equilibrium is ωt = (θt − c)/(n + 1). The (n+1)st firm enters when ωt reaches ω̄n,

i.e., when θt reaches (n + 1)ω̄n + c. After entry, ωt drops from ω̄n to ω̄n(n + 1)/(n + 2).

I show in the Appendix that g(n) is given by:

g(n) =

[

β − 2

β(n+1
n+2

)2 − 2(n+1
n+2

)β

]

1
2

. (23)

The Appendix also provides an expression — eqn. (34) — for V (ω, n), the value of each of

the n operating firms prior to the entry of the (n + 1)st firm.

Figure 2 shows V (ω, n) for n = 1, n = 3, and n = ∞. (The other parameters are r = .04,

µ = .08, α1 = λ = 0, σ1 = 0.2, b = 1 and S = 10. With these parameters, β = 3.56 and

ω̄ = 1.35.) Note that if n = 1, a second firm will enter when ωt reaches ω̄1 = 1.60, and ωt

will then drop to (2/3)ω̄1 = 1.07,at which point the value of an operating firm is equal to

the sunk cost of entry, S = 10. For (2/3)ω̄1 < ωt ≤ ω̄2, V (ω) > S because the incumbent

can expect to enjoy a high margin for some finite time before another firm enters. As n

increases, the entry threshold drops closer to ω̄ because the entry of another firm causes a

smaller reduction in ωt. For example, when n = 3, a fourth firm will enter when ωt reaches

ω̄3 = 1.44, and ωt will then drop to (4/5)ω̄3 = 1.15. When n is very large, entry occurs when

ωt reaches ω̄ = 1.35, and the resulting drop in ωt is negligible.

Finally, note that for any given ωt, V (ω, n) is higher when n is smaller. This is not

because in the Cournot equilibrium fewer firms implies a higher operating margin; we are

12As r → 2δ1 + λ − σ2
1 , β → 2 and ω̄ → [2(δ1 + λ + 1

2
σ2

1)bS]1/2.
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holding the margin fixed. The reason is that the smaller is n, the higher is the entry threshold

ω̄n, so the longer is the expected time before another firm enters.

3.2.3 Evolution of θ, n, and ω.

The dynamics of ωt and n are driven by both deterministic and random changes in the

demand driving variable θt, and by random exit at the mean rate λ. With n firms in the

market and θt < (n + 1)ω̄n + c, no further entry occurs until θt reaches (n + 1)ω̄n + c (so

that ωt reaches ω̄n), or until an incumbent firm exits, making room for an entrant. As n

gets larger, each drop in ωt becomes smaller, and ωt stays closer to ω̄ on average. Also, as n

increases the average time until ωt reaches ω̄n and another firm enters falls.13

Figures 3 and 4 show sample paths for θt, the number of firms n, and the operating

margin ωt. For both sample paths, r = .04, µ = .08, α1 = 0, σ1 = 0.2, c = 1, and S = 10.

In Figure 3, λ = 0, so that there is no exit, and θ0 = 3 so that initially there is one firm in

the market. In Figure 4, λ = 0.1, so that each active firm has a 10-percent chance of exiting

each year. With λ > 0, n will grow if θt increases sufficiently, but will also drop at random

times as incumbent firms exit. Also, if θt drops sufficiently so that ωt is well below ω̄n, when

one or more firms “collapse” and exit, other firms will not enter until θt increases sufficiently

to bring ωt back to the entry threshold.

Note from Figure 3 that the entry threshold ω̄n falls as the number of firms increases.

The entry of the second firm occurs after about 1-1/2 years, when θt increases sufficiently

so that ωt reaches ω̄1 ≈ 1.4. Then ωt drops to (2/3)ω̄1 = 0.93, and the new threshold

becomes ω̄2 ≈ 1.3. After about 15 years there are 8 firms in the market, but θt and ωt drop

substantially so that no further entry occurs. In Figure 4, the initial value of θt is set at 5.0

(corresponding to ω = 2), so that we again begin with one firm. After 2 years θt and ωt are

high enough so that a second firm enters. (Note that ω̄1 is now 2.8, about twice its value

when λ was zero. A higher λ increases both ω̄ and β, which increases g(n).) After another

13After the entry of the nth firm, ωt drops from ω̄n = g(n)ω̄ to ω̄n(n + 1)/(n + 2), and the (n + 1)st firm
enters when ωt increases to ω̄n+1 = g(n + 1)ω̄. Thus as n becomes larger, the percentage increase in ωt

needed to induce entry of another firm, ∆n ≡ ∆ logωt = log[g(n + 1)/g(n)] − log[(n + 1)/(n + 2)], falls, as
does the expected time for this increase to occur.
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year, a firm exits, but θt and ωt are still sufficiently high that it is immediately replaced by

another entrant, and shortly thereafter, a third firm enters. Around year 6, a firm exits, but

ωt has declined so that it is not immediately replaced. The number of firms reaches 5, but

then declines to 2 as exit occurs but ωt remains too low to induce further entry.

3.3 Industry Growth Rate.

The sample paths in Figures 3 and 4 are illustrative, but they do not address the question of

how sunk costs and risk affect the expected rate of industry growth. For example, suppose

that initially demand is such that there is one firm in the industry. Then, for a given set of

parameter values, what is the expected value of the time it will take until there are n > 1

active firms? Alternatively, what is the expected value of the number of firms that will be

in the industry after T years? I address these questions below.

3.3.1 Expected Time to Reach n Firms.

Suppose that at t = 0, θ0 = mω̄m−1 + c so that ω0 = ω̄m−1, and it is just profitable for

the mth firm to be in the market. Let mTn be the time until there are n > m firms in the

market, i.e., the time until θt increases to nω̄n−1 + c so that ωt reaches ω̄n−1, triggering the

entry of the nth firm. Let E(mTn) be the expectation of mTn. Define α′
1 ≡ α1 −

1
2
σ2

1. Using

Theorem 5.3 in Karlin and Taylor (1975), as long as α′
1 > 0, E(mTn) is given by:

E(mTn) =
1

α′
1

log

[

nω̄n−1 + c

mω̄m−1 + c

]

. (24)

Note that E(nTn+1) → 0 as n → ∞, i.e., as the industry becomes larger, on average new

firms enter more quickly.

An increase in σ1 has two opposing effects on E(mTn). First, it increases each ω̄k, k =

m, m + 1, . . . , n − 1, so that θt must rise by a larger amount to trigger entry. Second, it

increases the volatility of θt, increasing the probability that θt will reach any given limit in

a fixed time interval. With some algebra, it can be shown that the first effect dominates,

so that (d/dσ1)E(mTn) > 0. For example, suppose the parameters are the same as for the

sample path in Figure 3 (so that σ1 = 0.2), except set α1 = .20 to ensure that α′
1 > 0. If we
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start with 1 firm, the expected time to reach 5 firms is E(1T5) = 6.29 years. If σ1 is increased

to 0.4, E(1T5) increases to 23.19 years. This is just another manifestation of industry-wide

risk magnifying the direct sunk cost of entry, so that greater risk requires a larger expansion

of market demand to induce entry of any fixed number of firms.

If α′
1 < 0, mTn has a defective probability distribution, i.e., there is a positive probability

that mTn will be infinite. However, in this case one can still determine (via Monte Carlo

simulation) the expected time until there are n firms given that this time is finite. This is

done by generating sample paths for θt over some arbitrarily long horizon (e.g., 200 years),

and then averaging over only those paths for which θt reached ω̄n−1 + c within the horizon.

3.3.2 Expected Number of Firms.

Assume once again that at t = 0, θ0 = mω̄m−1 + c so that ω0 = ω̄m−1, and thus it is just

profitable for the mth firm to be in the market. Let n be the number of firms at t = T . If

λ = 0, then n ≥ m is also the maximum number of firms in the market between t = 0 and

T , but if λ > 0, firms can exit so n may be less than the maximum, and may also be less

than the starting number of firms, m. In either case, one can find the expected number of

firms in the market at T , E(n|m, T ), by simple Monte Carlo simulation.

If α′
1 ≡ α1 −

1
2
σ2

1 < 0, we can also find the expected value of the maximum number of

firms that will ever be in the market. Let xt = log θt and let x̄ = max0≤t<∞(xt − x0). Then

x̄ has the exponential distribution:

Pr(x̄ ≥ x) = e−ξx

where ξ = 2|α′
1|/σ

2
1. (See Karlin and Taylor, Corollary 5.1.) Since θt determines the max-

imum number of firms (for any value of λ), we can use this to get the distribution for the

maximum number of firms given that there are initially m firms, n̄m ≡ max0≤t<∞ nt|n0 = m:

Pr(n̄m ≥ n) = Pr[x̄ ≥ log(nω̄n−1 + c)|x0] = log(mω̄m−1 + c)

= Pr

[

x̄ ≥ log

(

nω̄n−1 + c

mω̄m−1 + c

)]

= exp

[

−ξ log

(

nω̄n−1 + c

mω̄m−1 + c

)]

=

(

mω̄m−1 + c

nω̄n−1 + c

)ξ

(25)
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As one would expect, ∂ Pr(n̄m ≥ n)/∂n < 0 and Pr(n̄m ≥ n) → 0 as n → ∞. Also, it is easy

to show that for any n > m, ∂ Pr(n̄m ≥ n)/∂σ1 > 0 and ∂ Pr(n̄m ≥ n)/∂|α′
1| < 0. Using

(25), one can compute the expected value of the maximum number of firms given that there

are m firms currently in the market, E(n̄m).

Table 1 shows, for σ1 = .2 and .4 and λ = 0 and .1, the expected number of firms after

5 years and after 10 years, when there is initially one firm in the market. For either time

horizon, the expected number of firms is increasing in σ1 and decreasing in λ. E(n|1, T ) is

increasing in σ1 because α′
1 < 0 (i.e., the percentage drift of θt is negative), so a higher value

of σ1 increases the probability of θT − θ0 > ∆ for any positive ∆. The table also shows the

expected value of the maximum number of firms that will ever be in the market. Note that

if λ = .1, E(n|1, 10) < E(n|1, 5) because the average rate of exit exceeds the average rate of

demand growth-induced entry.

3.4 Determinants of the Entry Threshold.

I turn now to the entry threshold ω̄n and examine its dependence on the various parameters

of the model. Recall that ω̄n = g(n)ω̄, where ω̄ is the entry threshold when the number

of firms n is very large, and g(n) > 1 is the increase in the threshold resulting from the

post-entry drop in ωt when n is small. It is easiest to discuss ω̄ and g(n), both of which

depend on β, separately. I begin with g(n, β) = ω̄n/ω̄, which is given by eqn. (23). First,

note that ∂g(n, β)/∂β > 0, and recall from eqn. (16) that β > 1 and β is decreasing in σ1

and increasing in δ1. Other things equal, if n is small, a lower value of σ1 and/or higher value

of δ1 = µ − α1 implies a larger difference between ω̄n and ω̄. The reason is that the drop in

ωt to ω̄n(n+ 1)/(n + 2) that will occur following entry will be relatively permanent, because

the volatility σ1 and drift α1 of θt are low. Thus the entrant requires a post-entry value of

ωt that is higher than would be the case otherwise, which implies a higher threshold.

Second, as with eqn. (22), there is no requirement that β be greater than 2. If 1 < β < 2,

both the numerator and denominator in eqn. (23) will be negative. Also, as β approaches 2

from either direction, g(n, β) → (n+2
n+1

)[1 + 2 ln(n+2
n+1

)].

Now consider ω̄, the threshold for large n. Note that ω̄ does not depend on σ2, the
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volatility of individual firms’ fixed costs. Any firm that enters does so with a low initial

fixed cost, but the volatility of future fluctuations in its fixed cost does not affect the entry

decision. This is because fluctuations in fixed costs are idiosyncratic and thus do not affect

expected future market prices, are non-systematic so they do not affect the firm’s cost of

capital, and affect profits linearly and thus symmetrically. Caballero and Pindyck (1996)

obtained a similar result in a model of perfect competition with atomistic entry, idiosyncratic

productivity shocks, and aggregate demand shocks. As in their model, idiosyncratic shocks

(in this case to fixed costs) generate a symmetric distribution for the firm’s profits, whereas

aggregate shocks generate an asymmetric distribution. Negative shocks to market demand

reduce the market price and operating margin for all firms, but positive shocks lead to the

entry of new firms, which limits any price increases. Thus an increase in the variance of

aggregate demand shocks increases the potential downside of a firm’s profits, but has little

impact on the upside, and therefore increases the entry threshold ω̄.14

The entry threshold also varies with µ, the risk-adjusted expected return on θt (and ωt).

For any ωt, V (ωt) is decreasing in µ because a higher µ means future profits are discounted at

a higher rate. Thus ω̄ is increasing in µ. If r ≤ µ (as is usually the case), V (ωt) is increasing

in r, so ω̄ is decreasing in r. The effect is reversed if r > µ (the case if fluctuations in θt are

negatively correlated with the overall market), and then ω̄ increases with r.

An increase in the failure rate λ has two opposing effects on ω̄. First, it reduces the

asymmetric impact of aggregate demand fluctuations, because the entry of new firms follow-

ing a demand increase is less permanent as firms will fail and exit more rapidly. (Note from

eqns. (15) and (16) that an increase in λ increases β and makes the negative term in the

value function, Bωβ, smaller in magnitude.) But as can be seen from the second term on the

RHS of eqn. (15), a larger λ also reduces the value function by reducing the present value of

future profits. This second effect dominates, so an increase in λ reduces V (ωt), increasing ω̄.

14This point is also explained in Pindyck (1993). If there are only a few firms in the industry, an increase
in the volatility of aggregate demand fluctuations will have some impact on each firm’s profit upside, because
ω will on average be closer to ω̄. When the number of firms is very large, ω will stay very close to ω̄, and
the entry of new firms will occur more frequently. In either case, however, an increase in the volatility of
aggregate shocks will increase each firm’s profit downside much more its upside.
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To summarize, ∂ω̄/∂σ1 > 0, ∂ω̄/∂λ > 0, ∂ω̄/∂µ > 0, and ∂ω̄/∂r < (>)0 if r ≤ (>)µ. Of

course we are assuming that changes in σ1, µ, etc. are made holding all other parameters

fixed, and as discussed later, that is not always the right thought experiment.

4 The Magnification of Sunk Costs.

One way to measure the effect of risk on market structure is by determining how it “mag-

nifies” the sunk cost of entry, S. To begin, I focus on the “large-n” threshold, ω̄. Suppose

σ1 = λ = 0 so that β → ∞ and β/(β − 2) → 1. In this “riskless world,” ω̄ is smaller than

it would be if σ1 or λ took on their actual values. Thus I find the sunk cost S∗ > S that

makes ω̄ when σ1 = λ = 0 equal to what it was for the given values of σ1, λ, and S. From

eqn. (22) for ω̄, S∗ therefore satisfies the equation:

b(2δ∗1 − r)S∗ =

(

β

β − 2

)

b(2δ1 + λ − r − σ2
1)S , (26)

where δ∗1 = µ∗ − α1 is the value of δ1 that corresponds to the riskless world in which

σ1 = λ = 0. With no risk, µ∗ = r so δ∗1 = r − α1.

We can then calculate the “markup” given by:

S∗/S =

(

β

β − 2

)

(2δ1 + λ − r − σ2
1)

(2δ∗1 − r)
=

(

β

β − 2

)

(2µ − 2α1 + λ − r − σ2
1)

(r − 2α1)
. (27)

This markup is independent of b, the slope of the demand curve. It is easy to see that S∗ ≥ S

is increasing in σ1, and if σ1 = λ = 0 and µ = r, S∗ = S.15 Note from eqns. (16) and (27)

that although ∂β/∂λ > 0, ∂(S∗/S)/∂λ > 0. Both σ1 and λ embody risk that asymmetrically

impacts a firm’s value, and an increase in either magnifies the sunk cost of entry.16

To determine S∗/S for small n, note that if σ1 = λ = 0, β → ∞ and, from eqn. (23),

g(n) → (n + 2)/(n + 1), so that ω̄n →
(

n+2
n+1

)

[b(2δ∗1 − r)S]1/2. Thus, eqn. (26) becomes:

(

n + 2

n + 1

)2

b(2δ∗1 − r)S∗ = g2(n)

(

β

β − 2

)

b(2δ1 + λ − r − σ2
1)S . (28)

15If σ1 = λ = 0, there is no risk, so we would expect µ = r. If σ1 = λ = 0 and µ > r, then S∗/S > 1.
Also, note that S∗/S is defined only for r > 2α1; if r ≤ 2α1, the value of an operating firm in the absence
of risk is infinite.

16Also, note that S∗/S > 0, because 1 < β < 2 iff (2δ1 + λ − r − σ2
1) < 0.
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Rearranging and substituting eqn. (23) for g(n), the “markup” is now:

S∗/S =

[

β

β − 2(n+1
n+2

)β−2

]

(2δ1 + λ − r − σ2
1)

(2δ∗1 − r)
. (29)

With some algebra, it can be shown that S∗/S is decreasing in n. The reason is that

a larger n implies a lower entry threshold ω̄n and a smaller reduction in ωt when another

firm enters, increasing the value function for each operating firm and thus increasing the net

payoff from entry, V (ω, n + 1) − S. This is equivalent to a lower S∗ in the “riskless world.”

For any number of firms n, eqn. (29) shows how market risk as measured by σ1 and the

idiosyncratic risk of collapse, λ, affect the markup S∗/S. Of interest is the different effects

of systematic versus non-systematic risk. To address this, we decompose the markup into

two components. By the CAPM, µ = r + φρθmσ1, where φ is the market price of risk, and

ρθm is the correlation of θt with the market. Thus if ρθm doesn’t change, µ (and therefore δ1)

should increase linearly with σ1. In particular, φ = (rm − r)/σm, where rm is the expected

return on the market and σm is the standard deviation of that return. Using rm − r ≈ .08

and σm ≈ 0.2, φ ≈ 0.4. If, e.g., ρθm = 0.5, then µ = r + 0.2σ1.

By assumption the risk of collapse, λ, is non-systematic. We can therefore consider two

cases: (1) ρθm = 0, so that all risk is non-systematic; and (2) ρθm = 1, so that all industry-

wide risk is systematic, i.e., stochastic movements in θt are perfectly correlated with the

overall market. Then for any given value of σ1, we find S∗/S under the assumption that

ρθm = 0, which implies that µ = r so that δ1 = µ − α1 = r − α1, and denote this ratio by

S∗
n/S. (Note that δ1 appears directly in the expression for S∗/S and indirectly via eqn. (16)

for β.) Likewise, we find S∗/S under the assumption that ρθm = 1, which implies that

µ = r + φσ1, and denote this ratio by S∗
s/S. Thus (S∗

s − S∗
n)/S ≥ 0 measures the maximum

differential impact of systematic risk. Note that if S∗/S is the ratio for the true value of ρθm,

then (S∗ − S∗
n)/S is the differential contribution of systematic risk for the actual industry.

As an example, take the parameter values used to generate the sample paths in Figures 3

and 4: r = .04, µ = .08, α1 = 0, σ1 = 0.2, c = 1, and S = 10. Assuming n is large, with λ = 0,

S∗/S = 4.63, S∗
n/S = 3.05, and S∗

s/S = 6.47. Thus the differential impact of systematic risk

on the sunk cost markup is 4.63 − 3.05 = 1.58, i.e., it increases the markup by about 52%.

19



Also, the maximum differential impact of systematic risk is 6.47 − 3.05 = 3.42, which more

than doubles the markup. If λ = 0.1, the markups are all much larger (because there is a

risk of “collapse” in addition to market demand risk). Then S∗/S = 8.25, S∗
n/S = 6.86, and

S∗
s/S = 9.88, so the differential impact of systematic risk is 1.39.

5 Comparative Statics.

How do changes in various parameters affect the limiting operating margin ω̄, the markup

on sunk cost S∗/S, and the maximum differential markup (S∗
s −S∗

n)/S? This question is not

straightforward because a change in one parameter is likely to be accompanied by a change

in one or more other parameters. For example, we saw that an increase in σ1 — holding

all other parameters fixed — results in increases in both ω̄ and S∗/S. But should all other

parameters be held fixed?

5.1 Relationships Among Parameters.

As explained earlier, changes in σ1 should affect µ, the risk-adjusted expected rate of return

on θt, through the CAPM: µ = r + φρθmσ1, where φ = (rm − r)/σm is the market price of

risk. I will use ρθm = 0.5, so with rm − r ≈ .08 and σm ≈ 0.2, φ ≈ 0.4 and µ = r + 0.2σ1.

Likewise, one might expect a change in the failure rate λ to be accompanied by a change

in α1. Suppose the risk-adjusted expected rate of return µ is independent of λ (which would

be the case if Poisson failures are non-systematic). This expected rate of return is the sum

of an expected rate of capital gain, α1 − λ, and a payout rate (or return shortfall). To

keep the expected rate of capital gain and thus the expected return fixed, α1 must increase

with λ, i.e., α1 − λ should be constant, so that α1 = α10 + λ.17 (Note that in this case,

δ1 = µ − α1 + λ = µ − α10 would also remain constant.)

17See Section 5B of Dixit and Pindyck (1994) for a more detailed discussion of this point. One might also
want α1 to vary with σ1. Because θt follows a GBM, its expected percentage rate of growth is α1 −

1

2
σ2

1 (the
drift of log θt), so to keep this expected rate of growth at zero, we must set α1 = 1

2
σ2

1 . However, in that case
δ1 will be a non-monotonic function of σ1, first increasing, then decreasing and becoming negative (at which
point there would be no investment) for large values of σ1. Also, E(θt) = θ0e

α1t. Thus in what follows, I do
not constrain the growth rate of demand.
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A change in the risk-adjusted expected return, µ could occur without an accompanying

change in σ1 (or the risk-free rate, r) if ρθm were to increase. But as explained earlier, a

change in µ could also result from a change in σ1 through the CAPM. An increase in µ by

itself, like an increase in λ, has two opposing effects. First, it will increase δ1 and thereby

increase β and reduce ω̄. Second, as can be seen from the second term on the RHS of

eqn. (15), the increase in δ1 also reduces the present value of future profits. This second

effect dominates, so an increase in µ reduces V (ωt), increasing both ω̄ and S∗/S.

For purposes of comparison, it is useful to see how the entry threshold and sunk cost

markup change as individual parameters are changed while holding the other parameters

fixed. Thus I present parameter-by-parameter results below. I also show the effects of

parameter changes with the single constraint µ = r + φρθmσ1, and with the additional

constraint α1 = α10 + λ.

5.2 Parameter Values.

What are “reasonable” values for the parameters of the model? Because entry depends only

on the margin ωt, the threshold ω̄n and sunk cost markup S∗/S are independent of the

marginal cost c. The slope of the demand curve, b, does not affect S∗/S; it does affect ω̄n,

but note from eqn. (22) that it simply “scales” the direct sunk cost S. Thus I set b = 1 and

S = 10. I also set α1 (and α10), the drift of the demand driving variable θt, to zero.

Reasonable values for the risk-free rate r could be in the range of .02 to .06, and the risk

premium µ− r could be in the range of 0 to .10. The average exit rate λ varies considerably

across industries; I will consider values from 0 to 0.2.

That leaves aggregate demand volatility, σ1 (ω̄n and S∗/S are unaffected by the idiosyn-

cratic volatility of fixed costs, σ2). Caballero and Pindyck (1996) estimated sample standard

deviations of the log of the marginal profitability of capital (ΠK) for 2-digit and 4-digit SIC

industries over the 29-year period 1958–1986, and those numbers are roughly comparable to

σ1. Note from eqn. (9) that for an industry in my model, ΠK = P − c = (θ − c)/(n + 1),

so during periods when n does not change, d(log ΠK) = (dθ − c)/(θ − c). Thus if c is small

21



relative to θ (not relative to P ), d(log ΠK) ≈ dθ/θ.18 The 2-digit (4-digit) standard devia-

tions range from .06 to .25 (.22 to .51), which suggests a range for σ1 of roughly 0.1 to 0.5.

This range is also consistent with the 20% annual standard deviation of real returns on the

NYSE Index, which when unlevered (using an average debt-equity ratio of 1) becomes 10%.

The standard deviations of unlevered individual company returns are substantially higher,

and vary considerably across industries.19

For the comparative static results below, I assume that there are currently 5 firms in the

market, and I use the following “base case” parameter values: r = .04, µ = .08, α1 = α10 = 0,

σ1 = 0.2, ρθm = 0.5 so that φρθm = 0.2, and λ = 0. I vary these parameters within the

ranges described above.

5.3 Results.

Table 2 shows how ω̄n and S∗/S vary with σ1, µ, λ, and r, first holding all other parameters

fixed (Part A), then constraining µ = r + φρθmσ1 = r + 0.2σ1 (Part B), and finally adding

the constraint α1 = α10 +λ (Part C). In all cases, n = 5. Note from Part A, that the markup

S∗/S and the maximum differential impact of systematic risk, ∆S∗/S = (S∗
s − S∗

n)/S, rise

sharply as σ1 is increased. (S∗/S > 1 when σ1 = 0 because µ is fixed at .08, reducing the

value function.) If µ is constrained by the CAPM, as in Parts B and C, S∗/S = 1 when

σ1 = 0, but ω̄ and S∗/S rise even more rapidly as σ1 is increased, because the higher µ that

accompanies a higher σ1 implies a higher δ1 and larger reduction in the value function.

Given that values of σ1 around 0.2 to 0.6 are plausible, these results show that aggregate

risk can have very large impact on equilibrium entry and market evolution. It also means

that the full sunk cost of entry is much larger than the direct sunk cost that is usually

measured and discussed in antitrust contexts.

The table also shows how increases in µ (holding everything else fixed) increase ω̄ and

18If c = .5P , θ = (.5n + 1)P , so if, say, n = 5, θ = 3.5P = 7c, making the approximation fairly close.

19Franco and Philippon (2007) examine sales and employment for 526 firms over the period 1970 to 2002,
and find that permanent shocks (to productivity and relative demands) are mostly uncorrelated across firms,
and by that measure are idiosyncratic. This is not unexpected, however, because the firms span the entire
economy. Aggregate shocks in my model are largely industry-specific as opposed to economy-wide.
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S∗/S. This is due largely to greater discounting of future profits. If µ is fixed (as in Part

A), increases in r have the opposite effect; future profits are discounted at the same rate

irrespective of r, but the (non-stochastic) direct sunk cost of future entry is discounted at a

higher rate.

Finally, If α1 is held fixed, as in Parts A and B, increases in the failure rate, λ, have a

large impact on ω̄ and S∗/S. This impact is reduced somewhat if α1 increases with λ so that

the expected rate of capital gain on ωt remains fixed, as in Part C. But the effect remains

substantial, because it works largely through the direct reduction of the value function.

In summary, market-wide risk (as captured by sigma1) and the idiosyncratic risk of

failure (as captured by λ) strongly affect the entry threshold and sharply increase the “full”

sunk cost of entry. This is true even if market-wide risk is completely non-systematic. Thus,

focusing on how risk affects firms’ cost of capital, as is typically done in antitrust settings,

can be highly misleading and lead to a gross underestimate of the effects of risk on entry.

6 Conclusions.

The model developed here is quite simple in many respects. For example, all firms, including

potential entrants, are assumed to be identical, with the same constant marginal cost c, and

the same direct sunk cost of entry S. I assumed Cournot competition among incumbent firms

and ignored possible strategic interactions leading, e.g., to implicit collusion. Also, the risk

of failure (as measured by the Poisson arrival rate λ) is assumed constant and independent

of market-wide conditions (e.g., ωt) or firm-specific conditions (e.g., the firm’s current fixed

cost φit). These assumptions are analytically convenient, but still provide a framework

that elucidates how different kinds of risk affect industry dynamics and concentration by

magnifying the sunk costs of entry. I have focused on a measure of the “full,” i.e., risk-

adjusted, sunk cost of entry, and shown that for reasonable parameter values, this full sunk

cost is far larger than the direct measure of sunk cost typically used in antitrust settings.

Market-wide risk (as captured by stochastic fluctuations in market demand) as well as

the idiosyncratic risk of failure and exit both asymmetrically affect the post-entry value of
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a firm, and thereby increase entry thresholds by magnifying the direct sunk cost of entry.

I have argued that “reasonable” values for σ1 are in the range of 0.2 to 0.6. As shown in

Table 2, whether σ1 is closer to 0.2 or 0.6 makes a considerable difference for the entry

threshold ω̄ and the sunk cost markup S∗/S. It also matters how much of this market-wide

risk is systematic versus non-systematic. But even if the market-wide risk is entirely non-

systematic, it can dramatically increase S∗/S, even though it will have no effect on firms’

costs of capital.

The entry threshold ω̄ and sunk cost markup S∗/S are also sensitive to the failure rate,

λ. Increases in λ cause substantial increases in both ω̄ and S∗/S. This is the case even

though I have assumed that the risk of failure is completely non-systematic. (Reworking the

model so λ = λ(ωt) is a natural way to introduce systematic risk into the failure rate, but

complicates the solution.)

I have treated risk as a basic structural feature of a market. Although it has not been my

focus, the model can be used to study the effects of risk on market evolution, including the

rate of growth of the number of firms. I have shown how the model can be used to compute

the expected time for an industry to grow from m to n > m firms, E(mTn), and the expected

number of firms at a future time T , E(n|m, T ). We have seen that E(mTn) is increasing with

σ1; this is just another example of how industry-wide risk magnifies the direct sunk cost of

entry, requiring a larger expansion of market demand to induce entry.

These results suggest that in antitrust settings, the extent and nature of market-wide

risk and the risk of failure should be of central concern. It is common in antitrust analyses

to focus on how risk affects firms’ cost of capital, but this very misleading. We have seen

that risk might have no effect on the cost of capital but can still act as an entry barrier.
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Appendix A: Entry Threshold for Small n

Value of an Operating Firm. When n is small, B in eqn. (15) depends on n and thus

is no longer given by eqn. (18). With n firms in the market, the reflecting barrier is ω̄n, so

the smooth pasting condition is Vω(ω̄n) = 0, and B(n) is given by:

B(n) = −
2ω̄2−β

n

βb(2δ1 + λ − r − σ2
1)

. (30)

Thus with n firms, the value of an operating firm is:

V (ω, n) = −
2ω̄2−β

n

βb(2δ1 + λ − r − σ2
1)

ωβ
t +

ω2
t

b(2δ1 + λ − r − σ2
1)

. (31)

After ωt reaches ω̄n, the number of firms increases to n+1, so ωt drops to ω̄n(n+1)/(n+2),

and the new entry threshold becomes ω̄n+1. The value of each operating firm (including

the one that just entered) therefore becomes V (n+1
n+2

ω̄n, n + 1). To determine g(n) and ω̄n, I

approximate V (n+1
n+2

ω̄n, n + 1) by V (n+1
n+2

ω̄n, n):

V (n+1
n+2

ω̄n, n) =
β(n+1

n+2
)2 − 2(n+1

n+2
)β

βb(2δ1 + λ − r − σ2
1)

ω̄2
n . (32)

I show below that for n ≥ 2, the approximation error is small.20

Entry Threshold. We can now determine the function g(n) and thus the entry threshold

ω̄n. Entry will occur when the post-entry value is equal to the entry cost S. Setting the

post-entry value from eqn. (32) equal to S and substituting g(n)ω̄ for ω̄n gives

g(n)ω̄ =

[

βb(2δ1 + λ − r − σ2
1)S

β(n+1
n+2

)2 − 2(n+1
n+2

)β

]

1
2

. (33)

Now use eqn. (??) for ω̄ to obtain eqn. (23) for g(n). Note that as expected, g(n) > 1,

g′(n) < 0, g′′(n) > 0, and g(∞) = 1. Also, note that after the entry of the (n + 1)st firm, ωt

drops from ω̄n > ω̄ to ω̄n(n + 1)/(n + 2) < ω̄.

We also want the value of each of the n operating firms prior to the entry of the (n+1)st

firm. Using eqn. (31), for ωt ≤ g(n)ω̄, V (ω, n) is:

V (ω, n) = −
2[g(n)ω̄]2−βωβ

t

βb(2δ1 + λ − r − σ2
1)

+
ω2

t

b(2δ1 + λ − r − σ2
1)

. (34)

20Without this approximation, finding g(n) requires solving a nonlinear difference equation, which must
be done numerically.
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Approximation Error. The entry condition is V (n+1
n+2

ω̄n, n + 1) = S, which I have

approximated with V (n+1
n+2

ω̄n, n) = S. The approximation error is therefore ∆Vn = [−B(n)+

B(n + 1)]ω̄β
n. Using eqn. (30), this error is:

∆Vn =
2

βb(2δ1 + λ − r − σ2
1)

[ω̄2
n − ω̄2−β

n+1 ω̄
β
n]

Using ω̄n+1 = ω̄ng(n + 1)/g(n), the percent error can be written as:

∆Vn

V (ω̄n, n)
=

2 − 2
[

g(n)
g(n+1)

]β−2

β
(

(n+1)
(n+2)

)2
− 2

(

(n+1)
(n+2)

)β
.

To estimate the percent error, use eqn. (23) for g(n), so that:

g(n)

g(n + 1)
=

(n + 2)2

(n + 1)(n + 3)







β − 2
(

n+2
n+3

)β−2

β − 2
(

n+1
n+2

)β−2







1/2

.

If β = 3 (β = 5), the percent error is 3.7% (5.8%) when n = 3, 1.4% (2.2%) when n = 5,

and 0.3% (0.5%) when n = 10.
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Table 1: Expected Number of Firms

σ1 λ E(n|1, 5) E(n|1, 10) E(n̄1)

.2 0 1.39 1.64 1.43

.4 0 1.70 1.93 7.98

.2 .1 1.16 1.14 1.41

.4 .1 1.33 1.18 7.86

NOTE: E(n|1, 5) and E(n|1, 10) are the expected number of firms after 5
and 10 years, respectively, when there is initially one firm in the market.
E(n̄1) is the expected value of the maximum number of firms that will
ever be in the market, when there is initially one firm. Parameter
values: r = .04, µ = .08, α1 = 0.
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Table 2: Dependence of ω̄n and S∗/S on Risk and Expected Return

A B C
No Restrictions µ = r + .2σ1 µ = r + .2σ1

on Parameters α1 = α10 + λ

Parameter ω̄5 S∗/S ∆S∗/S ω̄5 S∗/S ω̄5 S∗/S

σ1 =

0 1.28 3.00 0 0.74 1.00 0.74 1.00
.2 1.78 5.80 4.29 1.78 5.80 1.78 5.80
.4 2.07 7.85 6.93 2.36 9.57 2.36 9.57
.6 2.58 12.23 10.13 3.00 15.56 3.00 15.56
.8 3.16 18.31 13.47 3.66 23.32 3.66 23.32

µ =

0.04 1.28 3.00 NA
0.06 1.51 4.18 NA
0.08 1.78 5.80 NA
0.10 2.08 7.95 NA

λ =

0 1.78 5.80 4.29 1.78 5.80 1.78 5.80
0.10 2.55 11.90 4.36 2.55 11.90 1.68 7.88
0.20 3.19 18.68 4.59 3.19 18.68 1.92 12.30

r =

0.02 1.91 13.37 10.09 1.59 10.74 1.59 10.74
0.04 1.78 5.80 4.29 1.78 5.80 1.78 5.80
0.06 1.69 3.50 2.52 1.95 4.12 1.95 4.12

NOTE: Each entry shows the value of ω̄n and S∗/S corresponding to
the particular parameter values, for n = 5. Unless otherwise indicated,
r = .04, µ = .08, α1 = 0, σ1 = 0.2, φρθm = 0.2, and λ = 0. ∆S∗/S =
(S∗

s − S∗
n)/S is the maximum differential impact of systematic risk.
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Figure 2: Firm Value and Entry Threshold

Note: r = .04, µ = .08, α1 = λ = 0, σ1 = .2.
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Figure 3: Sample Path: λ = 0

Note: r = .04, µ = .08, α1 = 0, σ1 = .2. Also, θ0 = 3, so that initially n = 1.
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Figure 4: Sample Path: λ = 0.1

Note: r = .04, µ = .08, α1 = 0, σ1 = .2. Also, θ0 = 5, so that initially n = 1.
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