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We develop continuous-time models of capacity choice when demand fluctuates stochastically,
and the firm has limited opportunities to expand or contract. Specifically, we consider costs of
investing or disinvesting that vary with time, or with the amount of capacity already installed.
The firm’s limited opportunities to expand or contract create call and put options on incremental
units of capital; we show how the values of these options affect the firm’s investment decisions.

4.1 INTRODUCTION

Our recent book and survey articles on the real options approach to investment
identify three characteristics of most investment decisions: (1) uncertainty over future
profit streams, (2) irreversibility, i.e., the existence of some sunk costs that cannot
be recouped if the firm changes its mind later, and (3) the choice of timing, i.e.,
the opportunity to delay the investment decision.! We argued that because of the
interaction of these three forces, optimal investment decisions have to satisfy more
stringent hurdles for their expected rates of return than the naive net present value
(NPV) criterion would indicate. The uncertainty implies that there may be future
eventualities where the firm would regret having invested. The irreversibility implies
that if the firm invests now, it cannot costlessly disinvest should such an eventuality
materialize. And the opportunity to wait allows it to learn more about the uncertain
future and reduce the likelihood of such regret.

By analogy with financial options, the opportunity to invest is a call option—a
right but not an obligation to make the investment. To invest is to exercise the option.
Because of the uncertainty, the option has a time premium or holding value: it should

I See Dixit (1992), Pindyck (1991), and Dixit and Pindyck (1996).
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not be exercised as soon as it is “in the money,” even though doing so has a positive
NPV. The optimal exercise point comes only when the option is sufficiently “deep in
the money,” i.e., the NPV of exercise is large enough to offset the value of waiting
for more information. This conclusion is probably the most widely known “result”
of the real options literature.

Of the triad of conditions mentioned above, most of the literature has focused on
irreversibility. But most formal models assume simultaneously total irreversibility
and a completely costless ability to wait, so they cannot separately identify the
contributions of these two conditions. Exceptions to this include the seminal article by
Brennan and Schwartz (1985), which examined an investment in a mining project and
allowed for both an option to invest and an abandonment option, the models developed
by Trigeorgis (1993, 1996) that allow for a variety of different options interacting
within a single project, including options to expand and contract, and the work of
Kulatilaka (1995) on substitutability and complementarity in real options. Another
exception is our recent article co-authored with Abel and Eberly (1996), which
developed a two-period model that allowed for arbitrary degrees of irreversibility
and future expandability.

Abel, Dixit, Eberly, and Pindyck (henceforth referred to as ADEP) showed that
a firm that makes an investment that is partially or totally reversible acquires a put
option, namely the ability to pull out should future conditions be sufficiently adverse.
This option has value if future uncertainty involves a sufficiently large downside with
a positive probability that the firm will want to exercise the option. Recognition of
this put option will make the firm more willing to invest than it would be under a
naive NPV calculation that assumes that the project continues for its physical lifetime
and omits the possibility of future disinvestment.? Likewise, a firm that can expand
capacity by making an investment now or in the future (ata specified cost) is exercising
a call option, acting now when it might have waited. This option has value if future
uncertainty has a sufficiently large downside that waiting would have been preferable.
Recognition of this call option will make the firm less willing to invest than it would
be under a naive NPV calculation that assumes that the project must be started now
or never, ignoring the possibility of a future optimal startup decision.

For many real-world investments, both of these options exist to some degree.
Firms typically have at least some ability to expand their capacity at a time of their
choosing, and sometimes can partially reverse their decisions by selling off capital
to recover part of their investment. The net effect of these two options is in general
ambiguous, depending on the degrees of reversibility and expandability, and the extent
and nature of the uncertainty.

If the investment is totally irreversible, i.e., there is only a call option and no put
option, the investment must necessarily satisfy a stiffer hurdle than a positive NPV
(naively calculated). But as ADEP pointed out, it is not the irreversibility that gives
rise to the call option; it is the expandability that does so. What irreversibility does is
to eliminate the put option that acts in the opposite direction.

2 The option to abandon a project midstream is an example of this. Myers and Majd (1984)
showed how this option can be valued as an American put option and its implications for
the investment decision.
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One might argue that in practice irreversibility is often more important than
limited expandability, in part because of “lemons effects,” but mostly because many
unpredictable shocks are industry specific.’ However, expandability can also be
limited, e.g., because of limited land, natural resource reserves, or because of the
need for a permit or license, only a limited number of which are being issued. Thus it
is important to recognize and clarify the effects of these different underlying economic
conditions.

In this chapter, we move beyond the two-period analysis in ADEP to examine
a set of continuous-time models that allows for incremental capacity expansion
and/or contraction over time, and thereby provides further insight into the effects of
irreversibility, expandability, and the ability to wait. In this continuous-time setting,
limited reversibility and expandability lead to clearly identifiable (and measurable)
put and call options, which have opposite effects on the firm’s incentive to invest.

Most of our analysis deals with exogenous and time-dependent limitations on
the firm’s ability to expand or contract. Specifically, we consider models in which
the cost of investing increases over time (limited expandability) and the price that
the firm can get by selling previously installed capital declines over time (limited
reversibility). Our general framework is described in Section 4.2. In Section 4.3,
models with time-varying costs are presented in detail and their implications for
investment and capacity choice are examined. Section 4.4 examines the static and
dynamic effects of sunk costs. In Section 4.5 we briefly discuss capacity choice
decisions when the cost of investing or disinvesting varies with the amount of capacity

already installed. In the concluding section, we suggest some extensions of our model
for future work.

4.2 CONTINUOUS-TIME MODELS OF CAPACITY CHOICE

The two-period model developed in ADEP showed the effects of the call and put
options associated with investment in the simplest possible way. For a more realistic
analysis, however, we need a longer horizon, with ongoing uncertainty and repeated
opportunities for the firm to expand or contract in response to changing circumstances.
In such a setting, partial reversibility and expandability will arise when the costs
of capacity contraction or expansion vary in response to changes in one or more
exogenous or endogenous variables. In this chapter we consider two such variables.

First, we examine what happens when the cost of investing or disinvesting varies
exogenously with time. This would be the case, for example, if the cost of capacity
expansion rises over time as the resources needed for expansion (e.g., land or mineral
reserves) are used up by other firms or dwindle for physical reasons (such as land
erosion or the depletion of a potentially discoverable resource base). Likewise, the
resale price of used capital is likely to fall over time, partly as a result of the increasing
obsolescence of capital.

3 For example, a steel manufacturer will want to sell a steel plant when the steel market
is depressed, but that is precisely the time when no one else will want to pay a price for it
anywhere near its replacement cost. Therefore investmentina steel plant is largely irreversible.
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Second, we examine investment decisions when the cost of investing varies
endogenously with the amount of capacity already installed by the firm. This kind of
limited expandability would arise when the firm itself (which presumably has some
monopoly power) uses up limited resources as it expands. ‘

In both cases we assume that the firm faces an isoelastic demand curve of the
form

P=06@Q " 4.1

where P is the price, Q is the quantity demanded, 7 is the elasticity of demand, and

the demand shift variable 6 varies stochastically according to the geometric Brownian
motion:

df = abdt +o06dz 4.2)

Although this is not critical, we assume for convenience that the uncertainty over
future values of @ is spanned by the capital markets. Hence there is some risk-adjusted
rate of return for 8, which we denote by u, that allows risk-free discounting. We let
§ = pu — o denote the rate-of-return shortfall.

To simplify matters, we assume that the firm has zero operating costs and hence
will always produce at capacity, denoted by K. This eliminates any “operating
options” that can affect the value of a unit of installed capital, allowing us to
focus exclusively on options associated purely with the investment or disinvestment
decision.*

As in Pindyck (1988), we examine the firm’s incremental investment decisions.
Let AV(K: 8, t) denote the value of the last incremental unit of installed capital, and
let AF(K:6,t) denote the value of the firm’s option to install one incremental unit.
In the standard neoclassical model of investment, AV would simply be the present
value of the expected flow of marginal revenue from the unit in perpetuity, i.e.,

AVo(K:0,1) = w(K)6 (4.3)

where

-1
w(K) = (2——> K='n 4.4)
né
Likewise, AF is the greater of zero or the NPV of immediate investment in this
incremental unit. If the cost of an incremental unit of capital were fixed at ko, then
AF in the neoclassical model would be given by

AFy(K;8,t) = max[0, o(K)0 — ko] (4.5)

4 The most important operating option is the ability of the firm to reduce output or to shut
down and thereby avoid variable operating costs. As demonstrated by McDonald and Siegel
(1985), this operating option raises the value of a unit of capital. For a discussion of this and
other operating options, see Chapter 6 of Dixit and Pindyck (1996).
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The neoclassical model, however, ignores the value of the firm’s options to buy
or sell capacity in the future. These option values depend on the firm’s ability to make

such purchases or sales, and the prices it will pay or receive for capital. In the next
section, we allow those prices to vary with time.

4.3 TIME-DEPENDENT COSTS

Suppose that additional capacity can be added at a cost k(t) = koe”’ per unit, with
p > 0. In this setting, if p > 0 so that the cost of adding capacity is rising over
time, there is limited expandability,; with p = 0 there is complete expandability;
and for p — o0 there is no expandability. In this model, limits to expandability are
exogenous to the firm’s actions; k(#) might rise, for example, because of continual
entry or expansion by other firms that pushes up capital costs. Although we consider
only values of p > 0, in practice p may in some cases be negative. This could occur,
for example, if continual technological improvements or learning by doing cause per
unit capital costs to fall over time.

Similarly, we assume that installed capital can be sold, but only for a price
S(t) = kje™*' per unit, with s > 0. Hence there is partial reversibility that is
completely time dependent, reflecting, for example, the increasing obsolescence of
capital (as opposed to its physical depreciation). If k; = ko, then at s = 0 investment
is completely reversible. If k; < ko, there is some irreversibility (even if s = 0);
this can arise because of “lemons” effects. In either case, if s — oo, investment is
completely irreversible. We call the effect of an initial gap between the purchase and
sale prices of capital the “static” aspect of irreversibility, and the widening of the gap
over time because of p > 0 and s > 0 the “dynamic” effect. At first we focus on the
dynamic effect by assuming k; = ko. In Section 4.4 we bring in the static effect, and
compare the two.

At this point it is useful to explain our modeling choices. In making the cost of
installing capital purely a function of time, we have in mind that cost increases are
largely the result of the activities of other firms. For example, in an extractive industry
such as oil or copper, other firms will deplete the potentially discoverable resource base
over time; then expansion by a given firm becomes more expensive over time as new
deposits are harder to find and costlier to develop. In the residential and commercial
construction industries, other firms will buy and develop choice parcels of land over
time, making expansion by a given firm more expensive. Ideally, this process should be
modeled in an equilibrium setting, so that each firm in the industry (including possible
new entrants) makes its decisions consistent with rational expectations of the optimal
behavior of all other firms. Although equilibrium models of entry and exit with sunk
costs are available in the literature [e.g., see Chapters 8 and 9 of Dixit and Pindyck
(1996) for an overview], here we focus on the optimal decisions of the manager of
one firm. Most managers base their decisions on expectations of changes in market
parameters, including capital purchase and resale prices. Managers may or may not
think in terms of an overall industry equilibrium when they form these expectations,
but they often tend to treat these price movements as exogenous functions of time,
much as we treat them here.
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We offer a similar justification for our assumption that capital can be sold for a
price that declines with time, irrespective of when the capital was purchased. Again,
we have in mind a pattern of obsolescence that is largely caused by other firms that
are continually developing superior processes and/or products.® ‘

Finally, one might question our assumption that the purchase and sale prices of
capital evolve exponentially with time, which was chosen for analytical convenience.
Although other forms of time dependence might be introduced that may be more
realistic for particular industries, this would complicate the algebra that follows.

With these caveats in mind, the basic idea we develop is that limited expandability
and reversibility create options that must be taken into account when determining the
firm’s optimal investment rules. In contrast to the neoclassical model, AV actually has
two components: the value of the expected profit flow from the use of the incremental
unit of capital and the value of the (put) option to sell the unit in exchange for
the salvage amount kge™*'. Likewise, AF accounts for the full option value of the
investment, i.e., the fact that the option has a time value and need not be exercised
immediately.

Using standard methods, it is easy to show that AV must satisfy the following
differential equation:

16207 AVgo + (r — 8)0AVy + AV, —rAV +8w(K)8 =0 (4.6)

where w(K) is given by Eq. (4.4). The solution must also satisfy the following
boundary conditions: :

lim (AV/0) = w(K) 4.7
f— 00
AV(K;0*,t) = AF(K;0*,1) + koe™™ (4.8)
AVe(K: 0™, 1) = AFp(K: 6™, 1) (4.9)

Here 6** = 6** (K, 1) is the critical value of 8 below which it is optimal to exercise
the put option and sell the unit of capital. Boundary condition (4.7) simply says that if
6 is very large, the firm will never want to sell off the unit of capital, so that its value
is just the present value of the expected profit flow that it generates. Conditions (4.8)

and (4.9) are the standard value matching and smooth pasting conditions that apply
at the critical exercise point 6**.

Likewise, A F must satisfy

16202 AFpe + (r — 8)0AFy + AF, —rAF =0 (4.10)

subject to the boundary conditions:

AF(K:0,1) =0 | @.11)

3> Again, a fuller theory of such a pattern of technological “leapfrogging” might best be
described in an equilibrium framework, but that goes beyond what we aim to do here. [Hence
we are not considering physical depreciation, as in Chapter 6 of Dixit and Pindyck (1996),
where the sale price begins declining only after the capital has been purchased.]
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AF(K; 6%, 1) = AV(K; 0%, 1) — kge” 4.12)

AFe(K; 0%, 1) = AVe(K; 6%, 1) (4.13)
lim AF(K;0,t)=0 (4.14)
{—00

Of these, the first three conditions are standard; the last one says that (with p > 0)
the value of the call option to install an incremental unit of capital approaches zero
as time passes, because the cost of exercising the option is rising exponentially.

To clarify the nature of the optimal investment decision, it is best to proceed in
steps. As we noted in the introduction in Section 4.1, most of the literature assumes
that investment is completely irreversible and completely expandable. We will begin
by considering the case in which investment is completely irreversible but only
partially expandable, so that there is only a single boundary, 6*(K, t), which triggers
investment. This special case helps to elucidate the nature of the call option and its
dependence on the extent of expandability. In Section 4.3.2 we examine the case
in which investment is partially reversible but completely nonexpandable, so that
investment entails only a put option (the value of which depends on the extent of
reversibility), but no call option. In this case there is again only a single boundary,

6**(K, t), which triggers disinvestment. We return to the general case set forth above
in Section 4.3.3.

4.3.1 Complete Irreversibility, Partial Expandability

In this special case s = 00, so the firm cannot disinvest. Then AV is simply the
present value of the flow of marginal revenue from an incremental unit of capital:

AV(K:0,1) = (%) K~V = w(K)6 (4.15)

We can find the solution to Eq. (4.10) for the value of the option to install an additional
unit of capital by guessing a functional form and choosing its parameters to satisfy
all of the boundary conditions.

We guess (and then verify) that the solution to Eq. (4.10) for AF has the form
AF =a(K)8Pre ¥ (4.16)

The parameters f,, g, and a(K), along with the critical value 8*, are found from the
boundary conditions (4.11)—(4.14). By substituting Eq. (4.16) for AF into Eq. (4.10),
we know that 8; must be a solution to the fundamental quadratic equation

1o28(B—D+(r—8f—r—g=0 (4.17)
From condition (4.11), B; must be the positive solution to this equation, i.e.,
(r

b=}~

0'2‘” +lr -9/ - +20 +9fo? >1  (@18)

From conditions (4.12) and (4.13), the critical value 6* is given by
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K. = (ﬂ:ﬂl 1) (n,Zis 1)-K The G419

Sub_stituting this into boundary condition (4.12) gives the following'expressionAfor
a(K): ' : v

B
a(K) = (B — NP~! (l-;ﬁ—l) l K‘ﬂl/’lk(l)"ﬂl ele—PB1=D) (4.20)
nopy ' :

Since a(K) cannot depend on ¢, g = p[Bi1(g) — 1]. Substituting Eq. (4.18) for
Bi(g) gives '

-5 —

\/[(r — 8 —p)/o?+ 11> +28/0? ] >0 4.21)

This solution for g and the relationship between g and B, can be seen more intuitively
by rewriting (4.17) as

=10BB -1+ (r -8B —r

and plotting this along with the line g = p[B — 1], as shown in Figure 4.1. The
solution for g and B, is found at that intersection of these two curves at which g > 1.

Here, B1/(B1 — 1) > 1 is the standard “wedge” that arises in irreversible
investment problems. But as p — 00, B — oo and g — oo. This can be seen
algebraically from Eqgs. (4.17) and (4.21) (or graphically from Figure 4.1) by observing
that as p increases, the line g = p(8 — 1) twists counterclockwise around the point
(1,0). Then B/(B1 — 1) = 1, so that fort = 0, 6* — ko/w(K), i.e., the value it

8 1,
A g=30 BB-1D+(@r—8)p-r

_p.

Figure 4.1 Complete irreversibility, partial expandability—graphs of Eq. (4.17) and the line
= p(B — 1), providing solution for g and B;.
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would have in the absence of uncertainty. One can also see from Figure 4.1 that if
p — 00, B; = oo and g — 00, so that AF(K;6,t) =0forz > 0, and

AF = max [0, o(K)8 — ko)

for t = 0. In this case AF is either zero or the net present value of the incremental
investment—there is no option to invest after 1 = 0.

Figure 4.2 shows the optimal threshold 6*(K, 1), plotted as a function of capacity
(K) for three values of ¢. (The parameter values are r = 0.05,8 = 0.05,0 = 0.40,
n = 1.20, p = 0.20, and kg = 3.0.) Observe that the threshold boundary moves up
over time as the cost of investing increases. Figure 4.3 shows 6*(K, t) as a function
of K att = 3, for three different values of the volatility o. As is typical in investment
problems of this kind, the value of the call option increases as o increases, and so
does the threshold 6* that triggers investment.

25

-_— e N
o wnm O

Threshold (6*)
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Capacity (K)

Figure 4.2 Complete irreversibility, partial expandability—demand threshold 6*(K,t)asa
function of capacity K . Parameter values: r = 0.05,8 = 0.05,0 = 0.40,n = 1.20, p = 0.20,
and kg = 3.0.
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Figured.3 Complete irreversibility, partial expandability—dependence of investment thresh-
old 6* (K, 1) on volatility o.
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Finally, if in addition to s = co we let p = 0, we have the case that has received
the most attention in the literature, namely complete irreversibility and complete
expandability. In this special case, g = 0, By is the solution to the standard quadratic
equation, and 8* becomes independent of time (see Dixit and Pindyck, 1996).

4.3.2 Partial Reversibility, No Expandability

This is the case for which p = oo and s > 0, so the firm can disinvest but cannot
expand. Now the solution to Eq. (4.6) for AV is of the form

AV(K:6,1) = b(K)0P2e™ + (-’%) K~'/"g (4.22)
n

where the first term on the right-hand side is the value of the put option to sell the unit
of capital. This solution can be verified by direct substitution in (4.6), and expressions
for B,, h, b(K), and the critical value §** can be found using boundary conditions
(4.7)-(4.9).

Investment can either occur immediately (at ¢ = 0) or never, so AF is given by
the standard NPV rule:

AF(K:6,1) = max[0, AV(K;8,1) — ko) (4.23)

fort = 0,and AF = 0 for ¢ > 0. In this case the boundary conditions that apply-to
AV are not linked to those for A F, so we can determine AV independently from A F.
Since the firm has no call option to invest in the future, it will set its initial capacity
K at the point where AV (K; 8, 0) = ko. Hence the only issue is to determine AV,
Substituting Eq. (4.22) into (4.6) and using boundary condition (4.7), we find
that B, is the negative solution to the quadratic Eq. (4.17), with g replaced by h, i.e.,

pr=1- (’0_25) - \@ —8)/or — iR 420 +h)j0? <0 (424

To obtain solutions for h, b(K), and 6**, we proceed as in the previous case, using
boundary conditions (4.8) and (4.9) and the fact that b(K) must be independent of ¢:

0** (K, 1) = (ﬂzﬂi 1) (n"_‘s 1) K'/Mkge™" (4.25)
_ B2—1 _ B2

and

h=s [g + (i_—:z_H—) +\[[(r —5+s)ot+ 1P +28/02] >s  (427)

Note that 0 < B2/(B2—1) < 1. As o increases, B increases toward 0, so that this
multiple becomes smaller in magnitude. Thus the more uncertainty there is, the lower
is the critical value of 6 that will trigger disinvestment. This is a standard result [see
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the model of entry and exit in Dixit (1989) or Chapter 7 of Dixit and Pindyck (1996)],
but now this multiple depends on s, the rate at which the resale value of capital is
falling. The larger is s, the closer this multiple is to one, and the smaller is b(K) and
hence the value of the put option. As s — 09, By — —oo,and B2/(B2 — 1) -1
then there is no put option, so that for¢ = 0, 0**(K) — ko/w(K), which is the value
it would have in the absence of uncertainty.

Figure 4.4 shows the solution for the critical disinvestment threshold 0**(K,1),
again plotted as a function of capacity (K) for three values of t. (As before, the
parameter values are r = 0.05,8 = 0.05,0 = 040, = 1.20, and ko = 3.0,
and now s = 0.20.) Observe that the boundary moves down over time as the price
that the firm can receive for installed capital decreases. Figure 4.5 shows 0**(K,1)
as a function of K at t = 3, for three different values of o. Since the value of the

firm’s put option increases as ¢ increases, the threshold that triggers disinvestment
moves down.
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Figure 4.4 Partial reversibility, no expandability—disinvestment threshold 6**(K,1) as a
function of capacity K. Parameter values: r = 0.05, § = 0.05, 0 = 0.40, n = 1.20, ko = 3.0,
and s = 0.20. '
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Figure 4.5 Partial reversibility, no expandability—dependence of disinvestment threshold
6** (K, t) on volatility 0.



Dixit and Pindyck | . 61
4.3.3 The General Case with Expandability and Reversibility

In the general case, both p and s are positive and finite. Now AV satisfies Eq. (4.6) -
subject to boundary conditions (4.7)—(4.9), and AF satisfies Eq. (4.10), subject to
boundary conditions (4.11)—(4.14). However, Egs. (4.6) and (4.10) cannot be solved
analytically in this case. Furthermore, it is difficult even to obtain numerical solutions;
although these are parabolic partial differential equations, they are linked to each other
through the two sets of boundary conditions. Fortunately, however, we can obtain
approximate solutions as long as gt and ht are not too small.

If gt and ht are large, the investment and disinvestment boundaries will be far
apart, and thus the two sets of boundary conditions will be relatively independent of
each other. (Intuitively, if the investment boundary is hit, it is likely to take a long
time before the disinvestment boundary is also hit, and vice versa.) In that case, the
solutions to (4.6) and (4.10) will be of the timé-separable form: '

AF = A(K) 6P e~® : (4.28)

and
AV(K:0,1) = B(K)0Pe™ + (L—Sl> K-\"g (4.29)

with B, B2, g, and h as given by Egs. (4.18), (4.24), (4.21), and (4.27). The functions
A(K) and B(K) and the critical values 6*(K, t) and 0**(K, 1) can then be found

from boundary conditions (4.8), (4.9), (4.12), and (4.13). Making these substitutions,
the conditions become

B(K)(0*)P2e™ + w(K)0** = AK)(O™)P'e™' + koe™ (4.30)
BB(K)E™)E e ™ + 0(K) = BAK)E™ e (4.31)
AKY(0")Pe8" = B(K)(O"Y2e™ + o(K)8* — koe™ (4.32)
BLAK)(O™P ' e78 = B{B(K)(OM e ™ + w(K) (4.33)

For values of K and ¢, these four equations can be solved numerically for A(K),
B(K),0*(K,t),and 6** (K, 1). We can also check the accuracy of these approximate
solutions by determining whether A(K) and B(K) remain constant as ! varies.

This is illustrated in Figure 4.6, which shows numerical solutions of Egs. (4.30)—
(4.33) for A(K) and B(K) for K = 3, as ¢ varies from O to 9. (The parameter values
arer = & = 0.05, 0 = 0.40, n = 1.20, ko = 3.0, and p = s = 0.20.) Observe that
A(K) and B(K) become roughly constant once ? is greater than about 2.

Figure 4.7 shows solutions for the investment and disinvestment thresholds,
6*(K) and 6**(K), as functions of K for t = 2 and 5. There are now three regions:
If6 > 6*(K), the firm should invest immediately, increasing K (and thus increasing
6*) until & = 6*. 1f 6 < 6**(K), the firm should disinvest until 6 = 6*(K).
g** < 6 < 6*, the firm should take no action. Note that the thresholds 0*(K) and
6**(K) move apart over time, increasing the zone of inaction. This is illustrated in
Figure 4.8, which shows 6* and 6** as functions of time for K = 3.
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Figure 4.6 General case—numerical solutions for A(K) and B(K). Parameter values: r =
5 = 0.05,0 = 0.40, n = 1.20, kg = 3.0, and p = s = 0.20. :
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Figure 4.7 General case—investment and disinvestment thresholds, * and 6**, as functions
of capacity K,fort =2andt =35.

Figure 4.9 shows sample paths for the demand shift variable 6(t) and for capacity
K (7). Starting with no capital, the firm immediately invests at time o, bringing its
capacity to Ko, such that 6, = 6* (Ko, to). From to until 7y, 0** (Ko, 1) < 6(1) <
6*(Ko, 1), so the firm neither invests nor disinvests. Over this interval of time, the
investment threshold 6* increases gradually as the cost of adding capacity increases,
while the threshold 8** decreases gradually as the selling price of used capacity
decreases. At time #;, 8(¢) hits the upper threshold 8*, so the firm adds extra capacity.
Over the interval #; to 15, 8(t) is increasing, and capacity is increased from Ko to K,
so that 8*(K, 1) = 6(t).8 From 1, to 13, 8** (K1, 1) < (1) < 6*(K, 1), so the firm is

6 Note that the lower threshold 8** (K, t) also increases as K increases.
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‘again inactive. At time 13, 6(¢) hits the lower threshold #** and the firm disinvests.
From 13 to t4, (¢) continues to fall and the firm’s capacity is gradually reduced from
K, to K. After t4 the firm is again inactive. Observe that as time goes on, 0* (K2, t)
gradually increases and 6**(K3, t) decreases, so that the periods of investment or
disinvestment become less and less frequent. v
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Figure 4.8 General case—movement of investment and disinvestment thresholds over time,
for a given capacity K = 3.
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Figure4.9 Optimal investment and disinvestment—sample paths of ¢(1) and capacity K (1).
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4.4 STATIC VERSUS DYNAMIC EFFECTS OF SUNK COSTS

A significant difference between the current prices at which capital can be bought or
sold will by itself create a zone of inaction in which the firm neither increases nor
decreases capacity. This “static effect” of sunk costs of entry and exit is a standard
result (e.g., see Chapter 7 of Dixit and Pindyck, 1996). Further, the expectation that
the purchase and sales prices will diverge further in the future also affects the current
investment thresholds. It is useful to separate these “static” and *“‘dynamic” effects of
limited expandability and reversibility.

Let us begin at some time #; when the purchase price of a unit of capital, kp,
exceeds the resale price, k. To determine the static effect of this differential, we
calculate the investment and disinvestment thresholds, 6*(K) and 6** (K), under the
assumption that these prices will remain fixed over time from t; onward.” Next, we
calculate 6* (K, t) and 6**(K, t) under the assumption that at any future time ¢ > 1,
the purchase price will be k,e”~") and the resale price will be ke s¢=1)_ Although
this “dynamic” 6*(K, t) will rise over time and the “dynamic” 6**(K, t) will fall
over time, it is of interest to compare the static and dynamic thresholds at the initial
time, #;. :

This is illustrated in Figure 4.10, starting out at t = 5 with k, = koe and
k., = kge~". (The other parameter values are r = 8 = 0.05,0 = 0.40, n = 1.20,
ko = 3.0,and K = 3.) Static thresholds are calculated assuming k, and k, remain fixed
at these levels, while dynamic thresholds are calculated assuming that kp (1) = koe”'
and k, (1) = koe*'. Initially the zone of inaction is smaller in the dynamic case than
in the static one. However, this zone of inaction grows in the dynamic case as 0* rises
and 0** falls, and it eventually exceeds the zone in the static case.

Why is 6* (K) initially lower in the dynamic case? There are two forces at work,
with opposite effects. First, the fact that the purchase price of capital is expected to
rise in the future reduces the value of the firm’s call option on an incremental unit of
capital, which reduces the value of waiting and so reduces 6*(K). Second, the fact
that the resale price of capital is expected to fall in the future reduces the value of the

firm’s put option to abandon installed capital, and so pushes 6*(K') up. In the example

shown in Figure 4.10 the first effect outweighs the second, so 6*(K) falls.

The situation is similar with respect to 6**(K). Again, the fact that the resale
price k, is expected to fall reduces the value of the firm’s put option on an incremental
unit of capital, which reduces the value of waiting to disinvest, and pushes 6**(K)
up. And the fact that the purchase price kj is expected to rise reduces the value of
the call option, which raises the cost of disinvesting now, and pushes 6**(K) down.
Once again, in this example the first effect outweighs the second, so 6**(K) rises.

Of course, the magnitudes of these effects depend on various parameter values,
besides those of p and s. For example, Figures 4.11 and 4.12 show the static and
dynamic thresholds, and their movements over time, for two different values of the
volatility of demand fluctuations, o'; when @ is larger, both the static and dynamic
investment thresholds are higher, and the static and dynamic disinvestment thresholds
are lower.

7 The thresholds will, of course, also be fixed through time.

.
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Figure 4.10 Investment and disinvestment thresholds for static versus dynamic capital costs.
Starting at t = 5, purchase price is k, = koe and resale price is k; = koe~!. Other parameters:

r=8=0.050=040,n=120,ko=3.0,K =3,ands = p =0.2.
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Figure 4.11  Static and dynamic investment thresholds for different levels of volatility (o =

0.4 and 0.8).

Now that we have a better understanding of the source and nature of the dynamic
effects, we can show their dependence on the rates of change of the purchase
and resale prices of capital, p and s, respectively. We do this for a representative
case in Table 4.1. The initial investment cost is 3 and the initial resale value 1s 1.
This gap and the uncertainty (o = 0.4) are so large that under static conditions
(p = s = 0 from here on) the initial investment threshold is more than 6.5, and
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Figure 4.12 Static and dynamic disinvestment thresholds for different levels of volatility (o
= 0.4 and 0.8).

the initial disinvestment threshold less than 0.1. Table 4.1 shows what happens
to the corresponding initial values of the dynamic thresholds as we vary p and s.
Panel A shows that the dynamic investment threshold 6* decreases as p increases,
since the call option becomes less valuable. In fact, for very large values of p, it
may become optimal to invest even though 6 is less than the purchase price of
capital; the latter is expected to grow so fast that it pays the firm to acquire the
capital right away while it is cheap. Also, 8* increases as s increases, because the put
option of disinvesting is less valuable. These results confirm the intuition we gave
above. But the numerical calculations reveal an interesting insensitivity: the effect of
s on 8* is very small. The gap between the two thresholds is sufficiently large that
when 6 is at the upper threshold, it is unlikely to fall to the lower threshold in the
reasonable future. Therefore options that get exercised in that unlikely and remote
eventuality do not have a significant effect on today’s decision. The investment and
disinvestment thresholds effectively become separated, as in the case discussed earlier
in Sections 4.3.1 and 4.3.2. Given our assumption of a widening gap between purchase
and resale prices, this seems to be a robust feature of our numerical calculations,
and it may provide a useful simplification for the solution of combined investment
and disinvestment problems when one or both of the degrees of irreversibility and
uncertainty are large.®

Panel B of Table 4.1 shows the dynamic disinvestment threshold 6** as we vary p
and s. The results confirm the intuition stated above: the threshold rises as s increases
because the put option exercised by disinvesting is less valuable, and it falls as p
increases because the call option that would be acquired upon investment is less
valuable. Again we find an effective separation of the two decisions: §** is relatively
insensitive to changes in p, particularly for higher values.

8 Bonomo (1994) discusses a similar issue in the context of models of impulse control, namely
when a one-sided s—S rule is a sufficiently good approximation to a two-sided s-S policy.
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Tabledl = |
Eﬁec$ of p and s on the Investment and Disinvestment Thresholds®

s

p 00 02 04 : 06

A. Initial dynamic investment threshold 6*(t,)
0.0 _ 6.586 6.716 6.716 ' 6.716
0.2 3.073 ‘ 3.144 3.144 3.144
0.4 2.469 2.528 2.528 2.528
B. Initial dynamic disinvestment threshold 6** (1,) ,
0.0 0.098 0.246 0.283 0.300
0.2 0.084 0.201 0231 0.244
0.4 0.084 0.200 0.230 0.244

1 Parameters: r = 0.05, § = 0.05, 0. = 0.4, n = 1.2, k, = 3, k, = 1. Static thresholds: f* = 6.58, 6 = 0.098.

4.5 CAPACITY-DEPENDENT COSTS

‘In this section we examine endogenous variations in the costs of investing and
disinvesting. We briefly consider situations in which the ability of the firm to add
or reduce capacity in the future is dependent on its own past actions, in particular on
the amount of capacity that it already has in place, rather than the amount of time that
has elapsed. v ‘ |

" Specifically, we assume that the firm can add capacity at any time in the future
at a cost ko + p(K) per unit of capital, with dp/dK > 0. In effect, it becomes more
expensive to add capacity the more capacity the firm already has. Such limits to
expandability may be driven by market parameters, such as population and available
land, but depend on the firm’s own actions rather than the actions of its competitors.
In the simplest case, the incremental cost of capacity expansion may be linear, i.e.,
p(K) = pK. Then, if p = oo there is no expandability (even from zero), while if
p = 0 there is complete expandability.

Likewise, we assumne that the firm can sell off capacity at any time in the future
such that if its current capacity is K, it will receive soko + 510(K) for an incremental
unit, with 0 < sp < 1 and 5y < 1. In the simplest linear case, the firm receives
soko + 51K . Thus the degree of irreversibility is different for each marginal unit. We
would expect that irreversibility would be greater the greater is K, since the demand
for used industry-specific capital is likely to be smaller the greater is the amount of
installed capacity already in place. In this case, 51 < so. Also, it might be the case that
s, < 0, so that if K is large enough the firm receives a negative amount on its sale of
an incremental unit. This could occur, for example, if the firm faces land reclamation
costs. Finally, if so = s; = 0 there is complete irreversibility, and if so = 51 = 1
there is complete reversibility. ' '
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Equations (4.6) and (4.10) will again apply for AV and A F, but now without the
AV, and AF, terms. Hence the investment problem is now much simpler: 6** and 6*
each depends only on K, and not on ¢. In the general case, the boundary conditions
again result in four nonlinear equations for A(K), B(K), 8**(K), and 8*(K), which
can easily be solved numerically for each value of K.

We do not present numerical solutions here because the basic effects are similar to
those in the entry/exit models discussed in Dixit and Pindyck (1996). What is different
here is that the investment and disinvestment thresholds, 6*(K) and 8**(K), depend
on K. As K increases, the direct value (i.e., the present value of the marginal revenue
stream) of an incremental unit of capital falls, as does the value of the call option on the
unit. The drop in the direct value raises the investment threshold 8* (K), while the drop
in the option value reduces the threshold. The first effect dominates, however, so that
0*(K) increases with K. The opposite may be true for the disinvestment threshold,
6**(K). As K increases, the direct value of the incremental unit of capital falls, but
the value of the put option on the unit increases. The degree of reversibility (i.e., the
resale value of capital) determines whether the value of the put option exceeds the
direct value of the incremental unit. If it does, 8**(K) will also increase with K.

4.6 CONCLUDING REMARKS

We have analyzed how the call and put options associated with limited expandability
and reversibility interact to affect a firm’s optimal capacity decisions and the evolution
of capacity over time. Expandability and reversibility can take a variety of forms. For
example, a firm might be able to expand only at specific points in time (e.g., a forest
products or extractive resource firm might have to wait for the government to auction
off land or resource reserves), in which case its ability to sell existing capital might
occur unpredictably as a Poisson arrival (e.g., when there are very few potential buyers
who might become interested in a specialized piece of capital). We have examined
here only a very special form of expandability and reversibility—namely, one in which
capital purchase and sales prices evolve exogenously with time, or endogenously with
the level of installed capacity. Nonetheless, we believe this analysis helps to elucidate
the basic effects. Most importantly, we can see how the future rates of growth of the
investment cost and the resale price of capital affect the values of the call and put
options associated with expansion and disinvestment. Our numerical results reveal
that the investment and disinvestment decisions become separated when the initial
gap between the purchase and resale prices of capital is substantial, or the rate at which
this gap grows is rapid. This condition simplifies both the analytical and numerical
solution of these problems.

This analysis can be extended or generalized in several ways. (1) Various aspects
of increased realism can be added to the model, albeit at the cost of increased
complexity. For example, we took variable costs to be zero, so that we could ignore
the firm’s operating options. It would be messy but not overly difficult to extend our
model by including a positive variable cost and allowing the firm to vary its capacity
utilization. Similarly, other operating options can be added. (2) We considered a
firm’s decision problem in isolation, treating as exogenous the rates of variation
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of the purchase and resale prices, whether as functions of time or as functions of
existing capacity. These can be endogenized in a more complete general equilibrium
analysis. (3) We confined ourselves to a setting in which the maximization problem -
is well behaved. An aspect of this was our assumption in the previous section that the
purchase price of capital increases with capacity. If instead we allowed the purchase
price to decrease with capacity, the firm would enjoy increasing returns to capacity
expansion and its optimal policy could consist of infrequent large jumps in its capital
stock. Dixit (1995) shows how to find the optimal timing and size of such jumps, but
numerical work for more specific parameterized models can provide further useful
insights. (4) The physical depreciation of capital can be modeled more realistically.
The resale price of a newly installed machine would equal its purchase price, but
would fall with the age of the machine, not with calendar time as in our present
model. This, however, would require keeping track of the installation dates or age
profiles of the entire stock of machines, making the state variable infinite dimensional,
and presenting daunting modeling and numerical selution challenges.
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