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I. Introduction 

DESPITE ITS IMPORTANCE to economic 
growth and market structure, the 

investment behavior of firms, industries, 
and countries remains poorly under- 
stood. Econometric models have had 
limited success in explaining and predict- 
ing changes in investment spending, and 
we lack a clear explanation of why some 
countries or industries invest more than 
others. 

One problem with existing models is 
that they ignore two important character- 
istics of most investment expenditures. 
First, the expenditures are largely irre- 
versible; that is, they are mostly sunk 
costs that cannot be recovered. Second, 
the investments can be delayed, giving 
the firm an opportunity to wait for new 
information to arrive about prices, costs, 
and other market conditions before it 
commits resources. 

As an emerging literature has shown, 
the ability to delay an irreversible invest- 

ment expenditure can profoundly affect 
the decision to invest. It also undermines 
the theoretical foundation of standard 
neoclassical investment models, and in- 
validates the net present value rule as 
it is usually taught to students in business 
school: "Invest in a project when the 
present value of its expected cash flows 
is at least as large as its cost." This rule 
and models based on it-are incorrect 
when investments are irreversible and 
decisions to invest can be postponed. 

Irreversibility may have important im- 
plications for our understanding of aggre- 
gate investment behavior. It makes in- 
vestment especially sensitive to various 
forms of risk, such as uncertainty over 
the future product prices and operating 
costs that determine cash flows, uncer- 
tainty over future interest rates, and un- 
certainty over the cost and timing of the 
investment itself. Irreversibility may 
therefore have implications for macro- 
economic policy; if a goal is to stimu- 
late investment, stability and credibility 
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could be much more important than tax 
incentives or interest rates. 

What makes an investment expendi- 
ture a sunk cost and thus irreversible? 
Usually it is the fact that the capital is 
firm or industry specific, that is, it cannot 
be used productively by a different firm 
or in a different industry. For example, 
most investments in marketing and ad- 
vertising are firm specific, and hence are 
clearly sunk costs. A steel plant is indus- 
try specific-it can only be used to pro- 
duce steel. Although in principle the 
plant could be sold to another steel com- 
pany, its cost should be viewed as mostly 
sunk, particularly if the industry is com- 
petitive. The reason is that the value of 
the plant will be about the same for all 
firms in the industry, so there is likely 
to be little gained from selling it. (If the 
price of steel falls so that a plant turns 
out, ex post, to have been a "bad" invest- 
ment, it will also be viewed as a bad in- 
vestment by other steel companies, so 
that the ability to sell the plant will not 
be worth much.) 

Even investments that are not firm or 
industry specific are often partly irre- 
versible because of the "lemons" prob- 
lem. For example, office equipment, 
cars, trucks, and computers are not in- 
dustry specific, but have resale value well 
below their purchase cost, even if new. 
Irreversibility can also arise because of 
government regulations or institutional 
arrangements. For example, capital con- 
trols may make it impossible for foreign 
(or domestic) investors to sell assets and 
reallocate their funds. And investments 
in new workers may be partly irreversible 
because of high costs of hiring, train- 
ing, and firing. 

Firms do not always have an opportu- 
nity to delay investments. For example, 
there can be occasions in which strategic 
considerations make it imperative for a 
firm to invest quickly and thereby 
preempt investment by existing or po- 

tential competitors. (Richard Gilbert 
1989 surveys the literature on strategic 
aspects of investment.) But in most cases, 
delay is at least feasible. There may be 
a cost to delay-the risk of entry by other 
firms, or simply foregone cash flows-but 
this cost must be weighed against the 
benefits of waiting for new information. 

An irreversible investment opportu- 
nity is much like a financial call option. 
A call option gives the holder the right, 
for some specified amount of time, to pay 
an exercise price and in return receive 
an asset (e.g., a share of stock) that has 
some value. Exercising the option is ir- 
reversible; although the asset can be sold 
to another investor, one cannot retrieve 
the option or the money that was paid 
to exercise it. A firm with an investment 
opportunity likewise has the option to 
spend money (the "exercise price") now 
or in the future, in return for an asset 
(e.g., a project) of some value. Again, 
the asset can be sold to another firm, 
but the investment is irreversible. As 
with the financial call option, this option 
to invest is valuable in part because the 
future value of the asset obtained by in- 
vesting is uncertain. If the asset rises in 
value, the net payoff from investing rises. 
If it falls in value, the firm need not in- 
vest, and will only lose what it spent to 
obtain the investment opportunity. 

How do firms obtain investment op- 
portunities? Sometimes they result from 
patents, or ownership of land or natural 
resources. More generally, they arise 
from a firm's managerial resources, tech- 
nological knowledge, reputation, market 
position, and possible scale, all of which 
may have been built up over time, and 
which enable the firm to productively un- 
dertake investments that individuals or 
other firms cannot undertake. Most im- 
portant, these options to invest are valu- 
able. Indeed, for most firms, a substantial 
part of their market value is attributable 
to their options to invest and grow in 
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the future, as opposed to the capital they 
already have in place. (For discussions 
of growth options as sources of firm 
value, see Stewart Myers 1977; W. Carl 
Kester 1984; and my 1988 article.) 

When a firm makes an irreversible in- 
vestment expenditure, it exercises, or 
"kills," its option to invest. It gives up 
the possibility of waiting for new informa- 
tion to arrive that might affect the desir- 
ability or timing of the expenditure; it 
cannot disinvest should market condi- 
tions change adversely. This lost option 
value is an opportunity cost that must 
be included as part of the cost of the 
investment. As a result, the NPV rule 
"Invest when the value of a unit of capital 
is at least as large as its purchase and 
installation cost" must be modified. The 
value of the unit must exceed the pur- 
chase and installation cost, by an amount 
equal to the value of keeping the invest- 
ment option alive. 

Recent studies have shown that this 
opportunity cost of investing can be 
large, and investment rules that ignore 
it can be grossly in error.1 Also, this op- 
portunity cost is highly sensitive to un- 
certainty over the future value of the 
project, so that changing economic con- 
ditions that affect the perceived riskiness 
of future cash flows can have a large 
impact on investment spending, larger 
than, say, a change in interest rates. This 
may help to explain why neoclassical in- 
vestment theory has failed to provide 
good empirical models of investment be- 
havior. 

This paper has several objectives. 
First, I will review some basic models 
of irreversible investment to illustrate 
the option-like characteristics of invest- 
ment opportunities, and to show how op- 
timal investment rules can be obtained 
from methods of option pricing, or alter- 
natively from dynamic programming. Be- 
sides demonstrating a methodology that 
can be used to solve a class of investment 
problems, this will show how the result- 
ing investment rules depend on various 
parameters that come from the market 
environment. 

A second objective is to survey briefly 
some recent applications of this method- 
ology to a variety of investment prob- 
lems, and to the analysis of firm and in- 
dustry behavior. Examples will include 
the effects of sunk costs of entry, exit, 
and temporary shutdowns and restartups 
on investment and output decisions, the 
implications of construction time (and the 
option to abandon construction) for the 
value of a project, and the determinants 
of a firm's choice of capacity. I will also 
show how models of irreversible invest- 
ment have helped to explain the preva- 
lence of "hysteresis," that is, the ten- 
dency for an effect (such as foreign sales 
in the U. S.) to persist well after the cause 
that brought it about (an appreciation of 
the dollar) has disappeared. 

Finally, I will briefly discuss some of 
the implications that the irreversibility 
of investment may have for policy. For 
example, given the importance of risk, 
policies that stabilize prices or exchange 
rates may be particulary effective ways 
of stimulating investment. Similarly, a 
major cost of political and economic insta- 
bility may be its depressing effect on in- 
vestment. 

Section II uses a simple two-period ex- 
ample to illustrate how irreversibility can 
affect an investment decision, and how 
option pricing methods can be used to 
value a firm's investment opportunity, 

1 See, for example, Robert McDonald and Daniel 
Siegel (1986), Michael Brennan and Eduardo 
Schwartz (1985), Saman Majd and Pindyck (1987), 
and Pindyck (1988). Ben Bernanke (1983) and Alex 
Cukierman (1980) have developed related models in 
which firms have an incentive to postpone irrevers- 
ible investments so that they can wait for new infor- 
mation to arrive. However, in their models, this in- 
formation makes the future value of an investment 
less uncertain; we will focus on situations in which 
information arrives over time, but the future is always 
uncertain. 
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Figure 1. Price of Widgets 

and determine whether or not the firm 
should invest. Section III then works 
through a basic continuous-time model 
of irreversible investment that was first 
examined by McDonald and Siegel 
(1986). Here a firm must decide when 
to invest in a project whose value follows 
a random walk. I first solve this problem 
using option pricing methods and then 
by dynamic programming, and show how 
the two approaches are related. Section 
IV extends this model so that the price 
of the firm's output follows a random 
walk, and the firm can (temporarily) stop 
producing if price falls below variable 
cost. I show how both the value of the 
project and the value of the firm's option 
to invest in the project can be deter- 
mined, and derive the optimal invest- 
ment rule and examine its properties. 

Sections III and IV require the use of 
stochastic calculus, but I explain the basic 
techniques and their application in the 
Appendix. However, readers who are 
less technically inclined can skip directly 
to Section V. That section surveys a num- 
ber of extensions that have appeared in 
the literature, as well as other applica- 
tions of the methodology, including the 
analysis of hysteresis. Section VI dis- 
cusses policy implications and suggests 
future research, and Section VII con- 
cludes. 

II. A Simple Two-Period Example 
The implications of irreversibility and 

the option-like nature of an investment 

opportunity can be demonstrated most 
easily with a simple two-period example. 
Consider a firm's decision to invest irre- 
versibly in a widget factory. The factory 
can be built instantly, at a cost I, and 
will produce one widget per year forever, 
with zero operating cost. Currently the 
price of widgets is $100, but next year 
the price will change. With probability 
q, it will rise to $150, and with probabil- 
ity (1 - q) it will fall to $50. The price 
will then remain at this new level for- 
ever. (See Figure 1.) We will assume that 
this risk is fully diversifiable, so that the 
firm can discount future cash flows using 
the risk-free rate, which we will take to 
be 10 percent. 

For the time being we will set I = 
$800 and q = .5. (Later we will see how 
the investment decision depends on I 
and q.) Given these values for I and q, 
is this a good investment? Should we in- 
vest now, or wait a year and see whether 
the price goes up or down? Suppose we 
invest now. Calculating the net present 
value of this investment in the standard 
way, we get 

00 

NPV -800 + E 100/(1. 1)t 
t=O 

- 800 + 1,100 = $300. 

The NPV is positive; the current value 
of a widget factory is V0 = 1,100 > 800. 
Hence it would seem that we should go 
ahead with the investment. 

This conclusion is incorrect, however, 
because the calculations above ignore a 
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cost-the opportunity cost of investing 
now, rather than waiting and keeping 
open the possibility of not investing 
should the price fall. To see this, calcu- 
late the NPV of this investment opportu- 
nity, assuming instead that we wait one 
year and then invest only if the price 
goes up: 

NPV = (. 5)[ -800/1.1 + > 150/(1. 1)t] 
t=1 

= 425/1.1 = $386. 

(Note that in year 0, there is no expendi- 
ture and no revenue. In year 1, the $800 
is spent only if the price rises to $150, 
which will happen with probability .5.) 
The NPV today is higher if we plan to 
wait a year, so clearly waiting is better 
than investing now. 

Note that if our only choices were to 
invest today or never invest, we would 
invest today. In that case there is no op- 
tion to wait a year, and hence no opportu- 
nity cost to killing such an option, so the 
standard NPV rule would apply. We 
would likewise invest today if next year 
we could disinvest and recover the $800 
should the price fall. Two things are 
needed to introduce an opportunity cost 
into the NPV calculation-irreversibility, 
and the ability to invest in the future as 
an alternative to investing today. There 
are, of course, situations in which a firm 
cannot wait, or cannot wait very long, 
to invest. (One example is the anticipated 
entry of a competitor into a market that 
is only large enough for one firm. An- 
other example is a patent or mineral re- 
source lease that is about to expire.) The 
less time there is to delay, and the 
greater the cost of delaying, the less will 
irreversibility affect the investment deci- 
sion. We will explore this point again in 
Section III in the context of a more gen- 
eral model. 

How much is it worth to have the flexi- 
bility to make the investment decision 

next year, rather than having to invest 
either now or never? (We know that hav- 
ing this flexibility is of some value, be- 
cause we would prefer to wait rather than 
invest now.) The value of this "flexibility 
option" is easy to calculate; it is just the 
difference between the two NPVs, that 
is, $386 - $300 = $86. 

Finally, suppose there exists a futures 
market for widgets, with the futures price 
for delivery one year from now equal to 
the expected future spot price, $100.2 
Would the ability to hedge on the futures 
market change our investment decision? 
Specifically, would it lead us to invest 
now, rather than waiting a year? The an- 
swer is no. To see this, note that if we 
were to invest now, we would hedge by 
selling short futures for five widgets; this 
would exactly offset any fluctuations in 
the NPV of our project next year. But 
this would also mean that the NPV of 
our project today is $300, exactly what 
it is without hedging. Hence there is no 
gain from hedging, and we are still better 
off waiting until next year to make our 
investment decision. 

A. Analogy to Financial Options 

Our investment opportunity is analo- 
gous to a call option on a common stock. 
It gives us the right (which we need not 
exercise) to make an investment expendi- 
ture (the exercise price of the option) and 
receive a project (a share of stock) the 
value of which fluctuates stochastically. 
In the case of our simple example, next 
year if the price rises to $150, we exercise 

2 In this example, the futures price would equal 
the expected future price because we assumed that 
the risk is fully diversifiable. (If the price of widgets 
were positively correlated with the market portfolio, 
the futures price would be less than the expected 
future spot price.) Note that if widgets were storable 
and aggregate storage is positive, the marginal conve- 
nience yield from holding inventory would then be 
10 percent. The reason is that because the futures 
price equals the current spot price, the net holding 
cost (the interest cost of 10 percent less the marginal 
convenience yield) must be zero. 
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our option by paying $800 and receive 
an asset that will be worth V1 = $1,650 
(= 115O0/i.it). If the price falls to $50, 
this asset will be worth only $550, so we 
will not exercise the option. We found 
that the value of our investment opportu- 
nity (assuming that the actual decision 
to invest can indeed be made next year) 
is $386. It will be helpful to recalculate 
this value using standard option pricing 
methods, because later we will use such 
methods to analyze other investment 
problems. 

To do this, let Fo denote the value to- 
day of the investment opportunity, that 
is, what we should be willing to pay today 
to have the option to invest in the widget 
factory, and let F1 denote its value next 
year. Note that F1 is a random variable; 
it depends on what happens to the price 
of widgets. If the price rises to $150, then 
F1 will equal S150/(1. 1)t - $800 = $850. 
If the price falls to $50, the option to 
invest will go unexercised, so that F1 will 
equal 0. Thus we know all possible values 
for F1. The problem is to find Fo, the 
value of the option today. 

To solve this problem, we will create 
a portfolio that has two components: the 
investment opportunity itself, and a cer- 
tain number of widgets. We will pick this 
number of widgets so that the portfolio 
is risk-free, that is, so that its value next 
year is independent of whether the price 
of widgets goes up or down. Because the 
portfolio will be risk-free, we know that 
the rate of return one can earn from hold- 
ing it must be the risk-free rate. By set- 
ting the portfolio's return equal to that 
rate, we will be able to calculate the cur- 
rent value of the investment opportunity. 

Specifically, consider a portfolio in 
which one holds the investment opportu- 
nity, and sells short n widgets. (If widgets 
were a traded commodity, such as oil, 
one could obtain a short position by bor- 
rowing from another producer, or by go- 
ing short in the futures market. For the 

moment, however, we need not be con- 
cerned with the actual implementation 
of this portfolio.) The value of this portfo- 
lio today is (Do = Fo - nP0 = Fo - 100n. 
The value next year, (I4 = F1 - nPI, 
depends on P1. If P1 = 150 so that 
F1 = 850, (DI = 850 -150n. If P1 = 50 
so that F1 = 0, DI = -50n. Now, let 
us choose n so that the portfolio is risk- 
free, that is, so that (DI is independent 
of what happens to price. To do this, just 
set 

850 - 150n =-50n, 

or, n = 8.5. With n chosen this way, 
(DI = -425, whether the price goes up 
or down. 

We now calculate the return from 
holding this portfolio. That return is the 
capital gain, (DI - (DO, minus any pay- 
ments that must be made to hold the 
short position. Because the expected rate 
of capital gain on a widget is zero (the 
expected price next year is $100, the 
same as this year's price), no rational in- 
vestor would hold a long position unless 
he or she could expect to earn at least 
10 percent. Hence selling widgets short 
will require a payment of . IPo = $10 
per widget per year.3 Our portfolio has 
a short position of 8.5 widgets, so it will 
have to pay out a total of $85. The return 
from holding this portfolio over the year 
is thus (DI (Do - 85 = (- (Fo - 

nP0) -85 = -425 - Fo + 850 -85 = 

340 -Fo. 
Because this return is risk-free, we 

know that it must equal the risk-free rate, 
which we have assumed is 10 percent, 
times the initial value of the portfolio, 
(Do= Fo - nP0: 

340 - Fo= .1(Fo - 850). 

'This is analogous to selling short a dividend-pay- 
ing stock. The short position requires payment of 
the dividend, because no rational investor will hold 
the offsetting long position without receiving that div- 
idend. 
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We can thus determine that Fo = $386. 
Note that this is the same value that we 
obtained before by calculating the NPV 
of the investment opportunity under the 
assumption that we follow the optimal 
strategy of waiting a year before deciding 
whether to invest. 

We have found that the value of our 
investment opportunity, that is, the 
value of the option to invest in this proj- 
ect, is $386. The payoff from investing 
(exercising the option) today is $1,100 - 

$800 = $300. But once we invest, our 
option is gone, so the $386 is an opportu- 
nity cost of investing. Hence the full cost 
of the investment is $800 + $386 = 
$1,186 > $1,100. As a result, we should 
wait and keep our option alive, rather 
than invest today. We have thus come 
to the same conclusion as we did by com- 
paring NPVs. This time, however, we 
calculated the value of the option to in- 
vest, and explicitly took it into account 
as one of the costs of investing. 

Our calculation of the value of the op- 
tion to invest was based on the construc- 
tion of a risk-free portfolio, which re- 
quires that one can trade (hold a long 
or short position in) widgets. Of course, 
we could just as well have constructed 
our portfolio using some other asset, or 
combination of assets, the price of which 
is perfectly correlated with the price of 
widgets. But what if one cannot trade 
widgets, and there are no other assets 
that "span" the risk in a widget's price? 
In this case one could still calculate the 
value of the option to invest the way we 
did at the outset-by computing the NPV 
for each investment strategy (invest to- 
day versus wait a year and invest if the 
price goes up), and picking the strategy 
that yields the highest NPV. That is es- 
sentially the dynamic programming ap- 
proach. In this case it gives exactly the 
same answer, because all price risk is di- 
versifiable. In Section III we will explore 
this connection between option pricing 

and dynamic programming in more de- 
tail. 

B. Changing the Parameters 

So far we have fixed the direct cost 
of the investment, 1, at $800. We can 
obtain further insight by changing this 
number, as well as other parameters, and 
calculating the effects on the value of the 
investment opportunity and on the in- 
vestment decision. For example, by go- 
ing through the same steps as above, it 
is easy to see that the short position 
needed to obtain a risk-free portfolio de- 
pends on I as follows: 

n = 16.5 - .011. 

The current value of the option to invest 
is then given by 

Fo = 750 - .4551. 

The reader can check that as long as 
I > $642, Fo exceeds the net benefit from 
investing today (rather than waiting), 
which is V0 - I = $1,100 -1. Hence if 
I > $642, one should wait rather than 
invest today. However, if I = $642, 
Fo = $458 = V0 - 1, so that one would 
be indifferent between investing today 
and waiting until next year. (This can also 
be seen by comparing the NPV of invest- 
ing today with the NPV of waiting until 
next year.) And if I < $642, one should 
invest today rather than wait. The reason 
is that in this case the lost revenue from 
waiting exceeds the opportunity cost of 
closing off the option of waiting and not 
investing should the price fall. This is 
illustrated in Figure 2, which shows the 
value of the option, Fo, and the net pay- 
off, V0 - 1, both as functions of 1. For I 
> $642, Fo = 750 - .4551 > V0 - 1, 
so the option should be kept alive. How- 
ever, if I < $642, 750 - .4551 < V0 - 
1, so the option should be exercised, and 
hence its value is just the net payoff, Vo 
- I. 

We can also determine how the value 
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Figure 2. Option to Invest in Widget Factory 

of the investment option depends on q, 
the probability that the price of widgets 
will rise next year. To do this, let us once 
again set I = $800. The reader can verify 
that the short position needed to obtain 
a risk-free portfolio is independent of q, 
that is, n= 8.5. The payment required 
for the short position, however, does de- 
pend on q, because the expected capital 
gain on a widget depends on q. The ex- 
pected rate of capital gain is [E(P1) - 
PO]IPO = q - .5, so the required payment 
per widget in the short position is .1 - 

(q - .5) = .6 - q. By following the same 
steps as above, it is easy to see that the 
value today of the option to invest is 
Fo = 773q. This can also be written as a 
function of the current value of the 
project, V0. We have V0 = 100 + 
2(1OOq + 50)/(1. 1)t = 600 + lOOOq, so 

Fo = .773Vo - 464. Finally, note that it 
is better to wait rather than invest today 
as long as Fo > V0 - I, or q < .88. 

There is nothing special about the par- 
ticular source of uncertainty that we in- 

troduced in this problem. There will be 
a value to waiting (i.e., an opportunity 
cost to investing today rather than wait- 
ing for information to arrive) whenever 
the investment is irreversible and the net 
payoff from the investment evolves sto- 
chastically over time. Thus we could have 
constructed our example so that the un- 
certainty arises over future exchange 
rates, factor input costs, or government 
policy. For example, the payoff from in- 
vesting, V, might rise or fall in the future 
depending on (unpredictable) changes in 
policy. Alternatively, the cost of the in- 
vestment, I, might rise or fall, in re- 
sponse to changes in materials costs, or 
to a policy change, such as the granting 
or taking away of an investment subsidy 
or tax benefit. 

In our example, we made the unrealis- 
tic assumption that there is no longer any 
uncertainty after the second period. In- 
stead, we could have allowed the price 
to change unpredictably each period. For 
example, we could posit that at t = 2, 
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if the price is $150, it could increase to 
$225 with probability q or fall to $75 with 
probability (1 - q), and if it is $50 it 
could rise to $75 or fall to $25. Price could 
rise or fall in a similar way at t = 3, 4, 
and so on. One could then work out the 
value of the option to invest, and the 
optimal rule for exercising that option. 
Although the algebra is messier, the 
method is essentially the same as for the 
simple two-period exercise we carried 
out above. (This is the basis for the bino- 
mial option pricing model. See John Cox, 
Stephen Ross, and Mark Rubinstein 1979 
and Cox and Rubinstein 1985 for detailed 
discussions.) Rather than take this ap- 
proach, in the next section we extend 
our example by allowing the payoff from 
the investment to fluctuate continuously 
over time. 

The next two sections make use of con- 
tinuous-time stochastic processes, as well 
as Ito's Lemma (which is essentially a 
rule for differentiating and integrating 
functions of such processes). These tools, 
which are becoming more and more 
widely used in economics and finance, 
provide a convenient way of analyzing 
investment timing and option valuation 
problems. I provide an introduction to 
the use of these tools in the Appendix 
for readers who are unfamiliar with them. 
Those readers might want to review the 
Appendix before proceeding. (Introduc- 
tory treatments can also be found in Rob- 
ert Merton 1971; Gregory Chow 1979; 
John Hull 1989; and A. G. Malliaris and 
William Brock 1982.) Readers who would 
prefer to avoid this technical material al- 
together can skip directly to Section V, 
although they will miss some insights by 
doing so. 

III. A More General Problem of 
Investment Timing 

One of the more basic models of irre- 
versible investment is that of McDonald 

and Siegel (1986). They considered the 
following problem: At what point is it 
optimal to pay a sunk cost I in return 
for a project whose value is V, given that 
V evolves according to a geometric 
Brownian motion: 

dV = otVdt + aVdz (1) 

where dz is the increment of a Wiener 
process, that is, dz = E(t)(dt)"2, with E(t) 
a serially uncorrelated and normally dis- 
tributed random variable. Equation (1) 
implies that the current value of the proj- 
ect is known, but future values are log- 
normally distributed with a variance that 
grows linearly with the time horizon. 
(See the Appendix for an explanation of 
the Wiener process.) Thus although in- 
formation arrives over time (the firm ob- 
serves V changing), the future value of 
the project is always uncertain. 

McDonald and Siegel pointed out that 
the investment opportunity is equivalent 
to a perpetual call option, and deciding 
when to invest is equivalent to deciding 
when to exercise such an option. Thus, 
the investment decision can be viewed 
as a problem of option valuation (as we 
saw in the simple example presented in 
the previous section). I will rederive the 
solution to their problem in two ways, 
first using option pricing (contingent 
claims) methods, and then via dynamic 
programming. This will allow us to com- 
pare these two approaches and the as- 
sumptions that each requires. We will 
then examine the characteristics of the 
solution. 

A. The Use of Option Pricing 

As we have seen, the firm's option 
to invest, that is, to pay a sunk cost I 
and receive a project worth V, is analo- 
gous to a call option on a stock. Unlike 
most financial call options, it is perpet- 
ual-it has no expiration date. We can 
value this option and determine the opti- 
mal exercise (investment) rule using the 
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same methods used to value financial op- 
tions. (For an overview of option pricing 
methods' and their application, see Cox 
and Rubinstein 1985; Hull 1989; and 
Scott Mason and Merton 1985.) 

This approach requires one important 
assumption, namely that stochastic 
changes in V are spanned by existing as- 
sets. Specifically, it must be possible to 
find an asset or construct a dynamic port- 
folio of assets (i.e., a portfolio whose 
holdings are adjusted continuously as as- 
set prices change), the price of which is 
perfectly correlated with V. This is equiv- 
alent to saying that markets are suffi- 
ciently complete that the firm's decisions 
do not affect the opportunity set available 
to investors. The assumption of spanning 
should hold for most commodities, which 
are typically traded on both spot and fu- 
tures markets, and for manufactured 
goods to the extent that prices are corre- 
lated with the values of shares or portfo- 
lios. However, there may be cases in 
which this assumption will not hold; an 
example might be a new product unre- 
lated to any existing ones. 

With the spanning assumption, we can 
determine the investment rule that maxi- 
mizes the firm's market value without 
making any assumptions about risk pref- 
erences or discount rates, and the invest- 
ment problem reduces to one of contin- 
gent claim valuation. (We will see shortly 
that if spanning does not hold, dynamic 
programming can still be used to maxi- 
mize the present value of the firm's ex- 
pected flow of profits, subject to an arbi- 
trary discount rate.) 

Let x be the price of an asset or dy- 
namic portfolio of assets perfectly corre- 
lated with V, and denote by Pvm the cor- 
relation of V with the market portfolio. 
Then x evolves according to 

dx = [Lxdt + uxdz, 

and by the capital asset pricing model 
(CAPM), its expected return is pt = 

r + 4)pvmO,c where r is the risk-free rate 
and 4) is the market price of risk. We 
will assume that a-, the expected percent- 
age rate of change of V, is less than its 
risk-adjusted return Vt. (As will become 
clear, the firm would never invest if this 
were not the case. No matter what the 
current level of V, the firm would always 
be better off waiting and simply holding 
on to the option to invest.) We denote 
by 8 the difference between It and cx, 
that is, 8 = - at. 

A few words about the meaning of 8 
are in order, given the important role it 
plays in this model. The analogy with a 
financial call option is helpful here. If V 
were the price of a share of common 
stock, 8 would be the dividend rate on 
the stock. The total expected return on 
the stock would be pt = 8 + a-, that is, 
the dividend rate plus the expected rate 
of capital gain. 

If the dividend rate 8 were zero, a call 
option on the stock would always be held 
to maturity, and never exercised prema- 
turely. The reason is that the entire re- 
turn on the stock is captured in its price 
movements, and hence by the call op- 
tion, so there is no cost to keeping the 
option alive. But if the dividend rate is 
positive, there is an opportunity cost to 
keeping the option alive rather than exer- 
cising it. That opportunity cost is the div- 
idend stream that one forgoes by holding 
the option rather than the stock. Because 
8 is a proportional dividend rate, the 
higher the price of the stock, the greater 
the flow of dividends. At some high 
enough price, the opportunity cost of 
forgone dividends becomes high enough 
to make it worthwhile to exercise the op- 
tion. 

For our investment problem, pt is the 
expected rate of return from owning the 
completed project. It is the equilibrium 
rate established by the capital market, 
and includes an appropriate risk pre- 
mium. If 8 > 0, the expected rate of 
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capital gain on the project is less than 
Vt. Hence 8 is an opportunity cost of de- 
laying construction of the project, and 
instead keeping the option to invest alive. 
If 8 were zero, there would be no oppor- 
tunity cost to keeping the option alive, 
and one would never invest, no matter 
how high the NPV of the project. That 
is why we assume 8 > 0. On the other 
hand, if 8 is very large, the value of the 
option will be very small, because the 
opportunity cost of waiting is large. As 
8 -) oc, the value of the option goes to 
zero; in effect, the only choices are to 
invest now or never, and the standard 
NPV rule will again apply. 

The parameter 8 can be interpreted 
in different ways. For example, it could 
reflect the process of entry and capacity 
expansion by competitors. Or it can sim- 
ply reflect the cash flows from the proj- 
ect. If the project is infinitely lived, then 
equation (1) can represent the evolution 
of V during the operation of the project, 
and 5V is the rate of cash flow that the 
project yields. Because we assume 8 is 
constant, this is consistent with future 
cash flows being a constant proportion 
of the project's market value. 4 

Equation (1) is, of course, is an abstrac- 
tion from most real projects. For exam- 
ple, if variable cost is positive and the 
project can be shut down temporarily 
when price falls below variable cost, V 
will not follow a log-normal process, even 
if the output price does. Nonetheless, 
equation (1) is a useful simplification that 

will help to clarify the main effects of 
irreversibility and uncertainty. We will 
discuss more complicated (and hopefully 
more realistic) models later. 

B. Solving the Investment Problem 

Let us now turn to the valuation of 
our investment opportunity, and the op- 
timal investment rule. Let F = F(V) be 
the value of the firm's option to invest. 
To find F(V) and the optimal investment 
rule, consider the return on the following 
portfolio: Hold the option, which is worth 
F(V), and go short dF/dV units of the 
project (or equivalently, of the asset or 
portfolio x). Using subscripts to denote 
derivatives, the value of this portfolio is 
P = F - FvV. Note that this portfolio 
is dynamic; as V changes, Fv may change, 
in which case the composition of the port- 
folio will be changed. 

The short position in this portfolio will 
require a payment of 6VFv dollars per 
time period; otherwise no rational inves- 
tor will enter into the long side of the 
transaction. (To see this, note that an in- 
vestor holding a long position in the proj- 
ect will demand the risk-adjusted return 
ptV, which includes the capital gain plus 
the dividend stream 8V. Because the 
short position includes Fv units of the 
project, it will require paying out 8VFv.) 
Taking this into account, the total return 
from holding the portfolio over a short 
time interval dt is 

dF - FVdV - 8VFvdt. 

We will see shortly that this return is 
risk-free. Hence to avoid arbitrage possi- 
bilities it must equal r(F - FvV)dt: 

dF - FVdV - 6VFvdt 
= r(F - FvV)dt. (2) 

To obtain an expression for' dF, use 
Ito's Lemma: 

dF = FVdV + (1/2)Fv(dV)2. (3) 

4A constant payout rate, 8, and required return, 
ji, imply an infinite project life. Letting CF denote 
the cash flow from the project, 

T T 

VO= CFte-1tdt fAVOe(R-8)te-1tdt, 
0 0 

which implies T = oo. If the project has a finite life, 
equation (1) cannot represent the evolution of V dur- 
ing the operating period. However, it can represent 
its evolution prior to construction of the project, 
which is all that matters for the investment decision. 
See Majd and Pindyck (1987, pp. 11-13), for a de- 
tailed discussion of this point. 
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(Ito's Lemma is explained in the Appen- 
dix. Note that higher-order terms van- 
ish.) NoW substitute (1) for dV, with ox 
replaced by > - 8, and (dV)2 = cr2V2dt 
into equation (3): 

dF = ( - )VFvdt + crVFvdz 
+ (1/2)cu2V2Fvdt. (4) 

Finally, substitute (4) into (2), rearrange 
terms, and note that all terms in dz can- 
cel out, so the portfolio is indeed risk- 
free: 

(1/2)U2 V2Fw + (r - 5)VFV 
-rFO= . (5) 

Equation (5) is a differential equation 
that F(V) must satisfy. In addition, F(V) 
must satisfy the following boundary con- 
ditions: 

F(O) = 0. (6a) 

F(V*) = V* - I. (6b) 

FV(V*) = 1. (6c) 

Condition (6a) says that if V goes to zero, 
it will stay at zero-an implication of the 
process (1)-so the option to invest will 
be of no value. V* is the price at which 
it is optimal to invest, and (6b) just says 
that upon investing, the firm receives a 
net payoff V* - I. Condition (6c) is called 
the "smooth pasting" condition. If F(V) 
were not continuous and smooth at the 
critical exercise point V*, one could do 
better by exercising at a different point.5 

To find F(V), we must solve equation 
(5) subject to the boundary conditions 
(6a-6c). In this case we can guess a func- 
tional form, and determine by substitu- 
tion if it works. It is easy to see the solu- 
tion to equation (5) that also satisfies 
condition (6a) is 

(7) F(V) = aV3 

where a is a constant, and ,3 is given 
by6 

= 1/2 - (r - )/cr2 
+ {[r - 6)/U2 - 1/2]2 + 2r/cu2}1/2. (8) 

The remaining boundary conditions, 
(6b) and (6c), can be used to solve for 
the two remaining unknowns: the con- 
stant a, and the critical value V* at which 
it is optimal to invest. By substituting 
(7) into (6b) and (6c), it is easy to see 
that 

V*= PI/(P- 1) (9) 

and a = (V* - I)/(V*)3. (10) 

Equations (7-10) give the value of the 
investment opportunity, and the optimal 
investment rule, that is, the critical value 
V* at which it is optimal (in the sense 
of maximizing the firm's market value) 
to invest. We will examine the character- 
istic of this solution below. Here we sim- 
ply point out that we obtained this solu- 
tion by showing that a hedged (risk-free) 
portfolio could be constructed consisting 
of the option to invest and a short posi- 
tion in the project. However, F(V) must 
be the solution to equation (5) even if 
the option to invest (or the project) does 
not exist and could not be included in 
the hedge portfolio. All that is required 
is spanning, that is, that one could find 
or construct an asset or dynamic portfolio 
of assets (x) that replicates the stochastic 
dynamics of V. As Merton (1977) has 
shown, one can replicate the value func- 
tion with a portfolio consisting only of 
the asset x and risk-free bonds, and be- 

5Avinash Dixit (1988) provides a heuristic deriva- 
tion of this condition. 

'The general solution to equation (5) is 

F(V) = a1VP' + a2V02, 

where I31 = 1/2 - (r- 2 

+ {[(r - 8) - 1/2]2 + 2rl(/2}"12 > 1, 

and P2= 1/2- (r- 8)/u2 
- {[(r - 8)(J2- 1/2]2 + 2rl/o2}'12 < 0. 

Boundary condition (6a) implies that a2 = 0, so the 
solution can be written as in equation (7). 
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cause the value of this portfolio will have 
the same dynamics as F(V), the solution 
to (5), F(V) must be the value function 
to avoid dominance. 

As discussed earlier, spanning will not 
always hold. If that is the case, one can 
still solve the investment problem using 
dynamic programming. This is shown be- 
low. 

C. Dynamic Programming 

To solve the problem by dynamic 
programming, note that we want a rule 
that maximizes the value of our invest- 
ment opportunity, F(V): 

F(V) = max EJ[(VT- I)e 1T] (11) 

where Et denotes the expectation at time 
t, T is the (unknown) future time that 
the investment is made, ,u is the discount 
rate, and the maximization is subject to 
equation (1) for V. We will assume that 
,u > a-, and as before denote 8 = ,u- 
(x. 

Because the investment opportunity, 
F(V), yields no cash flows up to the time 
T that the investment is undertaken, the 
only return from holding it is its capital 
appreciation. As shown in the Appendix, 
the Bellman equation for this problem 
is therefore 

uF = (1/dt)E,dF. (12) 

Equation (12) just says that the total in- 
stantaneous return on the investment op- 
portunity, ,uF, is equal to its expected 
rate of capital appreciation. 

We used Ito's Lemma to obtain equa- 
tion (3) for dF. Now substitute (1) for 
dV and (dV)2 into equation (3) to obtain 
the following expression for dF: 

dF = cxVFvdt + zrVFvdz 
+ (1/2)o2V2Fwvdt. 

Because Et(dz) = 0, (lldt)EtdF = 
oaVFv + (1/2)u 2V2FW, and equation (12) 
can be rewritten as: 

(1/2)cu2V2Fw + acVFv - = 0 

or, substituting ac = - 8, 

(1/2)cu2V2Fv 
+ (Vt- 8)VFV - VF= 0. (13) 

Observe that this equation is almost 
identical to equation (5); the only differ- 
ence is that the discount rate ,u replaces 
the risk-free rate r. The boundary condi- 
tions (6a-6c) also apply here, and for the 
same reasons as before. (Note that (6c) 
follows from the fact that V* is chosen 
to maximize the net payoff V* - I.) 
Hence the contingent claims solution to 
our investment problem is equivalent to 
a dynamic programming solution, under 
the assumption of risk neutrality.7 

Thus if spanning does not hold, we can 
still obtain a solution to the investment 
problem, subject to some discount rate. 
The solution will clearly be of the same 
form, and the effects of changes in u- or 
8 will likewise be the same. One point 
is worth noting, however. Without span- 
ning, there is no theory for determining 
the "correct" value for the discount rate 
,u (unless we make restrictive assump- 
tions about investors' or managers' utility 
functions). The CAPM, for example, 
would not hold, so it could not be used 
to calculate a risk-adjusted discount rate. 

D. Characteristics of the Solution 

Assuming that spanning holds, let us 
examine the optimal investment rule 
given by equations (7-10). A few numeri- 

'This result was first demonstrated by Cox and 
Ross (1976). Also, note that equation (5) is the Bell- 
man equation for the maximization of the net payoff 
to the hedge portfolio that we constructed. Because 
the portfolio is risk-free, the Bellman equation for 
that problem is 

rP = -- VFv + (jIdt)EtdP. (i) 

That is, the return on the portfolio, rP, equals the 
per period cash flow that it pays out (which is nega- 
tive, because iVFV must be paid in to maintain the 
short position), plus the expected rate of capital gain. 
By substituting P = F - FvV and expanding dF as 
before, one can see that (5) follows from (i). 
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Figure 3. F(V) for a = 0.2, 0.3 

Note: 8 = 0.04, r = 0.04,1 = 1 

cal solutions will help to illustrate the 
results and show how they depend on 
the values of the various parameters. As 
we will see, these results are qualitatively 
the same as those that come out of stan- 
dard option pricing models. Unless oth- 
erwise noted, in what follows we set r 
= .04, 8 = .04, and the cost of the invest- 
ment, I, equal to 1. 

Figure 3 shows the value of the invest- 
ment opportunity, F(V), for r = .2 and 
.3. (These values are conservative for 
many projects; in volatile markets, the 
standard deviation of annual changes in 
a project's value can easily exceed 20 or 
30 percent.) The tangency point of F(V) 
with the line V - I gives the critical value 
of V, V*; the firm should invest only if 
V ? V*. For any positive or, V* > L. 
Thus the standard NPV rule, "Invest 
when the value of a project is at least as 
great as its cost," must be modified to 

include the opportunity cost of investing 
now rather than waiting. That opportu- 
nity cost is exactly F(V). When V < V*, 
V < I + F(V), that is, the value of the 
project is less than its full cost, the direct 
cost I plus the opportunity cost of "kill- 
ing" the investment option. 

Note that F(V) increases when of in- 
creases, and so too does the critical value 
V*. Thus uncertainty increases the value 
of a firm's investment opportunities, but 
decreases the amount of actual investing 
that the firm will do. As a result, when 
a firm's market or economic environment 
becomes more uncertain, the stock mar- 
ket value of the firm can go up, even 
though the firm does less investing and 
perhaps produces less! This should make 
it easier to understand the behavior of 
oil companies during the mid-1980s. 
During this period oil prices fell, but the 
perceived uncertainty over future oil 
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Figure 4. F(V) for 8 = 0.04, 0.08 

Note: a = 0.2, r= 0.04, 1 = 1 

prices rose. In response, oil companies 
paid more than ever for offshore leases 
and other oil-bearing lands, even though 
their development expenditures fell and 
they produced less. 

Finally, note that our results regarding 
the effects of uncertainty involve no as- 
sumptions about risk preferences, or 
about the extent to which the riskiness 
of V is correlated with the market. Firms 
can be risk-neutral, and stochastic 
changes in V can be completely diversifi- 
able; an increase in cr will still increase 
V* and hence tend to depress invest- 
ment. 

Figures 4 and 5 show how F(V) and 
V* depend on 8. Observe that an in- 
crease in 8 from .04 to .08 results in a 
decrease in F(V), and hence a decrease 
in the critical value V*. (In the limit as 
8 -* co, F(V) ->O for V < I, and V* -, 
as Figure 5 shows.) The reason is that 

as 8 becomes larger, the expected rate 
of growth of V falls, and hence the ex- 
pected appreciation in the value of the 
option to invest and acquire V falls. In 
effect, it becomes costlier to wait rather 
than invest now. To see this, consider 
an investment in an apartment building, 
where 5V is the net flow of rental income. 
The total return on the building, which 
must equal the risk-adjusted market rate, 
has two components-this income flow 
plus the expected rate of capital gain. 
Hence the greater the income flow rela- 
tive to the total return on the building, 
the more one forgoes by holding an op- 
tion to invest in the building, rather than 
owning the building itself. 

If the risk-free rate, r, is increased, 
F(V) increases, and so does V*. The rea- 
son is that the present value of an invest- 
ment expenditure I made at a future time 
T is Ie- rT, but the present value of 
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the project that one receives in return 
for that expenditure is Ve 8T. Hence with 
a fixed, an increase in r reduces the pres- 
ent value of the cost of the investment 
but does not reduce its payoff. But note 
that while an increase in r raises the 
value of a firm's investment options, it 
also results in fewer of those options be- 
ing exercised. Hence higher (real) inter- 
est rates reduce investment, but for a 
different reason than in the standard 
model. 

IV. The Value of a Project and the 
Decision to Invest 

As mentioned earlier, equation (1) ab- 
stracts from most real projects. A more 
realistic model would treat the price of 
the project's output as a geometric ran- 
dom walk (and possibly one or more fac- 
tor input costs as well), rather than mak- 
ing the value of the project a random 

walk. It would also allow for the project 
to be shut down (permanently or tempo- 
rarily) if price falls below variable cost. 
The model developed in the previous 
section can easily be extended in this 
way. In so doing, we will see that option 
pricing methods can be used to find the 
value of the project, as well as the opti- 
mal investment rule. 

Suppose the output price, P. follows 
the stochastic process: 

dP = c.Pdt + rPdz. (14) 

We will assume that (x < ,u, where ,u is 
the market risk-adjusted expected rate 
of return on P or an asset perfectly corre- 
lated with P. and let 8 = ,u- ( as before. 
If the output is a storable commodity 
(e.g., oil or copper), 8 will represent the 
net marginal convenience yield from stor- 
age, that is, the flow of benefits (less stor- 
age costs) that the marginal stored unit 
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provides. We assume for simplicity that 
8 is constant. (For most commodities, 
marginal convenience yield in fact fluctu- 
ates as the total amount of storage fluctu- 
ates.) 

We will also assume the following: (i) 
Marginal and average production cost is 
equal to a constant, c. (ii) The project 
can be costlessly shut down if P falls be- 
low c, and later restarted if P rises above 
c. (iii) The project produces one unit of 
output per period, is infinitely lived, and 
the (sunk) cost of investing in the project 
is L. 

We now have two problems to solve. 
First, we must find the value of this proj- 
ect, V(P). To do this, we can make use 
of the fact that the project itself is a set 
of options.8 Specifically, once the project 
has been built, the firm has, for each 
future time t, an option to produce a unit 
of output, that is an option to pay c and 
receive P. Hence the project is equiva- 
lent to a large number (in this case, infi- 
nite, because the project is assumed to 
last indefinitely) of operating options, 
and can be valued accordingly. 

Second, given the value of the project, 
we must value the firm's option to invest 
in it, and determine the optimal exercise 
(investment) rule. This will boil down to 
finding a critical P*, where the firm in- 
vests only if P - P. As shown below, 
the two steps to this problem can be 
solved sequentially by the same methods 
used in the previous section.9 

A. Valuing the Project 

If we assume that uncertainty over 
P is spanned by existing assets, we can 

value the project (as well as the option 
to invest) using contingent claim meth- 
ods. Otherwise, we can specify a discount 
rate and use dynamic programming. We 
will assume spanning and use the first 
approach. 

As before, we construct a risk-free 
portfolio: long the project and short Vp 
units of the output. This portfolio has 
value V(P) - VpP, and yields the instanta- 
neous cash flow j(P - c)dt - 5VpPdt, 
where j = 1 if P c so that the firm is 
producing, and j = 0 otherwise. (Recall 
that 6VpPdt is the payment that must be 
made to maintain the short position.) The 
total return on the portfolio is thus 
dV - VpdP + j(P - c)dt - 6VpPdt. Be- 
cause this return is risk-free, set it equal 
to r(V - VpP)dt. Expanding dV using 
Ito's Lemma, substituting (14) for dP, and 
rearranging yields the following differen- 
tial equation for V: 

(1/2)&P2VPP + (r - 5)PVp - rV 
+ j(P - c) = 0. (15) 

This equation must be solved subject 
to the following boundary conditions: 

V(0) = 0. (16a) 
V(c-) = V(c+). (16b) 

VP(c-)= Vp(c+). (16c) 
lim V = PI - clr. (16d) 

P -c o 

Condition (16a) is an implication of equa- 
tion (14); that is, if P is ever zero it will 
remain zero, so the project then has no 
value. Condition (16d) says that as P be- 
comes very large, the probability that 
over any finite time period it will fall be- 
low cost and production will cease be- 
comes very small. Hence the value of 
the project approaches the difference be- 
tween two perpetuities: a flow of revenue 
(P) that is discounted at the risk-adjusted 
rate li but is expected to grow at rate 
(x, and a flow of cost (c), which is constant 
and hence is discounted at the risk-free 

8This point and its implications are discussed in 
detail in McDonald and Siegel (1985). 

9Note that the option to invest is an option to 
purchase a package of call options (because the proj- 
ect is just a set of options to pay c and receive P at 
each future time t). Hence we are valuing a com- 
pound option. For examples of the valuation of com- 
pound financial options, see Robert Geske (1979) and 
Peter Carr (1988). Our problem can be treated in a 
simpler manner. 
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Figure 6. V(P) for a = 0, 0.2, 0.4 

Note: 8 = .04, r= .04, c= 10 

rate r. Finally, conditions (16b) and (16c) 
say that the project's value is a continu- 
ous and smooth function of P. 

The solution to equation (15) will have 
two parts, one for P < c, and one for P 
-c. The reader can check by substitu- 
tion that the following satisfies (15) as 
well as boundary conditions (16a) and 
(16d): 

w A2Pr 2 + plb-Clr , P ' C 

where:1? 

31 = 1/2 - (r- )/u2 
+ {[(r-)/U2 - 1/2]2 + 2r/ 2}"/2 

and 

12 = 1/2 - (r - )u2 

-{[(r- b)/U2 - 1/2]2 + 2r/u 2}/2. 

The constants A1 and A2 can be found 
by applying boundary conditions (16b) 
and (16c): 

Al- r - 132(r- 

A1 =r P(13 8- ) c(l-2). 

2 r-(r - P2) 

The solution (17) for V(P) can be inter- 
preted as follows: When P < c, the proj- 
ect is not producing. Then, A1PP' is the 
value of the firm's options to produce in 
the future, if and when P increases. 
When P - c, the project is producing. 
If, irrespective of changes in P. the firm 

10 By substituting (17) for V(P) into (15), the reader 
can check that PI and 32 are the solutions to the 
following quadratic equation: 

(1/2)g2pl(p3 -1) + (r - 8)PI - r = 0. 

Because V(O) = 0, the positive solution (1I > 1) must 
apply when P < c, and the negative solution (12 < 

0) must apply when P > c. Note that P is the same 
as 1 in equation (8). 
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Figure 7. V(P) for 8 = 0.02, 0.04, 0.08 

Note: r = .04, cr = .2, c = 10 

had no choice but to continue producing 
throughout the future, the present value 
of the future flow of profits would be 
given by Plb - clr. However, should P 
fall, the firm can stop producing and 
avoid losses. The value of its options to 
stop producing is A2P2. 

A numerical example will help to illus- 
trate this solution. Unless otherwise 
noted, we set r = .04, 8 = .04, and 
c = 10. Figure 6 shows V(P) for cr = 0, 
.2, and .4. When r = 0, there is no possi- 
bility that P will rise in the future, so in 
this case the firm will never produce (and 
has no value) unless P > 0. If P > 10, 
V(P) = (P - 10)/.04 = 25P = 250. How- 
ever, if a > 0, the firm always has some 
value as long as P > 0; although the firm 
may not be producing today, it is likely 
to produce at some point in the future. 
Also, because the upside potential for fu- 
ture profit is unlimited while the down- 

side is limited to zero, the greater is a, 
the greater is the expected future flow 
of profit, and the higher is V. 

Figure 7 shows V(P) for a = .2 and 
8 = .02, .04, and .08. For any fixed risk- 
adjusted discount rate, a higher value of 
8 means a lower expected rate of price 
appreciation, and hence a lower value 
for the firm. 

B. The Investment Decision 

Now that we know the value of this 
project, we must find the optimal invest- 
ment rule. Specifically, what is the value 
of the firm's option to invest as a function 
of the price P, and at what critical price 
P* should the firm exercise that option 
by spending an amount I to purchase the 
project? 

By going through the same steps as 
above, the reader can check that the 
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Figure 8. V(P) -I and F(P) for a = 0.2, 8 = 0.04 

Note: r = .04, c= 10, I = 100 

value of the firm's option to invest, F(P), 
must satisfy the following differential 
equation: 

(1/2)u2P2Fpp + (r - 8)PFp - rF = 0. (18) 

F(P) must also satisfy the following 
boundary conditions: 

F(0) = 0. (19a) 

F(P*) = V(P*) - I. (19b) 

Fp(P*) = Vp(P*). (19c) 

These conditions can be interpreted in 
the same way as conditions (6a-6c) for 
the model presented in Section III. The 
difference is that the payoff from the in- 
vestment, V, is now a function of the 
price P. 

The solution to equation (18) and 
boundary condition (19a) is 

F(P) = [aP 'I, P ' P* (20) V(P - I>,P>P* 

where 1P is given above under equation 
(17). To find the constant a and the criti- 
cal price P*, we use boundary conditions 
(19b) and (19c). By substituting equation 
(20) for F(P) and equation (17) for V(P) 
(for P - c) into (19b) and (19c), the reader 
can check that the constant a is given 
by 

a = 2A2 (p*)(P2-PI) + j (P*)(l-P) (21) 

and the critical price P* is the solution 
to 

A2(PI - 12) (p*)P2 

+ P* -I = 0. (22) 

Equation (22), which is easily solved nu- 
merically, gives the optimal investment 
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rule. (The reader can check first, that 
(22) has a unique positive solution for P* 
that is larger than c, and second, that 
V(P*) > I, so that the project must have 
an NPV that exceeds zero before it is 
optimal to invest.) 

This solution is shown graphically in 
Figure 8, for a = .2, 8 = .04, and I = 
100. The figure plots F(P) and V(P) - . 
Note from boundary condition (19b) that 
P* satisfies F(P*) = V(P*) - I, and note 
from boundary condition (19c) that P* is 
at a point of tangency of the two curves. 

The comparative statics for changes in 
a or 8 are of interest. As we saw before, 
an increase in a results in an increase 
in V(P) for any P. (The project is a set 
of call options on future production, and 
the greater the volatility of price, the 
greater the value of these options.) But 
although an increase in ar raises the value 
of the project, it also increases the critical 
price at which it is optimal to invest, that 
is, aP*/&o. > 0. The reason is that for 
any P, the opportunity cost of investing, 
F(P), increases even more than V(P). 
Hence as with the simpler model pre- 
sented in the previous section, increased 
uncertainty reduces investment. This is 
illustrated in Figure 9, which shows F(P) 
and V(P) - I for u = 0, .2, and .4. When 
u - 0, the critical price is 14, which just 
makes the value of the project equal to 
its cost of 100. As u is increased, both 
V(P) and F(P) increase; P* is 23.8 for 
u = .2 and 34.9 for u = .4. 

An increase in 8 also increases the criti- 
cal price P* at which the firm should in- 
vest. There are two opposing effects. If 
8 is larger, so that the expected rate of 
increase of P is smaller, options on future 
production are worth less, so V(P) is 
smaller. At the same time, the opportu- 
nity cost of waiting to invest rises-the 
expected rate of growth of F(P) is 
smaller-so there is more incentive to 
exercise the investment option, rather 
than keep it alive. The first effect domi- 

nates, so that a higher 8 results in a 
higher Pt. This is illustrated in Figure 
10, which shows F(P) and V(P) - I for 
8 = .04 and .08. Note that when 8 is 
increased, V(P) and hence F(P) fall 
sharply, and the tangency at P* moves 
to the right. 

This result might at first seem to con- 
tradict what the simpler model of Section 
III tells us. Recall that in that model, 
an increase in 8 reduces the critical value 
of the project, V*, at which the firm 
should invest. But while in this model 
P* is higher when 8 is larger, the corre- 
sponding value of the project, V(P*), is 
lower. This can be seen from Figure 11, 
which shows P* as a function of a for 
8 = .04 and .08, and Figure 12, which 
shows V(P*). If, say, cu is .2 and 8 is in- 
creased from 0.4 to .08, P* will rise from 
23.8 to 29.2, but even at the higher P*, 
V is lower. Thus V* = V(P*) is declining 
with 8, just as in the simpler model. 

This model shows how uncertainty 
over future prices affects both the value 
of a project and the decision to invest. 
As discussed in the next section, the 
model can easily be expanded to allow 
for fixed costs of temporarily stopping 
and restarting production, if such costs 
are important. Expanded in this way, 
models like this can have practical appli- 
cation, especially if the project is one that 
produces a traded commodity, like cop- 
per or oil. In that case, ou and 6 can be 
determined directly from futures and 
spot market data. 

C. Alternative Stochastic Processes 

The geometric random walk of equa- 
tion (14) is convenient in that it permits 
an analytical solution, but one might be- 
lieve that the price, Pa is better repre- 
sented by a different stochastic process. 
For example, one could argue that over 
the long run, the price of a commodity 
will follow a mean-reverting process (for 
which the mean reflects long-run mar- 
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ginal cost, and might be time-varying). 
Our model can be adapted to allow for 
this or foV alternative stochastic processes 
for P. However, in most cases numerical 
methods will then be necessary to obtain 
a solution. 

As an example, suppose P follows the 
mean-reverting process: 

dP/P = X(P - P)dt + adz. (23) 

Here, P tends to revert back to a "nor- 
mal" level P (which might be long-run 
marginal cost in the case of commodity 
like copper or coffee). By going through 
the same arguments as we did before, 
it is easy to show that V(P) must then 
satisfy the following differential equation: 

(1/2)o2P2Vpp + [(r - ,- X)P + XP]PVp 

-rV +j(P-c) = O (24) 

together with boundary conditions (16a- 
16c). The value of the investment option, 
F(P), must satisfy 

(1/2)o2P2Fpp + [(r - - X)P + XP]PFp 
-rF= O (25) 

with boundary conditions (19a-19c). 
Equations (24) and (25) are ordinary dif- 
ferential equations, so solution by nu- 
merical methods is relatively straightfor- 
ward. 

V. Extensions 

The models presented in the previous 
two sections are fairly simple, but illus- 
trate how a project and an investment 
opportunity can be viewed as a set of 
options, and valued accordingly. These 
insights have been extended to a variety 
of problems involving investment and 
production decisions under uncertainty. 
This section reviews some of them. 

A. Sunk Costs and Hysteresis 

In Sections III and IV, we examined 
models in which the investment expendi- 

ture is a sunk cost. Because the future 
value of the project is uncertain, this cre- 
ates an opportunity cost to investing, 
which drives a wedge between the cur- 
rent value of the project and the direct 
cost of the investment. 

In general, there may be a variety of 
sunk costs. For example, there may be 
a sunk cost of exiting an industry or aban- 
doning a project. This could include 
severance pay for workers, land reclama- 
tion in the case of a mine, and so on.11 
This creates an opportunity cost of shut- 
ting down, because the value of the proj- 
ect might rise in the future. There may 
also be sunk costs associated with the op- 
eration of the project. In Section IV, we 
assumed that the firm could stop and re- 
start production costlessly. For most 
projects, however, there are likely to be 
substantial sunk costs involved in even 
temporarily shutting down and restart- 
ing. 

The valuation of projects and the deci- 
sion to invest when there are sunk costs 
of this sort have been studied by Brennan 
and Schwartz (1985) and Dixit (1989a). 
Brennan and Schwartz (1985) find the ef- 
fects of sunk costs on the decision to open 
and close (temporarily or permanently) 
a mine, when the price of the resource 
follows equation (14). Their model ac- 
counts for the fact that a mine is subject 
to cave-ins and flooding when not in use, 
and a temporary shutdown requires ex- 
penditures to avoid these possibilities. 
Likewise, reopening a temporarily closed 
mine requires a substantial expenditure. 
Finally, a mine can be permanently 
closed. This will involve costs of land rec- 
lamation (but avoids the cost of a tempo- 
rary shutdown). 

" Of course the scrap value of the project might 
exceed these costs. In this case, the owner of the 
project holds a put option (an option to "sell" the 
project for the net scrap value), and this raises 
the project's value. This has been analyzed by Myers 
and Majd (1985). 
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Brennan and Schwartz obtained an 
analytical solution for the case of an infi- 
nite resource stock. (Solutions can also 
be obtained when the resource stock is 
finite, but then numerical methods are 
required.) Their solution gives the value 
of the mine as a function of the resource 
price and the curent state of the mine 
(i.e., open or closed). It also gives the 
decision rule for changing the state of 
the mine (i.e., opening a closed mine 
or temporarily or permanently closing an 
open mine). Finally, given the value of 
the mine, Brennan and Schwartz show 
how (in principle) an option to invest in 
the mine can be valued and the optimal 
investment rule determined, using a con- 
tingent claim approach like that of Sec- 
tion IV. 12 

By working through a realistic example 
of a copper mine, Brennan and Schwartz 
showed how the methods discussed in 
this paper can be applied in practice. But 
their work also shows how sunk costs of 
opening and closing a mine can explain 
the "hysteresis" often observed in extrac- 
tive resource industries: During periods 
of low prices, managers often continue 
to operate unprofitable mines that had 
been opened when prices were high; at 
other times managers fail to reopen 
seemingly profitable ones that had been 
closed when prices were low. This insight 
is further developed in Dixit (1989a, 
1991), and is discussed below. 

Dixit (1989a) studies a model with sunk 
costs k and 1, respectively, of entry and 
exit. The project produces one unit of 
output per period, with variable cost w. 
The output price, P, follows equation 
(14). If ar = 0, the standard result holds: 
Enter (i.e., spend k) if P - w + pk, and 

exit if P ' w - pl, where p is the firm's 
discount rate. 13 However, if a > 0, there 
are opportunity costs to entering or exit- 
ing. These opportunity costs raise the 
critical price above which it is optimal 
to enter, and lower the critical price be- 
low which it is optimal to exit. (Further- 
more, numerical simulations show that 
r need not be large to induce a significant 
effect.) 

These models help to explain the prev- 
alence of hysteresis-effects that persist 
after the causes that brought them about 
have disappeared. In Dixit's model, firms 
that entered an industry when price was 
high may remain there for an extended 
period of time even though price has 
fallen below variable cost, so they are 
losing money. (Price may rise in the fu- 
ture, and to exit and later reenter in- 
volves sunk costs.) And firms that leave 
an industry after a protracted period of 
low prices may hesitate to reenter, even 
after prices have risen enough to make 
entry seem profitable. Similarly, the 
Brennan and Schwartz model shows why 
many copper mines built during the 
1970s when copper prices were high 
were kept open during the mid-1980s 
when copper prices had fallen to their 
lowest levels (in real terms) since the 
Great Depression. 

The fact that exchange rate movements 
during the 1980s left the U. S. with a per- 
sistent trade deficit at the end of that 
decade can also be seen as a result of 
hysteresis. For example, Dixit (1989b) 
models entry by Japanese firms into the 
U. S. market when the exchange rate fol- 
lows a geometric Brownian motion. 

12 Jerey MacKie-Mason (1990) developed a re- 
lated model of a mine that shows how nonlinear tax 
rules (such as a percentage depletion allowance) affect 
the value of the operating options as well as the in- 
vestment decision. 

13 As Dixit points out, one would find hysteresis 
if, for example, the price began at a level between 
w and w + pk, rose above w + pk so that entry 
occurred, but then fell to its original level, which is 
too high to induce exit. However, the firm's price 
expectations would then be irrational (because the 
price is in fact varying stochastically). 
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Again, there are sunk costs of entry and 
exit. The Japanese firms are ordered ac- 
cording to their variable costs, and all 
firms are price takers. As with the models 
discussed above, the sunk costs com- 
bined with exchange rate uncertainty 
create opportunity costs of entering or 
exiting the U.S. market. As a result, 
there will be an exchange rate band 
within which Japanese firms neither en- 
ter nor exit, and the U.S. market price 
will not vary as long as exchange rate 
fluctuations are within this band. Richard 
Baldwin (1988) and Baldwin and Paul 
Krugman (1989) developed related mod- 
els that yield similar results. These mod- 
els help to explain the low rate of 
exchange rate passthrough observed dur- 
ing the 1980s, and the persistence of 
the U. S. trade deficit even after the 
dollar depreciated. (Baldwin 1988 also pro- 
vides empirical evidence that the over- 
valuation of the dollar during the early 
1980s was indeed a hysteresis-inducing 
shock.) 

Sunk costs of entry and exit can also 
have hysteretic effects on the exchange 
rate itself, and on prices. Baldwin and 
Krugman (1989), for example, show how 
the entry and exit decisions described 
above feed back to the exchange rate. 
In their model, a policy change (e.g., a 
reduction in the money supply) that 
causes the currency to appreciate sharply 
can lead to entry by foreign firms, which 
in turn leads to an equilibrium exchange 
rate that is below the original one. (These 
ideas are also discussed in Krugman 
1989.) Similar effects occur with prices. 
In the case of copper, the reluctance of 
firms to close down mines during the 
mid-1980s, when demand was weak, al- 
lowed the price to fall even more than 
it would have otherwise. 

Finally, sunk costs may be important 
in explaining the dependence of con- 
sumer spending, particularly for durable 

goods, on income and wealth. Most pur- 
chases of consumer durables are at least 
partly irreversible. Poksang Lam (1989) 
developed a model that accounts for this, 
and shows how irreversibility results in 
a sluggish adjustment of the stock of du- 
rables to income changes. Sanford Gross- 
man and Guy Laroque (1990) study con- 
sumption and portfolio choice when 
consumption services are generated by 
a durable good and a transaction cost 
must be paid when the good is sold. Un- 
like in standard models (e.g., Merton 
1971), optimal consumption is not a 
smooth funciton of wealth; a large change 
in wealth must occur before a consumer 
changes his holdings of durables and 
hence his consumption. As a result, the 
consumption-based CAPM fails to hold 
(although the market portfolio-based 
CAPM does hold). 

B. Sequential Investment 

Many investments occur in stages 
that must be carried out in sequence, 
and sometimes the payoffs from or costs 
of completing each stage are uncertain. 
For example, investing in a new line of 
aircraft begins with engineering, and 
continues with prototype production, 
testing, and final tooling stages. And an 
investment in a new drug by a pharma- 
ceutical company begins with research 
that (with some probability) leads to a 
new compound, continues with extensive 
testing until FDA approval is obtained, 
and concludes with the construction of 
a production facility and marketing of the 
product. 

Sequential investment programs like 
these can take substantial time to com- 
plete five to ten years for the two exam- 
ples mentioned above. In addition, they 
can be temporarily or permanently aban- 
doned midstream if the value of the end 
product falls, or the expected cost of com- 
pleting the investment rises. Hence 
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these investments can be viewed as com- 
pound options; each stage completed (or 
dollar invested) gives the firm an option 
to complete the next stage (or invest the 
next dollar). The problem is to find a con- 
tingent plan for making these sequential 
and irreversible expenditures 

Majd and Pindyck (1987) solve this 
problem for a model in which a firm in- 
vests continuously (each dollar spent 
buys an option to spend the next dollar) 
until the project is completed, invest- 
ment can be stopped and later restarted 
costlessly, and there is a maximum rate 
at which outlays and construction can 
proceed (i.e., it takes "time to build"). 
The payoff to the firm upon completion 
is V, the value of the operating project, 
which follows the geometric Brownian 
motion of equation (1). Letting K be the 
total remaining expenditure required to 
complete the project, the optimal rule 
is to keep investing at the maximum rate 
as long as V exceeds a critical value 
V*(K), with dV*/dK < 0. Using the meth- 
ods of Sections III and IV, it is straight- 
forward to derive a partial differential 
equation for F(V, K), the value of the 
investment opportunity. Solutions to this 
equation and its associated boundry con- 
ditions, which are obtained by numerical 
methods, yield the optimal investment 
rule V*(K). 4 

These solutions show how time to build 
magnifies the effects of irreversibility and 

uncertainty. The lower the maximum 
rate of investment (i.e., the longer it 
takes to complete the project), the higher 
is the critical V*(K) required for construc- 
tion to proceed. This is because the 
project's value upon completion is more 
uncertain, and the expected rate of 
growth of V over the construction period 
is less than p, the risk-adjusted rate of 
return (8 is positive). Also, unlike the 
model of Section III where the critical 
value V* declines monotonically with 8, 
with time to build, V* will increase with 
8 when 8 is large. The reason is that while 
a higher 8 increases the opportunity cost 
of waiting to begin construction, it also 
reduces the expected rate of growth of 
V during the construction period, so that 
the (risk-adjusted) expected payoff from 
completing construction is reduced. Fi- 
nally, by computing F(V, K) for different 
maximum rates of investment, one can 
value construction time flexibility, that 
is, what one would pay to be able to build 
the project faster.'5 

In the Majd-Pindyck model, invest- 
ment occurs as a continuous flow; that 
is, each dollar spent gives the firm an 
option to spend another dollar, up to the 
last dollar, which gives the firm a com- 
pleted project. Often, however, sequen- 
tial investments occur in discrete stages, 
as with the aircraft and pharmaceutical 
examples mentioned above. In these 
cases, the optimal investment rules can 
be found by working backward from the 

14 Letting k be the maximum rate of investment, 
this equation is 

'/2u2V2Fvv + (r - 8)VFv - rF - x(kFK + k) = 0 

where x = 1 when the firm is investing and 0 other- 
wise. F(V, K) must also satisfy the following boundary 
conditions: 

F(V, 0) = V, 
limv ),O FV(V, K) = e bKlk 

F(O, K) = 0 
and F(V, K) and FV(V, K) continuous at the boundary 
V*(K). For an overview of numerical methods for 
solving partial differential equations of this kind, see 
Geske and Kuldeep Shastri (1985). 

15 The production decisions of a firm facing a learn- 
ing curve and stochastically shifting demand is an- 
other example of this kind of sequential investment. 
Here, part of the firm's cost of production is actually 
an (irreversible) investment, which yields a reduction 
in future costs. Because demand fluctuates, the fu- 
ture payoffs from this investment are uncertain. Majd 
and Pindyck (1989) introduce stochastic demand into 
a learning curve model, and derive the optimal pro- 
duction rule. They show how uncertainty Over future 
demand reduces the shadow value of cumulative pro- 
duction generated by learning, and thus raises the 
critical price at which it is optimal for the firm to 
produce. 
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completed project, as we did with the 
model of Section IV. 

To see how this can be done, consider 
a two-stage investment in new oil pro- 
duction capacity. First, reserves of oil 
must be obtained, through exploration 
or outright purchase, at a cost 11. Second, 
development wells (and possibly pipe- 
lines) must be built, at a cost 12. Let P 
be the price of oil and assume it follows 
the geometric Brownian motion of equa- 
tion (14). The firm thus begins with an 
option, worth F1(P), to invest in reserves. 
Doing so buys an option, worth F2(P), 
to invest in development wells. Making 
this investment yields production capac- 
ity, worth V(P). 

Working backward to find the optimal 
investment rules, first note that as in the 
model of Section IV, V(P) is the value 
of the firm's operating options, and can 
be calculated accordingly. Next, F2(P) 
can be found; it is easy to show that it 
must satisfy equation (18) and boundary 
conditions (19a-19c), with 12 replacing I, 
and P* becoming the critical price at 
which the firm should invest in develop- 
ment wells. Finally, F1(P) can be found. 
It also satisfies (18) and (19a-19c), but 
with F2(P) replacing V(P) in (19b) and 
(19c), 1 replacing I, and P** replacing 
P*. (P** is the critical price of oil at which 
the firm should invest in reserves.) If 
marginal production cost is constant and 
there is no cost to stopping or restarting 
production, an analytical solution can be 
obtained. 16 

In this example there is no time to 
build; each stage (obtaining reserves, and 
building development wells) can be com- 
pleted instantly. For many projects each 
stage of the investment takes time, and 
the firm can stop investing in the middle 

of a stage. Then the problem must be 
solved numerically, using a method like 
the one in Majd and Pindyck (1987).17 

In all of the models discussed so far, 
no learning takes place, in the sense that 
future prices (or project values, V) are 
always uncertain, and the degree of un- 
certainty depends only on the time hori- 
zon. For some sequential investments, 
however, early stages provide informa- 
tion about costs or net payoffs in later 
stages. Synthetic fuels was a much de- 
bated example of this; oil companies ar- 
gued that demonstration plants were 
needed (and deserved funding by the 
government) to determine production 
costs. The aircraft and pharmaceutical in- 
vestments mentioned above also have 
these characteristics. The engineering, 
prototype production, and testing stages 
in the development of a new aircraft all 
provide information about the ultimate 
cost of production (as well as the aircraft's 
flight characteristics, which will help de- 
termine its market value). Likewise, the 
R & D and testing stages of the develop- 
ment of a new drug determine the effi- 
cacy and side effects of the drug, and 
hence its value. 

Kevin Roberts and Martin Weitzman 
(1981) developed a model of sequential 
investment that stresses this role of infor- 
mation gathering. In their model, each 
stage of investment yields information 
that reduces the uncertainty over the 
value of the completed project. Because 
the project can be stopped in midstream, 
it may pay to go ahead with the early 
stages of the investment even though ex 
ante the net present value of the entire 
project is negative. Hence the use of a 
simple net present value rule can reject 

16 James Paddock, Siegel, and James Smith (1988) 
value oil reserves as options to produce oil, but ignore 
the development stage. Octavio Tourinho (1979) first 
suggested that natural resource reserves can be 
valued as options. 

17 In a related paper, Carliss Baldwin (1982) ana- 
lyzes sequential investment decisions when invest- 
ment opportunities arrive randomly, and the firm 
has limited resources to invest. She values the se- 
quence of opportunities, and shows that a simple 
NPV rule will lead to overinvestment. 
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projects that should be undertaken. This 
is just the opposite of our earlier finding 
that a simple NPV rule can accept proj- 
ects that should be rejected. The crucial 
assumption in the Roberts-Weitzman 
model is that prices and costs do not 
evolve stochastically. The value of the 
completed project may not be known (at 
least until the early stages are com- 
pleted), but that value does not change 
over time, so there is no gain from wait- 
ing, and no opportunity cost to investing 
now. Instead, information gathering adds 
a shadow value to the early stages of the 
investment. 18 

This result applies whenever informa- 
tion gathering, rather than waiting, 
yields information. The basic principle 
is easily seen by modifying our simple 
two-period example from Section II. 
Suppose that the widget factory can only 
be built this year, and at a cost of $1,200. 
However, by first spending $50 to re- 
search the widget market, one could de- 
termine whether widget prices will rise 
or fall next year. Clearly one should 
spend this $50, even though the NPV 
of the entire project (the research plus 
the construction of the factory) is nega- 
tive. One would then build the factory 
only if the research showed that widget 
prices will rise. 

C. Incremental Investment and 
Capacity Choice 

So far we have examined decisions 
to invest in single, discrete projects, for 
example, the decision to build a new fac- 
tory or develop a new aircraft. Much of 

the economics literature on investment, 
however, focuses on incremental invest- 
ment; firms invest to the point that the 
cost of the marginal unit of capital just 
equals the present value of the revenues 
it is expected to generate. The cost of 
the unit can include adjustment costs (re- 
flecting the time and expense of installing 
and learning to use new capital) in addi- 
tion to the purchase cost. In most mod- 
els, adjustment costs are a convex func- 
tion of the rate of investment, and are 
thus a crucial determinant of that rate. 
(For an overview, see Stephen Nickell 
1978 or the more recent survey by An- 
drew Abel 1990.) 

Except for work by Kenneth Arrow 
(1968) and Nickell (1974), which is in a 
deterministic context, this literature gen- 
erally ignores the effects of irreversibil- 
ity. As with discrete projects, irrevers- 
ibility and the ability to delay investment 
decisions change the fundamental rule 
for investing. The firm must include as 
part of the total cost of an incremental 
unit of capital the opportunity cost of in- 
vesting in that unit now rather than wait- 
ing. 

Giuseppe Bertola (1989) and Pindyck 
(1988) developed models of incremental 
investment and capacity choice that ac- 
count for irreversibility. In Pindyck's 
model, the firm faces a linear inverse de- 
mand function, P = 0(t) - yQ, where 0 
follows a geometric Brownian motion, 
and has a Leontief production technol- 
ogy. The firm can invest at any time at 
a cost k per unit of capital, and each unit 
of capital gives it the capacity to produce 
up to one unit of output per period. The 
investment problem is solved by first de- 
termining the value of an incremental 
unit of capital, given 0 and an existing 
capital stock, K, and then finding the 
value of the option to invest in this unit 
and the optimal exercise rule. This rule 
is a function K*(0)- invest whenever 
K < K*(o) which determines the firm's 

'8 Weitzman (1981) used this model to evaluate 
the case for building demonstration plants for syn- 
thetic fuel production, and found that learning about 
costs could justify these early investments. Much of 
the debate over synthetic fuels has had to do with 
the role of government, and in particular whether 
subsidies (for demonstration plants or for actual pro- 
duction) could be justified. These issues are discussed 
in Paul Joskow and Pindyck (1979) and Richard 
Schmalensee (1980). 

This content downloaded from 18.7.29.240 on Wed, 5 Nov 2014 09:36:58 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Pindyck: Irreversibility, Uncertainty, and Investment 1139 

optimal capital stock. Pindyck shows that 
an increase in the variance of 0 increases 
the value of an incremental unit of capital 
(that unit represents a set of call options 
on future production), but increases the 
value of the option to invest in the unit 
even more, so that investment requires 
a higher value of 0. Hence a more volatile 
demand implies that a firm should hold 
less capital, but have a higher market 
value. 19 

In Bertola's model, the firms' net reve- 
nue function is of the form AK'-Z, with 
O < 3 < 1. (This would follow from a 
Cobb-Douglas production function and 
an isoelastic demand curve.) The de- 
mand-shift variable Z and the purchase 
price of capital follow correlated geomet- 
ric Brownian motions. Bertola solves for 
the optimal investment rule, and shows 
that the marginal profitability of capital 
that triggers investment is higher than 
the user cost of capital as conventionally 
measured. The capital stock, K, is nonsta- 
tionary, but Bertola finds the steady-state 
distribution for the ratio of the marginal 
profitability of capital to its price. Irre- 
versibility and uncertainty reduce the 
mean of this ratio; that is, on average 
capital intensity is higher. Although the 
firm has a higher threshold for invest- 
ment, this is outweighed on average by 
low outcomes for Z. 

The finding that uncertainty over fu- 
ture demand can increase the value of a 
marginal unit of capital is not new. All 
that is required is that the marginal reve- 
nue product of capital be convex in price. 
This is the case when the unit of capital 
can go unutilized (so that it represents 
a set of operating options). But as Richard 

Hartman (1972) pointed out, it is also the 
case for a competitive firm that combines 
capital and labor with a linear homoge- 
neous production function. Hartman 
shows that as a result, price uncertainty 
increases the firm's investment and capi- 
tal stock. 

Andrew Abel (1983) extends Hartman's 
result to a dynamic model in which price 
follows a geometric Brownian motion and 
there are convex costs of adjusting the 
capital stock, and again shows that uncer- 
tainty increases the firm's rate of invest- 
ment. Finally, Ricardo Caballero (1991) 
introduces asymmetric costs of adjust- 
ment to allow for irreversibility (it can 
be costlier to reduce K than to increase 
it), and shows that again price uncer- 
tainty increases the rate of investment. 
However, the Abel and Caballero results 
hinge on the assumptions of constant re- 
turns and perfect competition, which 
make the marginal revenue product of 
capital independent of the capital stock. 
Then the firm can ignore its future capital 
stock (and hence irreversibility) when de- 
ciding how much to invest today. As Ca- 
ballero shows, decreasing returns or im- 
perfect competition will link the marginal 
revenue products of capital across time, 
so that the basic result in Pindyck (1988) 
and Bertola (1989) holds.20 

The assumption that the firm can in- 
vest incrementally is extreme. In most 
industries, capacity additions are lumpy, 
and there are scale economies (a 400 
room hotel usually costs less to build and 
operate than two 200 room hotels). 

19 This means that the ratio of a firm's market value 
to the value of its capital in place should always ex- 
ceed one (because part of its market value is the 
value of its growth options), and this ratio should 
be higher for firms selling in more volatile markets. 
Kester's (1984) study suggests that this is indeed the 
case. 

20 Even if firms are perfectly competitive and have 
constant returns, stochastic fluctuations in demand 
will depress irreversible investment if there can be 
entry by new firms in response to price increases. 
See Pindyck (1990b) for a discussion of this point. 
Also, Abel, Bertola, Caballero, and Pindyck examine 
the effects of increased demand or price uncertainty 
holding the discount rate fixed. As Roger Craine 
(1989) points out, an increase in demand uncertainty 
is likely to be accompanied by an increase in the 
systematic riskiness of the firm's capital, and hence 
an increase in its risk-adjusted discount rate. 
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Hence firms must decide when to add 
capacity, and how large an addition to 
make. This problem was first studied in 
a stochastic setting by Alan Manne 
(1961). He considered a firm that must 
always have enough capacity to satisfy 
demand, which grows according to a sim- 
ple Brownian motion with drift. The cost 
of adding an amount of capacity x is kXa, 
with 0 < a < 1; the firm must choose x 
to minimize the present value of ex- 
pected capital costs. Manne shows that 
with scale economies, uncertainty over 
demand growth leads the firm to add ca- 
pacity in larger increments, and in- 
creases the present value of expected 
costs. 

In Manne's model (which might apply 
to an electric utility that must always sat- 
isfy demand) the firm does not choose 
when to invest, only how much. Most 
firms must choose both. Pindyck (1988) 
determined the effects of uncertainty on 
these decisions when there are no scale 
economies in construction by extending 
his model to a firm that must decide 
when to build a single plant and how 
large it should be. 21 As with Manne's 
model, uncertainty increases the optimal 
plant size. However, it also raises the 
critical demand threshold at which the 
plant is built. Thus demand uncertainty 
should lead firms to delay capacity addi- 
tions, but makes those additions larger 
when they occur. 

Sometimes capacity choice is accompa- 
nied by a technology choice. Consider a 
firm that produces two products, A and 
B, with interdependent demands that 

vary stochastically. It can produce these 
products by (irreversibly) installing and 
utilizing product-specific capital, or by 
(irreversibly) installing a more costly flex- 
ible type of capital that can be used to 
produce either or both products. The 
problem is to decide which type and how 
much capital to install. Hua He and Pin- 
dyck (1989) solve this for a model with 
linear demands by first valuing incre- 
mental units of capital (output-specific 
and flexible), and then finding the opti- 
mal investment rule, and hence optimal 
amounts of capacity. By integrating the 
value of incremental units of specific and 
flexible capital, one can determine the 
preferred type of capital, as well as the 
value (if any) of flexibility. 

In all of the studies cited so far, the 
stochastic state variable (the value of the 
project, the price of the firm's output, 
or a demand- or cost-shift variable) is 
specified exogenously. In a competitive 
equilibrium, firms' investment and out- 
put decisions are dependent on the price 
process, but also collectively generate 
that process. Hence we would like to 
know whether firms' decisions are consis- 
tent with the price processes we specify. 

At least two studies have addressed 
this issue. Steven Lippman and Richard 
P. Rumelt (1985) model a competitive 
industry where firms face sunk costs of 
entry and exit, and the market demand 
curve fluctuates stochastically. They find 
an equilibrium consisting of optimal in- 
vestment and production rules for firms 
(with uncertainty, they hold less capac- 
ity), and a corresponding process for mar- 
ket price. John Leahy (1989) extends 
Dixit's (1989a) model of entry and exit 
to an industry setting in which price is 
endogenous. He shows that price will be 
driven by demand shocks until an entry 
or exit barrier is reached, and then en- 
try or exit prevent it from moving fur- 
ther. Hence price follows a regulated 
Brownian motion. Surprisingly, it makes 

21 The firm has an option, worth G(K, 0), to build 
a plant of arbitrary size K. Once built, the plant has 
a value V(K, 0) (the value of the firm's operating 
options), which can be found using the methods of 
Section IV. G(K, 0) will satisfy equation (18), but 
with boundary conditions G(K*, 0*) = V(K*, 0*) - 
kK* and GO(K*,0*) = VO(K*, 0*), where 0* is the 
critical 0 at which the plant should be built, and K* 
is its optimal size. See the Appendix to Pindyck 
(1988). 
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no difference whether firms take entry 
and exit into account, or simply assume 
that price will follow a geometric 
Brownian motion; the same entry and 
exit barriers result. This suggests that 
models in which price is exogenous may 
provide a reasonable description of in- 
dustry investment and capacity. 

VI. Investment Behavior and Economic 
Policy 

Nondiversifiable risk plays a role in 
even the simplest models of investment, 
by affecting the cost of capital. But the 
findings summarized in this paper sug- 
gest that risk may be a more crucial det- 
erminant of investment. This is likely to 
have implications for the explanation and 
prediction of investment behavior at the 
industry- or economy-wide level, and for 
the design of policy. 

The role of interest rates and interest 
rate stability in determining investment 
is a good example of this. Jonathan Inger- 
soll and Ross (1988) have examined irre- 
versible investment decisions when the 
interest rate evolves stochastically, but 
future cash flows are known with cer- 
tainty. As with uncertainty over future 
cash flows, this creates an opportunity 
cost of investing, so that the traditional 
NPV rule will accept too many projects. 
Instead, an investment should be made 
only when the interest rate is below a 
critical rate, r*, which is lower than the 
internal rate of return, r?, which makes 
the NPV zero. Furthermore, the differ- 
ence between r* and ro grows as the vola- 
tility of interest rates grows. 

Ingersoll and Ross also show that for 
long-lived projects, a decrease in ex- 
pected interest rates for all future periods 
need not accelerate investment. The rea- 
son is that such a change also lowers the 
cost of waiting, and thus can have an am- 
biguous effect on investment. This sug- 
gests that the level of interest rates may 

be of only secondary importance as a de- 
terminant of aggregate investment 
spending; interest rate volatility may be 
more important. 

In fact, investment spending on an ag- 
gregate level may be highly sensitive to 
risk in various forms: uncertainties over 
future product prices and input costs that 
directly determine cash flows, uncer- 
tainty over exchange rates, and uncer- 
tainty over future tax and regulatory 
policy. This means that if a goal of macro- 
economic policy is to stimulate invest- 
ment, stability and credibility may be 
more important than the particular levels 
of tax rates or interest rates. Put another 
way, if uncertainty over the economic en- 
vironment is high, tax and related incen- 
tives may have to be very large to have 
any significant impact on investment. 

Similarly, a major cost of political and 
economic instability may be its depress- 
ing effect on investment. This is likely 
to be particularly important for the devel- 
oping economies. For many LDCs, in- 
vestment as a fraction of GDP has fallen 
dramatically during the 1980s, despite 
moderate economic growth. Yet the suc- 
cess of macroeconomic policy in these 
countries requires increases in private in- 
vestment. This has created a catch-22 
that makes the social value of investment 
higher than its private value. The reason 
is that if firms do not have confidence 
that macro policies will succeed and 
growth trajectories will be maintained, 
they are afraid to invest, but if they do 
not invest, macro policies are indeed 
doomed to fail. It is therefore important 
to understand how investment might de- 
pend on risk factors that are at least partly 
under government control, for example, 
price, wage, and exchange rate stability, 
the threat of price controls or expropria- 
tion, and changes in trade regimes.22 

22 Caballero and Vittorio Corbo (1988), for exam- 
ple, have shown how uncertainty over future real 
exchange rates can depress exports. 
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The irreversibility of investment also 
helps to explain why trade reforms can 
turn out to be counterproductive, with 
a liberalization leading to a decrease in 
aggregate investment. As Rudiger Dorn- 
busch (1987) and Sweder Van Wijnber- 
gen (1985) have noted, uncertainty over 
future tariff structures, and hence over 
future factor returns, creates an opportu- 
nity cost to committing capital to new 
physical plants. Foreign exchange and 
liquid assets held abroad involve no such 
commitment, and so may be preferrable 
even though the expected rate of return 
is lower.23 Likewise, it may be difficult 
to stem or reverse capital flight if there 
is a perception that it may become more 
difficult to take capital out of the country 
than to bring it in. 

Irreversibility is also likely to have pol- 
icy implications for specific industries. 
The energy industry is an example. 
There, the issue of stability and credibil- 
ity arises with the possibility of price con- 
trols, "windfall" profit taxes, or related 
policies that might be imposed should 
prices rise substantially. Investment de- 
cisions must be made taking into account 
that price is evolving stochastically, but 
also the probability that price may be 
capped at some level, or otherwise regu- 
lated. 

A more fundamental problem is the 
volatility of market prices themselves. 
For many raw commodities (oil is an ex- 
ample), price volatility rose substantially 
in the early 1970s, and has been high 

since. Other things equal, we would ex- 
pect this to increase the value of land 
and other resources needed to produce 
the commodity, but have a depressing 
effect on construction expenditures and 
production capacity. Most studies of the 
gains from price stabilization focus on ad- 
justment costs and the curvature of de- 
mand and (static) supply curves. (See Da- 
vid Newbery and Joseph Stiglitz 1981 for 
an overview.) The irreversibility of in- 
vestment creates an additional gain 
which must be accounted for. 

The existing literature on these effects 
of uncertainty and instability is a largely 
theoretical one. This may reflect the fact 
that models of irreversible investment 
under uncertainty are relatively compli- 
cated, and so are difficult to translate into 
well-specified empirical models. In any 
case, the gap here between theory and 
empiricism is disturbing. While it is clear 
from the theory that increases in the vola- 
tility of, say, interest rates or exchange 
rates should depress investment, it is not 
at all clear how large these effects should 
be. Nor is it clear how important these 
factors have been as explanators of invest- 
ment across countries and over time. 
Most econometric models of aggregate 
economic activity ignore the role of risk, 
or deal with it only implicitly. A more 
explicit treatment of risk may help to bet- 
ter explain economic fluctuations, and es- 
pecially investment spending.24 But sub- 

23 But Van Wijnbergen is incorrect in claiming 
(1985, p. 369) that "there is only a gain to be obtained 
by deferring commitment if uncertainty decreases 
over time so that information can be acquired about 
future factor returns as time goes by." He bases his 
analysis on the models of Bernanke (1983) and 
Cukierman (1980), in which there is indeed a reduc- 
tion in uncertainty over time. But as we have seen 
from the models in Sections III and IV of this paper, 
this is not necessary. In those models, the future 
value of the project or price of output is always uncer- 
tain, but there is nonetheless an opportunity cost 
to committing resources. 

24 sharp jumps in energy prices in 1974 and 
1979-80 clearly contributed to the 1975 and 1980- 
82 recessions. They reduced the real incomes of oil- 
importing countries, and caused adjustment prob- 
lems-inflation and further drops in income due to 
rigidities that prevented wages and nonenergy prices 
from quickly equilibrating. But energy shocks also 
raised uncertainty over future economic conditions; 
it was unclear whether energy prices would fall or 
keep rising, what impact higher energy prices would 
have on the marginal products of various types of 
capital, how long-lived the inflationary impact of the 
shocks would be, and so on. Much more volatile 
exchange rates and interest rates also made the eco- 
nomic environment more uncertain, especially in 
1979-82. This may have contributed to the decline 
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stantial empirical work is needed to de- 
termine whether the theoretical models 
discussed in this paper have predictive 
power. 25 

One step in this direction is the recent 
paper by Bertola and Caballero (1990). 
They solve the optimal irreversible capi- 
tal accumulation problem for an individ- 
ual firm with a Cobb-Douglas production 
function, and then characterize the be- 
havior of aggregate investment when 
there are both firm-specific and aggre- 
gate sources of uncertainty. Their model 
does well in replicating the behavior of 
postwar U.S. investment. 

Simulation models may provide an- 
other vehicle for testing the implications 
of irreversibility and uncertainty. The 
structure of such a model might be simi- 
lar to the model presented in Section IV, 
and parameterized so that it "fits" a par- 
ticular industry. One could then calcu- 
late predicted effects of observed changes 
in, say, price volatility, and compare 
them to the predicted effects of changes 
in interest rates or tax rates. Models of 
this sort could likewise be used to predict 
the effect of a perceived possible shift 
in the tax regime, the imposition of price 
controls, and so on. Such models may 
also be a good way to study uncertainty 
of the "peso problem" sort. 

VII. Conclusions. 

I have focused largely on investment 
in capital goods, but the principles illus- 
trated here apply to a broad variety of 
problems involving irreversibility. For 
example, as Dornbusch (1987) points out, 
the same issues arise in labor markets, 
where firms face high (sunk) costs of hir- 

ing, training, and sometimes firing work- 
ers. (Samuel Bentolila and Bertola 1990 
have recently developed a formal model 
that explains how hiring and firing costs 
affect employment decisions.) 

Another important set of applications 
arises in the context of natural resources 
and the environment. If future values of 
wilderness areas and parking lots are un- 
certain, it may be better to wait before 
irreversibly paving over a wilderness 
area. Here, the option value of waiting 
creates an opportunity cost, and this 
must be added to the current direct cost 
of destroying the wilderness area when 
doing a cost-benefit analysis of the park- 
ing lot. This point was first made by Ar- 
row and Anthony Fisher (1974) and 
Claude Henry (1974), and has since been 
elaborated upon in the environmental 
economics literature.26 It has become es- 
pecially germane in recent years because 
of concern over possible irrevers- 
ible long-term environmental changes 
such as ozone depletion and global warm- 
ing. 

While this insight is important, actu- 
ally measuring these opportunity costs 
can be difficult. In the case of a well- 
defined project (a widget factory), one 
can construct a model like the one in 
Section IV. But it is not always clear what 
the correct stochastic process is for, say, 
the output price. Even if one accepts 
equation (14), the opportunity cost of in- 
vesting now (and the investment rule) 
will depend on parameters, such as a 

and r, that may not be easy to measure. 
The problem is much greater when ap- 
plying these methods to investment deci- 

in investment spending that occurred, a point made 
by Bernanke (1983) with respect to changes in oil 
prices. Also, see Paul Evans (1984) and John Tatom 
(1984) for discussions of the effects of increased inter- 
est rate volatility. 

25 See Pindyck (1990a) for a more detailed discus- 
sion of this issue. 

26Recent examples are Fisher and W. Michael 
Hanemann (1987) and Hanemann (1989). This con- 
cept of option value should be distinguished from 
that of Schmalensee (1972), which is more like a risk 
premium that is needed to compensate risk-averse 
consumers because of uncertainty over future valua- 
tions of an environmental amenity. For a recent dis- 
cussion of this latter concept, see Mark Plummer 
and Hartman (1986). 
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sions involving resources and the envi- 
ronment. Then one must model, for ex- 
ample, the stochastic evolution of soci- 
ety's valuation of wilderness areas. 

On the other hand, models like the 
ones discussed in this paper can be 
solved (by numerical methods) with al- 
ternative stochastic processes for the rel- 
evant state variables, and it is easy to 
determine the sensitivity of the solution 
to parameter values, as we did in Sec- 
tions III and IV. These models at least 
provide some insight into the importance 
of irreversibility, and the ranges of op- 
portunity costs that might be implied. 
Obtaining such insight is clearly better 
than ignoring irreversibility. 

APPENDIX 

This appendix provides a brief introduction to the 
tools of stochastic calculus and dynamic programming 
that are used in Sections III and IV. For more de- 
tailed introductory discussions, see Stuart Dreyfus 
(1965), Merton (1971), Chow (1979), Malliaris and 
Brock (1982), or Hull (1989). For more rigorous treat- 
ments, see Harold Kushner (1967) or Wendell Flem- 
ing and Raymond Rishel (1975). I first discuss the 
Wiener process, then Ito's Lemma, and finally sto- 
chastic dynamic programming. 

Wiener Processes 
A Wiener process (also called a Brownian motion) 

is a continuous-time Markov stochastic process whose 
increments are independent, no matter how small 
the time interval. Specifically, if z(t) is a Wiener pro- 
cess, then any change in z, Az, corresponding to a 
time interval At, satisfies the following conditions: 

(i) The relationship between Az and At is given 
by 

AZ = Et t 

where Et is a normally distributed random vari- 
able with a mean of zero and a standard devia- 
tion of 1. 

(ii) Et iS serially uncorrelated, that is, E(EtE,) = 0 
for t $4 s. Thus the values of Az for any two 
different intervals of time are independent, so 
z(t) follows a Markov process. 

Let us examine what these two conditions imply 
for the change in z over some finite interval of time 
T. We can break this interval into n units of length 
At each, with n = T/At. Then the change in z over 
this interval is given by 

n 
z(s + T) -_z(s) = E i(At)1/2 

,=1 

Because the Ei's are independent of eacn other, the 
change z(s + T) - 'z(s) is normally distributed with 

mean 0, and variance nAt = T. This last point which 
follows from the fact that Az depends on Ai and 
not on At, is particulary important; the variance of 
the change in a Wiener process grows linearly with 
the time interval. 

Letting the At's become infinitesimally small, we 
write the increment of the Wiener process as dz = 
E(t)(dt)"2. Because E(t) has zero mean and unit stan- 
dard deviation, E(dz) = 0, and E[(dz)2] = dt. Finally, 
consider two Wiener processes, zl(t) and z2(t). Then 
we can write E(dz,dz2) = p12dt, where P12 is the 
coefficient of correlation between the two processes. 

We often work with the following generalization 
of the Wiener process: 

dx = a(x, t)dt + b(x, t)dz. (A. 1) 

The continuous-time stochastic process x(t) repre- 
sented by equation (A. 1) is called an Ito process. 
Consider the mean and variance of the increments 
of this process. Because E(dz) = 0, E(dx) = a(x, t)dt. 
The variance of dx is equal to E{[dx - E(dx)]2} = 

b2(x, t)dt. Hence we refer to a(x, t) as the expected 
drift rate of the Ito process, and we refer to b2(x, t) 
as the variance rate. 

An important special case of (A. 1) is the geometric 
Brownian motion with drift. Here a(x, t) = ox, and 
b(x, t) = ax, where ot and a are constants. In this 
case (A.1) becomes 

dx = otxdt + uxdz. (A.2) 

(This is identical to equation (1) in Section III, but 
with V replaced by x.) From our discussion of the 
Wiener process, we know that over any finite interval 
of time, percentage changes in x, Ax/x, are normally 
distributed. Hence absolute changes in x, Ax, are 
log-normally distributed. We will derive the ex- 
pected value of Ax shortly. 

An important property of the Ito process (A. 1) is 
that while it is continuous in time, it is not differentia- 
ble. To see this, note that dxldt includes a term with 
dzldt = E(t)(dt)-2, which becomes infinitely large 
as dt becomes infinitesimally small. However, we 
will often want to work with functions of x (or z), 
and we will need to find the differentials of such 
functions. To do this, we make use of Ito's Lemma. 

Ito's Lemma 

Ito's Lemma is mostly easily understood as a Taylor 
series expansion. Suppose x follows the Ito process 
(A. 1), and consider a function F(x, t) that is at least 
twice differentiable. We want to find the total differ- 
ential of this function, dF. The usual rules of calculus 
define this differential in terms of first-order changes 
in x and t: dF = F,dx + Ftdt, where subscripts denote 
partial derivatives, that is, F, = aF/ax, and so on. 
But suppose that we also include higher-order terms 
for changes in x: 

dF = F,dx + Ftdt + (1I2)F,,(dx)2 (A.3) 
+ (116)Fxxl(dX)3 + ., . 

In ordinary calculus, these higher-order terms all 
vanish in the limit. To see whether that is the case 
here, expand the third and fourth terms on the right- 
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hand side of (A.3). First, substitute (A. 1) for dx to 
determine (dx)2: 

(dx)2 = a2(:X, t)(dt)2 + 2a(x, t)b(x, t)(dt)312 + b2(x, t)dt. 

Terms in (dt)312 and (dt)2 vanish as dt becomes infini- 
tesimal, so we can ignore these terms and write 
(dx)2 = b2(x, t)dt. As for the fourth term on the right- 
hand side of (A.3), every term in the expansion of 
(dx)3 will include dt raised to a power greater than 
1, and so will vanish in the limit. This is likewise 
the case for any higher-order terms in (A.3). Hence 
Ito's Lemma gives the differential dF as 

dF = F,dx + Ftdt + (1I2)Fxx(dx)2, (A.4) 

or, substituting from (A. 1) for dx, 

dF = [Ft + a(x, t)F, + ?/2b2(x, t)Fx]dt (A 5) 
+b (x, t)F,dz. 

We can easily extend this to functions of several 
Ito processes. Suppose F = F(xl, . . ., xm, t) is a 
function of time and the m Ito processes, x,. 
Xm, where 

dxi = ai(x., xm, t)dt (A. 6) 
+ bi(x1 . Xm t)dzi, i = 1, m 

and E(dzidzj) = pg.dt. Then, letting Fi denote aF/ax, 
and FY- denote a2lIax,jaxp Ito's Lemma gives the dif- 
ferential dF as 

dF = Ftdt + E Fidxi + 1/2E E Fiidx,dx, (A. 7) 
1 i J 

or, substituting for dxi: 

dF = [Ft + ai(xl, . t)F, 

+ 1/2 b2(x1, t)F, (A. 8) 

+ p pjb(xi, t)bj(xl, . t)FI,]dt 
i?J 

+ E b(xl,. t)Fidzi. 

Example: Geometric Brownian Motion. Let us re- 
turn to the process given by equation (A.2). We will 
use Ito'si Lemma to find the process followed by 
F(x) = log x. Because Ft = 0, Fx = lIx, and F = 
-l/x2, we have from (A. 4): 

dF = (llx)dx - (112x2)(dx)2 
= oLdt + adz - ?/2a 2dt (A.9) 

= (Ot - ?/2u 2)dt + adz. 

Hence, over any finite time interval T, the change 
in log x is normally distributed with mean (ot - ?/2a 2)T 
and variance au2T. 

The geometric Brownian motion is often used to 
model the prices of stocks and other assets. It says 
returns are normally distributed, with a standard de- 
viation that grows with the square root of the holding 
period. 

Example: Correlated Brownian Motions. As a sec- 
ond example of the use of Ito's Lemma, consider a 
function F(x, y) = xy, where x and y each follow 
geometric Brownian motions: 

dx = cLxdt + ouxdz, 
dy = oL,ydt + uyydzy 

with E(dz,dzy) = p. We will find the process followed 
by F(x, y), and the process followed by G = log F. 

Because F = Fyy = 0 and F"y = 1, we have 
from (A.7): 

dF = xdy + ydx + (dx)(dy). (A. 10) 

Now substitute for dx and dy and rearrange: 

dF = (ox + oty + puruy)Fdt (A. 1) 
+ (u,dz, + uydzy)F. 

Hence F also follows a geometric Brownian motion. 
What about G = log F? Going through the same 
steps as in the previous example, we find that 

dG = (ox + ofy) - 1/2u 2 - ?/2U2 )dt 
+u1z od .(A. 12) 

From (A. 12) we see that over any time interval T, 
the change in lo~ F is normally distributed with mean 
(Ot + Ot - 1/2 - 1/2 2)T and variance (uw + + 

2puxuy)f'1. 

Stochastic Dynamic Programming 
Ito's Lemma also allows us to apply dynamic pro- 

gramming to optimization problems in which one 
or more of the state variables follow Ito processes. 
Consider the following problem of choosing u(t) over 
time to maximize the value of an asset that yields a 
flow of income fl = fl [x(t), u(t)]: 

max Eo H[x(t),u(t)]e-tdt, (A. 13) 

where x(t) follows the Ito process given by 

dx = a(x, u)dt + b(x, u)dz. (A. 14) 
Let J be the value of the asset assuming u(t) is 

chosen optimally, 

J(x) = max Etf H [x(T),u(T)]e 1`dT. (A.15) 

Because time appears in the maximand only through 
the discount factor, the Bellman equation (the funda- 
mental equation of optimality) for this problem can 
be written as 

,J= max (A.16) 
" [H(x, ta) + (Ildt)EtdJ]. 

Equation (A. 16) says that the total return on this 
asset, ,uJ, has two components, the income flow 
fl(x, u), and the expected rate of capital gain, (1/ 
dt)EtdJ. (Note that in writing the expected capital 
gain, we apply the expectation operator Et, which 
eliminates terms in dz, before taking the time deriva- 
tive.) The optimal u(t) balances current income 
against expected capital gains to maximize the sum 
of the two components. 

To solve this problem, we need to take the differ- 
ential dJ. Because J is a function of the Ito process 
x(t), we apply Ito's Lemma. Using equation (A.4), 

dJ = J,dx + ?2J,x(dx)2. (A. 17) 

Now substitute (A. 14) for dx into (A. 17): 
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dJ = [a(x, u)J, + 1/2b2(x, u)J,J]dt + b(x, u)J,dz. (A. 18) 

Using this expression for dJ, and noting that 
E(dz) = 0, we can rewrite the Bellman equation 
(A. 16) as 

,J = max [H(x, u) + a(x, u)Jh 

+ ?/b2(x, u)JXJ. (A. 19) 

In principle, a solution can be obtained by going 
through the following steps. First, maximize the ex- 
pression in curly brackets with respect to u to obtain 
an optimal u* = u*(x, J, J,,). Second, substitute 
this u* back into (A. 19) to eliminate u. The resulting 
differential equation can then be solved for the value 
function J(x), from which the optimal feedback rule 
U*(x) can be found. 

Example: Bellman Equation for Investment Prob- 
lem. In Section III we examined an investment tim- 
ing problem in which a firm had to decide when it 
should pay a sunk cost I to receive a project worth 
V, given that V follows the geometric Brownian mo- 
tion of equation (1). To apply dynamic programming, 
we wrote the maximization problem as equation (11), 
in which F(V) is the value function, that is, the value 
of the investment opportunity, assuming it is opti- 
mally exercised. 

It should now be clear why the Bellman equation 
for this problem is given by equation (12). Because 
the investment opportunity yields no cash flow, the 
only return from holding it is its expected capital 
appreciation, (1/dt)EtdF, which must equal the total 
return ,uF, from which (12) follows. Expanding dF 
using Ito's Lemma results in equation (13), a differen- 
tial equation for F(V). This equation is quite general, 
and could apply to a variety of different problems. 
To get a solution F(V) and investment rule V* for 
our problem, we also apply the boundary conditions 
(6a-6c). 

Example: Value of a Project. In Section IV we 
examined a model of investment in which we first 
had to value the project as a function of the output 
price P. We derived a differential equation (15) for 
V(P) by treating the project as a contingent claim. 
Let us rederive this equation using dynamic pro- 
gramming. 

The dynamic programming problem is to choose 
an operating policy (j = 0 or 1) to maximize the 
expected sum of discounted profits. If the firm is 
risk-neutral, the problem is 

max EoJ j[P(t) - c]e-'dt, (A.20) 
J=0, I 0 

given that P follows the geometric Brownian motion 
of equation (14). The Bellman equation for the value 
function V(P) is then 

rV = max [j(P - c) + (lldt)EtdV]. (A.21) 
J=O, 1 

By Ito's Lemma, (1/dt)E,dV = ?/2u2P2Vpp + otPVp. 
Maximizing with respect to j gives the optimal oper- 
ating policy, j = 1 (i.e., operate) if P > c, and 
j = 0 (i.e., do not operate) otherwise. Substituting 
a r - 8 and rearranging gives equation (15). 
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