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Irreversible Investment, Capacity Choice,
and the Value of the Firm

By ROBERT S. PINDYCK*

Most investment expenditures are irreversible. The firm invests until the full value
of an incremental unit of capacity equals its full cost. The former includes the
value of the option to not utilize the unit; the latter includes the opportunity cost of
sinking resources in the unit. We examine implications for capacity choice,
utilization, firm value, and long-run marginal cost. With irreversibility, capacity is
smaller, and firm value can be largely attributable to growth possibilities.

Most major investment expenditures are
at least partly irreversible: the firm cannot
disinvest, so the expenditures are sunk costs.
Irreversibility usually arises because capital
is industry- or firm-specific, that is, it cannot
be used in a different industry or by a dif-
ferent firm. A steel plant, for example, is
industry-specific. It can only be used to pro-
duce steel, so if the demand for steel falls,
the market value of the plant will fall. Al-
though the plant could be sold to another
steel company, there is likely to be little gain
from doing so, so the investment in the plant
must be viewed as a sunk cost. As another
example, most investments in marketing and
advertising are firm-specific, and so are like-
wise sunk costs.!

The irreversibility of investment has been
neglected since the work of Kenneth Arrow
(1968), despite its implications for spending
decisions, capacity choice, and the value of
the firm. When investment is irreversible and
future demand or cost conditions are uncer-

*Massachusetts Institute of Technology, Cambridge,
MA 02139. This is a revised version of my 1986 NBER
Working Paper, and is based on research done while I
was Visiting Professor of Economics and Fellow, Insti-
tute of Advanced Studies, at Tel-Aviv University. I am
grateful to the National Science Foundation for re-
search support under grant no. SES-8318990, and to
Giuseppe Bertola, Olivier Blanchard, Hua He, Saman
Majd, Robert McDonald, Julio Rotemberg, Lawrence
Summers, and two anonymous referees for helpful dis-
cussions and comments. Any errors are mine.

Partial irreversibility also results from the “lemons’”
problem. Office equipment, cars, trucks, and computers
are not industry-specific, but have resale value well
below their purchase cost, even if new.
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tain, an investment expenditure involves the
exercising, or “killing,” of an option—the
option to productively invest at any time in
the future. One gives up the possibility of
waiting for new information that might af-
fect the desirability or timing of the expendi-
ture; one cannot disinvest should market
conditions change adversely. This lost option
value must be included as part of the cost of
the investment. As a result, the Net Present
Value (NPV) rule “Invest when the value of
a unit of capital is at least as large as the
purchase and installation cost of the unit” is
not valid. Instead the value of the unit must
exceed the purchase and installation cost, by
an amount equal to the value of keeping the
firm’s option to invest these resources else-
where alive—an opportunity cost of invest-
ing.

This aspect of investment has been ex-
plored in an emerging literature, and most
notably by Robert McDonald and Daniel
Siegel (1986). They show that with even
moderate levels of uncertainty, the value of
this opportunity cost can be large, and in-
vestment rules that ignore it will be grossly
in error. Their calculations, and those in
related papers by Michael Brennan and Ed-
uardo Schwartz (1985) and Saman Majd and
Robert Pindyck (1987), show that in many
cases projects should be undertaken only
when their present value is at least double
their direct cost.?

2Other examples are Ben Bernanke, 1983; Alex
Cukierman, 1980; Carliss Baldwin, 1982; and Jeffrey
Mackie-Mason, 1988. In the papers by Bernanke and
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The existing literature has been concerned
with investment decisions involving discrete
projects, for example, whether to build a
factory. This paper examines capacity choice
and expansion, for example, how large a
factory to build, and when to expand it. In
particular, I focus on the marginal invest-
ment decision. This provides a simple and
intuitively appealing solution to the optimal
capacity problem. It also yields insight into
the sources of the firm’s value, and clarifies
the measurement of long-run marginal cost.?

A firm’s capacity choice is optimal when
the present value of the expected cash flow
from a marginal unit of capacity just equals
the total cost of that unit. This total cost
includes the purchase and installation cost,
plus the opportunity cost of exercising the
option to buy the unit. An analysis of capac-
ity choice therefore involves two steps. First,
the value of an extra unit of capacity must
be determined. Second, the value of the op-
tion to invest in this unit must be deter-
mined (it will depend in part on the value of
the unit itself), together with the decision
rule for exercising the option. In essence,
this decision rule is the solution to the opti-
mal capacity problem.

To determine the value of a marginal unit
of capacity, we must account for the fact
that if demand falls, the firm can choose not
to utilize the unit. In effect, a unit of capac-

Cukierman, uncertainty over future market conditions
is reduced as time passes, so firms have an incentive to
delay investing when markets are volatile (for example,
during recessions). In the other papers cited above and
in the model I present here, future market conditions
are always uncertain. Access to the investment opportu-
nity is then analogous to holding a call option on a
dividend-paying stock; an expenditure should be made
only when the value of the resulting project exceeds its
cost by a positive amount, and increased uncertainty
raises the incentive to delay the expenditure. Thus the
results are similar to those in Bernanke and Cukierman,
but for different reasons. Option value also appears in
the natural resource context: if future values of wilder-
ness areas and parking lots are uncertain, it may be
better to wait before irreversibly paving a wilderness
area. See, for example, Claude Henry, 1974.

3The analysis in this paper is closely related to that
in Giuseppe Bertola, 1987, who independently devel-
oped a model of capacity choice similar to mine, using a
different solution approach.
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ity gives the firm an infinite number of op-
tions to produce, one for every future time ¢,
each with exercise price equal to production
cost, and can be valued accordingly. As we
will show, these “operating options” are
worth more the more volatile is demand, just
as a call option on a stock is worth more, the
more volatile is the price of the stock. This
suggests that the firm should hold more ca-
pacity when future demand is uncertain, but
the opposite is true. The reason is that un-
certainty also increases the value of the firm’s
investment options, and hence the opportu-
nity cost of irreversibly investing. Although
the value of a unit of capacity increases, this
opportunity cost increases even more, so the
net effect is to reduce the firm’s optimal
capacity.t

Note that a firm’s market value has two
components: the value of installed capacity
(i-e., the value of the firm’s options to utilize
some or all of this capacity over time), and
the value of the firm’s options to add more
capacity later. As we will see, numerical sim-
ulations suggest that for many firms, “growth
options” should account for a substantial
fraction of market value, and the more
volatile is demand, the larger is this fraction.

Options to productively invest are impor-
tant assets, which firms hold even if they are
price-takers in product and input markets.
How do they arise? In some cases it is the
result of a patent on a production technol-
ogy, or ownership of land or natural re-
sources. More generally, a firm’s managerial
resources, reputation, market position, and
possibly scale, all of which may have been
built up over time, enable it to productively
undertake investments that individuals or
other firms cannot undertake.’

“In Andrew Abel, 1983, and Richard Hartman, 1972,
uncertainty over future prices leads to an increase in the
firm’s optimal capital stock when the production func-
tion is linear homogeneous. The reason is that the
marginal revenue product of capital is a convex func-
tion of price, so that as in my model, a marginal unit of
capital is worth more when price is stochastic. However,
in Abel and Hartman investment is reversible, so the
opportunity cost of investing is zero.

5The importance of growth options and their impli-
cations for the firm’s financial structure are discussed in
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Section I clarifies the nature of the firm’s
options to invest and produce, and how they
affect its choice of capacity and its market
value. Section II then solves the capacity
choice problem in the context of a specific
model. As the model is developed, a numeri-
cal example is used to show how the value of
a marginal unit of capital, the opportunity
cost of investing, and the firm’s optimal ca-
pacity depend on current demand and un-
certainty over future demand. Sections III,
IV, and V use the model to study the value
of the firm, the behavior of capacity and
capacity utilization over time, and implica-
tions for the measurement of marginal cost.
Section VI concludes with caveats and limi-
tations.

I. Optimal Incremental Investment Decisions

Consider a firm facing a demand curve
that shifts over time stochastically, so that
future demands are uncertain. Let § de-
note the demand shift parameter, with
aP(Q,8)/36 > 0. Suppose the firm can in-
stall units of capital one at a time, at a sunk
cost k per unit, whenever it wishes. Letting
K be the amount of capital currently in
place, we can write the value of the firm, W,
as the sum of two parts:

(1) W=V(K;0)+ F(K;8).

V(K; ) is the value of the firm’s capital in
place, that is, the present value of the ex-
pected flow of profits that this capital will
generate, given the current value of 6.
F(K; 0) is the value of the firm’s “growth
options,” that is, given that the firm has
capital K in place and given the current
value of 8, F(K;#) is the present value of
any additional profits that might result
should the firm add more capital in the
future, less the present value of the cost of
that capital. Note that F(K; @) is greater

Stewart Myers, 1977. A complete model of industry
evolution would also describe the competitive processes
through which firms obtain these options. Such a model
is beyond the scope of this paper.
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than the present value of the expected flow
of net profits from anticipated future invest-
ments, because the firm is not committed to
any investment path.

Equation (1) is just an accounting identity,
but we can use it to gain insight into the
firm’s investment problem by noting that
units of capital are installed sequentially.
Assuming for now that the units are discrete,
we can number them in the order they are
installed. Suppose units 1 through n have
been installed so far. Then, suppressing 4,
we can rewrite (1) by summing the value of
each installed unit and the values of the
options to install further units:

(2) w=Av(0)+Ar(1)
+AV(2)--- +AV(n—-1)
+AF(n)+AF(n+1)+ ---.

Here AV( ) is the value of the j + 1st unit of
capital, that is, the present value of the ex-
pected flow of incremental profits generated by
unit j + 1. Of course the firm need not always
utilize this (or any other) unit of capital. It
has the option to utilize it at every point
during its lifetime, and AV(j) is equal to the
value of this option. Section II shows how
AV(j) can be calculated.

The firm must decide whether to install
additional capital. Given that n units are in
place, AF(n) is the value of the option to
buy one more unit, that is, unit n +1, at any
time in the future. If the firm exercises this
option, it pays k and receives an asset worth
AV(n). The firm also gives up AF(n), be-
cause once exercised, the option is dead—
whether or not the firm later buys more
capital, it has now paid for unit n+1, and
cannot disinvest. Hence A F(n) is also a cost
of investing in this unit. The full cost of
investing is thus k + AF(n), and this must
be compared to the benefit AV(n).

Once the firm buys unit »n+1, it then
faces another problem: at what point should
it exercise its option, worth AF(n+1), to
buy unit n+2, which is worth AV(n +1)?
And so on. These options must be exercised
sequentially, so the total value of the firm’s
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options to grow is

F(n)= ¥, AF(j).

J=n

Letting these incremental units become in-
finitesimally small, we can write equation (2)
for the value of a firm with capital stock K
as

(3)
W=f0 AV(v;ﬂ)dv+fK AF(v;0)dv.

The firm’s optimal capital stock K* is that
which maximizes its net value, W — kK*.
Using (3), this maximization gives the fol-
lowing optimality condition that must hold
if the firm is investing:

(4) AV(K*;0)=k+AF(K*;0).

Thus the firm should invest until the value of
a marginal unit of capital, AV(K; 8), is equal
to its total cost: the purchase and installa-
tion cost, k, plus the opportunity cost
AF(K; 8) of irreversibly exercising the op-
tion to invest in the unit, rather than waiting
and keeping the option alive.®

The firm’s investment problem can there-
fore be solved by calculating AV(K; 8) and
AF(K;#), and using (4) to determine the

®Note that AV(K) is not the marginal value of
capital, as the term is used in marginal ¢ and related
models of investment, such as the one in Abel and
Olivier Blanchard, 1986. The marginal value of capital
is the present value of the expected flow of profits
throughout the future from whatever unit of capital is
the marginal one, that is,

E[[om(K,)/3K, |~ d,
4]

where p is the discount rate. The marginal value of
capital thus depends on the firm’s capital stock, K, or
its distribution, at every future ¢, and so its calculation
can be quite difficult. Note how this differs from AV(K),
the present value of the expected flow of incremental
profits attributable to the K + 1st unit of capital, which
is independent of how much capital the firm has in the
future.
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optimal capacity K*(8). In the next section
we carry out these steps for a specific model.

II. A Model of Capacity Choice

Consider a firm that faces the following
demand function:

(5) P=6(1)—vQ.

(The firm might be a price-taker, in which
case y=0.) Here §(¢) evolves according to
the stochastic process

(6) dl=abdt+ 604z,

where dz is the increment of a Weiner pro-
cess, that is, dz=¢e(z)(dt)"/? with €(¢) a
serially uncorrelated and normally distri-
buted random variable. Equation (6) says
that the current value of @ (and thus the
current demand function) is known to the
firm, but future values of # are unknown,
and are lognormally distributed with a vari-
ance that grows with the time horizon. Thus
even though information arrives over time
(the firm observes # changing), future de-
mand is always uncertain.’

The firm’s cost and production constraints
are as follows: i) each unit of capital can be
bought at a fixed price k per unit; ii) each
unit of capital provides the capacity to pro-
duce one unit of output per time period, so
that Q < K; and iii) the firm has an operat-
ing cost C(Q) = ¢,Q +(1/2)c,Q. In general
¢, and/or ¢, can be zero, but if y =0 (so the
firm is a price-taker), we require ¢, >0 to
bound the firm’s size.

I assume that the firm starts with no ca-
pacity, so at =0 it must decide how much
initial capacity to install. Later it might add
more capacity, depending on how demand
evolves. For simplicity I assume that new
capacity can be installed instantly, and capi-

"Analytic solutions can be obtained for any demand
function linear in # or a power function of 8; I use (5)
for simplicity. Also, it is straightforward to also allow
for uncertainty over future operating costs. The qualita-
tive results would be the same.
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tal in place does not depreciate.® Finally,
investment is completely irreversible—the
firm cannot disinvest. This means there is an
opportunity cost to investing. Adding a unit
of capacity today precludes the possibility of
waiting and instead adding the unit later or
not at all.

I make one more assumption: stochastic
changes in demand are spanned by existing
assets, that is, there is an asset or dynamic
portfolio of assets whose price is perfectly
correlated with 8. (This is equivalent to say-
ing that markets are sufficiently complete
that the firm’s decision to invest or produce
does not affect the opportunity set available
to investors.) This assumption holds for most
commodities, which are usuvally traded on
both spot and futures markets, and for man-
ufactured goods to the extent that prices are
correlated with the values of shares or port-
folios. However, in some cases this assump-
tion will not hold, for example, a new prod-
uct unrelated to any existing ones.

With the spanning assumption, we can
determine the investment rule that maxi-
mizes the firm’s market value, and the in-
vestment problem reduces to one of contin-
gent claim valuation.® This provides insight,
and avoids assumptions about risk prefer-
ences or discount rates. However, as shown
in the Appendix, the problem can also be
expressed in terms of dynamic program-
ming.!° If spanning does not hold, dynamic
programming can still be used to maximize
the present value of the firm’s expected flow
of profits, using an arbitrary discount
rate. (Note that in such cases there is no
theory for determining the discount rate; the
CAPM, for example, would not hold.)
AV(K) and AF(K) would satisfy differen-

8Rela.xing these assumptions makes no qualitative
difference in the results. In fact, allowing for lead times
n the construction and installation of new capacity
magnifies the effects of uncertainty, as shown in Majd
and Pindyck, 1987.

For an overview of contingent claims analysis and
its applications, see John Cox and Mark Rubinstein,
1985; and Scott Mason and Robert Merton, 1985.

The connection between the contingent claims ap-
proach that I use and dynamic programming is exam-
ined in detail by Bertola, 1987.
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tial equations nearly the same as those that
will be derived below (but containing the
discount rate), so the qualitative results will
be the same.

Let x be the price of an asset or portfolio
of assets perfectly correlated with 6, and
denote by p,,, the correlation of § with the
market portfolio. Then x evolves according
to

dx =pxdt+oxdz,

and by the CAPM, its expected return is
p=r+ ¢pg,0, where ¢ is the market price
of risk. I will assume that a, the expected
percentage rate of change of 8, is less than
. (It will become clear later that if this were
not the case, no firm in the industry would
ever install any capacity. No matter what the
current level of 6, firms would always be
better off waiting and simply holding the
option to install capacity in the future.) De-
note the difference between p and a by 4,
thatis, § =p —a.

For purposes of comparison, note that if
future demand were certain (¢ =0), and if
a=0, the firm’s optimal initial capacity
would be K*(8)=(0~c;,—rk)/2y+c,),
where r is the riskfree rate of interest."
Equivalently, the firm should add capacity
only if (K)> 2y + ¢,)K + ¢; + rk. We will
see that uncertainty makes the optimal ca-
pacity smaller than this.

A. The Value of a Marginal Unit
of Capacity

To solve the firm’s investment problem we
first determine AV(K), the present value of
the expected flow of profits from an incre-
mental unit of capacity, given a current ca-
pacity K. Because the unit need not be uti-
lized, the profit it generates at any future
time ¢ is a nonlinear function of 8, which is

"1f a>0, the optimal initial capacity would be
smaller than this. The reason is that the cost of invest-
ing is fixed but the payoff is growing, so there is a
benefit to delay, and A F(K) > 0 for all K.

Copyright © 2001 All Rights Reserved
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stochastic:

(7
Az, (K ) =max[0,(8, -2y +¢c,)K —¢;)].

Thus AV(K') can be written as
(8) AV(K)

=j°°f°°Aw,(K;0)f(0,z)dae-'"dz,
0 0

where f(8, 1) is the density function for 8 at
time ¢, and p is the risk-adjusted discount
rate. It is difficult, however, to evaluate (8)
directly. In addition, the discount rate p
might not be known.

Instead we obtain AV(K) by solving the
following equivalent problem: What is the
value of a factory that produces 1 unit of
output per period, with operating cost 2y +
¢,)K + ¢;, which it sells in a perfectly com-
petitive market at a price 8,, and where the
factory can be shut down (temporarily and
costlessly) if 6, falls below the operating
cost?'? The Appendix shows that the solu-
tion to this problem, obtained using contin-
gent claim valuation methods or equivalently
via dynamic programming, is:

(9)  av(x)-

b6 0<(2y+c)K+¢
5,07 +8/8 —[(2y + ) K+ ¢} /r;
0>Q2v+c)K+q,

2 The valuation of a factory that can be temporarily
shut down has been studied by Brennan and Schwartz,
1985; and McDonald and Siegel, 1985. Observe from
equation (7) that the present value of an incremental
profit at future time ¢ is the value of a European call
option, with expiration date # and exercise price (2y +
¢,)K + ¢}, on a stock whose price is #, paying a propor-
tional dividend 8. This point was made by McDonald
and Siegel, 1985. Thus AV(K), the value of our “equiv-
alent factory,” can be found by summing the values of
these call options for every future 7. However this does
not readily yield a closed form solution, and I use an
approach similar to that of Brennan and Schwartz,
1985.
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where

_ (r-8-¢%2)

1
0.2

1
+ ?[(r-— 8- 02/2)2+2r¢72]1/2 >1

PR Gl ]

o

1
- —2[(r— 6— 02/2)2+2.r02]1/2 <0

b — r—B,(r-39)
! ’8(181_.32)
[(2y+c2)K+01]1_B‘>0
_ ""Bl(r_s)
T BB

[Qy+c)K+ al' >0

This solution for AV(K) is interpreted as
follows. When 6 < (2y + ¢,)K + ¢;, the unit
of capacity is not utilized. Then, b,8#! is the
value of the firm’s option to utilize the unit
in the future, should @ increase. When 6 >
2y + ¢,)K + ¢, the unit is utilized. If, irre-
spective of changes in @, the firm had no
choice but to continue utilizing the unit
throughout the future, the present value of
the expected flow of profits would be given
by 6/8 —[(2y + ¢,)K + ¢;]/r. (Costs are
certain and so are discounted at the riskfree
rate; future values of # are discounted at the
risk-adjusted rate p, but 8 is expected to
grow at rate a, so the effective net discount
rate is p— a=4.) However, should 6 fall,
the firm can reduce output and not utilize
this unit of capacity. The value of this option
is b,072.

A numerical example will help to illustrate
the model. For this purpose I choose r =8 =
05, k=10, ¢;=0, and either y=.5 and
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VALUE OF MARGINAL UNIT

FIGURE 1. THE VALUE OF A MARGINAL UNIT OF CAPACITY, AV(K), AS A
FuncTioN OF 8 (K =1)

¢, =0, or equivalently y=0 and ¢,=1.11
vary 6 or K, and consider values of o in
the range of 0 to .4.!* For comparison,
let AV, (K) denote AV(K) for =0, so
AVy(K)=68/6 —[Q2y +c)K +¢;)/r for 6
> (2y + ¢;)K + ¢;, and 0 otherwise. In this
example, AVy(K)=20(0 —K) for §>K,
and 0 otherwise.

BWith r and & equal, a= 0 if o =0 or if stochastic
changes in § are completely diversifiable (i.e., py,, =0
so p=r), but a> 0 otherwise. Also, as can be seen
from equation (9), (y=0, ¢,=1) and (y=.5,¢,=0)
give the same marginal value of capital, and the same
optimal behavior of the firm. In the first case the firm is
a price-taker but earns inframarginal rent, and in the
second case it has monopoly power.

19As Zvi Bodie and Victor Rosansky, 1980, show, the
standard deviations of annual changes in the prices of
such commodities as oil, natural gas, copper, and alu-
minum are in the range of 20 to 50 percent. For
manufactured goods these numbers are usually lower
(for example, based on Producer Price Indices for
1948-97, they are 11 percent for cereal and bakery
goods, 3 percent for electrical machinery, and 5 percent
for photographic equipment). However, variation in the
sales of a product for any one company will be much
larger than variations in price for the entire industry.
Thus a value of o of 0.2 could be considered “typical”
for simulation purposes.

Figure 1 shows AV(K) as a function of 8
for K =1 and o =0, .2, and .4. Observe that
AV(K) looks like the value of a call option
—indeed it is the sum of an infinite number
of European call options (see fn. 12). As
with a call option, AV(K) is increasing with
o, and for ¢ > 0, AV(K) > AV,(K) because
the firm need not utilize its capacity. As
0 — 00, AV(K) — AVy(K); for 8 very large
relative to K, this unit of capacity will al-
most surely be continuously utilized over a
long period of time.

Figure 2 shows AV(K) as a function of K
for 6=2, and ¢ =0, .1, .2, and .4. Because
demand evolves stochastically, a marginal
unit of capacity has some positive value no
matter how large is the existing capital stock;
there is always some chance that it will be
utilized over any finite period of time. The
greater is o, the more slowly AV(K) declines
with K. Also, the smaller is K, the more
likely it is that the marginal unit will be
utilized, and so the smaller is AV(K)—
AVy(K). When K =0, AV(0)=AV,(K);
with ¢; =0, the firsr marginal unit will al-
ways be utilized.

The fact that AV(K') is larger when ¢ >0
might suggest that the firm should hold more

Copyright © 2001 All Rights Reserved
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VALUE OF MARGINAL UNIT

FIGURE 2. THE VALUE OF A MARGINAL UNIT OF CAPACITY, AV(K), AS A
FUNCTION OF K (8 = 2)

capacity, but the opposite is true. As shown
below, uncertainty also makes the firm’s op-
portunity cost of exercising its option to
invest in the marginal unit larger, and by an
even greater amount.

B. The Decision to Invest in the
Marginal Unit

Having valued the marginal unit of capac-
ity, we can now value the firm’s option to
invest in this unit, and determine the opti-
mal decision rule for investing. In the Ap-
pendix it is shown that the value of the
firm’s option to invest, AF(K), is

(10)

ab®;
AV(K)—k;

aF(x) - | o260

b
where a= —'32 2 (0*)(32—‘8‘)
1

1
+ 9* a=8) 5 0,
5, 7"

B., B,, and b, are given under equation (9)
above, and 8*(K) is the critical value of @ at
or above which it is optimal to purchase the
marginal unit of capacity, that is, the firm
should purchase the unit if § > 8*(K). The
critical value 8*(K) is in turn the solution to

bz(B1_Bz) %\ B2 (191"1) "
R T
_(2y+c2)K+c1_

r

(11)

k=0.

Equation (11) can be solved numerically for
6*, and equation (10) can then be used to
calculate AF(K).

Recall our assumption that &>0. The
reader can verify that as 8 » 0, §%(K) — o0.
Unless § > 0, the opportunity cost of invest-
ing in a unit of capacity always exceeds the
benefit, and the firm will never install capac-
ity.!> Thus if firms in an industry are invest-

PAV(K) is a function of 8, and if =0, § is ex-
pected to grow at the risk-adjusted market rate. Since
the option to invest is perpetual, there would be no gain
from installing capacity now rather than later.
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FIGURE 3. THE VALUE OF THE FIRM’S OPTION TO INSTALL A MARGINAL UNIT
OF CapACITY (K =1)

ing optimally and some positive amount of
investment is taking place, we should ob-
serve 6 > 0.

As with a call option on a dividend-paying
stock, both AF(K) and the critical value
0*(K) increase as o increases. Figure 3
shows AF(K) as a function of 8 for K =1
and 0=0, .2, and .4. In each case #* is
indicated by a “+.” When 06=0, §*=1.5,
that is, the firm should increase capacity
only if 8 exceeds 1.5. For ¢ =.2 and .4, §* is
2.45 and 3.44, respectively. The opportunity
cost of exercising the firm’s option to invest
in additional capacity is AF(K), which
increases with o, so a higher o 1mp11es a
higher critical value 0*(K). Also, it is easily
shown that 8*(K) is monotonically increas-
ing in K.

C. The Firm’s Optimal Capacity

The function 8*(K) is the firm’s optimal
investment rule; if § and K are such that
6> 6*(K), the firm should add capacity,
increasing K until 6* rises to 6. Equiva-
lently we can substitute for b,(K) and
rewrite equation (11) in terms of K*(8), the

firm’s optimal capacity:
(11)

r—B,(r—298)
rép,

B [(2y + ;) K*+ ¢}
r

(Bl_l)
+_8BI [/

Figure 4 shows K*(8) for 6 =0, .2, and 4.
(For many industries .2 is a conservative
value for 6 —see fn. 14.) Observe that K* is
much smaller when future demand is uncer-
tain. For ¢ =.4, § must be more than three
times as large as when o =0 before any
capacity is installed.

Another way to see how uncertainty over
future demand affects the firm’s optimal ca-
pacity is by comparing A F(K), the value of
the option to invest in a marginal unit, with
AV(K)— k, the net (of purchase cost) value
of the unit. The optimal capacity K*(8) is

05:[(2y + c,) K*+ cl]l_B2

~k=0.
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FIGURE 4. OPTIMAL CAPACITY, K*, AS A FUNCTION OF 8
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the maximum K for which these two quanti-
ties are equal. Note from equation (10) that
for 6 > 6*, or equivalently, K < K*, exercis-
ing the option to invest maximizes its value,
so that AF(K)=AV(K)—k, but for K >
K*, AF(K) > AV(K)- k, and the option to
invest is worth more “alive” than “dead.”

This is shown in Figure 5, which plots
AF(K) and AV(K)— k as functions of K,
for § =2 and o =.2. Recall that AV(K) is
larger when future demand is uncertain. As
the figure shows, if the opportunity cost of
exercising the option to invest were ignored,
that is, if the firm adds capacity until AV(K)
— k=0, then capacity would be about 2.3
units (as opposed to 1.5 units when ¢ = 0).
But at these capacity levels the opportunity
cost of investing in a marginal unit exceeds
the net value of the unit, so the value of the
firm is not maximized. The optimal capacity
is only K*=.67, the largest K for which
AF(K)=AV(K)—k, and the solution to
equation (117).

III. The Value of The Firm

As noted above, K*(#) maximizes the
firm’s market value, net of cash outlays for
the purchase of capital. Recall that the firm’s
net value as a function of its capacity K is
given by:

(12)  Net Value = [*AV(») dv
0
+f°°AF(v)dv—kK.
K

Differentiating with respect to K shows that
this is maximized when K = K* such that
AV(K*)— AF(K*)—k=0.

The value of the firm’s installed capacity,
V(K™), is the first integral in equation (12).
In Figure 5 it is the area under the curve
AV(K)—k from K =0 to K*, plus the pur-
chase cost kK*. The value of the firm’s
growth options is the second integral, which
in Figure 5 is the area under the curve AF(K)
from K= K* to o. As the figure shows,
growth options can account for a large por-
tion of the firm’s total value.
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The sensitivity of firm value and its com-
ponents to uncertainty over future demand
can be seen from Table 1, which shows K*,
V(K*), F(K*), and total value for different
values of o and . When o = 0, the value of
the firm is only the value of its installed
capacity. Whatever the value of 8, the firm is
worth more the more volatile is demand. A
larger o implies a larger value for each unit
of installed capacity, and a much larger value
for the firm’s options to expand. Also, the
larger is o, the larger is the fraction of firm
value attributable to its growth options.
When o =.2 or more, more than half of the
firm’s value is F(K*), the value of its growth
options. Even when o =.1, F(K*) accounts
for more than half of total value when € is 1
or less. (When demand is currently small, it
is the possibility of greater demand in the
future that gives the firm much of its value.)
And there is always a range of § for which
K* is zero, so that all of the firm’s value is
due to its growth options.

As mentioned earlier, a ¢ of .2 or more
would not be unusual. Thus an implication
of the model is that for many firms, the
fraction of market value attributable to the
value of capital in place should be one-half
or less. A second implication is that this
fraction should be smaller the greater is the
volatility of market demand. I have not tried
to test either of these implications (valuing
capital in place is difficult). However, calcu-
lations reported by-Carl Kester (1984) are
consistent with both of them. He estimated
the value of capital in place for 15 firms in 5
industries by capitalizing the implied flows
of anticipated earnings, and found that it is
half or less of market value in the majority
of cases. Furthermore, this fraction is only
about 1/5 to 1/3 in industries where de-
mand is more volatile (electronics, comput-
ers), but more than 1/2 in industries with
less volatile demand (tires and rubber, food

_processing).

IV. The Dynamics of Capacity, Capacity
Utilization, and Firm Value

If the firm begins with no capacity, it
initially observes @ and installs a starting
capacity K*(6). If 6 then increases, it will
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TABLE 1 —VALUE OF FIRM
(e,=¢;=0,y=.5r=08=.05k=10)

o ] K* V(K*) F(K*) Value
0 5 0 0 0 0
1 0.5 75 0 75
2 15 315 0 375
3 125 87.5 0 87.5
4 35 1575 0 157.5
1 5 0 0 04 0.4
1 0.23 43 34 77
2 1.00 331 91 422
3 1.82 80.4 203 100.7
4 2.65 147.3 35.5 182.8
2 5 0 0 31 31
1 0.04 0.8 13.5 143
2 0.67 24.0 492 732
3 137 67.1 94.6 161.7
4 2.09 134.1 143.7 2718
4 .5 0 0 258 25.8
1 0 0 69.7 69.7
2 0.15 59 182.6 188.7
3 0.64 36.2 307.2 3434
4 1.22 91.3 4275 518.8

expand capacity accordingly, and the value
of the firm will rise. The value of its growth
options will also rise, but will become a
smaller fraction of total value (see Table 1).
However, if 8 decreases, the firm will find
itself holding more capacity than it would
have chosen had the decrease been antici-
pated. The firm’s value will fall, and depend-
ing on how much @ decreases, some of its
capacity may become idle.

Because capital does not depreciate in this
model, the firm’s capacity is nondecreasing,
but will rise only periodically. The dynamics
of capacity are characterized in Figure 6,
which shows a sample path for 8(¢), and the
corresponding behavior of K(t). (The dura-
tion of continuous upward movements in
K(t) is exaggerated.) The firm begins at ¢,
by installing K*(6,) = K. Then 8 increases
until it reaches a (temporary) maximum &,
at ¢;, and K is increased accordingly to K*.
Here is remains fixed until ¢,, when 6 again
reaches 6,. Afterward K is increased as 6
increases, until ¢, when 6 begins to decline
from a new maximum, and K remains fixed
at K*.

Thus an implication of the model is that
investment occurs only in spurts, when de-

mand is rising, and only when it is rising
above historic levels.!® Firms usually in-
crease capacity only periodically, and this is
often attributed to the “lumpiness” of in-
vestment. But lumpiness is clearly not re-
quired for this behavior.

Let us now examine the firm’s capacity
utilization. Clearly during periods of expan-
sion, all capacity will be utilized. When de-
mand falls, however, some capacity may go
unutilized, but only if it falls far enough.

If the firm had unlimited capacity it would
maximize current profits by setting output at
0*=(0 — ¢,)/(2y + ¢,). However, K*(8) <
(8@ — ¢;)/(2y + ¢;), and as shown in Section
11, can be much less even for moderate val-
ues of ¢. Thus for § in the range 8(K)=
Qy+c)K+ ¢, <8 <8%K), capacity will
remain fixed but will be fully utilized. Ca-
pacity will go unutilized only when 8 < 8(K).
In Figure 6 this occurs during the intervals
(taa tb) and (tc’ td)'

11 we allow for depreciation, investment will occur
more often and even when demand is below historic
highs, but it will still occur in spurts.

LRiakic D

Convriaht ©.2004-A
PYFIG £ S0t

T

T

¥

pu )
™rogroTTiC otV OO



VOL.78 NO. 5

PINDYCK: IRREVERSIBLE INVESTMENT

981

Q(H)/K(t)
4

e

.
|

FIGURE 6. REALIZATION OF CAPACITY AND CAPACITY UTILIZATION

The irreversibility of investment induces
firms to hold less capacity as a buffer against
unanticipated drops in demand. As a result
there will be periods of low demands when
capacity is fully utilized. A large drop in
demand is required for capacity utilization
to fall below 100 percent. Most of the
time the firm’s capacity K will be above
K*(8)—in Figure 6 exceptions are during
the intervals (#y,#,) and (t,, £3).

The share of the firm’s value due to its
growth options will also fluctuate with 8. For
example, as Table 1 shows, during periods
when capacity is growing (so that K =
K*(8)), this share falls. It also falls when 8
is falling and K > K*(9).

V. The Measurement of Long-Run
Marginal Cost

The measurement of long-run marginal
cost and its relationship to price are impor-
tant for industry analyses in general, and

antitrust applications in particular. When in-
vestment is irreversible, traditional measures
understate marginal cost and overstate the
amount by which it differs from price, even
in a competitive market. This problem is
particularly severe when product markets are
volatile.

Suppose 6>0 and K= K*(8). Using
equation (9), the optimality condition
AV(K) =k + AF(K) can be written as:

(13) AV(K) = b,0% +6/8
-[Qy+c)K+ al/r

=k+AF(K)

or
(13) 8/8 —2vK /r
=— b0 +(c,K+¢,)/r
+k+AF(K).
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If 0 =a=0, equation (13') reduces to a
more familiar special case:

(14) 6/8 —2yK/r=(c;+c,K)/r +k.

The left-hand side of (14) is capitalized
marginal revenue. (Note that § is capitalized
at the rate § = p — a because it is expected
to grow at the rate a but is discounted at the
risk-adjusted rate p; if 0=0, p=r) The
right-hand side is full marginal cost: the
capitalized operating cost, plus the purchase
cost of a unit of capital. Equation (14) is the
usual relation between marginal revenue and
marginal cost when the former is increasing
at a deterministic rate.

Observe that when ¢ > 0, two adjustments
must be made to obtain full (capitalized)
marginal cost, the RHS of (13'). The first
term on the RHS of (13) is the value of the
firm’s option to let the marginal unit of
capacity go unutilized, and must be sub-
tracted from capitalized operating cost. The
last term is the opportunity cost of exercis-
ing the option to invest. In our model the
last term dominates the first, so that K must
be smaller to satisfy (13"), and marginal cost
as conventionally measured will understate
true marginal cost.

If the firm is a price-taker, y=0 and
P = 4. Price will equal marginal cost, if the
latter is defined correctly as in (13"). Unfor-
tunately the first and last terms on the RHS
of (13) are difficult to measure, particularly
with aggregate data. But if one wishes to
compare price with marginal cost, ignoring
them can be misleading.!

VRobert Hall, 1986, reports that price significantly
exceeds marginal cost for most two-digit industries, and
finds no explanation for this disparity consistent with
competition. Hall’s test of marginal cost pricing is based
on the relation between the marginal product of labor
and the product wage. If firms set marginal operating
cost equal to a (constant) proportion of price, his tech-
nique will apply, whatever the capital stock. But as
shown in Section IV, there can be a wide range of prices
for which the firm is capacity constrained, and the ratio
of marginal operating cost to price will vary with price.
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V1. Conclusions

Uncertainty over future market conditions
affects investment decisions through the op-
tions that firms hold—operating options,
which determine the value of capital in place,
and options to add more capital, which, when
investment is irreversible, determine the op-
portunity cost of investing. By treating capi-
tal as homogeneous and focusing on incre-
mental investment decisions, we have tried
to clarify the ways in which uncertainty and
irreversibility affect the values of these op-
tions, and thereby affect the firm’s optimal
capacity and its market value.

The assumption that firms can continu-
ously and incrementally add capital, though
common in economic models, is extreme.
Most investments are lumpy, and sometimes
quite so. The opposite extreme assumption is
that the firm can build only a single plant,
and must decide when to build it (the critical
#*), and how large it should be (K*). As
sketched out in the Appendix, this problem
can also be solved by the methods used in
this paper. For our model: i) the critical §*
at which it is optimal to invest increases with
o; ii) K* also increases with o (operating
options are worth more, and there is only
one opportunity to invest); and iii) for every
0, the value of the firm (the value of the
single investment option prior to construc-
tion, and the value of the plant after con-
struction) is less than it is when the firm can
incrementally invest.

Besides ignoring the lumpiness of invest-
ment, the model presented here has other
simplifying assumptions. It ignores adjust-
ment costs and delivery lags, and includes
only one source of uncertainty. It can be
extended to account for these factors, but
numerical methods may then be required to
obtain solutions. Of course once numerical
methods are used, other aspects of the model
can also be generalized. For example, de-
mand can be a nonlinear function of §, or 8
could follow some alternative stochastic pro-
cess, including jumps.

It should be emphasized that the numeri-
cal results presented in this paper are based
on a specific production technology, and
specific functional forms for demand and

H S -1 I
TOITISTIRTSCTVEU

o



VOL.78 NO. 5

cost. Also, the assumption that the firm can
incrementally invest magnifies the effects of
uncertainty, as does the assumption that
there is no depreciation. (If capital becomes
obsolete rapidly, the opportunity cost of in-
vesting will be small.) Thus the quantitative
importance of irreversibility and uncertainty
may be more limited than the results here
would suggest.!®

Subject to these caveats, we find that in
markets with volatile and unpredictable de-
mand, firms should hold less capacity than
they would if investment were reversible or
future demands were known. Also, much of
the market value of these firms is due to the
possibility (as opposed to the expectation) of
increased demands in the future. This value
may result from patents and technical
knowledge, but it also arises from the man-
agerial expertise, infrastructure, and market
position that gives these firms (as opposed to
potential entrants) the option to economi-
cally expand capacity.

Do firms correctly compute and take into
account the opportunity cost of investing
when making capacity expansion decisions?
Ignoring such costs would lead to over-
investment. John McConnell and Chris
Muscarella (1985), have found that for man-
ufacturing firms, market value tends to in-
crease (decrease) when managers announce
an increase (decrease) in planned investment
expenditures, which is inconsistent with a
systematic tendency to overinvest.!° But
there is anecdotal evidence that managers
often base investment decisions on present
values computed with discount rates that far

18Also, the model examines the investment decisions
of a single firm, and ignores entry and competition If
rival firms can appropriate the same investment oppor-
tunities, § will be larger, which makes the value of the
investment option smaller. Steven Lippman and R.
Rumelt, 1985, examine the implications of irreversible
investment for a competitive market equilibrium, and
Avinash Dixit (1987a,b) studies the implications of
sunk costs and stochastic prices for firms’ entry and exit
decisions, and for the reallocation of capital across
sectors.

“But they find the opposite true for firms in the oil
industry, where there may be a tendency to overinvest
in exploration and development.
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exceed those that would be implied by the
CAPM —diversifiable and nondiversifiable
risk are sometimes confused, and an arbi-
trary “risk factor” is often added to the
discount rate. It may be, then, that managers
use the wrong method to get close to the
right answer.

APPENDIX

Here we derive equation (9) for AV(K; 8) and equa-
tions (10) and (11) for the optimal investment rule and
value of the investment option A F(K; ).

The value of a marginal unit of capacity, AV(K;8),
is found by valuing an equivalent “incremental project”
that produces 1 unit of output per period at cost 2y +
¢,)K + ¢y, that is sold at price 8(¢), and where the firm
can (temporarily and costlessly) shut down if price falls
below cost. To value this, create a portfolio that is long
the project and short AV units of the output, or equiva-
lently the asset or portfolio of assets perfectly correlated
with 6. Because the expected rate of growth of 4 is only
a=p — 98, the short position requires a payment of
80AV, per unit of time (or no rational investor would
hold the corresponding long position). The value of this
portfolio is ® = AV — AV,8, and its instantaneous return
is

(A1) d(AV) — AV,d0 — 86AV, dr
+[0-Qy+e)K-c]ar

The last term in (Al) is the cash flow from the “incre-
mental project”; ; is a switching variable: j=1 if
0(t) = (2y +¢,)K + ¢, and 0 otherwise.

By Ito’s Lemma, d(AV) = AV,d8 +(1/2)AVe(d8)>2.
Substitute equation (6) for df and observe that the
return (Al) 1s riskless. Setting that return equal to
r®dr = (rAV — rAV,0) dt yields the following equation
for AV:

(A2) Lo20%AV,, +(r—8)6AV,
+i[0-Qy+c)K—¢]~rAV=0.

The solution must satisfy the following boundary condi-
tions:

AV(K;0)=0

alim AV(K;0)=0/6-[(2y+c)K+c)/r
ghm AV,(K;0)=1/8,

and AV and AV, continuous at the switch point § =
(2y + ¢,) K + ¢;. The reader can verify that (9) is the
solution to (A2) and its boundary conditions.

Equation (A2) can also be obtained by dynamic
programming. Consider the optimal operating policy
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(j=0 or 1) that maximizes the value ® of the above
portfolio. The Bellman equation is

W) o= max {j10-@re)-al

1
—80AV, + —E,d®
o a4 }’

that is, the competitive return r® has two components,
the cash flow given by the first two terms in the maxi-
mand, and the expected rate of capital gain. Expanding
d® =dAV — AV,d6 and substituting into (A3) gives
(A2).

Finally, note that AV must be the solution to (A2)
and the boundary conditions even if the unit of capacity
(the “incremental project”) did not exist, and could not
be included in a hedge portfolio. All that is required is
an asset or portfolio of assets (x) that replicates the
stochastic dynamics of . As Robert Merton (1977) has
shown, one can replicate the value function with a
portfolio consisting only of the asset x and riskfree
bonds, and since the value of this portfolio will have the
same dynamics as AV the solution to (A2), AV must be
the value function to avoid dominance.

Equation (10) for AF(K;0) can be derived in the
same way. Using the same arguments as above, it is
easily shown that AF must satisfy the equation

(A4)  10%0°AFy+(r—8)00FK-rAF=0

with boundary conditions:
AF(K;0)=0
AF(K;0*)=AV(K;0*)-k
AF(K;0*) =AVy(K;6%),

where 0* = 8*(K) is the exercise point, and AV(K; 6*)
— k is the net gain from exercising. The reader can
verify that equations (10) and (11) are the solution to
(A4) and the associated boundary conditions.

The assumption that the firm can invest incremen-
tally is extreme. At the opposite extreme, suppose that
the firm can build only a single plant, and must decide
when to build it and how large it should be. Now the
firm has an option, worth G(X; 8), to build a plant of
(arbitrary) size K. Once built, a plant of size K is worth
V(K; 8) = [KAV(v; 8) dv, where AV(;8) is given by
equation (9). It is easy to show that if K and @ are
chosen optimally to maximize G(K;#8), then G(K;¥9)
must satisfy (Ad), with A F replaced by G. However, the
boundary conditions are now:

G(K;0)=0
Vi (K*;6*)~ k=0
G(K*;0%) =V(K*;0*)— kK*
Gy (K*; %) = Vo (K*;8%),

DECEMBER 1988

where 6* is again the exercise point, K* is the optimal
plant size, that is, that K which maximizes [V(K; 6*)—
kK], and V(K*; 8*)— kK* is the net gain from exercis-
ing. Using the first boundary condition, the solution is
G(K; 0) = a6, where B, is given under equation (9).
The constant a and the critical values 6* and K* are
determined from the remaining three boundary condi-
tions.
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