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Abstract 

Agent-based modeling is a longstanding but under-used method that allows researchers to 

simulate artificial worlds for hypothesis testing and theory building. Agent-based models 

(ABMs) offer unprecedented control and statistical power by allowing researchers to precisely 

specify the behavior of any number of agents and observe their interactions over time. ABMs are 

especially useful when investigating group behavior or evolutionary processes, and can uniquely 

reveal non-linear dynamics and emergence—the process whereby local interactions aggregate 

into often-surprising collective phenomena, such as spatial segregation and relational homophily. 

We review several illustrative ABMs, describe the strengths and limitations of this method, and 

address two misconceptions about ABMs: reductionism and “you get out what you put in.” We 

also offer maxims for good and bad ABMs, give practical tips for beginner modelers, and 

include a list of resources and other models. We conclude with a 7-step guide to creating your 

own model. 
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Agent-Based Modeling: A Guide for Social Psychologists 

From Detroit to El Paso, New York to Los Angeles, urban environments are divided by 

race and ethnicity. The pernicious consequences of segregation lead us to infer pernicious 

causes: people must live in homogenous neighborhoods because they are racist. This explanation 

for segregation seems plausible, as prejudiced individuals do avoid people of other races—but it 

assumes that the collective behavior of neighborhoods can be explained similarly to the behavior 

of individuals. Almost 40 years ago, Thomas Schelling (1971) challenged this assumption, 

asking whether segregated neighborhoods would form even when individuals had no prejudice, 

and only wanted a few neighbors similar to themselves. 

Schelling placed red and green pennies on a chessboard to represent people in 

neighborhoods. People were happy—and remained in their square—if they were surrounded by 

at least 30% of their “color;” if this number dropped below 30%, however, people became 

unhappy and moved to a new square. Schelling played out this model by moving pennies one-by-

one until each person on the board was happy, by which time the board was highly color-

segregated. At higher (75%) or lower (15%) thresholds of similarity, segregation was more or 

less pronounced (see Figure 1 for an illustration of these effects), but the key is that even 

individuals who embraced high diversity could still end up segregated.  

Schelling’s work is an elegant testament to how simple and innocent individual 

preferences can produce surprising societal outcomes over time. His model also serves as a 

prototypical—if low-tech—example of the power of agent-based modeling (ABM)1 in 

understanding emergent social behavior. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  While we use the term “agent-based modeling” in this paper, the terminology around ABM is 
diverse and potentially confusing. Alternative terms include “multi-agent systems,” “agent-based 
simulation,” “agent-based computing,” and “individual-based modeling.”	
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Figure 1. Visualization of Thomas Schelling’s (1971) segregation model at its commencement 

(top panel) and conclusion (bottom panels). When agents have a 15% threshold for similarity 

(left panel), only minimal segregation occurs. However, 30% (middle panel) and 75% (right 

panel) thresholds produce striking segregation. Figure retrieved from 

http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/.  

 

Agent-Based Modeling 

Agent-based models (ABMs) are computational simulations in which artificial entities 

interact over time within customized environments. These entities (“agents”) are programmed to 

represent humans who behave in precisely specified ways. As summarized by Macy and Flache 

(2009, p. 247), agents are adaptive in that they respond to their environment through learning and 
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evolution and are autonomous in that they control their own goals, states, and behaviors. They 

are also intentionally simplified, usually following only one or two basic rules (representing 

habits, norms, or preferences) throughout the simulation.  

 The outcomes of ABMs, however, are anything but simple. A well-programmed model 

offers insight into how local interactions between agents can lead to complex group- and system-

level phenomena. Consider how a single bird’s tendency to align and remain close (but not too 

close) to her peers can create a swirling flock that appears to be moving with a collective mind 

(Reynolds, 1987), or how predator-prey interdependence can explain animal species’ resurgence 

following near extinction (Borschev & Filippov, 2004). ABMs are uniquely equipped to shed 

light on such phenomena and countless other applications involving interacting individuals. 

Perhaps because of their ability to simulate large-scale dynamics with bottom-up 

processes, ABMs are popular in economics (e.g. Tesfatsion & Judd, 2006), sociology (Bruch & 

Atwell, 2015; Macy & Willer, 2002), political science (Cederman, 2005; Johnson, 1999), and 

some applied sciences (e.g. artificial intelligence; Beer, 1995; Gasser, Braganza, & Herman, 

1987; Wooldridge, 2003). In psychology, however, ABMs continue to exist at the field’s 

margins (see Goldstone & Janssen, 2005; Smith & Conrey, 2007), perhaps because psychologists 

view them as difficult to implement and see their results as only reflecting the assumptions of 

their programmers (“you get out what you put in”).  

This paper aims to address these concerns and to pique social psychologists’ interest in 

ABMs. We provide examples of classic and recent ABMs that illuminate social behavior, 

compare modeling to other methods in social psychology, and give concrete advice to social 

psychologists wishing to implement their own ABMs. Although there are ABMs that simulate 

non-social events (e.g. weather patterns or artificial intelligence), we focus on models of social 
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processes. We hope to provide an in-depth but accessible introduction to ABM for social 

psychologists.  

Social Psychological Questions Addressed by ABMs 

Schelling (1971)’s model of segregation addresses one of social psychology’s core 

questions: Why do individuals segregate based on race? ABMs also address other important 

questions: What is the basis of group formation? What is the best strategy for maintaining 

cooperation? Why do couples pair off in terms of attractiveness? These questions are well-suited 

to ABM because they involve individual behaviors interacting to produce surprising collective 

phenomena.  

What is the Basis of Group Formation?  

Social identity is the dominant framework for understanding why people split into “us” 

versus “them:” people with similar race, religion or culture form groups, which then square off 

against each other (Tajfel, 1982). However, these social identities can only emerge once people 

separate into groups. This logic creates a regress in which groups require identity but identity 

requires groups. To escape this chicken-egg dilemma, Gray and colleagues (2014) examined 

whether groups could form in a completely homogeneous population without any identities. The 

authors programmed agents with only two simple characteristics: reciprocity (the tendency to 

cooperate with those who have previously cooperated with you) and transitivity (the tendency to 

share your network’s social preferences)—each of which was a well-established social tendency 

(Holland & Leinhardt, 1971; Levine, 1998). The model’s results revealed robust group formation 

even though agents had no sense of “us” or “them,” suggesting that groups can form even 

without identity (see Figure 2).  
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Figure 2. Visualization of Gray and colleagues’ (2014) model displayed at round 1 (left panel) 

and round 300 (right panel). Figure retrieved from online simulation at 

http://www.mpmlab.org/groups/.  

 

What is the Best Strategy for Maintaining Cooperation?  

Real-world questions of cooperation are captured by the “prisoner’s dilemma,” in which 

two people each have the choice to cooperate or defect. The group payoff is maximized when 

both people cooperate, but each player is made better off individually by defecting—capturing 

the essential tension of social dilemmas. Political scientist Robert Axelrod asked people to 

program agents with different strategies for repeated prisoner dilemma games (e.g., always 

cooperate, always defect, copy your partner’s past behavior), and then paired these agents with 

each other in a round-robin design (Axelrod, 1980; Axelrod & Hamilton, 1981). As long as the 

agents engaged in repeated interactions, the winner was a very simple agent—“tit-for-tat”—

which began with cooperation, and then copied its partner’s previous decision. Axelrod’s ABM 
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was important because it revealed a simple route for the emergence of cooperation, even in 

complex societies. 

 More recently, Bear and Rand (2016) developed an ABM to explore the psychological 

basis of cooperation. Agents played either one-shot or repeated prisoner’s dilemmas. They could 

engage in two different kinds of cognition: a low-cost generalized intuitive response, or a higher-

cost calculated response that could tailor its choice to whether the game was one-shot or 

repeated. The results showed that—given a high likelihood of repeated interaction—the best 

strategy was to intuitively cooperate and deliberatively defect when the game was one-shot. This 

ABM therefore offered an evolutionary explanation for why people sometimes cooperate when 

they can get away with defection.    

Do Couples Seek out Similarly Attractive Partners?   

Members of a romantic couple tend to be similarly attractive, but it is not immediately 

clear why. Although some believed that people intentionally search for their attractiveness 

“match” (Huston, 1973; White, 1980), Kalick and Hamilton (1986) used an ABM to test whether 

matching could occur even if all people preferred maximally attractive partners. Heterosexual 

male and female agents were assigned an attractiveness score from 1 to 10, and were repeatedly 

paired up. Pairs asked each other on “dates” and if both agreed, they left the pool, otherwise they 

were paired up with new agents. Kalick and Hamilton ran two variations of the model: one in 

which people wanted maximally attractive partners (motivated for supermodels) and another 

where people wanted similarly attractive partners (motivated for matching). In the “motivated for 

matching” condition, agents’ attractiveness was very highly correlated (r = .85) with their 

partners’—significantly higher than what actually occurs in real life. In contrast, agents who 

were “motivated for supermodels” had their attractiveness moderately correlated (r = .5) with 
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their partners’—nearly the same correlation as in real life (Critelli & Waid, 1980). This moderate 

matching occurred because when everyone preferred the prettiest people, the prettiest ended up 

together first, and the less pretty were left to pair up afterwards. As with many ABMs, people’s 

individual preferences (for attractive partners) led to unexpected collective patterns 

(attractiveness matching).  

Emergence 

Agents in the previous examples were not programmed to segregate, to form social 

groups, to maintain stable cooperation, or to find partners of a similar attractiveness. Instead, 

these group phenomena arose via emergence—when the aggregation of small-scale individual 

behavior yields qualitatively different collective behavior. Emergence lies at the heart of almost 

any complex phenomenon, from traffic jams, to the wetness of water, to the neural basis of 

consciousness (Bassett & Gazzaniga, 2011; Tononi, Sporns, & Edelman, 1994). For example, 

while no individual neuron is conscious, their collective interactions yield human consciousness. 

Likewise, Schelling’s model revealed that segregation could arise from the innocent decisions of 

relatively egalitarian individuals. 

Historically, the impact of ABMs has been proportional to the amount of emergence they 

reveal—the apparent disconnect between individual and collective behavior. For example, the 

models from the previous section feature large-scale phenomena that are difficult to predict from 

individuals’ behavior. Importantly, in explaining complex group-level phenomena with simple 

individual-level rules (see Smaldino, 2014), good ABMs typically reduce complexity—leading 

to these two complementary maxims for research with ABM:  
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Maxim for Good ABMs: Reduce complexity by revealing how higher-level phenomena emerge 

from the repeated interaction of simple rules. 

Maxim for Bad ABMs: Introduce complexity by taking a simple phenomenon and inventing 

complicated rules to explain it. 

 

 These maxims serve as useful criteria in evaluating whether ABMs add to or detract from 

a paper. The very best ABMs are explainable in plain prose and should reveal the emergence of 

complex or surprising phenomena using simple principles. Conversely, bad ABMs take a 

straightforward, intuitive phenomenon and complicate it with unjustified assumptions and 

abstruse mathematics. These maxims also help to address two traditional criticisms of ABMs. 

Reductionism 

ABMs are often seen to be reductionist, destroying the specialness of psychological 

processes by explaining them with simple agent behaviors. For example, claims of reductionism 

have been leveled against research linking love to hormones—if hormones are involved in love, 

is love “just” hormones? But fears of reductionism ignore the possibility of emergence, and the 

fact that all phenomena are embedded in a chain of lower and higher level events. Even if love 

can be “reduced” to hormones, there is still an undeniably powerful feeling of love, a higher-

level emergent experience that motivates people to write sonnets and run through the airport at 

the last minute. Emergence also provides a defense against claims of reductionism in ABMs. 

Even if reciprocity and transitivity are sufficient conditions for group genesis (Gray et al., 2014), 

groups themselves prompt powerful feelings of solidarity and important behaviors—from war to 

religious movements—which cannot be reduced to these lower-level processes.  

You Get Out What You Put In 
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Critics of ABM have also claimed that the results of ABMs are closely tied to 

researchers’ decisions in setting their models’ parameters. In some sense, this is a strength of 

ABMs: unlike in the laboratory or the field, the behavior of agents can be isolated and specified 

with precision—which forces researchers to explicitly formulate their theories. ABM-derived 

hypotheses are therefore decidedly falsifiable, with no ambiguity about what a model should 

predict. Of course, this level of experimenter control has the potential to make the final outcome 

seem obvious—but again, this criticism holds primarily with models that fail to show emergence. 

In Schelling (1971) there is nothing obvious about a slight preference for similarity causing 

rampant segregation, and in Gray and colleagues (2014), there is nothing obvious about two 

simple rules of interaction—reciprocity and transitivity—leading to stable grouping within 

homogenous populations. 

Comparing ABM to other Methods 

In addition to the theoretical framework of emergence, ABMs offer several 

methodological advantages that complement other methods. In comparison to laboratory 

experiments, field studies, or archival investigations (including “big data” analysis), ABMs offer 

a unique combination of experimental control and massive scale, along with the ability to capture 

nonlinearities and underlying mechanisms. However, like any tool in a social psychologist’s 

toolbox, ABMs come with limitations, of which external validity is most notable. This drawback 

is mitigated by supplementing ABMs with other tools—such as laboratory or field 

experiments—in multi-method investigations. Table 1 shows a comparison of the relative 

advantages and disadvantages of ABMs compared to other methods. 
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Table 1. Comparing ABMs to Other Methods 
 Field studies Lab experiment Archival studies ABMs 
Control and Realism Low Control; 

High Realism 
Medium Control; 
Medium Realism 

Low Control; 
Medium Realism 

High Control; 
Low Realism 

Scale Medium to High 
Scale 

Low to Medium 
Scale High Scale High Scale 

Nonlinear Dynamics Medium Visibility Low Visibility Medium 
Visibility High Visibility 

Mechanism Medium Clarity High Clarity Low Clarity High Clarity 
     
 

Control and Realism 

In psychology, maximum control is often ascribed to experimental lab paradigms 

featuring random assignment, but even experiments have their limits. Participants may respond 

differently to experimental manipulations based on their cultural background (Hong et al., 2003) 

their religious upbringing (Shariff, Willard, Anderson, & Norenzayan, 2016), or even their 

transient mood (Forgas, 1995). Despite the flexibility of experiments, they are also limited by 

questions of ethics and feasibility—there is only so much that participants can do (or be asked to 

do) in the lab. In contrast, ABMs offer exceptional control: agents in computational models can 

be instructed to perform almost any initial behaviors, and will follow their instructions with 

complete uniformity. This control also remains high over indefinitely large samples and 

infinitely long simulations. 

The tradeoff to ABMs’ high control is a low degree of external validity. For example, the 

agents in Schelling’s model moved neighborhoods without incurring the financial or social costs 

inherent in relocation. Kalick and Hamilton’s date choice model similarly assumed that 

individuals who accept dates permanently leave the dating pool, which seldom occurs in real life. 

Because of these shortcomings, ABMs are most effective when used in conjunction with 

laboratory or field experiments, which can use human subjects to validate an ABM’s parameters 
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(as in Luhmann & Rajaram, 2015) or its causal pathways (see Bear & Rand, 2016; Kalick & 

Hamilton, 1986). 

Scale 

One clear advantage of ABMs over other methods is statistical power. Obtaining 

sufficient N can prove difficult, as researchers struggle against a subject pool deadline or limited 

funding for participants. Even in field studies, researchers may obtain large sample sizes but 

these samples may be incomplete or feature troublesome attrition. In ABMs, sample size is 

simply a parameter specified in the model. ABMs can also operate over any amount of time and 

sample at any rate. Of course, large N, long-term and high sampling-rate ABMs may take longer 

to run, but this typically means extras days and not years (and computing superclusters can 

substantially reduce this time). The critical point is that by analyzing large samples over an 

extended time, ABMs can reveal large-scale societal emergence (e.g. segregation and 

homophily), which is often impossible to observe with more traditional paradigms (and even 

with “big data” analyses; Lewis, 2015).  

Nonlinear dynamics 

Most social psychology paradigms often only assess the behavior of one group at one 

specific time-point, but social processes unfold dynamically across time and individuals. 

Consider conformity: people generally follow behaviors more as they become more common 

(Asch, 1956; Boyd & Richerson, 1985; Henrich & McElreath, 2003), except for non-conformists 

who follow the behavior less (Efferson, Lalive, Richerson, McElreath, & Lubell, 2008). As a 

result, conformity follows an oscillating pattern of increases, decreases, and stability, which is 

difficult to fully capture with static experiments (Jarman, Nowak, Borkowski, Serfass, Wong, & 

Vallacher, 2015). The spread of social attitudes (Nowak, Szamrej, & Latane, 1990) and 
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stereotypes (Kashima et al., 2000) and the process of group formation (Halberstadt et al., 2016; 

Jackson, Halberstadt, Jong, & Feldman, 2015) also follow non-linear patterns. In fact, there are 

few social phenomena that behave truly linearly over time, given the dynamic nature of social-

cultural interactions and the unpredictable impacts of initial conditions (Vallacher & Nowak, 

1999). ABMs are an ideal method for modeling these non-linear processes, as they can include 

millions of time-points and multiple runs (Abbott, 1988).  

Mechanism 

 With their high controllability, ABMs are often able to isolate and directly manipulate the 

discrete psychological processes underlying complex social phenomena. Of course, 

psychological mechanisms can take many forms, and can exist on many levels of analysis. 

ABMs are best suited to study how manifestations of individual (or dyadic) behavior influence 

larger scale group-level phenomena, such as when a slight individual desire for similarity 

catalyzes neighborhood segregation (Schelling, 1971). One question is whether the mechanism 

provided by ABM is the same in real life: just because a mechanism sufficiently generates some 

outcome does not mean this mechanism necessarily or always generates the outcome. However, 

revealing even likely mechanisms is valuable for both basic research and policy decisions.  

Building an ABM 

After being inspired by ABM’s rich history and unique methodology, readers might want 

to try their hand at model-building. While training in ABMs is absent from most PhD programs 

in social psychology, many articles have linked ABMs to specific research questions (e.g., 

Axelrod, 1997; Carley, 2002; Schelling, 1971) with others providing more detailed, technical 

guides (e.g., Smith & Collins, 2009; Smith & Conrey, 2007). An edited volume by Tesfatsion 

and Judd (2006) includes chapters on ABM’s history and its applications in economics, as well 
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as an introductory appendix with extensive practical tips for newcomers. Gilbert and Troitzsch 

(2005) provide a broader overview of ABM in the social sciences. Epstein (2008) includes a 

discussion of ABM's benefits over other methodologies, and Nowak (2004) gives an in-depth 

overview of emergence in ABM and the utility of simple models for simulating complex 

processes. Journal issues focusing on ABMs have included American Behavioral Scientist (Vol 

42, August 1999); Science (Vol 284, April 1999); and the Proceedings of the National Academy 

of Sciences (Vol. 99, Supplement 3, 2002). Finally, websites like “OpenABM” 

(www.openabm.org) and “Agent-Based Models” (www.agent-based-models.com) provide 

courses, videos, and code libraries of previous models from which researchers can adapt code.  

Aspiring ABMers must develop some level of computer programming. Python, 

MATLAB, R, and C have often been previously used to program ABMs. However, there are also 

more accessible tools available for those who do not have time to master a traditional 

programming language. The software package Netlogo (http://ccl.northwestern.edu/netlogo/; 

Tisue & Wilensky, 2004) is free and relatively simple, and provides the code and explanation 

behind several of the models in this paper, such as the predator-prey model, the flocking model, 

and Schelling’s segregation model. Netlogo also comes with an extensive manual for researchers 

to learn the programming language as well as practical tips for building an ABM. Other tools 

that offer ABM training include Swarm (Minar, Burkhart, Langton, & Askenazi, 1996), which 

requires some programming ability (C or Java) but comes with a tutorial and example code to get 

new users started, and FLAME (Flexible Large-Scale Agent Modeling Environment) which is a 

more accessible computational environment, since models are specified in XML. Cellular 

Automaton Explorer offers a manageable interface to program simple ABMs and is particularly 
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well-suited for demonstration purposes (see, for example, a popular Wolfram demonstration: 

http://demonstrations.wolfram.com/CellularAutomatonExplorer/).  

To augment these resources, we provide a 7-step conceptual ABM algorithm, with each 

step illustrated by Schelling’s (1971) segregation model and Gray and colleagues’ (2014) 

grouping model. For more examples of the seven steps, we also provide a substantial (though not 

exhaustive) supplemental table with 35 additional ABMs on social-psychology topics ranging 

from the dynamics of online chatting to decisions about expressing pain. This collection offers 

insight into how other researchers have translated their research question into simulations.  

Some of these steps do not apply to all models or all research questions, and so 

researchers should feel free to adapt them to their own needs. Nevertheless, the steps provide a 

useful guide for exploring social processes and for creating simulated worlds with the potential 

for collective emergence. 

1. What are your world’s dimensions? Is your world flat or multidimensional? Schelling’s 

segregation model is 2D—like land—but group formation models are often multi-

dimensional to represent complex social spheres (although these models often still involve 

2D visualizations to present data). In choosing the dimensionality, researchers must 

consider if the actions of one agent necessarily constrain the behavior of other agents—the 

more mutual constraints, the lower the degrees of freedom and the lower the 

dimensionality (e.g., if I move across town from you, I not only move further from you, 

but also your neighbor). Note that dimensions only apply to models where interactions 

between agents are governed by space. In network models, for example, there are no 

dimensions.  
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Application of Step 1. In Schelling’s model, agents were paired in a two-dimensional 

space (as illustrated in Figure 1), while in Gray and colleagues’ grouping model, agents 

interacted in a multidimensional space where one agent’s position did not impede other 

agents’ movement.  

2. How do agents meet? Behavior in ABMs is usually divided into rounds, and on each 

round, some number of agents interact with each other.  One question is how to select 

which agents interact. Do they interact only with their neighbors, or can they be paired up 

with any other agent in the simulation? These choices stem in part from the 

dimensionality (see Step 1), but there are other choices within each of these sets. In some 

models, agents can avoid interactions entirely—perhaps because they are “unpopular”—

while in others, agents can interact with more than one agent. In the latter case, what 

rules will govern interaction order? And will agents prioritize some interaction partners 

over others? Will interactions be governed randomly or according to a rule (or a bit of 

both)? The answers to these questions (along with your world’s dimensionality) will 

determine the network you choose for your model. Three popular networks are displayed 

in Figure 3.  

Application of Step 2. Since Schelling’s segregation model focused on neighborhood 

dynamics, he programmed agents to only interact with their next-door neighbors. In 

contrast, Gray and colleagues’ agents could interact with any other agent in the model, 

though they were more likely to interact with “friends” than with “enemies”—and they 

only interacted with one partner per round.    
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Figure 3. In the lattice network (A), agents only interact with their neighbors (applicable to 

residential models). In the small-world network (B), cross-network connections compliment 

neighboring connections, so that any two agents are connected by only a few degrees of 

separation (applicable to almost any social network). In the scale-free network (C), densely 

connected agents are more likely to generate new connections compared to sparsely connected 

agents (applicable to the internet and citation networks).  

 

3. How do agents behave? When agents meet, what do they do? Do they ask other agents 

on dates (Kalick & Hamilton, 1986)? Do they share food (Jahanbazi et al., 2014)? In many 

social science ABMs, agents repeatedly play economic games, which allows for 

experimenters to mathematically approximate real social behavior (Perc & Szolnoski, 

2010). For example, prisoner’s dilemmas can represent people’s decisions to either act 

selfishly or cooperatively. In any ABM, researchers should ensure that agents’ behavior 

approximates the type of social behavior of interest, which often involves programming in 

a degree of randomness for variability. 
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Application of Step 3. In Schelling’s model, agents decided whether to stay in their 

neighborhood or to move to another vacant space on the grid. Gray and colleagues’ agents 

played a prisoner’s dilemma game.   

4. What is the payoff? Payoffs correspond to what agents get out of an interaction, and can 

represent money, happiness, or social bonds. In some ABMs there is no payoff system, but 

in many ABMs that feature interactive decision-making, payoffs are determined by 

considering an agent’s decisions and those of that agent’s partner(s). In a prisoner’s 

dilemma, for example, an agent’s decision to cooperate yields a different payoff 

depending on whether their partner chooses to also cooperate or to defect.  

Application of Step 4. Schelling’s agents received no payoff, since there was no 

interactive decision-making. Gray and colleagues’ agents, however, received a payoff that 

depended on their prisoner’s dilemma decisions.  

5. How do agents change? Agents can change in a number of ways throughout the 

simulation. In many economic models, agents “remember” the way their counterpart 

treated them and adjust their behavior in future rounds. In evolutionary models, each 

round will end with some agents dying (often if they have received a low payoff) or 

reproducing (often if they have received a high payoff). In mating models, agents can pair 

up (or break up). In models where agents form groups, agents can become closer to some 

agents and move further from others. 

Application of Step 5. Both Schelling’s and Gray and colleagues’ agents changed via 

movement, moving to a randomly selected grid space (Schelling) or closer to those who 

treated them nicely (i.e., their friends; Gray and colleagues).  
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6. How long does your world last? As mentioned earlier, one of the major advantages of 

ABMs is their scale. Researchers can collect data for any specified amount of time, 

meaning that an ABM investigation will almost never be underpowered. However, 

researchers should set a theoretically meaningful length to their model. In some cases, 

models should run until they have reached some form of equilibrium. In other cases, 

models should run for a length that approximates some phenomenon of interest (e.g. 

Luhmann & Rajaram’s, 2015, model of collective memory), but still allows the researcher 

to conduct analyses with adequate reliability. In either case, decisions are limited only by 

(practically unlimited) computer storage space and CPU speed.  

Application of Step 6. Both Schelling's and Gray and colleagues’ models ran until a point 

of equilibrium. In Schelling’s model, this equilibrium was the point at which agents were 

no longer moving across neighborhoods. For Gray and colleagues, equilibrium 

represented the point at which agents had all formed groups or group formation was 

impossible.   

7. What do you want to learn from your world? At the end of the day, ABM is a theory- 

testing and development paradigm (Smith & Conrey, 2007) with independent and 

dependent variables. In the case of ABMs, independent variables (or “parameters”) are 

customized by the experimenter, while dependent variables are measured throughout the 

model or at the model’s conclusion. If experimental hypotheses are confirmed, researchers 

should consider adding other independent variables into the model as moderators. Using 

new variables or situations to test the generalizability of a phenomenon is often called a 

“robustness analysis,” and it can reveal surprising new effects or non-linearities. 



AGENT-BASED MODELING 

	
   21	
  

Application of Step 7. Schelling’s central parameter was agents’ desired similarity, while 

his dependent measures were agents’ positions at the conclusion of the simulation. His 

finding was that a relatively low rate of similarity seeking (~30%) could produce 

relatively homophilous agent distributions at the conclusion of the simulation.  

  In Gray and colleagues’ model of “us and them,” the central parameters were 

agents’ tendency to show reciprocity and transitivity, and the central dependent variable 

was group clustering. Varying parameters and measuring clustering revealed how 

reciprocity and transitivity could produce stable grouping. Gray and colleagues also 

examined a moderating role for “trust”—the baseline tendency for cooperation or 

defection. 

Conclusion 

ABM is not a new technique, but its promise and power are often overlooked by social 

psychologists. We believe that there are two assumptions that have hindered their increased use. 

The first is that ABMs are difficult to learn or understand. However, good ABMs should be easy 

to conceptually understand, and the resources discussed above should make their implementation 

easier. The second assumption is that ABMs fail to generate new knowledge. As we suggest, 

good ABMs harness the power of emergence, in which higher-level phenomena derive from the 

simple behavior of agents. As with any method, ABM is imperfect, but it does offer social 

psychologists a powerful way to implement precise hypotheses and to explore emergence. Not 

only can researchers build whole worlds to examine social processes, they also can sample from 

these worlds over thousands of generations to yield unprecedented insight into collective 

behavior. Whether studying relationships, stereotypes, culture, attitudes, emotions, religion, or 

the self, social psychologists should consider adding ABM to their methodological toolbox.  
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Supplemental Table for Jackson et al., 2016 
 
 
 

Table 1. A Summary of Agent-Based Models with Relevance to Social Psychology 
Model 
reference 

What are the 
world’s 
dimensions? 

How do 
agents meet? 

How do 
agents act? 

What is the 
payoff? 

How do agents 
change? 

How long does 
the world exist? 

What do we 
learn from the 
world? 

Atkipis, 2011 Two-
dimensional 
lattice 

Agents 
interact with 
other agents 
in their grid 
space 

Agents play 
public goods 
game 
 
Agents enter 
and leave 
groups 

Resource 
payoff 
depending 
on group 
donations 

Agents can leave 
and enter groups 
 
Agents can gain 
and lose 
resources 
 

50,000 runs Cooperators 
perform better 
when they can 
leave defecting 
groups 

Atkipis et al., 
2016 

Dyadic 
network 

Model 
contains two 
individuals, 
who 
repeatedly 
interact  

Agents 
transfer 
resources 
(herding 
stock) 

Resource 
payoff 
(stock) 
depending 
on response 
to stock 
requests 

Agents’ stock 
size can change 
 
Agents can die  

Average of 
10,000 rounds 

Dyads that 
transfer wealth 
based on need are 
more successful 
than dyads that 
transfer wealth 
based on 
accounts-keeping 
 

Andrighetto 
et al., 2012 

Isolated tetrad 
networks 

Model 
contains 
groups of 
four 
individuals, 
who 
repeatedly 
interact  

Agents play 
public goods 
game  
 
Agents 
punish or 
communicat
e with other 
agents 

Resource 
payoff 
depending 
on group 
donations 
and 
punishments 

Agents can gain 
or lose resources 
 
Agents can 
remember group 
cooperation 
norms 
 
Agents can 
update strategies 
 

30 runs Communicating 
norms boosts a 
group’s 
cooperation to a 
greater extent than 
material 
punishment 

Axelrod, 
1980 

Multiple 
dyadic 
networks 

Cooperation 
strategies are 
paired with 
all other 
strategies in a 
round-robin 
format 

Agents play 
prisoner’s 
dilemma 

Resource 
payoff 
depending 
on each 
agent’s 
cooperation 
decision 

No change 200 moves per 
game 

Assuming 
Axelrod’s 
parameters, the 
most effective 
cooperation 
strategy is to 
cooperate on the 
first move and 
then copy one’s 
partner on all 
future moves 
 

Axelrod, 
1997 

Two-
dimensional 
grid 

Agents 
interact with 
their 
neighbors 

Agents 
compare 
their 
features with 
their 
neighbor’s 
features  

No payoff Agents can 
change their 
features 

81,000 runs Given interaction 
based on shared 
features, agents 
will converge 
towards features 
with their 
neighbors, but 
diverge globally 
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Bear & Rand, 
2016 

Multidimensio
nal 

Agents are 
repeatedly 
paired in 
quasi-random 
dyadic 
interactions 

Agents play 
prisoner’s 
dilemma 
(both one-
shot and 
repeated 
interaction 
variants) 
 
Agents 
choose a 
contribution 
strategy for 
each game 
 

Resource 
payoff 
depending 
on each 
agent’s 
cooperation 
decision 

Agents can gain 
and lose 
resources 
 
Agents can 
update strategies 

10 simulation 
runs, each lasting 
107 generations 

Intuitive 
cooperation is a 
functional 
strategy, 
depending on 
environmental 
reciprocity and 
assortment. 
Deliberation 
undermines 
cooperation with 
strangers 

Bosse et al., 
2009 

Fully 
connected 
triadic network 

Model 
contains a 
group of three 
agents, who 
repeatedly 
interact  
 

Agents 
communicat
e an 
emotional 
state 

No payoff Agents can 
change their 
emotional state 

Variable Emotions can 
spiral upward and 
downward 

Brown et al., 
2015 

Multidimensio
nal 

Dyads are 
randomly 
paired 

Agents 
decide 
whether to 
play 
prisoner’s 
dilemma 
 
Agents play 
prisoner’s 
dilemma 

Resource 
payoff 
depending 
on agents’ 
cooperation 
decision and 
infection 
status 

Agents can 
adjust openness 
to interactions 
with distant 
agents 
 
Agents can move 
to a new position 
in the network 
 

100,000 runs for 
each value of 
infection 
probability 

Groups 
spontaneously 
form based on 
local vs. global 
cooperative 
networks under 
high threat when 
infection levels 
are high 

Bruner, 2015 Multidimensio
nal 

Randomly 
assembled 
10-player 
groups 
interact 

Agents play 
stag hunt 
 

Resource 
payoff 
dependent 
on each 
agent’s 
cooperation 
decision 

Agents can 
change their 
contribution 
strategy 
 
Agents can 
mutate in their 
traits and 
tolerance for 
diversity 
 

1,000 runs Cooperation can 
emerge if social 
traits are fixed. 
When individuals 
can change their 
traits, cooperation 
comes at a steep 
cost to diversity 

Čače et al., 
2007 

Two-
dimensional 
grid 

Agents 
interact with 
their 
neighbors 

Agents 
communicat
e with their 
neighbors 

Resource 
payoff based 
on agents’ 
food 
consumption 

Agents can move 
around the grid 
 
Agents can 
increase energy 
 
Agents can die  
 
Agents can 
reproduce  
 

5,000 runs Communication is 
beneficial for 
reproduction and 
resource accrual 
in agents where 
parents invest in 
their offspring 

Campenni & 
Shino, 2014 

Multidimensio
nal 

Agents 
choose 

Agents play 
adapted 

Resource 
payoff based 

Agents can 
update their 

1,000 runs for 
each of 100 

When cooperative 
agents can select 
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partners 
based on 
memory from 
previous 
interactions 

prisoner’s 
dilemma  
 

on each 
agent’s 
cooperation 
decision 

memory 
 
Agents can 
reproduce with 
mutation 
 

simulations their interaction 
partners, they 
outperform selfish 
free-riding agents 

Danielson, 
2002 

Multidimensio
nal 

Agents are 
systematicall
y paired in 
dyadic 
networks 
until they 
have 
interacted 
with all other 
agents 

Sequentially 
play 8 
economic 
games 

Resource 
payoff based 
on each 
agent’s 
cooperation 
decisions 

Agents can 
mutate 
 
Agents can 
reproduce 
 
In some models, 
agents remember 
previous 
interactions 

Variable Reciprocity is 
necessary but not 
sufficient for 
optimal 
cooperation. 
Competition 
among reciprocal 
cooperators shows 
three emergent 
organizations: 
racing to the 
moral high 
ground, unstable 
cycles of 
preferences 
change, and 
hierarchies 
resulting from 
exploiting fellow 
cooperators 
 

De et al., 
2015 

Two-
dimensional 
grid 

Dyads are 
paired semi-
randomly 
with their 
neighbors 

Agents play 
prisoner’s 
dilemma  

Resource 
payoff based 
on each 
agent’s 
cooperation 
decision 

Agents can 
remember past 
encounters 
 
Agents can move 
to other spaces in 
the grid 

30,000+ iterations Mobility 
moderates the 
success of 
ethnocentric 
behavior. In high 
mobility 
conditions, 
individual-
entitative 
cooperation 
strategies 
outweigh group-
entitative 
cooperation 
strategies 
 

Epstein et al., 
2008 

Two-
dimensional 
grid 

Agents 
randomly 
interact with 
a local agent 
(if one is 
near) 

Agents 
make a 
decision as 
to whether 
to flee, run, 
or ignore 
contact with 
an infected 
or fearful 
partner 

No payoff Agents can 
become sick and 
recover 
 
Agents can 
become afraid 
 

Variable; model 
ends when no 
more agents are 
infected 

Behavioral 
responses to 
disease can shape 
the evolution of 
that disease, and 
its spread 

Glanville & 
Bienenstock, 
2009 

Multidimensio
nal 

Dyads are 
randomly 
paired 

Agents play 
prisoner’s 
dilemma 

Resource 
payoff based 
on each 

Agents can 
remember past 
encounters.  

Average of 1,000 
iterations 

Social networks 
enable the spread 
of indirect 
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agent’s 
cooperation 
decision 

reciprocity. In the 
absence of direct 
reciprocity and 
punishment, 
agents who 
cooperate in 
earlier iterations 
reap the benefits 
later, whereas 
uncooperative 
agents are 
punished 
 

Gray et al., 
2014 

Multidimensio
nal 

Dyads are 
semi-
randomly 
paired based 
on proximity 

Agents 
decide 
whether to 
interact with 
a partner 
 
Given an 
interaction, 
agents play 
prisoner’s 
dilemma 
 

Resource 
payoff based 
on each 
agent’s 
cooperation 
decision 

Agents can move 
closer to other 
agents 

Continued until 
all agents had 
formed groups or 
group formation 
was impossible 

Reciprocity and 
transitivity can 
lead to stable 
group formation 
amongst 
homogenous 
agents 

Hadzibegano
vic, Lima, & 
Stauffer, 
2012 

Two-
dimensional 
small-world 
network 

Dyads are 
semi-
randomly 
paired based 
on proximity 

Agents play 
prisoner’s 
dilemma  
 
Agents 
adapt their 
strategy 
based on 
their 
partner’s tag 
color 
 

Resource 
payoff based 
on each 
agent’s 
cooperation 
decision 

Agents can 
reproduce 
sexually and 
asexually 
 
Agents can die  

3 x 106 time steps Altruistic acts in 
non-repeated 
interactions can 
emerge as a 
natural 
consequence of 
heritable traits 
such as visual tags 

Hammond & 
Axelrod, 
2006 

Two-
dimensional 
grid 

Dyads are 
paired semi-
randomly 
with their 
neighbors 

Agents play 
prisoner’s 
dilemma  

Resource 
payoff based 
on each 
agent’s 
cooperation 
decision 

Agents can move 
around the grid 
 
Agents can 
reproduce 
 
Agents can die 
 

10 runs of 2,000 
steps 

Ethnocentrism is a 
functional 
strategy, and 
allows for greater 
resource accrual 
than out-group 
cooperation 

Jahanbazi et 
al., 2014 

Two-
dimensional 
grid 

Dyads are 
semi-
randomly 
paired based 
on proximity 

Agents eat, 
steal, and 
share food 
 
Agents take 
revenge on 
thieves 
 
Agents 
choose 
mates 

Energy 
payoff from 
eating food 
 
Resource 
payoff from 
robbing 
other agents 

Agents can move 
around the grid 
 
Agents can 
reproduce 
 
Agents can die  
 
Agents can go to 
jail and can be 
released 

1,000+ A leader’s level of 
altruism affects 
downstream 
levels of 
population 
altruism  
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Agents 
follow 
leaders’ 
orders 

 

Johnson, 
Weidmann, & 
Cederman, 
2011 

Two-
dimensional 
grid 

Agents 
interact with 
neighbors 

Agents 
decide 
which 
neighbors to 
attack 
 
Agents 
attack their 
neighbors 

Resource 
payoff based 
on each 
agent’s 
fighting 
decision and 
strength 

Agents can gain 
and lose 
resources 
 
Agents can 
increase or 
decrease their 
spatial territory 
 

200 runs of 
variable time-
steps 

Overconfident 
agents (provinces) 
tend to win wars 

Kalick & 
Hamilton, 
1986 

Multidimensio
nal 

Agents are 
randomly 
paired 

Agents ask 
each other 
on dates, 
and decide 
whether to 
accept date 
offers 

No payoff Agents leave the 
dating pool after 
pairing 

Continues until all 
agents are paired 

Agents tend to 
pair with similarly 
attractive partners 
even when they 
desire maximally 
attractive partners 
 

Krasnow et 
al., 2015 

Multidimensio
nal 

Agents 
interact with 
10-person 
groups 

Agents play 
adapted 
public goods 
games  
 
Agents 
punish other 
group 
members 

Resource 
payoff 
depending 
on group 
members’ 
cooperation 
and 
punishment 
decisions 

Agents can 
remember who 
has punished 
them 
 
Agents can 
reproduce with 
mutation 
 
Agents can die 
 

5 runs of 10,000 
generations 

Punishment can 
evolve in models 
of self-interested 
agents when 
punishers do not 
need to punish 
every round, free-
riding agents can 
cooperate after 
punishment, and 
agents can move 
between groups 

Luhmann & 
Rajaram, 
2015 

Study 1: Fully 
connected 
triadic network 
 
Study 2: 
Multidimensio
nal 
 
Study 3: 
Small-world 
network 

Study 1: 
Agents 
interact in 3-
person groups 
 
Study 2: 
Dyads are 
randomly 
paired in 
groups of 
varying size 
 
Study 3: 
Agents semi-
randomly 
paired based 
on proximity 
 

Agents 
encode 
items in 
memory 
 
Agents 
reduce the 
activation of 
other items 
in memory 

No payoff Agents’ memory 
is updated 

Study 1: 1,000 
simulation for 
each type of group 
 
Study 2: 1,000 
simulations for 
each group size 
 
Study 3: 1,000 
simulations for 
each network 

Collaborative 
groups perform 
worse on memory 
over time, 
compared to non-
collaborative 
groups, an effect 
that grows larger 
in larger groups  

Nowak et al., 
2015 

Two-
dimensional 
small-world 
network 

Dyads are 
semi-
randomly 
paired based 
on proximity 

Agents 
choose 
whether to 
attack their 
partner 

Strength 
payoff 
contingent 
on the 
outcome of 

Agents can 
change in their 
strength 
 
Agents can 

10 simulations of 
50,000 steps 

When the 
environment is 
unpredictable, 
honor cultures can 
evolve in favor of 
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If attacked, 
agents can 
choose 
whether to 
give up, 
fight back, 
or call the 
police 

interactions 
 
Reputation 
payoff 
contingent 
on the 
outcome of 
interactions 
 

change in their 
reputation 
 
Agents can die 
and be replaced 

rational or dignity 
cultures 

Nowak, 
Szamrej, & 
Latane, 1990 

Two-
dimensional 
grid 

Agents 
interact with 
neighbors 

Agents 
decide 
whether to 
change their 
attitudes 

No payoff Agents can 
change their 
attitudes 

Continued until 
there was no 
longer change in 
attitudes 

Attitude change 
based on strength, 
immediacy, and 
number of sources 
can result in stable 
minority attitude 
clusters within 
contrasting 
majorities 
 

Power, 2009 Customized 
two-
dimensional 
spatial 
structure 

Agents 
interact with 
those within 
their spatial 
neighborhood 

Agents play 
prisoner’s 
dilemma 

Resource 
payoff 
depending 
on each 
agent’s 
cooperation 
decision 

Agents can 
remember 
previous 
interactions 
 
Agents can 
update their 
strategy 
 
Agents can move 
within the 
network 
 

300+ iterations Mobility is a 
better predictor of 
how much agents 
will cluster based 
on cooperation 
style, compared to 
initial cooperation 
states 

Ren & Kraut, 
2014 

Multiple 
multidimensio
nal networks 

Agents 
interact with 
all those 
within their 
network 

Agents login 
to read 
messages 
 
Agents read 
messages 
 
Agents post 
replies or 
new 
messages 

No payoff Agents can 
update their cost 
and benefit of 
sending and 
reading 
messages 
 
Agents can leave 
communities 
 

Two 365 “day” 
simulations for 
each experimental 
condition 

Personalized 
moderation of 
online 
communities 
leads to greater 
participation and 
commitment 
compared to 
community 
moderation and 
no moderation 

Reynolds, 
1987 

Two-
dimensional 
grid 

Agents 
interact with 
all other 
agents, with 
weight given 
to closest 
others 

Agents 
move 
towards the 
other agents 
 
Agents 
match speed 
and 
direction of 
nearby 
agents 
 
Agents 

No payoff Agents move 
throughout the 
space 

300+ frames Three simple rules 
can produce 
flocking behavior 
in computer-
generated “boids” 
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avoid 
collision 
with nearby 
agents 
 

Roos et al., 
2014 

Two-
dimensional 
small-word 
network 

Agents 
interact semi-
randomly 
based on 
proximity 

Agents play 
cooperation 
game 
 
Agents 
decide 
whether to 
punish free-
riders 

Resource 
payoff 
depending 
on each 
agent’s 
cooperation 
and 
punishment 
decisions 

Agents can 
switch places 
with other agents 
in the network 
 
Agents can copy 
their neighbor’s 
strategy 
 

100 simulation 
runs over 5,000 
generations 

Under conditions 
of low mobility 
and high strength 
of ties, 
punishment can 
be an effective 
strategy for 
convincing self-
interested agents 
to cooperate 

Roos et al., 
2015 

Two-
dimensional 
grid 

Agents only 
interact with 
their 
neighbors 

Study 1: 
Agents play 
public goods 
game 
 
Study 2: 
Agents play 
coordination 
game 
 
Supplement
al materials: 
Agents play 
prisoner’s 
dilemma and 
stag hunt 
 
Both 
studies: 
Agents 
decide 
whether to 
punish free-
riding agents 
 

Resource 
payoff 
dependent 
on each 
agent’s 
cooperation 
decision 

Agents can 
update their 
strategy 
 
Agents can 
reproduce 
 
Agents can die 

5,000 time-steps 
per simulation 

Ecological threat 
increases the 
success of 
cooperation and 
coordination 

Smaldino et 
al., 2012 

Study 1: 
Multidimensio
nal 
 
Study 2: Two 
dimensional 
grid 

Study 1: 
Agents 
sample all 
other agents 
 
Study 2: 
Agents 
sample local 
neighbors  

Agents take 
stock of 
their 
surrounding 
identities 
 
 

No payoff Agents can 
update their 
identity 

5000+ time steps Agents cannot 
individually 
achieve optimal 
distinctiveness 
when they share 
the same 
environment, but 
they can approach 
optimal 
distinctiveness 
when their 
environments are 
local and 
overlapping 
 

Smaldino, Two- Agents are Agents play Resource/en Agents’ energy 30 simulations per High 
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Schank, & 
McElreath, 
2013 

dimensional 
grid 

randomly 
distributed, 
and interact 
with their 
neighbors 

prisoner’s 
dilemma 

ergy payoff 
dependent 
on each 
agent’s 
cooperation 
decision 

reserve updates 
 
Agents can move 
to unoccupied 
cells 
 
Agents can die 
 
Agents can 
reproduce into 
unoccupied cells 
 

condition, with t = 
107 per simulation 

environmental 
cost of living 
threatens 
cooperation in the 
short-term but 
allows for greater 
cooperation in the 
long-term 

Villatoro et 
al., 2014 

Fully 
connected 
tetradic 
network 

Agents 
interact with 
their network 

Agents 
detect the 
salience of 
norms 
 
Agents play 
public goods 
game 

Resource 
payoff 
depending 
on each 
agent’s 
cooperation 
and 
punishment 
decisions 

Agents can 
update their 
strategies 
 
 

5,000 simulations Punishment is 
more effective 
when coordinated 
by groups than 
when expressed 
by individuals, 
presumably 
because it 
communicates 
norms 
 

de Williams 
et al., 2015  

Multidimensio
nal 

Agents 
interact semi-
randomly 
based on pre-
assigned 
connectednes
s scores 

Agents 
forage for 
food 
 
Agents 
express pain 
 
Agents 
decide 
whether to 
help other 
agents in 
pain 
 
Agents 
decide 
whether to 
exploit other 
agents in 
pain 

Energy 
payoff 
depending 
on pain 
state, 
helping 
behavior, 
and 
exploitative 
behavior  

Agents can gain 
and lose energy 
 
Agents can die 
and be replaced 

100 repeated 
simulations run 
for 10,000 
iterations 

More energy-
demanding 
expressions of 
pain reduced 
pain’s frequency 
in successive 
generations, and 
increased injury 
frequency resulted 
in fewer 
expressers and 
altruists. Allowing 
for exploitation of 
injured agents 
greatly reduced 
expressions of 
pain 
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